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Abstract

We investigate the structure of mathematical entropies for dissipative multicomponent fluid

models derived from the kinetic theory of gases. The corresponding governing equations notably

involve nonideal thermochemistry as well as diffusion fluxes driven by chemical potential gradients

and temperature gradients. We obtain the general form of mathematical entropies compatible with

the hyperbolic structure of the system of partial differential equations assuming a natural nonde-

generacy condition. We next establish that entropies compatible with the hyperbolic-parabolic

structure are unique up to an affine transform when they are independent on mass and heat diffu-

sion parameters.

1 Introduction

Multicomponent fluids arise in many laboratory experiments and engineering applications such as reen-
try into earth atmosphere, chemical reactors, flames or atmospheric pollution [22]. On the other hand,
mathematical entropies are an important tool for analyzing hyperbolic-parabolic systems of partial
differential equations modeling fluids [33, 20, 55, 37, 49, 39, 9, 27, 22, 18, 28, 6, 52]. Mathematical
entropies lead to symmetrized forms useful for existence theorems [55, 37, 54, 27, 28] as well as finite
element formulations [35] and may also be used to derive a priori estimates. These are strong moti-
vations for investigating the structure and properties of mathematical entropies for systems of partial
differential equations modeling dissipative multicomponent fluids, higher order entropies [17, 23, 24, 25]
laying beyond the scope of the present work.

The system of partial differential equations modeling dissipative multicomponent fluids derived from
the kinetic theory of gases is first presented. We discuss conservation equations, thermodynamics, chem-
ical production rates and transport fluxes. The mathematical structure of nonideal thermodynamics
has recently been investigated [29] and the nonideal chemical production rates are directly expressed
in terms of chemical potentials [44, 41, 31, 29]. These rates are compatible with the symmetric form
of rates of progress derived from the kinetic theory of dilute reactive gases [16, 22]. The mass and
heat diffusion fluxes, deduced from the kinetic theory of dilute or dense gases as well as from various
macroscopic theories, are driven by chemical potential gradients and temperature gradients and vis-
cous effects are also taken into account [45, 47, 10, 41, 3, 4, 43]. The resulting nonideal fluid model is
shown to satisfy the second principle of thermodynamics, that is, physical entropy production due to
transport fluxes and chemistry are both shown to be nonnegative.

The definition of an entropy function is adapted from Godunov [33] and Friedrichs and Lax [20] for
the hyperbolic part, from Kawashima and Shizuta [37, 54, 38, 39] for the dissipative part, and from
the structure of chemical sources [22, 28], Chen, Levermore and Liu [8] and Kawashima and Yong
[40] for the source term. Mathematical entropies of the corresponding system of partial differential
equations have thus to be compatible with the convective terms, the dissipative terms, and the chemical
sources terms. The natural choice for such a mathematical entropy is σ = −S/R where S denotes
the physical entropy per unit volume and where the division by the gas constant R is introduced for
convenience. For such nonideal fluids, however, the open sets where thermodynamics is admissible—in
particular where the physical entropy Hessian is definite—are bounded by thermodynamically unstable
states. As a consequence, even though the natural mathematical entropy σ and the corresponding
symmetrizing variable v = (∂uσ)

t are defined for all admissible states of the conservative variable
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u, the map u → v is not globally one to one—unlike for ideal fluids—because of thermodynamic
instabilities. The symmetrizing change of variable u → v is only locally invertible for such nonideal
thermodynamics but still lead to global existence theorems around equilibrium states and asymptotic
stability [30]. The corresponding natural local symmetrized form may also be evaluated in terms of
the inverse of the Gibbs functions derivatives ∂ρj

Gi, i, j ∈ S, where Gi is the Gibbs function of the ith
species per unit mass, ρj the partial density of the jth species, S = {1, . . . , n} the species indexing set,
and n the number of species [30]. This natural symmetrized form involves in particular the dissipation

matrices B̃ij relating the dissipative flux in the ith direction Fdiss
i = −

∑
j∈C B̃ij∂jv to the gradient of

the natural symmetrizing variable ∂jv in the jth direction, where C = {1, . . . , d} denotes the spatial
direction indexing set and d the spatial dimension.

We first investigate the structure of mathematical entropies in the absence of dissipation, i.e., for
the multicomponent Euler equations, under a natural nondegeneracy assumption on the fluid thermo-
dynamics. The nondegeneracy condition states that the volume per unit mass ν = ν(p, y1, . . . , yn, s),
written as a function of pressure p, species mass fractions y1, . . . , yn and entropy per unit mass s,
is such that ∂2psν 6= 0. Under this assumption, mathematical entropies for multicomponent flows σ̃
compatible with the hyperbolic structure are found in the general form

σ̃ = ϕ(ρ1, . . . , ρn,S) + α
v
· ρv + αE(E + 1

2ρ|v|
2) + α0, (1.1)

where ρ =
∑

1≤i≤n ρi denotes the total mass per unit volume, v the flow velocity, E the energy per unit

volume, ϕ a 1-homogeneous function of ρ1, . . . , ρn,S and where α
v
∈ R

d, αE , α0 ∈ R are constants. The
nontrivial term ϕ(ρ1, . . . , ρn,S) may equivalently be written ρϕ(y1, . . . , yn, s) thanks to the relations
ρi = ρyi and S = ρs. When there is only one species n = 1, we recover that nontrivial entropies are in
the form ρϕ(s) [51, 56] and the multicomponent case is new to the authors’s knowledge.

We then study the compatibility conditions with second order derivatives, which may be written
as commutation type relations in the form B̃ij ∂vṽ = (∂vṽ)

t B̃ij , i, j ∈ C, between the dissipation

matrices B̃ij of the natural symmetrized form and the mathematical entropy derivative ∂
v
ṽ where

ṽ = (∂
u
σ̃)t. We establish that when a mathematical entropy σ̃ is compatible with the hyperbolic

structure of the governing equations, that is, with the multicomponent Euler equations, then σ̃ is
automatically compatible with the dissipation matrices arising from viscous effects. Compatibility with
dissipative effects is then reduced to the compatibility with a single mass and heat diffusion matrix
B̃L ∂vṽ = (∂vṽ)

t B̃L and this generalizes previous work by Hughes et al. [35] devoted to single component
gases. We also address the compatibility with chemical source terms at chemical equilibrium points
and establish that, for entropies σ̃ independent of chemical kinetic constants, the extended chemical
reaction vectors are left eigenvectors of ∂

v
ṽ.

In order to investigate the compatibility relations with diffusion matrices we first have to study
in more details the mathematical structure of mass and heat diffusion fluxes derived from the kinetic
theory of gases [57, 7, 19, 11, 15, 43]. We discuss diffusion velocities arising from Stefan-Maxwell
type equations as well as quasi-diagonal diffusion matrix approximations. We also consider thermal
diffusion cross effects generally termed Soret and Dufour effects. The resulting mass and heat diffusion
matrices are then full matrices with intricate analytic expressions and their spectral properties cannot
be determined, precluding the obtention of more information on mathematical entropy derivatives ∂vṽ
from the corresponding commutation type relations. As a consequence, in order to obtain more infor-
mation from the compatibility relations with the mass and heat diffusion matrix B̃L ∂

v
ṽ = (∂

v
ṽ)t B̃L,

we investigate the subfamily of mathematical entropies σ̃ that are independent of the natural mass
and heat diffusion parameters. In this natural situation, we establish that mathematical entropies σ̃
compatible with the hyperbolic-parabolic structure are in the form

σ̃ = αSS +
∑

i∈S

αiρi + α
v
· ρv + αE(E + 1

2ρ|v|
2) + α0, (1.2)

where αS , αi, i ∈ S, α
v
, αE , and α0 are constants so that σ̃ coincide with the natural entropy σ up

to an affine transform, discarding trivial entropies proportional to conserved quantities. This contrasts
with the multicomponent Euler system which admits many entropies (1.1) and these results generalize
previous work by Hughes et al. [35] devoted to single component gases.

The system of partial differential equations modeling dissipative fluids is presented in Section 2.
Mathematical entropies and symmetrized forms are investigated in Section 3. The hyperbolic situation
is investigated in Section 4 as well as compatibility relations with dissipation matrices. Mass and heat
diffusion fluxes are considered in more details in Section 5 and uniqueness of entropy up to an affine
transform is discussed Section 6.
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2 Nonideal mixtures of dissipative fluids

We present in this section the system of equations modeling dissipative multicomponent reactive fluids.

2.1 Governing equations

We denote by S = {1, . . . , n} the species indexing set, n the number of species, ρi the mass density of
the ith species, and mi the molar mass of the ith species. The mass conservation equation for the ith
species may be written

∂tρi +∇·(ρiv) +∇·F i = miωi, i ∈ S, (2.1)

where v denotes the velocity of the mixture, F i the mass diffusion flux and ωi the molar production
rate of the ith species. Bold symbols are used for vector or tensor quantities in the space R

d where d
is the dimension of the physical model under consideration so that for instance v = (v1, . . . , vd)

t and
∇ = (∂1, . . . , ∂d)

t. The momentum conservation equation can be written in the form

∂t(ρv) +∇·(ρv⊗v + pId) +∇·Π = 0, (2.2)

where ρ =
∑

i∈S
ρi is the mass density of the mixture, p the pressure, Id the unit tensor in R

d, and Π

the viscous tensor. Finally, the energy conservation equation reads

∂t(E + 1
2ρv·v) +∇·

(
(E + 1

2ρv·v + p)v
)
+∇·(Fe +Π·v) = 0, (2.3)

where E is the internal energy per unit volume and Fe the heat flux. These equations have to be
completed by relations expressing the thermodynamic properties like E and p, the chemical production
rates ωi, i ∈ S, and the transport fluxes F i, i ∈ S, Π and Fe.

The equations governing fluid mixtures may generally be derived from the kinetic theory of di-
lute gases [7, 19, 22], the kinetic theory of dense gases [3, 4, 43], the thermodynamics of irreversible
processes [45, 47, 10], from statistical mechanics [36, 2, 46] as well as statistical thermodynamics [41].

2.2 Thermodynamics

We denote by S the entropy per unit volume, T the absolute temperature, and by z = (ρ1, . . . , ρn, T ),

u = (ρ1, . . . , ρn, E)t, and ̺ = (ρ1, . . . , ρn)
t, the usual thermodynamic variables. We denote by ∂̃ the

derivation operator with respect to the variable z and the integer κ ∈ N, κ > 3, denotes the regularity
class of thermodynamic functions.

Definition 2.1. Let E, p, and S be Cκ functions of the variable z = (ρ1, . . . , ρn, T )
t defined on a

simply connected open set Oz ⊂ (0,∞)n+1. These functions are said to define a thermodynamics when
Properties (T1)-(T3) hold.

(T 1) The map z → u is a Cκ diffeomorphism from the set Oz onto an open set Ou .

(T 2) For any z ∈ Oz , defining Gi = ∂̃ρi
E − T ∂̃ρi

S, i ∈ S, we have the volumetric Gibbs’ relation
TdS = −

∑
i∈S

Gidρi + dE and the constraint
∑

i∈S
ρiGi = E + p− TS.

(T 3) For any z ∈ Oz , the Hessian matrix ∂2uu S is negative definite.

Property (T1) is associated with the natural change of variables encountered in thermodynamics
and temperature and species densities are assumed to be positive with Oz ⊂ (0,+∞)n+1. Property
(T2) is Gibbs’ relation with a natural constraint since the variables are volumetric [29]. Property (T3)
is the thermodynamic stability condition and the open set Oz may have a complex shape because
of thermodynamic instabilities [29]. Nonideal fluid thermodynamics are often built from equations of
states and such a construction has been investigated mathematically [29]. Thermodynamic stability
may not hold at high pressure and low temperature for nonideal fluids and may be characterized in
terms of the derivatives of the species Gibbs functions Gi, i ∈ S [29].

Proposition 2.2. Assume that (T1)-(T2) are satisfied and denote by Γ the matrix of size n with coef-

ficients Γkl = ρ∂̃ρk
Gl/T = ρ∂̃ρl

Gk/T . Then, for any z ∈ Oz , the following statements are equivalent :

(i) ∂2uu S is negative definite.

(ii) ∂̃T E > 0 and Γ is positive definite.

