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1. INTRODUCTION

Combustion chemistry usually involves many interacting species and many elementary reactions.
Typically, tens of species and hundreds of reversible chemical reactions are used in hydrocarbon combus-
tion kinetics. As a result, the governing conservation equations for total mass, species mass, momentum
and energy, in a reactive flow, are large and stiff systems of partial differential equations. A consequence
is that only zero and one dimensional models have formerly been used to look in detail at the coupling
of a large number of species interactions [8] [13] [17] [19] [20] [22].

Among the numerical problems for computational solutions are those associated with multiple
time and space scales and the costs due to complex chemistry. In addition, there are problems not
directly related to chemistry such as complicated geometries or linear algebra which can be investigated
separately. To overcome numerical difficulties arising from multiple time and space scales one has to
use time-implicit algorithms and adaptive gridding techniques respectively [13] [17] [21]. In this paper
we focus on computational costs inherent in complex chemistry due to multiple sums and products
performed when evaluating thermodynamic properties, chemical production rates and multicomponent
transport coefficients.

Use of a vector computer can significantly reduce these costs provided the corresponding algorithms
vectorize. This problem is addressed in the present paper where high degrees of vectorization are
obtained by structuring properly the corresponding multiple nested loops.

The formulas for evaluating chemical production rates, thermodynamic properties and diffusion
coefficients are problem independent, and two packages, CHEMKIN and TRANSPORT, have been
written at Sandia national laboratories by Kee et al. for evaluating these quantities [14] [15]. Since
the vectorized algorithms are also problem independent, although the choice of an optimum algorithm
may depend on various problem parameters like the number of species or the number of grid points,
the resulting subroutines can easily be embeded in the CHEMKIN and TRANSPORT packages, which
were originally written for scalar machines.

Finally, to test the resulting vectorized subroutines we have computed various flame structures on
a Cray-1 computer, characterized by a vector/scalar speed ratio between 5.-10., and we have found
vector/scalar performances around 6.-8. for the routines and 4. for the flame solver.

2. A DETAILED COMBUSTION MODEL
2.1 Governing equations

The governing equations of a gaseous laminar. reacting flow are the equations for conservation of
total mass, species mass, momemtum and energy, and the equation of state. The total mass conservation
can be written :

dp o
3¢ TV (2) =0, )

where p is the density, v the . mass averaged flow velocity, ¢ the time, and the species mass conservation
equation is :
20
Pt
where Y% is the mass fraction of the k*P species, Vi the diffusion velocity of the k! species, W the
molecular weight of the k*" species, wy the molar production rate of the k*" species and K the number
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T+ p(v. V)Y = =V. (pYi Vi) + Wiwy, kF=1,..., K, (2)
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of species. The momentum conservation equation is :
8'0 T 2 &
poy + P00 = =Vp+ V.49 Vot (Vo) = R(V.0)T ) 0 + > Yifi, (3)
k=1

where p is the pressure, 7 the viscosity and f; the external force per unit mass of the k*® species and
the energy conservation equation is :

T K & ]
Py + pep(v.V)T = V. (AVT) — (Z Y chpk> VT — Z hy Wrwr + 5? + (v.V)p
k=1 k=1

K
+ 17<Vv + (Vo) = (V. v)I) Vv + Zka Vi fe (4)
k=1

where T is the temperature, ¢, the constant pressure heat capacity of the mixture, cp: the constant
pressure heat capacity of the k*® species, A the thermal conductivity and hi the specific enthalpy of the
k*h species. Finally the equation of state is

p=pW/RT, (5)

where W is the molecular weight of the mixture and R the universal gas constant.

Equations (1)-(5), which may include other effects like radiative heat losses, etc., are usually further
simplified according to the problem under study, e.g., steady flow, boundary layer flow, low mach number
flow, zero dimensional model, etc.. These equations have to be completed by formulas expressing the
transport coefficients A and 7, the diffusion velocities V%, the thermodynamic properties c,, cpr and hg
and the chemical production rates wy in terms of the state variables T', p, Yx, k=1,..., K, and their
gradients. These relations are written in the next sections.

2.2 Chemistry and thermodynamics
We consider I elementary reversible reactions involving K chemical species, which can be repre-
sented in the general form :

K
vt = 3y, - i= (6)
k=1 k=1

M=

where the stoichiometric coefficients v4; and v}/; are integers and Xj denotes the symbol of the k"
species. The production rate of the k" species can be written as :

I
" /
WE = E Vkigi, Vki = Vi — Vg, (7)
1=1

where ¢; is the rate of progress variable of the i*h reaction. The rate of progress g; is the difference
between the forward and reverse rates :

K K
/ A
g = K JJ(0)% - K [ 115, ©)

k=1 k=1

where [X] is the molar concentration of the kth species and Ky; and K,; are the forward and reverse
rate constants of the it reaction. Denoting X} the mole fraction of the k*h species the quantities X,
Yy and [X%] are related by :

W y4 KYk i
Ko=Yign  Wl=Xgm  W={2 g 2
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The forward rate constant Ky; for the i*h reaction is given by Arrhenius’ law :

—E.
. — A.TP; Pt 1
K = AT exp ( RT) ; (10)

where A; is the pre-exponential factor, 8; the temperature exponent and E; the activation energy. The
reverse rate constant is related to the forward constant through the equilibrium constant £; :

Al U [(Datm YO ;
K= Ka= (Bem)™ exp(az.), (11)
K K
SO H
Ay; = Z”’“" AZ; = }:VkiZk, Zy= k- —, (12)
k=1 k=1 R i

where paim denotes the atmospheric pressure and Hy and SP the molar enthalpy and entropy of the
k*h species at the standard state of one atmosphere, respectively. In some reactions an arbitrary third
body, usually denoted M, is required for the reaction to proceed. In this situation the rate of progress
variable becomes

K

¢ = cth; (]CfiH[Xk]”;"i = /Crsﬁ[f‘fk]"g"), cthi = (lé ki [Xk]) (13)

k=1 k=1
where the ag; are one if all the species contribute equally as third bodies, in which case the extra factor
of Eq. (13), —the third body concentration ctb;, is the total concentration [M] :
[M] = p/RT. (14)

However, if the species act more or less efficiently as third bodies the ax; may differ from one. Finally,
some hydrocarbon reactions have pressure dependent rate coefficients. These rate coefficients can be
estimated either from the Lindemann formula

AT el
1____#), (15)

Kyi = AT exp(—f—}) / (1 i [M]

where A}, 8/ and E! are constants, or from more involved formulas like the quantum mechanical Kassel

sum [24].

Thermodynamic properties are usually estimated from polynomial fits of the JANAF data. As a
concrete exemple we will consider the Nasa fits of [9] also used in CHEMKIN, but any other type of fits
would lead to similar vectorized algorithms. In these packages molar constant pressure heat capacities
are taken in the form of fourth degree polynomial fits for two temperature ranges :

Cpr _ Jax+anT+ azkT? + a3 + a5 T, if Tiow < T' < Thid, (16)
R agk + aop T + a106T% + a11x T2 + @12k T*,  if Tmia < T' < Thigh,

with similar expressions for the corresponding molar enthalpy Hj; and molar standard state entropy
at one atmosphere S . Moreover the midpoint temperature is allowed to be species dependent in the
CHEMKIN package [14] :
Tmid = Tmidk- (17)
Finally, the thermodynamic properties in mass units and