Remark 2.3. An interesting extra property of thermodynamics is the compatibility with perfect gases
which will not be required in this work [29].
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2.3 Chemical production rates

We consider an arbitrary complex reaction mechanism with nr reactions involving n species which may
be written ∑

i∈S

νfijMi ⇄
∑

i∈S

νbijMi, j ∈ R, (2.4)

where νfij and νbij denote the forward and backward stoichiometric coefficients of the ith species in
the jth reaction, Mi the symbol of the molecule of the ith species, and R = {1, . . . , nr} the reaction
indexing set. The forward and backward reaction vectors νfj and νbj of the jth reaction are defined

by νfj = (νf1j , . . . , ν
f
nj)

t and νbj = (νb1j , . . . , ν
b
nj)

t and the global reaction vector by νj = νbj − νfj . The
species of the mixture are assumed to be constituted by atoms and we denote by ail the number
of lth atom in the ith species, A = {1, . . . , na} the set of atom indices, and na > 1 the number of
atoms—or elements—in the mixture. The lth atomic vector is given by al = (a1l, . . . , anl)

t and the
vector spaces spanned by reaction and atomic vectors are denoted by R = span{ νi, i ∈ R } and
A = span{ al, l ∈ A } respectively. The unit vector is defined by 1I = (1, . . . , 1)t and the reduced
chemical potentials vector by µ = (µ1, . . . , µn)

t where µi = miGi/RT , i ∈ S. The Euclidean scalar
product between x, y ∈ R

n is denoted by 〈x, y〉 and the orthogonal complement of a linear subspace
E ⊂ R

n is denoted by E⊥. The production vector ω is defined by ω = (ω1, . . . , ωn)
t and may be

written
ω =

∑

j∈R

τjνj , (2.5)

where τj denotes the rate of progress of the jth reaction. The proper form for the rate of progress of
the jth reaction τj is deduced from statistical physics [44, 41]

τj = κsj
(
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
, (2.6)

where κsj is the symmetric reaction constant of the jth reaction. These nonideal rates of progress have
first been derived by Marcelin from chemical and statistical physics considerations [44] and rederived
by Keizer in the framework of a nonequilibrium statistical thermodynamics [41]. These rates are
compatible with traditional nonidealities used to estimate equilibrium constants [34] as well as with the
symmetric forms of rates of progress derived from the kinetic theory of dilute reactive gases [22, 16, 31].
The mathematical assumptions associated with the chemical production rates are the following.

(C1) The stoichiometric coefficients νfij and νbij, i ∈ S, j ∈ R, and the atomic coefficients ail, i ∈ S,
l ∈ A, are nonnegative integers. The atomic vectors al, l ∈ A, and the reaction vectors νj,
j ∈ R, satisfy the atom conservation relations 〈νbj , al〉 − 〈νfj , al〉 = 〈νj , al〉 = 0.

(C2) The atom masses m̃l, l ∈ A, are positive constants, and the species molar masses mi, i ∈ S,
are given by mi =

∑
l∈A

m̃l ail.

(C3) The symmetric rate constants κsj, j ∈ R, are C∞ positive functions of T > 0.

For realistic complex chemistry networks, the number of chemical reactions is always much larger
than the number of chemical species and one usually has R = A⊥. From atom conservation and the
definition of species masses, we now deduce the mass conservation property.

Lemma 2.4. Denote by M the diagonal matrix M = diag(m1, . . . ,mn). Then the vector of chemical
production rates ω is such that ω ∈ R and Mω ∈ MR. Moreover, the unity vector satisfies 1I ∈ (MR)⊥

so that we have the total mass conservation relation 〈1I,Mω〉 =
∑

k∈S
mkωk = 0.

Proof. We deduce from (C1)-(C3) that 1I =
∑

l∈A
m̃lM

−1al so that 1I ∈ (MR)⊥ since A⊥ ⊂ R⊥.
Moreover, ω ∈ R since ω =

∑
j∈R

τjνj and thus Mω ∈ MR and finally 〈Mω, 1I〉 = 0.

The mathematical structure of chemical kinetics has been investigated—generally for homogeneous
systems and kinetics of mass action type—by Aris [1], Wei [58], Shapiro and Shapley [50], Pousin [48],
Krambeck [42], Giovangigli and Massot [22, 27, 28], and that of nonideal chemical production rates
has been investigated by the authors [29].
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2.4 Transport fluxes

The viscous tensor is in the form

Π = −κ(∇·v)Id − η
(
∇v + (∇v)t − 2

d
(∇·v)Id

)
, (2.7)

where κ denotes the effective volume viscosity, η the shear viscosity, and Id the identity matrix in d
dimensions. Actually, the coefficient 2/d in the viscous tensor (2.7) should be 2/3 = 2/d′ where d′ = 3
is the dimension of the velocity phase space of the associated kinetic model. However, we may consider
the equations in R

d with d ≤ d′ = 3 and the full size viscous tensor Π ′ is then a matrix of order
d′ = 3, with a coefficient 2/3. If we denote then by Π the upper left block of size d of Π ′, that is, the
useful part of Π ′, we may rewrite Π in the form (2.7) with κ = κ′ + ( 2

d
− 2

3 )η where κ′ is the physical
volume viscosity [25]. Note incidentally that the volume viscosity of polyatomic gases is positive and
its impact on fast flows has been established in [5].

The mass and heat diffusion fluxes derived from the kinetic theory of dilute or the kinetic theory
of dense gases may be written in the form [22, 31, 30]

F i = −
∑

j∈S

ρyiDij

(
dj + χj∇ lnT

)
, i ∈ S, (2.8)

Fe =
∑

j∈S

RT

m

χj

yj
F j − λ∇T +

∑

i∈S

hiF i, (2.9)

where D = (Dij)ij∈S denotes the matrix of multicomponent diffusion coefficients, yj the mass fraction
of the jth species, χj the thermal diffusion ratio of the jth species, and λ the thermal conductivity.
Denoting by (∇µj)T the gradient at constant temperature of the reduced chemical potential µj =
mjGj/RT , the generalized diffusion driving force of the jth species is given by dj = xj(∇µj)T . The
diffusion coefficients Dij , i, j ∈ S are symmetric and have been introduced by Waldman for dilute
gases [57, 7] and Kurochkin [43] for dense gases. The diffusion coefficients and the thermal diffusion
ratios satisfy the mass conservation constraints Dy = 0 and 〈1I, χ〉 = 0 where y = (y1, . . . , yn)

t and
χ = (χ1, . . . , χn)

t. Various extra mathematical properties of the transport coefficients are discussed
in [21, 15, 27, 22]. Evaluating the transport coefficients generally requires solving transport linear
systems derived from the kinetic theory of gases [11, 43, 53]. These coefficients may conveniently
be evaluated from convergent series arising from iterative solution of the transport linear systems
[11, 12, 13, 14, 15, 26, 31].

In order to express the heat and mass diffusion fluxes it is convenient to introduce the matrices L
and L defined by

L =

(
Y RT

m
χ+ Yh•

0 1

)
, L = ρmLt

(
D 0

0 RT 2

ρm
λ

)
L, (2.10)

where Y = diag(y1, . . . , yn), h• = (h1, . . . , hn)
t, as well as the variable v = (G1, . . . ,Gn,−1)t/RT so

that we have
F i = −

∑

i,j∈S∪{e}

Lij∇v j , i ∈ S∪{e}. (2.11)

The mathematical properties of the multicomponent transport matrix L are directly related to those
of the diffusion matrix D, the thermal diffusion vector χ and the thermal conductivity λ [30].

Proposition 2.5. Assume that Properties (T1)-(T3) hold, let D ∈ R
n,n, χ ∈ R

n, and λ, and assume
that L is given by (2.10). Then the following statements are equivalent

(i) The matrix L is positive semi-definite with nullspace N(L) = R (1I, 0)t.

(ii) The matrix D is symmetric positive semi-definite with nullspace N(D) = Ry and λ > 0,

The mathematical properties of the matrix L and of the viscosities κ and η that we will need are
now the following.

(Tr1) The matrix L and the coefficients η and κ are Cκ functions of z ∈ Oz .

(Tr2) The matrix L is symmetric positive semi-definite and has nullspace N(L) = R (1I, 0)t, where

1I ∈ R
n and 1I =

(
1, · · · , 1

)t
. The coefficient η is positive, the coefficient κ is nonnegative and

is positive when d = 1.
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The following proposition shows that the physical entropy production due to macroscopic variable
gradients and to chemical reactions are both nonnegative [16, 22, 30].

Lemma 2.6. The physical entropy governing equation may be written in the form

∂tS +∇·(Sv) +∇·
(
−
∑

i∈S

Gi

T
F i +

Fe

T

)
= v∇ + vω, (2.12)

where the entropy production due to macroscopic gradients v∇ and chemistry vω are given by

v∇ =
∑

i,j∈S∪{e}

RLij∇v i·∇v j +
κ

T
(∇·v)2 +

η

2T

∣∣∇v +∇vt − 2
d
∇·vId

∣∣2,

vω = −R〈µ, ω〉 =
∑

j∈R

Rκsj
(
〈µ, νfj〉 − 〈µ, νbj 〉

) (
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
.

3 Mathematical entropies and symmetrization

We rewrite the system of partial differential equations modeling dissipative fluid in a quasilinear form
and we investigate local symmetrization properties.

3.1 Vector notation

The conservative variable is defined by u =
(
ρ1, . . . , ρn, ρv, E + 1

2ρv·v
)t

and the natural variable by

z =
(
ρ1, . . . , ρn,v, T

)t
. The velocity components of vectors in R

n+d+1 = R
n × R

d × R are written
as vectors of Rd for convenience. Since the thermodynamic part of u is u = (ρ1, . . . , ρn, E)t and the
thermodynamic part of z is z = (ρ1, . . . , ρn, T )

t it is easily seen that u is defined over the open set

O
u
=
{
u ∈ R

n+d+1
(
u1, . . . , un, un+d+1 −

1
2

u2n+1 + · · ·+ u2n+d∑
1≤i≤n ui

)t
∈ Ou

}
, (3.1)

and z is defined over the open set

O
z
= { z ∈ R

n+d+1 (z1, . . . , zn, zn+d+1)
t ∈ Oz }. (3.2)

Neither Ou nor Ou are likely to be convex in general due to the presence of thermodynamically unstable
states [30] in contrast with ideal gas mixtures [27, 22]. In order to express the natural variable z in
terms of the conservative variable u, we note the following property of the map z → u [30].

Proposition 3.1. Assuming that (T1)-(T3) hold, the map z 7−→ u is a Cκ diffeomorphism from the
open set Oz onto the open set Ou.

The equations modeling nonideal multicomponent reactive fluids may be written into the compact
form ∂tu+

∑
i∈C ∂iFi+

∑
i∈C ∂iF

diss
i = Ω where ∂t is the time derivative operator, ∂i the space derivative

operator in the ith direction, Fi the convective flux in the ith direction, Fdiss
i the dissipative flux in

the ith direction, Ω the source term, and C = {1, . . . , d} the indexing set of spatial dimensions. The
convective flux Fi in the ith direction is given by

Fi =
(
ρ1vi, . . . , ρnvi, ρvvi + pei, (E + p+ 1

2ρv·v)vi
)t
, (3.3)

where ei, i ∈ C, are the basis vectors of Rd. The dissipative flux Fdiss
i is given by

Fdiss
i =

(
F1i, . . . ,Fni, Π• i, Fei,+

∑

j∈C

Πijvj
)t
, (3.4)

where the spatial components of the transport fluxes have been written Π = (Πij)i,j∈C , Π• i =
(Π1i, . . . , Πdi)

t, Fk = (Fk1, . . . ,Fkd)
t, and Fe = (Fe1, . . . ,Fed)

t. Finally, the source term is given by

Ω =
(
m1ω1, . . . ,mnωn,0, 0

)t
, (3.5)
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where 0 = (0, . . . , 0)t ∈ R
d. From the expressions of Π and Fk, k ∈ S ∪ {e}, the dissipative fluxes

may be written in the form Fdiss
i = −

∑
j∈C B̂ij(z)∂jz, i ∈ C, where B̂ij is the dissipative matrix

relating the flux Fdiss
i in the ith direction with the gradient of the natural variable in the jth direction

∂jz. Thanks to Proposition 3.1, we may then write that Fdiss
i = −

∑
j∈C Bij(u)∂ju, i ∈ C, where

the dissipation matrices Bij are defined as Bij = B̂ij∂uz, i, j ∈ C. Further introducing the Jacobian
matrices Ai = ∂uFi, i ∈ C, the governing equations are finally rewritten into the compact form

∂tu+
∑

i∈C

Ai(u)∂iu =
∑

i,j∈C

∂i
(
Bij(u)∂ju

)
+Ω(u). (3.6)

In the next section, we discuss the properties of mathematical entropies for such a quasilinear system.

3.2 Mathematical entropy and symmetrization

The following definition of an entropy function [30] has been adapted from Godunov [33] and Friedrichs
and Lax [20] for the hyperbolic part, from Kawashima and Shizuta [37, 54, 38, 39] for the dissipative
part, and from the structure of chemical sources [22, 28], Chen, Levermore and Liu [8] and Kawashima
and Yong [40] for the source term.

Definition 3.2. Consider a Cκ function σ(u) defined over the open domain Ou assumed to be simply
connected. The function σ is said to be an entropy function for the system (3.6) if the following
properties hold.

(E1) The Hessian matrix ∂2
u
σ(u) is positive definite over Ou.

(E2) There exists real-valued Cκ functions qi = qi(u) such that ∂
u
σ(u)Ai(u) = ∂

u
qi(u) for any

u ∈ Ou and i ∈ C.

(E3) We have
(
∂2uσ(u)

)−1(
Bij(u)

)t
= Bji(u)

(
∂2uσ(u)

)−1
for any u ∈ Ou and i, j ∈ C.

(E4) The matrix B̃(u, w) =
∑

i,j∈C Bij(u)
(
∂2uσ(u)

)−1
wiwj is symmetric positive semi-definite for

any u ∈ Ou and w ∈ Σd−1.

(E5) There exists a vector space E ⊂ R
n+d+1 independent of u such that for any u ∈ O

u
, we have

Ω(u) ∈ E ⊥, and Ω(u) = 0 if and only if
(
∂uσ(u)

)t
∈ E and if and only if ∂uσ(u) Ω(u) = 0.

(E6) For any u ∈ O
u
, if Ω(u) = 0, then ∂uΩ(u)

(
∂2
u
σ(u)

)−1
=
(
∂2
u
σ(u)

)−1(
∂uΩ(u)

)t
and moreover

N
(
∂uΩ

(
∂2
u
σ(u)

)−1)
= E .

(E7) For any u ∈ O
u
, we have ∂uσ(u) Ω(u) ≤ 0.

An important difficulty with nonideal fluids is the presence of thermodynamically unstable states
associated with the loss of definiteness for entropy Hessian matrices. A consequence is the existence of
distinct states which correspond to the same symmetrizing variable so that only local symmetrization
may be obtained [30].

Definition 3.3. Consider a Cκ−1 map u → v from ⊂ Ou onto an open domain Ov. Assume that for
any u ∈ Ou there exists subdomains ou ⊂ Ou and ov ⊂ Ov such that u → v is a Cκ−1 diffeomorphism
from o

u
onto o

v
. Consider then the system in the v variable

Ã0(v)∂tv +
∑

i∈C

Ãi(v)∂iv =
∑

i,j∈C

∂i
(
B̃ij(v)∂jv

)
+ Ω̃(v), (3.7)

where Ã0 = ∂
v
u, Ãi = Ai∂vu = ∂

v
Fi, B̃ij = Bij∂vu, and Ω̃ = Ω. The system is said of the local

symmetric form [30] if Properties (S1)-(S7) hold where E ⊂ R
n+d+1 denotes a vector space independent

of u ∈ O
u
and v ∈ O

v
.

(S1) The matrix Ã0(v) is symmetric positive definite for v ∈ o
v
.

(S2) The matrices Ãi(v), i ∈ C, are symmetric for v ∈ ov.
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(S3) We have B̃t
ij(v) = B̃ji(v) for i, j ∈ C, and v ∈ o

v
.

(S4) The matrix B̃(v, w) =
∑

i,j∈C B̃ij(v)wiwj is symmetric positive semi-definite, for v ∈ o
v
, and

w ∈ Σd−1, where Σd−1 is the unit sphere in d dimensions.

(S5) There exists a vector space E ⊂ R
n+d+1 such that for any v ∈ ov, we have Ω(v) ∈ E ⊥.

Moreover, we have Ω(v) = 0 if and only if v ∈ E and if and only if
〈
v,Ω(v)

〉
= 0.

(S6) For any v ∈ o
v
, if Ω(v) = 0, then ∂vΩ(v) =

(
∂vΩ(v)

)t
and N

(
∂vΩ(v)

)
= E .

(S7) For any v ∈ o
v
, we have

〈
v,Ω(v)

〉
≤ 0.

The equivalence between symmetrization and entropy for hyperbolic systems of conservation laws,
that is, the equivalence between (S1)-(S7) and (E1)-(E7), is obtained with v = (∂

u
σ)t.

Theorem 3.4. Assume that the system (3.6) admits an Cκ entropy function σ defined over Ou.
Then, the system can be locally symmetrized around any point u of O

u
with the symmetrizing variable

v = (∂
u
σ)t. Conversely, assume that the system can be locally symmetrized with the Cκ−1 map u → v

in the neighborhood of any point u of the simply connected open set Ou. Then there exists a globally
defined entropy over the open set O

u
such that v = (∂

u
σ)t.

Proof. We first directly establish the equivalence of (S1)-(S2) and (E1)-(E2) with v = (∂uσ)
t. Indeed, if

(S1)-(S2) holds, then Ã0 = ∂vu is symmetric positive definite and so is ∂uv. From Poincaré Lemma, the
symmetry of ∂

u
v, and the simple connectedness of O

u
, there exists σ with v = (∂

u
σ)t and ∂

u
v = ∂2

u
σ

is positive definite and we have established (E1). Consider next the vector p =
(
∂uσ ∂uFi

)t
which has

its lth component given by pl =
∑

1≤j≤n̄ ∂ujσ∂ulFi,j where n̄ = n + d + 1. The differential identity

∂ukpl =
∑

1≤j≤n̄ ∂
2
ujuk

σ ∂ulFi,j +
∑

1≤j≤n̄ ∂ujσ ∂ukulFi,j is then easily established. Since Ãi = Ai∂vu =

∂
v
Fi is symmetric from (S2), we note that (∂

u
v)Ãi(∂uv) = (∂

u
v)Ai = ∂2

u
σ Ai = ∂2

u
σ ∂uFi is symmetric

and this implies that ∂ukpl = ∂ulpk. By Poincaré Lemma and since O
u
, is simply connected there exits

qi such that ∂ulqi = pl and we have established (E2).

Conversely, if (E1)-(E2) holds, then ∂
u
v = ∂2

u
σ is symmetric positive definite and so is Ã0 = ∂

v
u

and (S1) is established. Moreover, the identity ∂ukulqi =
∑

1≤j≤n̄ ∂
2
ujuk

σ∂ulFi,j +
∑

1≤j≤n̄ ∂ujσ∂ukulFi,j

yields that (∂uv)Ai is symmetric and so is Ãi = (∂vu)
(
∂uv Ai

)
(∂vu) and (S2) is established.

Finally, it is next seen that each (Si) is a reformulation of (Ei) for 3 ≤ i ≤ 7 and conversely thanks
to the relation v = (∂

u
σ)t.

3.3 Natural symmetric form

We evaluate in this section the natural symmetric form of the system of partial differential equations
modeling nonideal fluids (2.1)–(2.3) using the essential mathematical entropy σ = −S/R where the
1/R factor is introduced for convenience. It is reminded that the velocity components of all quantities
in R

n+d+1 are denoted as vectors of Rd for the sake of notational simplicity and the corresponding
partitionning is also used for matrices.

Theorem 3.5. Assume that (T1)-(T3), (C1)-(C3), and (Tr1)-(Tr2) hold. Then the function σ = −S/R
is a mathematical entropy for the system (2.1)–(2.3) and the corresponding entropic variable is

v = (∂uσ)
t =

1

RT

(
G1 −

1
2 |v|

2, . . . ,Gn − 1
2 |v|

2,v,−1
)t
. (3.8)

For any u ∈ O
u
there exists open subdomains o

u
⊂ O

u
and o

v
⊂ O

v
such that the map u → v is a local

Cκ−1 diffeomorphism from ou onto ov. The system written in term of the entropic variable v is

Ã0(v)∂tv +
∑

i∈C

Ãi(v)∂iv =
∑

i,j∈C

∂i
(
B̃ij(v)∂jv

)
+ Ω̃(v), (3.9)

with Ã0 = ∂vu, Ãi = Ai∂vu, B̃ij = Bij∂vu, and Ω̃ = Ω, and is of the local symmetric form. The matrix

Ã0 is given by

Ã0 =




Λ Sym

v⊗Λ1I 〈Λ1I, 1I〉v⊗v + ρRT Id

Λg 〈Λg , 1I〉vt + ρRTvt Ã
T,T
0


 , (3.10)
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where Λ = ρRΓ−1, Γ−1 is the inverse of the matrix Γkl = ρ∂̃ρk
Gl/T = ρ∂̃ρl

Gk/T , g i = Gi − T ∂̃TGi +
1
2 |v|

2 = ∂̃ρi
E + 1

2 |v|
2, i ∈ S, and Ã

T,T
0 = 〈Λg , g 〉 + ρRT |v|2 + RT 2∂̃TE. Since Ã0 is symmetric,

we only give its left lower triangular part and write “Sym” in the upper triangular part. Denoting by
ξ = (ξ1, . . . , ξd)

t an arbitrary vector of Rd and letting Ã =
∑

i∈C ξiÃi, we have

Ã = v·ξ Ã0 +RT




0 Sym

ξ⊗̺ ρ(ξ⊗v + v⊗ξ)

v·ξ ̺t v·ξ ρvt + (E + p+ 1
2ρ|v|

2)ξt 2v·ξ (E + p+ 1
2ρ|v|

2)


 . (3.11)

Moreover, we have the decomposition

B̃ij = B̃Lδij + κRT B̃κ
ij + ηRT B̃

η
ij , (3.12)

where

B̃L =



Ln,n Sym
0d,n 0d,d
Le• 01,d Le,e


 , (3.13)

and denoting by ξ = (ξ1, . . . , ξd)
t and ζ = (ζ1, . . . , ζd)

t arbitrary vectors of Rd, the matrices B̃κ
ij and

B̃
η
ij , i, j ∈ C, are given by

∑

i,j∈C

ξiζjB̃
κ
ij =




0n,n 0n,d 0n,1
0d,n ξ⊗ζ v·ζ ξ
01,n v·ξ ζt v·ξ v·ζ


 , (3.14)

∑

i,j∈C

ξiζjB̃
η
ij =




0n,n 0n,d 0n,1

0d,n ξ·ζId + ζ⊗ξ − 2
dξ⊗ζ ξ·ζ v + v·ξ ζ − 2

dv·ζ ξ

01,n ξ·ζ vt + v·ζ ξt − 2
d
v·ξ ζt ξ·ζ v·v + (1 − 2

d
)v·ξ v·ζ


 . (3.15)

Finally, the equilibrium manifold is given by

E = (MR)⊥ × R
d × R, (3.16)

where R = span{ νi, i ∈ R } ⊂ R
n is spanned by the reaction vectors and M = diag(m1, . . . ,mn).

For ideal fluids, the symmetrizing change of variable u → v is one to one and is thus a global change
of variable [27, 22]. On the contrary, for nonideal fluid, even though the entropy σ is globally defined,
a typical situation is that of distinct points u♯ and u♭ such that v♯ = v♭. Indeed, we see from (3.8) that
the equality v♯ = v♭ corresponds to the chemical equilibrium between the two stable phases u♯ and u♭

with identical pressure, temperature and Gibbs functions, that may notably be observed for nonideal
fluids [29].

4 Properties of mathematical entropies

We first discuss in this section the structure of mathematical entropies satisfying solely (E2) that is,
entropies for the multicomponent Euler equations, under a natural nondegeneracy condition. We next
discuss commutation relations (E3) between Jacobian matrices and dissipation matrices. We establish
that such relations are automatically satisfied for dissipation matrices arising from viscous effects
whenever the mathematical entropy is compatible with the hyperbolic structure. Compatibility with
dissipation effects is then reduced to the compatibility with the mass and heat diffusion matrix L.

4.1 The hyperbolic case

We discuss functions of the conservative variable u that solely satisfy (E2). In other words, we investi-
gate the structure of mathematical entropies in the absence of dissipation and source terms, that is, for
the nonreactive multicomponent Euler equations. We assume that the thermodynamic structure is that
of Properties (T1)-(T3) and an extra nondegeneracy assumption is required. This nondegeneracy condi-
tion is more easily written with the mass based variable (p, y1, . . . , yn, s)

t where p denotes the pressure,
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s the entropy per unit mass and yi the mass fraction of the ith species. This variable may equally be
used as a thermodynamic variable instead of the natural mass based variable (ν, y1, . . . , yn, T )

t where
ν = 1/ρ denotes the volume per unit mass discussed in Appendix A. The natural non-degeneracy
condition concerning thermodynamics is the following [51, 56].

(N ) The volume per unit mass ν = ν(p, y1, . . . , yn, s) as a function of the variable (p, y1, . . . , yn, s)
is such that ∂2psν 6= 0.

This non-degeneracy condition also means that ρ2c2 is not a function of p, y1, . . . , yn where c denotes the
speed of sound [51, 56]. The structure of mathematical entropies for multicomponent flows satisfying
(E2) is given in the following theorem.

Theorem 4.1. Assume that (T1)-(T3) and (N) hold and let σ̃ be a Cκ function defined on the open
set Ou and satisfying (E2). Then σ̃ is in the form

σ̃ = ϕ(ρ1, . . . , ρn,S) + α
v
· ρv + αE(E + 1

2ρ|v|
2) + α0, (4.1)

where ϕ is a 1-homogeneous Cκ function of ρ1, . . . , ρn,S and where α
v
∈ R

d, αE , α0 ∈ R are constants.

The fact that ϕ is 1-homogeneous means that ϕ(ρ1, . . . , ρn,S) = ρf(y1, . . . , yn, s) for some Cκ

function. When there is only one species in the mixture n = 1, such a structure is established in the
book of Denis Serre [51] in Lagrangian coordinates for the one dimensional case d = 1 and is also
investigated by Vulkov in Eulerian coordinates for the two dimensional case d = 2 taking into account
an eventual dependence on time [56]. To the authors’s knowledge, the multicomponent case has not
been previously investigated in the literature.

Proof. We establish that σ̃ is in the form σ̃ = ρf(y2, . . . , yn, s) + α
v
·ρv + αEρ(e +

1
2 |v|

2) + α0 where
α
v
, αE α0 are constants. The decomposition (4.1) is then obtained upon letting ϕ(ρ1, . . . , ρn,S) =

ρf(y2, . . . , yn, s) where yk = ρk/ρ for k ∈ S, s = S/ρ, and ρ =
∑

k∈S
ρk. We will use for convenience the

variables z′ = (ρ, y2, . . . , yn,v, T )
t and s = (p, y2, . . . , yn,v, s)

t, denote by S′ the corresponding species
indexing set S′ = {2, . . . , n}, and it is easily established that z → z′ and z → s are Cκ diffeomorphisms.

We denote by ∂̃′ the derivation operator with respect to the variable z′ = (ρ, y2, . . . , yn,v, T )
t, by ∂

the derivation operator with respect to the variable s = (p, y2, . . . , yn,v, s)
t and is it checked that the

nondegeneracy condition reads ∂
2

psν 6= 0.
The existence of fluxes q̃i(u), i ∈ C, such that ∂

u
σ̃ Ai = ∂

u
q̃i, i ∈ C, is equivalent to the existence of

fluxes q̂i(z
′), i ∈ C, such that ∂uσ̃ ∂z′Fi = ∂

z′
q̂i, i ∈ C, since Ai = ∂uFi, and this property is equivalent

to the compatibility relations ∂̃′
z′
k
(∂uσ̃∂z′Fi)l = ∂̃′

z′
l
(∂uσ̃∂z′Fi)k, for any 1 ≤ k, l ≤ n + d + 1 since Oz′

is simply connected. Upon writing the mathematical entropy σ̃ in the form σ̃ = ρϕ(p, y2, . . . , yn,v, s),
the function ϕ is Cκ over the open set Os since σ̃ is Cκ over Ou, and a lengthy calculation yields
the vector pi = ∂uσ̃∂z′Fi. Denoting its components in the form pi = (piρ, piy2

, . . . , piyn
, piv, piT )

t with
piv = (piv1 , . . . , pivd)

t it is found that

piρ = viϕ+ ρvi∂pϕ ∂̃
′
ρp+ ρvi∂sϕ ∂̃

′
ρs+ ∂viϕ ∂̃

′
ρp, (4.2)

piyk
= ρvi∂pϕ ∂̃

′
yk
p+ ρvi∂sϕ ∂̃

′
yk
s+ ρvi∂yk

ϕ + ∂viϕ ∂̃
′
yk
p, k ∈ S′, (4.3)

pivj = ρvi∂vjϕ, j ∈ C, j 6= i, (4.4)

pivi = ρϕ+ ρ2c2∂pϕ+ ρvi∂viϕ, (4.5)

piT = ∂viϕ ∂̃
′
T p+ ρvi∂pϕ ∂̃

′
T p+ ρvi∂sϕ ∂̃

′
T s. (4.6)

We have denoted here by

c2 =
1

∂pρ
= ∂̃′ρp+

T

ρ2
(∂̃T p)

2

∂̃T e
,

the square of the sound speed, and have also used the compatibility relations derived from Gibb’s
law T ∂̃′T s = ∂̃′T e, ρ

2∂̃′ρe = p − T ∂̃′Tp, ρ
2∂̃′ρs = −∂̃′T p, and one can establish that ∂̃′ρp > 0 from

thermodynamic stability [29].

The compatibility relation ∂̃′ρ(piT ) = ∂̃′T (piρ) then yields—after lengthy algebra—the relations

∂
2

visϕ = 0 making use of ∂̃′T s∂̃
′
ρp−∂̃

′
Tp∂̃

′
ρs 6= 0. Similarly, the compatibility relations ∂̃′ρ(pivj ) = ∂̃′vj (piρ)
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for j 6= i yield that ∂
2

vivjϕ = 0 for i 6= j, and the compatibility relations ∂̃′ρ(piyk
) = ∂̃′yk

(piρ) then

yields—after lengthy algebra—the relations ∂
2

viyk
ϕ = 0, k ∈ S′, making use of ∂

2

visϕ = 0 and ∂̃′ρp > 0.

From these relations ∂
2

vis
ϕ = 0, i ∈ C, ∂

2

viyk
ϕ = 0, k ∈ S′, i ∈ C, and ∂

2

vivj
ϕ = 0 for i, j ∈ C,

i 6= j, defining ϕv by

ϕv =

∫ v1

0

∂v1ϕdv1 + · · ·+

∫ vd

0

∂vdϕdvd, (4.7)

we deduce that ϕ may be written in the form

ϕ = ϕs(p, y2, . . . , yn, s) + ϕv(p,v). (4.8)

It is then easily checked that both ϕs and ϕv are at least Cκ−1 over Os from the explicit expression of
ϕv and the relation ϕ = ϕs + ϕv, and we also have ∂viϕ = ∂viϕv for any i ∈ C.

The compatibility relations ∂̃′ρ(pivi) = ∂̃′vi(piρ), ∂̃
′
T (pivi) = ∂̃′vi(piT ), and ∂̃

′
yk
(pivi) = ∂̃′vi(piyk

), then
yields—after lengthy algebra—that for i ∈ C and k ∈ S′

∂
2

viϕ ∂̃
′
ρp = ∂̃′ρ

(
ρ2c2∂pϕ), (4.9)

∂
2

vi
ϕ ∂̃′T p = ∂̃′T

(
ρ2c2∂pϕ), (4.10)

∂
2

vi
ϕ ∂̃′yk

p = ∂̃′yk

(
ρ2c2∂pϕ). (4.11)

On the other hand, it is easily established that

∂pρ =
1

c2
, ∂sρ = −

T

c2
∂̃T p

∂̃T e
, (4.12)

∂pT =
T

ρ2c2
∂̃T p

∂̃T e
, ∂sT =

T

c2
∂̃ρp

∂̃T e
, (4.13)

and since ∂s = (∂sρ)∂̃ρ + (∂sT )∂̃T we obtain that ∂s
(
ρ2c2∂pϕ

)
= 0. Since ∂pρ = 1

c2
we also obtain

that ∂pν = − 1
ρ2c2

so that from the nondegeneracy condition (N) we deduce that ∂s(ρ
2c2) 6= 0. From

the decomposition (4.8), ∂s
(
ρ2c2∂pϕ

)
= 0, and ∂s(ρ

2c2) 6= 0 we now obtain that

−∂pϕv = ∂pϕs +
ρ2c2∂

2

psϕs

∂s(ρ2c2)
.

This implies that ∂pϕv is independent of v and thus ∂
2

pvi
ϕv = 0 for any i ∈ C. We now may use

∂viϕv = ∂viϕ from (4.7) to obtain that ∂
2

pviϕ = 0. Since we already know that ∂
2

sviϕ = 0, ∂
2

ykvi
ϕ = 0,

k ∈ S′, and ∂
2

vjvi
ϕ = 0, j ∈ C for i 6= j, we conclude that ∂viϕ only depends on vi and from (4.7) we

obtain that ϕv only depends on v.
This now implies that ∂pϕ = ∂pϕs and is thus independent of v, and ∂vi

(
ρ2c2∂pϕ

)
= 0. Since we

also have ∂s
(
ρ2c2∂pϕ

)
= 0, we may write that ρ2c2∂pϕ = ψ(p, y2, . . . , yn) where ψ is Cκ−1. Next we

use again the differential relation (4.9) to deduce that ∂
2

vi
ϕ ∂̃′ρp = ∂̃′ρ

(
ρ2c2∂pϕ) = ∂pψ∂̃

′
ρp and since

∂̃′ρp > 0 thank to thermodynamic stability, we deduce that ∂pψ(p, y2, . . . , yn) = ∂
2

vi
ϕ(v) so that these

functions are indeed a single constant independent of i ∈ C. From the differential relation (4.11) we

also get that ∂yk
ψ + ∂pψ ∂̃

′
yk
p = ∂

2

vi
ϕ ∂̃′yk

p so that ∂yk
ψ = 0, k ∈ S′, and ψ only depends on pressure.

Since ∂pψ = ∂
2

viϕ, i ∈ C, is a single constant αE , we may thus write that there exists another constant

α0 such that ψ(p) = −α0 + αEp and we have established ρ2c2∂pϕ = −α0 + αEp.
From the relations (4.12) and (4.13) is is established that ∂p(1/ρ) = − 1

ρ2c2 and ∂pe =
p

ρ2c2 so that

∂p(ϕs −
α0

ρ
− αEe) = 0, ∂

2

vi
ϕv = αE , i ∈ C.

By direct integration we finally obtain

ρϕs = ρf(y2, . . . , yn, s) + α0 + αEρe, ρϕv = αE
1
2ρ|v|

2 + α
v
·(ρv),

where f only depends on y2, . . . , yn, s and is Cκ since σ̃ is Cκ and since the remaining terms are C∞

and the proof is complete.
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From Theorem 4.1, discarding trivial entropies associated with momentum and total energy con-
servation, we may only consider the situation of entropies in the form σ̃ = ϕ(ρ1, . . . , ρn,S) where ϕ is
1-homogeneous in its argument. This now constraints ∂zṽ to have the following structure.

Lemma 4.2. Let σ̃ = ϕ(ρ1, . . . , ρn,S) be defined on Ou where ϕ is 1-homogeneous. Letting ṽ = ∂uσ̃,
we then have the identity

∂zṽ = −R∂Sϕ∂zv −Rv⊗∂z(∂Sϕ) + ∂zV , (4.14)

where

V =
(
∂ρ1

ϕ, . . . , ∂ρn
ϕ,0, 0

)t
. (4.15)

Proof. The identity (4.14) is easily established after some algebra by deriving with respect to z the
relation (4.1) and by using the Euler relation

∑
i∈S

ρi∂ρi
ϕ+ S∂Sϕ = 0.

Corollary 4.3. Let σ̃ be a Cκ function defined over Ou and satisfying (E1)(E2). Then, discarding
trivial entropies linearly proportional to the conserved quantities, σ̃ is in the form σ̃ = ϕ(ρ1, . . . , ρn,S)
where ϕ is 1-homogeneous and where −R∂Sϕ∂uv−Rv⊗∂z(∂Sϕ) (∂zu)

−1+∂
z
V (∂

z
u)−1 is positive definite.

4.2 Compatibility with viscous dissipation matrices

We now consider the situation with nonzero dissipation matrices Bij , i, j ∈ C, and investigate commu-
tation type relations associated with the compatibility condition (E3). Denoting by σ̃ a mathematical
entropy, the compatibility relations in (E3) are in the form

(
∂2
u
σ̃
)−1

Bt
ji = Bij

(
∂2
u
σ̃
)−1

, i, j ∈ C, (4.16)

and may be written (∂uṽ)
−1Bt

ji = Bij(∂uṽ)
−1, i, j ∈ C, where ṽ = (∂uσ̃)

t. It is then more convenient

to express the commutation relations (4.16) in terms of the matrices B̃ij = Bij∂vu i, j ∈ C. After

some algebra we deduce that (∂
ṽ
v)t B̃ij = B̃ij ∂ṽv, i, j ∈ C, so that the compatibility relations may be

rewritten
B̃ij ∂vṽ = (∂vṽ)

t B̃ij , i, j ∈ C. (4.17)

These relations show that richer dissipative processes yield more constraints on mathematical entropies.
We may also combine these identities in order to obtain the following properties.

Proposition 4.4. Let be σ̃ be a Cκ function defined on the open set Ou satisfying (E3) and such that
∂2u σ̃ is invertible. Then letting ṽ = (∂uσ̃)

t, we have the commutation relations

(Ã−1
0 B̃ij) ∂vṽ = ∂

v
ṽ (Ã−1

0 B̃ij), i, j ∈ C, (4.18)

(Ã−1
0 Ãi) ∂vṽ = ∂vṽ (Ã−1

0 Ãi), i ∈ C. (4.19)

Proof. From the symmetry of ∂2
u
σ̃ = ∂uṽ = ∂vṽ ∂uv, keeping in mind that Ã−1

0 = ∂uv, we first deduce

that Ã−1
0 (∂

v
ṽ)t = ∂

v
ṽ Ã−1

0 . Moreover, using ∂
u
ṽ Ai = At

i ∂uṽ, and Ai = Ãi ∂uv, and proceeding as for

the dissipation matrices, it is easily checked that Ãi ∂vṽ = (∂vṽ)
t Ãi for i ∈ C.

We may now write that

(Ã−1
0 B̃ij) ∂vṽ = Ã−1

0 (∂vṽ)
t B̃ij ,= ∂vṽ (Ã−1

0 B̃ij), i, j ∈ C,

and similarly that
(Ã−1

0 Ãi) ∂vṽ = Ã−1
0 (∂

v
ṽ)t Ãi,= ∂

v
ṽ (Ã−1

0 Ãi), i ∈ C,

and this completes the proof of (4.18) and (4.19).

On the other hand, from Theorem 3.5, the matrices B̃ij may be split in the form

B̃ij = B̃L δij +RTκB̃κ
ij +RTηB̃η

ij ,

and the corresponding relations (4.17) associated with B̃L δij , B̃
κ
ij , and B̃

η
ij may be investigated sepa-

rately. We discuss in this section the relations B̃κ
ij ∂vṽ = (∂vṽ)

tB̃κ
ij and B̃

η
ij ∂vṽ = (∂vṽ)

tB̃
η
ij which may

be written in the compact form

B̃κ ∂vṽ = (∂vṽ)
tB̃κ, (4.20)

B̃η ∂vṽ = (∂vṽ)
tB̃η, (4.21)
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where ξ, ζ ∈ R
d, ξ = (ξ1, . . . , ξd)

t, ζ = (ζ1, . . . , ζd)
t, B̃κ =

∑
i,j∈C ξiζjB̃

κ
ij and B̃η =

∑
i,j∈C ξiζjB̃

η
ij . It

turns out that the relations (4.20) and (4.21) associated with viscous effects are automatically satisfied
for entropies compatible with the hyperbolic structure.

Proposition 4.5. Let M be a square matrix of size n+ d+ 1. Then Properties (i), (ii) and (iii) are

equivalent for d ≥ 2 whereas Properties (i) and (iii) are equivalent and B̃η = 0 for d = 1.

(i) For any ξ, ζ ∈ R
d we have B̃κ(ξ, ζ)M =M tB̃κ(ξ, ζ),

(ii) For any ξ, ζ ∈ R
d we have B̃η(ξ, ζ)M =M tB̃η(ξ, ζ),

(iii) Writing R
n+d+1 = R

n × R
d+1 and decomposing correspondingly M in the form

M =

[
M̺̺ M̺w

Mw̺ Mww

]
,

there exist α ∈ R, b ∈ R
d+1 and b′ ∈ R

n such that

Mww = αId+1 +

[
v

−1

]
⊗b, Mw̺ =

[
v

−1

]
⊗b′.

Proof. We first note that

B̃κ(ξ, ζ) =




0n,n 0n,d 0n,1
0d,n Id 0d,1
01,n vt 0






0n,n 0n,d 0n,1
0d,n ξ⊗ζ 0d,1
01,n 01,d 0






0n,n 0n,d 0n,1
0d,n Id v

01,n 01,d 0


 ,

and

B̃η(ξ, ζ) =




0n,n 0n,d 0n,1
0d,n Id 0d,1
01,n vt 0






0n,n 0n,d 0n,1
0d,n ξ·ζId + ζ⊗ξ − 2

d
ξ⊗ζ 0d,1

01,n 01,d 0






0n,n 0n,d 0n,1
0d,n Id v

01,n 01,d 0


 ,

so that we have

B̃η(ξ, ζ) = ξ·ζ
(
B̃κ(e1, e1) + · · ·+ B̃κ(ed, ed)

)
+ B̃κ(ζ, ξ)− 2

d
B̃κ(ξ, ζ).

and (i) implies (ii). Moreover, it is straightforward to check that when d ≥ 2

B̃κ(ζ, ξ)− 2
d B̃

κ(ξ, ζ) = B̃η(ξ, ζ)− ξ·ζ d
(d−1)(d+2)

(
B̃η(e1, e1) + · · ·+ B̃η(ed, ed)

)

and the relation
ζ⊗ξ = d2

d2+4

(
(ζ⊗ξ − 2

d
ξ⊗ζ) + 2

d
(ξ⊗ζ − 2

d
ζ⊗ξ)

)
,

yields

B̃κ(ζ, ξ) = d2

d2+4

(
B̃κ(ζ, ξ)− 2

d B̃
κ(ξ, ζ)

)
+ 2d

d2+4

(
B̃κ(ξ, ζ)− 2

d B̃
κ(ζ, ξ)

)
.

This implies that B̃κ(ζ, ξ) is a linear combination of various particular values of B̃η and (ii) implies (i)

so that (i) and (ii) are equivalent when d ≥ 2. In the situation d = 1, it is also seen that B̃η(ξ, ζ) = 0
for any ξ, ζ ∈ R

d.
Decomposing next B̃κ(ξ, ζ) in the form

B̃κ(ξ, ζ) =

[
0n,n 0n,d+1

0d+1,n B̃κww

]
(4.22)

where

B̃κww(ξ, ζ) =

[
Id 0d,1
vt 0

] [
ξ⊗ζ 0d,1
01,d 0

] [
Id v

01,d 0

]
,

it is directly established that (i) holds if and only if we have the relations

B̃κwwMww = (Mww)tB̃κww B̃κwwMw̺ = 0. (4.23)
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Since only the vector (v,−1)t lies in the nullspace of all possible B̃κww, for varying ξ and ζ, we obtain

from B̃κwwMw̺ = 0 that Mw̺ is in the formMw̺ = (v,−1)t⊗b′ with b′ ∈ R
n. Conversely, when Mw̺

is in this form, then we trivially have B̃κwwMw̺ = 0 for arbitrary ξ, ζ ∈ R
d.

On the other hand, we may decompose Mww in the form

Mww =

[
Mvv MvT

MTv MTT

]
,

and the relation B̃κwwMww = (Mww)tB̃κww is then equivalent to the three identities

ξ⊗(Mvv)tζ + v·ζ ξ⊗(MTv)t = (Mvv)tξ⊗ζ + v·ξ (MTv)t⊗ζ,

ζ·MvT ξ + v·ζMTT ξ = v·ζ (Mvv)tξ + v·ξ v·ζ (MTv)t,

v·ξ ζ·MvT + v·ξ v·ζMTT = v·ζ ξ·MvT + v·ξ v·ζMTT .

The last relation first yields that v·ξ ζ·MvT = v·ζ ξ·MvT for any ξ, ζ ∈ R
d so thatMvT is proportional

to v. Letting MvT = av, after some algebra, it is obtained that all the remaining relations are
equivalent to

(Mvv)tξ + v·ξ (MTv)t = αξ,

and a+MTT = α, and we have established that (i) implies (iii) with b =
(
−MTv, a

)t
Conversely, it

is easily checked that (iii) implies (i) and the proof is complete.

Corollary 4.6. Assume that σ̃ is a mathematical entropy compatible with the hyperbolic structure of
the system of partial differential equations so that (E2) holds, ∂2

u
σ̃ is invertible and let ṽ = (∂uσ̃)

t.
Then the commutation relations (4.20) and (4.21) automatically hold.

Proof. Letting J = ∂
v
ṽ we obtain from Lemma 4.2 that J = −R∂SϕIn+d+1 −Rv⊗∂

z
(∂Sϕ) (∂zv)

−1 +
∂zV (∂zv)

−1. Using now the partitionning introduced in (iii) of Proposition 4.5, we obtain from the
definition of v and V that vw = (v,−1)t/RT and Vw = 0, so that (∂

z
V)w̺ = 0 and (∂

z
V)ww = 0.

Decomposing now J in the form

J =

[
J ̺̺ J ̺w

J w̺ J ww

]
,

and thanks to the special structure of v and V we directly obtain J ww = −R∂SϕId+1 − Rvw⊗b and
J w̺ = −Rvw⊗b′ for some vectors b and b′, so Property (iii) of Proposition 4.5 holds and (4.20)(4.21)
also hold from the same Proposition.

This corollary extend to the multicomponent case a previous result from Hughes, Franca and Mallet
[35] about the compatibility with viscous dissipation matrices in single species mixtures.

4.3 Compatibility with diffusion dissipation matrices

We denote by σ̃ a mathematical entropy compatible with the hyperbolic structure and by ṽ = (∂uσ̃)
t

the corresponding symmetrizing variable. We also denote by J = ∂vṽ the jacobian matrix and by
Ξ the permutation that regroup the temperature with the species densities, that is, such that Ξz =(
ρ1, . . . , ρn, T,v

)t
. From the structure of the matrix B̃L we have the block decomposition

Ξ B̃LΞt =

[
L 0n,d

0d,n 0d,d

]
. (4.24)

We also decompose ΞJΞt in the form

ΞJΞt =

[
J zz J z v

J vz J vv

]
. (4.25)

Proposition 4.7. Keeping the assumptions of Corollary 4.6, the following properties are equivalent

(i) The entropy is compatible with the dissipative structure

B̃ij ∂vṽ = (∂
v
ṽ)t B̃ij , i, j ∈ C.
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(ii) The entropy is compatible with the diffusion dissipation matrix B̃L

B̃L ∂
v
ṽ = (∂

v
ṽ)t B̃L.

(iii) The partial jacobians J zz and J z v are compatible with the mass and heat diffusion matrix L

LJ zz = (J zz )tL, LJ z v = 0. (4.26)

Proof. The equivalence between (i) and (ii) is a direct consequence of Corollary 4.6 and of the structure

B̃ij = B̃L δij + RTκB̃κ
ij + RTηB̃η

ij of dissipation matrices. Thanks to the structure of B̃L, it is then

easily checked, after some block manipulations, that B̃L ∂
v
ṽ = (∂

v
ṽ)t B̃L is equivalent to (4.26) so that

(ii) and (iii) are then equivalent.

On the other hand, the relations B̃ij ∂vṽ = (∂
v
ṽ)t B̃ij and (Ã−1

0 B̃ij) ∂vṽ = ∂
v
ṽ (Ã−1

0 B̃ij), i, j ∈ C
generally show that the compatibility with dissipation matrices yield constraints on the jacobian matrix
∂
v
ṽ depending on their spectral properties. This is illustrated by the following abstract particular

example.

Proposition 4.8. Let l ≥ 1 and consider the abstract system of partial differential equations in R
d

∂tu−D ∆u = 0, (4.27)

where u = (u1, . . . , ul)
t, ∆u = (∆u1, . . . ,∆ul)

t, and D = diag(δ1, . . . , δl), with δi > 0, for 1 ≤ i ≤ l.

Letting σ = 1
2 〈u, u〉, we have u = v, Ã0 = Il, Ai = Ãi = 0, i ∈ C, and Bij = B̃ij = δijD , i, j ∈ C. Then

any strictly convex function σ̃ of u satisfies (E1)(E2) and (S1)(S2) and the compatibility relations with
the second order terms reduces to D ∂vṽ = ∂vṽ D .

Proof. It is easily checked that u = v, Ã0 = Il, Ai = Ãi = 0, for i ∈ C, and Bij = B̃ij = δijD , for
i, j ∈ C. The compatibility condition with first order terms is thus trivial and any Cκ function of u
such that ∂2uσ is positive definite satisfies (E1)(E2). The compatibility relations with the second order
terms (4.17) then reduces to D ∂vṽ = (∂vṽ)

tD but since u = v, the matrix ∂vṽ = ∂uṽ is symmetric and
we obtain D ∂uṽ = ∂uṽD .

The structure of mathematical entropies compatible with the hyperbolic-parabolic structure of
(4.27) then depends on the spectral properties of D .

Proposition 4.9. Keeping the assumptions of Proposition 4.8, the following properties hold.

(i) When all the eigenvalues coincide δ1 = · · · = δl then any strictly convex function σ̃ of u is com-
patible with the hyperbolic-parabolic structure of the system of partial differential equations (4.27).

(ii) When δi 6= δl for i 6= l, mathematical entropies σ̃ are constrained to be in the form σ̃ =
ϕ(u1, . . . , ul−1) + ϕl(ul) where ϕ and ϕl are C

κ strictly convex function of their argument.

(iii) When all the eigenvalues are different δi 6= δj for i 6= j, mathematical entropies σ̃ are constrained
to be in the form σ̃ =

∑
1≤i≤l ϕi(ui) where ϕi is a strictly convex function of ui.

Proof. The compatibility relations D ∂uṽ = ∂uṽD are easily evaluated to be (δi − δj)∂ui ṽj = 0. When
δi 6= δl for i 6= l, we thus obtain ∂ui ṽl = 0 if i 6= l in such a way that the mathematical entropies are
constrained to be in the form σ̃ = ϕ(u1, . . . , ul−1) + ϕl(ul). The partial Hessian matrices associated
with ϕ and ϕl are then both positive definite since ∂2u σ̃ is positive definite. On the other hand when all
the eigenvalues δ1, . . . , δl are different, i.e., δi 6= δj for i 6= j, it is easily obtained that ∂ui ṽj = 0 if i 6= j
in such a way that the mathematical entropies are constrained to be in the form σ̃ =

∑
1≤i≤l ϕi(ui)

and ϕi is a strictly convex function of ui from the definiteness of ∂2u σ̃.

In the absence of information of the spectra of D , we may still obtain information on the structure
of an entropy σ̃ if it is assumed that σ̃ is independent on some of the coefficients of the matrix D .

Proposition 4.10. Keep the assumptions of Proposition 4.8 and assume that σ̃ is independent of δl.
Then the mathematical entropies are constrained to be in the form σ̃ = ϕ(u1, . . . , ul−1) + ϕl(ul) where
ϕ and ϕl are strictly convex functions of their argument.
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Proof. If we assume that σ̃ is independent of δl, we may then differentiate D ∂uṽ = ∂uṽD with respect
to δl and obtain that el⊗el ∂uṽ = ∂uṽ el⊗el thanks to ∂δlD = el⊗el. The base vector el is thus an
eigenvector of ∂uṽ = (∂uṽ)

t and we recover the relations ∂ui ṽl = 0 if i 6= l so that the mathematical
entropies are again constrained to be in the form σ̃ = ϕ(u1, . . . , ul−1) + ϕl(ul).

Turning back to the situation of multicomponent fluids, the independence of mathematical entropies
σ̃ with respect to some of the mass and heat diffusion parameters may thus be seen as a practical
method to constraint the mathematical entropies in the absence of information on the spectrum of
the dissipation matrix B̃L. As a consequence, in the following we will make the assumption that
mathematical entropies are independent on some of the mass and heat diffusion parameters. More
specifically, we will write relations in the form

∂µLJ
zz = (J zz )t∂µL, (4.28)

where µ are some relevant parameters associated with mass and heat diffusion phenomena.

4.4 Compatibility with source terms

We briefly address in this section the compatibility of mathematical entropies with source terms. In
the following proposition, we obtain an analog of the commutation properties (4.18) (4.19) of Propo-

sition 4.4. Note that the linearized source terms L = −∂uΩ or L̃ = −∂vΩ should not be confused with
the mass and heat diffusion matrix L.

Proposition 4.11. Let σ̃ be a Cκ function defined on the open set Ou satisfying (E6) and such that

∂2
u
σ̃ is invertible and let L̃ = −∂vΩ(v) and ṽ = (∂uσ̃)

t. Then, whenever v is such that Ω(v) = 0, the

matrix L̃ ∂vṽ is symmetric positive semi-definite

L̃∂vṽ = (∂vṽ)
t L̃, (4.29)

and we have the commutation relation

(Ã−1
0 L̃) ∂

v
ṽ = ∂

v
ṽ (Ã−1

0 L̃). (4.30)

Moreover, we have
(∂

v
ṽ)E ⊂ E . (4.31)

Proof. We first deduce from (S6) that at chemical equilibrium the matrix ∂ṽΩ = −L̃∂
ṽ
v so that L̃ ∂

ṽ
v =

(∂
ṽ
v)t L̃ and multiplying of the right by ∂vṽ and on the left by (∂vṽ)

t yields (4.29). On the other hand,

we have established in the proof of Proposition 4.4 that Ã−1
0 (∂

v
ṽ)t = ∂

v
ṽ Ã−1

0 . We may then write that

(Ã−1
0 L̃) ∂

v
ṽ = Ã−1

0 (∂
v
ṽ)t L̃ = ∂

v
ṽ (Ã−1

0 L̃),

and this is the commutation relation (4.30).

The fact that the image of E is included in E is then a consequence of (4.29) and of N(L̃) = E at
chemical equilibrium deduced from (S6).

Remark 4.12. Property (E7) also constraints the derivative of the entropy ṽ = (∂uσ̃)
t to be in the

negative orthan defined by the vector Ω.

The jacobian matrix of the source term ∂vΩ̃ at chemical equilibrium has been evaluated in [30].
Keeping in mind that νj is the reaction vector of the jth reaction and letting

(M νj)
⋆ =

(
M νj ,0, 0

)t
,

it has been established [27, 22] that at an equilibrium point ve, that is when Ω(ve) = 0, we have

L̃(ve) =
∑

j∈R

κsj exp
〈
(M νfj)

⋆, ve
〉
(M νj)

⋆ ⊗ (M νj)
⋆. (4.32)

We may now combine (4.29) and (4.32) in the following Corollary.
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Corollary 4.13. Keep the assumptions of Proposition 4.11 and assume that the mathematical entropy
is independent of the chemistry kinetic constants κsj, j ∈ R. Then all extended reaction vectors (M νj)

⋆,
j ∈ R, are left eigenvectors of ∂vṽ.

Proof. We only have to differentiate the commutation relation with respect to the chemical reaction
kinetic parameter κsj in order to get that (M νj)

⋆ ⊗ (M νj)
⋆ ∂vṽ = (∂vṽ)

t (M νj)
⋆ ⊗ (M νj)

⋆ and this
implies that (M νj)

⋆, is a left eigenvector of ∂
v
ṽ.

Since E ⊥ = span{(M νj)
⋆, j ∈ R}, Corollary 4.13 may imply that the block J ̺̺ coincides with a

scalar matrix over E ⊥ depending on the richness of the set of reaction vectors.

5 Mass and heat diffusion matrices

We present in this section the mathematical structure of typical multicomponent diffusion matrices
derived from the kinetic theory of gases [15, 22]. In Section 5.1 we consider Stefan-Maxwell type
equations whereas in Section 5.2 we study quasi-diagonal approximations. We then investigate the
derivatives of the mass and heat diffusion matrix L with respect to the corresponding relevant transport
parameters.

5.1 Stefan-Maxwell relations

We introduce the matrix ∆ defined by




∆kk =
∑

l∈S

l 6=k

xkxl

Dbin
kl

, k ∈ S,

∆kl = −
xkxl

Dbin
kl

, k, l ∈ S, k 6= l,

(5.1)

where Dbin
kl is the binary diffusion coefficient for the species pair (k, l) and xk the mole fraction of the

kth species. The kinetic theory of gases shows that, at first-order, the coefficients Dbin
kl only depends

on pressure and temperature Dbin
kl = Dbin

kl (T, p). More generally, for more accurate multicomponent
diffusion coefficients, the quantities Dbin

kl , k, l ∈ S, are Schur complements arising from transport linear
systems of size larger than n, and are then functions of all state variables but have analogous properties
[11, 26]. Similarly, with the kinetic theory of dense gases [43, 53], the binary diffusion coefficients are
functions of the state variables (ρ1, . . . , ρn, T )

t. In the following we denote by y = (y1, . . . , yn)
t the

vector of species mass fractions, by 1I = (1, . . . , 1)t the vector with unity components, and we naturally
assume that yi > 0 for i ∈ S, and 〈y, 1I〉 = 1. The species mole fractions are defined by xj = myj/mj

where m = (
∑

i∈S
yi)/(

∑
i∈S

yi/mi) is the molar mass of the mixture. The following properties of the
matrix ∆ are easily established [21, 22].

Proposition 5.1. Assume that the coefficients Dbin
kl , k, l ∈ S, k 6= l, are positive and symmetric, and

that the species mass fractions are positive. Then ∆ is symmetric positive semi-definite, N(∆) = R 1I,
R(∆) = 1I⊥, ∆ is irreducible and is a singular M -matrix.

The multicomponent diffusion matrix D can then be defined as a generalized inverse of ∆ [21, 22].

Proposition 5.2. Keeping the assumptions of Proposition 5.1 there exists a unique generalized inverse
D of ∆ with prescribed range y⊥ and nullspace Ry, that is, a unique matrix D such that D∆D = D,
∆D∆ = ∆, R(D) = y⊥, and N(D) = Ry. This matrix D is positive semi-definite, we have ∆D =
I − y⊗ 1I, D∆ = I − 1I⊗ y, and D = (∆ + ay⊗y)−1 − b1I⊗1I for any a, b positive with ab = 1. The
coefficients of D are smooth functions of z ∈ (0,∞)n+1 provided that the binary diffusion coefficients
are smooth functions of z ∈ (0,∞)n+1.

Remark 5.3. The Stefan-Maxwell relations for the diffusion matrix D may be written ∆D = In −
y⊗1I and completed by the mass constraint Dy = 0. Denoting by V the vector of diffusion velocities
V1, . . . ,Vn where F i = ρiVi for i ∈ S, and d = (d1, . . . ,dn)

t the vector of diffusion driving forces, we
also have V = −Dd and the traditional Stefan-Maxwell relations ∆V = −(d−y〈1I,d〉) for the diffusion
velocities are easily derived.

The natural diffusion parameters at our disposal when the matrix D is evaluated form Stefan-
Maxwell type equations are thus the binary diffusion coefficients Dbin

kl for 1 ≤ k < l ≤ n, completed by
the thermal conductivity λ and eventually the thermal diffusion ratios χi for 1 ≤ i ≤ n− 1.
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5.2 Quasi-diagonal approximation

We address in this section the situation of simplified diffusion models that are typically introduced in
order to avoid the inversion of the Stefan Maxwell equations. We still assume that yi > 0 for i ∈ S,
and 〈y, 1I〉 = 1. In the following theorem, the diffusion matrix D defined in Proposition 5.2 and solution
of the Stefan-Maxwell relations is expressed as a convergent matrix series. Upon truncating this series,
approximated diffusion models are readily obtained [21, 12] and this procedure may be generalized to
all transport coefficients [11, 13, 14, 15, 26].

Theorem 5.4. Consider the Stefan-Maxwell matrix (5.1) and assume that the binary diffusion co-
efficients Dbin

kl , k, l ∈ S, k 6= l, are positive and symmetric. Let M be a diagonal matrix such that
Mkk ≥ ∆kk, k ∈ S and denote by P the projector P = I−1I⊗y. Consider the splitting ∆ =M−W and
denote by T the iteration matrix T = M−1W . Then the spectral radius of the product PT is strictly
lower than unity and the solution of the Stefan-Maxwell relations D may be expended in the form

D =
∑

0≤j

(PT )jPM−1P t, (5.2)

and each partial sum
∑

0≤j≤i(PT )jPM−1P t is symmetric, positive semi-definite with nullspace Ry.

It is interesting to note that the traditional series
∑

0≤j T
j associated with the splitting ∆ =M−W

is divergent since T has the eigenvalue 1 associated with the singularity of ∆ with T 1I = 1I. The
projector matrices used in Theorem 5.4 are required in order to obtain convergent series [21, 11, 15].
We consider in the following the often used one term approximation deduced from (5.2) and rewritten
in the form

D ≃ PDmP t, (5.3)

where the matrix Dm =M−1 is a diagonal matrix

Dm = diag(Dm
1 , . . . ,D

m
n ). (5.4)

This approximation of D may naturally be termed a quasi-diagonal approximation. We will not require
a precise form for the coefficients Dm

i in the following and will only assume that they are positive.
The natural diffusion parameters that are at our disposal are then the coefficients of the matrix Dm

k

for 1 ≤ k ≤ n, completed by the thermal conductivity λ and eventually the thermal diffusion ratios χi

for 1 ≤ i ≤ n− 1.

Remark 5.5. The positive coefficient xi Dm
i , i ∈ S represent a diffusion coefficient of the ith species

in the mixture where xi is the mole fraction of the ith species. A very good approximation for such
coefficients [21, 22] is the Hirschfelder-Curtiss approximation Dm

i = (1− yi)/∆ii.

5.3 Assumptions on the diffusion coefficients

We introduce the strengthened assumptions concerning multicomponent transport (Tr′2). These as-
sumptions are required in order to investigate the uniqueness of entropy compatible with the hyperbolic-
parabolic structure of the system of partial differential equations modeling multicomponent fluids.

(Tr′2) (i) The matrix L is given by the expression (2.10).

(ii) The matrix D is either obtained by solving Stefan-Maxwell type equations or from a quasi-
diagonal approximation.

In the first situation, the multicomponent diffusion matrix is given as in Proposition 5.2
with the Stefan-Maxwell matrix given by (5.1). The binary diffusion coefficients Dbin

ij ,
i, j ∈ S, i 6= j, are positive smooth functions of (ρ1, . . . , ρn, T ).

In the second situation, the multicomponent diffusion matrix is given by the quasi-diagonal
approximation (5.3) with diagonal coefficients Dm. The diagonal diffusion coefficients Dm

k ,
k ∈ S, are positive smooth functions of (ρ1, . . . , ρn, T ).

(iii) The thermal diffusion ratios χi, i ∈ S, are smooth functions of (ρ1, . . . , ρn, T ) and satisfy
the mass constraint 〈1I, χ〉 = 0.

(iv) The thermal conductivity λ, the shear viscosity η, the volume viscosity κ are smooth func-
tions of (ρ1, . . . , ρn, T ). These coefficients are such that λ > 0, η > 0, κ ≥ 0, and κ > 0
when d = 1.
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(v) The coefficients Dbin
ij , i, j ∈ S, i 6= j, or Dm

k , k ∈ S, (as depending on the transport
model) the thermal conductivity λ, and the thermal diffusion ratios χi, i ∈ {1, . . . , n− 1},
are independent and are independent of thermochemistry properties.

Property (i) simply corresponds to a convenient expression of L and Property (ii) introduce two
typical expressions often used in the literature for the multicomponent matrix D. The Properties (iii)
and (iv) are natural assumptions concerning the thermal diffusion ratios, the thermal conductivity,
the shear viscosity and the bulk viscosity. The smoothness assumptions are typical consequences of
the smoothness of collision integrals appearing in transport linear systems [11]. The independence
of transport coefficients between them is a natural consequence of the independence of interaction
potentials between pairs of molecules and of different moments. These coefficients are also assumed
to be independent of thermodynamic properties which generally depend on the molecular structure of
the molecule via partition functions.

5.4 Derivatives of the mass and heat diffusion matrix

We now investigate the derivatives of the matrix L with respect to the transport parameters. We first
consider the situation where the multicomponent matrix is obtained from the Stefan-Maxwell relations.
In this situation, the parameters that may be used in the differential commutation formula (4.28) are
the binary diffusion coefficients Dbin

ij , 1 ≤ i < j ≤ n, the thermal conductivity λ, and eventually the
thermal diffusion ratios χi, 1 ≤ i ≤ n − 1, if they are not assumed to identically vanish. We have to
take into account the constraint 〈1I, χ〉 = 0 between the thermal diffusion ratios and there are only n−1
independent coefficients that are chosen to be the first n− 1 coefficients χ1, . . . , χn−1. The derivatives
of L with respect to these parameters are given in the following lemma.

Lemma 5.6. Keeping the assumptions of the Proposition 5.2, defining the matrix

L̃ =

(
D + 1I⊗1I 0

0 RT 2

ρm
λ

)
L, (5.5)

and denoting by f1, . . . , fn+1 the canonical basis vectors of Rn+1, we have

∂Dbin

ij
L = ρm

xixj

(Dbin
ij )2

L̃t
(
(fi − fj)⊗(fi − fj)

)
L̃, 1 ≤ i < j ≤ n. (5.6)

∂χi
L =

ρ2m

Tλ
L̃t
(
(fi − fn)⊗fn+1 + fn+1⊗(fi − fn)

)
L̃, 1 ≤ i ≤ n− 1, (5.7)

∂λL =
ρ2m2

RT 2λ2
L̃t fn+1⊗fn+1 L̃, (5.8)

Proof. These identities result from lengthy and tedious calculations.

It is interesting to observe than when the thermal diffusion ratios are taken into account, then the
space spanned by the tangent matrices ∂µL for µ ∈ {Dbin

ij , 1 ≤ i < j ≤ n} ∪ {χi, 1 ≤ i ≤ n− 1} ∪ {λ}
has its maximal dimension n(n+1)/2. In this situation, it coincides with the set of symmetric matrices
with nullspace containing (1I, 0)t. On the other hand, when the matrix D is given by a quasi-diagonal
approximation, the parameters that may be used in the differential commutation formula (4.28) are the
diagonal coefficients Dm

i , 1 ≤ i ≤ n, the thermal conductivity λ, and eventually the thermal diffusion
ratios χi, 1 ≤ i ≤ n−1, if they are not assumed to identically vanish. The derivatives of L with respect
to these parameters are given in the following lemma.

Lemma 5.7. Keeping the assumptions and notation of Theorem 5.4, denoting e1, . . . , en the basis
vectors of Rn, f1, . . . , fn+1 and the basis vectors of Rn+1, we have

∂Dm

i
L = mρy2i f′i⊗f′i, 1 ≤ i < j ≤ n. (5.9)

∂χi
L = ρRT

(
f′′i⊗fn+1 + fn+1⊗f′′i

)
, 1 ≤ i ≤ n− 1, (5.10)

∂λL = RT 2 fn+1⊗fn+1, (5.11)
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where

f′i =

[
ei − y

hi − h+ RT
m

χi

yi

]
, 1 ≤ i ≤ n. (5.12)

f′′i =

[
YD(ei − en)

〈D(ei − en),Yh• +RT χ
m 〉

]
, 1 ≤ i ≤ n− 1. (5.13)

Proof. These identities result from lengthy and tedious calculations.

6 Uniqueness of entropy

We investigate uniqueness of mathematical entropies compatible with the hyperbolic-parabolic struc-
ture under the assumption that they are independent of the mass and heat transport parameters.
These entropies are found to coincide up to an affine transform and are then compatible with source
terms.

6.1 Constraints from diffusion matrices

We denote by σ̃ a mathematical entropy, ṽ = (∂uσ̃)
t the corresponding symmetrizing variable, J the

matrix J = ∂vṽ and by Ξ the permutation that regroup the temperature with the species densities,

that is, such that Ξz =
(
ρ1, . . . , ρn, T,v

)t
. We have already investigated the properties of the permuted

matrices Ξ B̃LΞt and ΞJΞt in Section 4.3. The dissipative compatibility relations for entropies already
compatible with the hyperbolic structure have been shown to reduce to the relation (4.26). When the
mathematical entropy is independent of transport parameters we may also use the differential relations
(4.28) so that we have

LJ zz = (J zz )tL, LJ z v = 0, ∂µLJ
zz = (J zz )t∂µL, (6.1)

where µ denotes any relevant transport parameter. The structure of J zz and J z v is now investigated
in the following propositions. We first consider the situation without thermal diffusion coefficients,
that is, where χi = 0, i ∈ S, and where we do not use any derivatives with respect to χi, 1 ≤ i ≤ n−1,

Proposition 6.1. Assume that σ̃ satisfies (E3) and such that ∂uṽ is invertible. Assume also that σ̃
is independent of the mass and heat diffusion parameters. Then, in the absence of thermal diffusive
effects, the matrices J zz and J z v are in the form

J zz = αIn+1 + (α− α′)

[
h•
−1

]
⊗fn+1 +

[
1I

0

]
⊗a, J z v =

[
1I

0

]
⊗a′, (6.2)

where a ∈ R
n+1 and a′ ∈ R

d are vectors.

Proof. Since N(L) = (1I, 0)t we first obtain that J z v is in the form J z v = (1I, 0)t⊗a′ for some vector
a′ ∈ R

d. In order to investigate the structure of J zz we then have to distinguish the two different
possibilities for the multicomponent diffusion matrix.

Assume first that the diffusion matrix is obtained by solving the Stefan-Maxwell equations. It is
then more convenient to work with the matrixM = L̃ J zz L̃−1 where L̃ has been defined in Lemma 5.6.
From the relations, ∂µLJ zz = (J zz )t∂µL where µ is one of the parameters Dbin

ij , i, j ∈ S, i < j, and

λ, we obtain that ZM = M tZ for any Z in the form fn+1⊗fn+1 or (fi − fj)⊗(fi − fj), 1 ≤ i < j ≤ n.
This implies in particular that there exist αij with M t(fi − fj) = αij(f

i − fj) for 1 ≤ i < j ≤ n and
by forming the difference between two such relations, it is obtained that all the scalars αij are equal.
Denoting by α this common value, we have M tfi − αfi = a where a is a vector independent of i ∈ S.
In addition, writing that ZM = M tZ for Z = fn+1⊗fn+1 yields that M tfn+1 = α′fn+1 and M is in
the form

M =

[
αIn 0n,1

01,n α′

]
+

[
1I

0

]
⊗a.

Therefore, J zz is given by

J zz = L̃−1
(
αIn+1 + (α′ − α)fn+1⊗fn+1 +

[
1I

0

]
⊗a
)
L̃,
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and this yields that J zz is in the form (6.2).
In the situation where the multicomponent transport is given by a quasi-diagonal approximation,

we may directly manipulate the matrixM = J zz . Since ZM =M tZ for any Z in the form fn+1⊗fn+1

or Z = f′i⊗f′i for 1 ≤ i ≤ n, we deduce that fn+1 and f′i for 1 ≤ i ≤ n are eigenvectors ofM t. We have
in particularM tf′i = αif

′i, for 1 ≤ i ≤ n, and we also have the constraint
∑

i∈S
yif

′i = 0. This implies
that

∑
i∈S

αiyif
′i = 0 and thus from (5.12)

∑
i∈S

αiyi(e
i − y) = 0 so that yiαi = yi

∑
j∈S

yjαj and

that all the αi are equal and we also have M tfn+1 = α′fn+1 for some α′. From the structure of f′i for
i ∈ S, we next obtain that M tfi − αfi − (α− α′)hif

n+1 is a vector independent of i ∈ S. Proceeding
as previously, we again deduce that J zz is in the form (6.2).

We now consider the situation where thermal diffusion effects are included in the model. This
constraint more tightly the partial jacobian since the derivations with respect to the thermal diffusion
coefficients may now be used.

Proposition 6.2. Keeping the assumptions of Proposition 6.1 and further assuming that the thermal
diffusion coefficients are taken into account, the matrices J zz and J z v are then in the form

J zz = αIn+1 +

[
1I

0

]
⊗a, J z v =

[
1I

0

]
⊗a′, (6.3)

where a ∈ R
n+1 and a′ ∈ R

d are vectors.

Proof. Assume first that the diffusion velocities are given by Stefan-Maxwell type equations. We may
then consider again the transformed matrix M = L̃ J zz L̃−1 and from the beginning of the proof of
Proposition 6.1 we obtain that M is in the form

M = αIn+1 + (α − α′)fn+1⊗fn+1 +

[
1I

0

]
⊗a,

However, using now that ∂µLJ
zz = (J zz )t∂µL where µ is one χi, for i ∈ S, i 6= n, we obtain that

ZM =M tZ for any Z in the form fn+1⊗(fi − fn) + (fi − fn)⊗fn+1, 1 ≤ i ≤ n− 1. After some algebra,
noting that both fi − fn and fn+1 are orthogonal to (1I, 0)t, it is obtained that

(α′ − α)
(
fn+1⊗(fi − fn)− (fi − fn)⊗fn+1

)
= 0,

so that α = α′ and (6.3) is established.
When the quasi-diagonal approximation is used, the beginning of the proof is entirely similar to

that of Proposition 6.1 and it is obtained that

J zz = αIn+1 + (α− α′)

[
b

−1

]
⊗fn+1 +

[
1I

0

]
⊗a,

where b ∈ R
n has components bi = hi +

RT
m

χi

yi
, i ∈ S, keeping in mind that the thermal diffusion

factors in L now do not vanish. Using the derivation with respect to the thermal diffusion ratios, we
now obtain after some algebra that

(α′ − α)
(
fn+1⊗f′′i − f′′i⊗fn+1

)
= 0,

and where we have used that both f′′i and fn+1 are orthogonal to (1I, 0)t and that f′′i is orthogonal to
(b,−1)t. We thus conclude again that α′ = α and the proof is complete.

6.2 Uniqueness up to affine transforms

We investigate uniqueness up to affine transforms of mathematical entropies in the presence of thermal
diffusion effects. It is assumed that Properies (T1)-(T3), (N) and (Tr1)(Tr

′
2
) hold.

Theorem 6.3. Let σ̃ be a Cκ function defined on the open set Ou satisfying (E2)(E3) and such that
∂2u σ̃ is invertible and define ṽ = (∂uσ̃)

t. Assume that σ̃ is independent of the mass and heat diffusion
parameters. Then σ̃ is in the form

σ̃ = αSS +
∑

i∈S

αiρi + α
v
ρv + αE(E + 1

2ρ|v|
2). (6.4)
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Proof. Let Ξ be the permutation matrix that regroups the temperature with the species densities, that

is, such that Ξz =
(
ρ1, . . . , ρn, T,v

)t
. We may partition ΞJΞt and Ξ(∂zṽ)Ξ

t in the form

ΞJΞt =

[
J zz J z v

J vz J vv

]
, Ξ(∂zṽ)Ξ

t =

[
(∂zṽ)
zz (∂zṽ)

z v

(∂
z
ṽ)vz (∂

z
ṽ)vv

]
.

We also deduce from Proposition 6.2 that

J zz = (∂vṽ)
zz = αIn+1 +

[
1I

0

]
⊗a, J z v = (∂vṽ)

z v =

[
1I

0

]
⊗a′. (6.5)

From the matrix relation ∂
z
ṽ = ∂

v
ṽ ∂

z
v we now obtain that

(∂
z
ṽ)zz = (∂

v
ṽ)zz (∂

z
v)zz + (∂

v
ṽ)z v(∂

z
v)vz .

From the structure of J = ∂
v
ṽ obtained in Proposition 6.2, we further deduce that

(∂zṽ)
zz = αIn+1(∂zv)

zz +

[
1I

0

]
⊗a′′, (6.6)

for some vector a′′ ∈ R
n+1.

On the other hand, from Theorem 4.1 we obtain that σ̃ has the structure (4.1) and from Lemma 4.2
we deduce that the matrix ∂zṽ is in the form

∂zṽ = −R∂Sϕ∂zv −Rv⊗∂z(∂Sϕ) + ∂zV . (6.7)

Identifying both forms obtained for (∂zṽ)
zz , we deduce that ∂̃ρk

(∂Sϕ) = 0 for k ∈ S. A direct

calculation shows that ∂̃ρk
(∂Sϕ) = ∂2Sϕ∂̃ρk

S + ∂2ρkS
ϕ and we thus have

∂2Sϕ∂̃ρk
S + ∂2ρkSϕ = 0, k ∈ S. (6.8)

Multiplying this identity by ρk and summing over k ∈ S yields

(∑

k∈S

ρk∂̃ρk
S − S

)
∂2Sϕ = 0,

since ϕ is 1-homogeneous and
∑

k∈S
ρk∂

2
ρkS

ϕ = −S∂2Sϕ. Using the identity

∑

k∈S

ρk∂̃ρk
S − S = −∂̃T p,

we deduce that ∂2Sϕ = 0 provided ∂̃T p is nonzero. However, ∂̃T p cannot vanish on any open set since
otherwise we would obtain from (4.12) that ∂sρ = 0 and thus ∂sν = 0 contradicting the nondegeneracy
condition (N). We thus conclude that ∂2Sϕ = 0 and from (6.8) we obtain that ∂2ρkS

ϕ = 0 for any k ∈ S

so that ∂Sϕ is a constant. This implies the relation ∂z(∂Sϕ) = 0 and the matrix identity

−R∂Sϕ(∂zv)
zz + (∂

z
V)zz = αIn+1(∂zv)

zz +

[
1I

0

]
⊗a′′. (6.9)

Since ∂2Sϕ = 0 and ∂2ρkS
ϕ = 0 for any k ∈ S we also have ∂̃ρk

∂ρl
ϕ = ∂ρkρl

ϕ in such a way that

(∂zV)
zz =




∂ρ1ρ1
ϕ . . . ∂ρ1ρn

ϕ 0
...

...
...

∂ρnρ1
ϕ . . . ∂ρnρn

ϕ 0

0 . . . 0 0


 . (6.10)

Identifying the coefficient of the right lower corner in the relation (6.9), it is obtained that

−R∂Sϕ = α,
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so that finally

(∂
z
V)zz =

[
1I

0

]
⊗a′′.

By symmetry

(∂
z
V)zz = γ

[
1I

0

]
⊗

[
1I

0

]
,

for some γ ∈ R, and since ϕ is 1-homogeneous and ∂2ρkS
ϕ = 0 for k ∈ S, we also have

(∂
z
V)zz

[
̺

0

]
= 0.

This now implies that γρ = 0 so that γ = 0 and (∂zV)
zz = 0. Therefore, ϕ is an affine function of

ρ1, . . . , ρn,S and the proof is complete.

A direct consequence of this theorem is that after elimination of the trivial entropies αiρi, i ∈ S,
α
v
·ρv, and αE(E + 1

2ρ|v|
2) proportional to the components of u, it only remains the classical entropy

σ up to an affine transform. This strengthen the representation of Theorem for normal forms of
multicomponent flows established in [30] since it then encompass all possible normal forms constructed
from entropies satisfying the assumptions of Theorem 6.3.

Remark 6.4. A typical example where the nondegeneracy condition (N) is not satisfied is that of
barotropic fluids. In this situation the pressure is a function of ρ and it is easily established that

∂
2

ps(1/ρ) = 0. One may then check that there exists nontrivial families of mathematical entropies
compatible with the hyperbolic-parabolic structure of the fluid system. This is notably the case for
viscous sheets above fluid substrates as float glasses [32].

6.3 Uniqueness without thermal diffusive effects

We investigate in this section uniqueness of mathematical entropies when χi = 0, i ∈ S, that is, without
thermal diffusive effects also termed the Soret and Dufour effects. The corresponding theorems apply
in particular to the usual quasi-diagonal approximation for diffusion matrices. It is assumed that
Properies (T1)-(T3), (N) and (Tr1)(Tr

′
2) hold. The following extra assumption is also required and

essentially means that the species molar masses are not identical as established by investigating the
the perfect gas limit.

(M) The vectors ∂̺̃p and 1I are linearly independent.

Under this extra assumption, it is possible to extend the uniqueness theorem in the absence of
thermal diffusion effects.

Theorem 6.5. Let σ̃ be a Cκ function defined on the open set Ou satisfying (E2)(E3) and such that
∂2u σ̃ is invertible and define ṽ = (∂uσ̃)

t. Assume that the mathematical entropy σ̃ is independent of the
transport parameters. Then σ̃ is in the form (6.4).

Proof. From Theorem 4.1 σ̃ is in the form (4.1) and from Lemma 4.2 the matrix ∂zṽ is in the form

∂zṽ = −R∂Sϕ∂zv −Rv⊗∂z(∂Sϕ) + ∂zV . (6.11)

On the other hand, we deduce from Proposition 6.1 that

J zz = αIn+1 + (α− α′)

[
h•
−1

]
⊗fn+1 +

[
1I

0

]
⊗a, J z v =

[
1I

0

]
⊗a′. (6.12)

We also note that

(∂
z
v)zz =

1

RT 2

[
Γ/ρ |v|21I− g
0 1

]
, (∂

z
v)z v = −

1

RT

[
1I

0

]
⊗v,

(∂
z
v)vz = −

1

RT 2
v⊗fn+1, (∂

z
v)vv =

1

RT
Id.
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Upon multiplying by J and ∂zv by blocs we obtain that

(∂zṽ)
zz = αIn+1(∂zv)

zz +
α− α′

RT 2

[
h•
−1

]
⊗fn+1 +

[
1I

0

]
⊗a′′′, (6.13)

and where we have used that
(
(∂

z
v)zz

)t
fn+1 = fn+1/RT 2. We thus deduce again that ∂̃ρk

(∂Sϕ) = 0
for k ∈ S, and as already established in the proof of Theorem 6.3 this implies that ∂2Sϕ = 0 and
∂2ρkS

ϕ = 0 for any k ∈ S and ∂Sϕ is a constant.
We now identify the lower right coefficient of both identities (4.14) and (6.13) and after some algebra

it yields that α′ = −R∂Sϕ. We then proceed to identify the left upper blocs of (4.14) and (6.13) and

after some algebra, and thanks to the symmetry of ∂zV from (6.10) it yields the matrix relation

(α+R∂Sϕ)Γ + ρRT 2∂zV = µ1I⊗1I,

for some scalar µ. Multiplying on the right by the mass fraction vector y = (y1, . . . , yn)
t we obtain

that
(α+R∂Sϕ)Γy = µ1I,

since ∂zV y = 0 by homogeneity. However, we also have [30]

Γy =
ρ

T
∂̺p,

and since ∂̺p and 1I are not proportional from (M) we conclude that (α + R∂Sϕ) = 0. This now
implies that α = α′ and the end of the proof is similar to that of Theorem 6.3.

7 Conclusion

We have investigated the mathematical structure of entropies for nonideal multicomponent flows in-
volving nonideal thermochemistry as well as multicomponent diffusion driven by chemical potential
gradients.

The general structure of entropies compatible with the hyperbolic structure has been obtained under
a natural nondeneracy condition and such entropies are automatically compatible with dissipation
matrices associated with viscous effects.

Uniqueness of the mathematical entropy compatible with the hyperbolic-parabolic structure of
the resulting system of partial differential equations has been obtained for the subfamily of entropies
independent of the natural mass and heat diffusion parameters.

A The mass fraction variables

Thermodynamic functions in terms of the variables (ρ1, . . . , ρn, T )
t or (ρ, y2, . . . , yn, T )

t do not have
homogeneity properties. In order to have homogeneous functionals, it is necessary to use of the
variable (ν, y1, . . . , yn, T )

t where ν = 1/ρ is the volume per unit mass, ρ =
∑

i∈S
ρi, and yi =

ρi/ρ is the mass fraction of the ith species. Assuming that the mass fractions are independent

[29] and defining e(ν, y1, . . . , yn, T ) = νE
(

y1

ν , . . . ,
yn

ν , T
)
, p(ν, y1, . . . , yn, T ) = p

(
y1

ν , . . . ,
yn

ν , T
)
, and

s(ν, y1, . . . , yn, T ) = νS
(

y1

ν
, . . . , yn

ν
, T
)
, then s and e are indeed 1-homogeneous and p is 0-homogeneous

with respect to ν, y1, . . . , yn [29]. The mathematical structure of the corresponding mass based ther-
modynamic properties e, p, and s is fully described in [29] as well as the equivalence with (T1)-(T3).
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[40] S. Kawashima and W. A. Yong, Dissipative structure and entropy for hyperbolic systems of con-
servation laws. Arch. Rat. Mech. Anal., 174 (2004), pp. 345–364.

[41] J. Keizer Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, New York,
1987.

[42] F. J. Krambeck, The Mathematical Structure of Chemical Kinetics, Arch. Rational Mech. Anal.,
38 (1970), pp. 317–347.

[43] V. I. Kurochkin, S. F. Makarenko, and G. A. Tirskii, Transport coefficients and the Onsager
relations in the kinetic theroy of dense gas mixtures, J. Appl. Mech. Tech. Phys., 25 (1984), pp.
218–225.
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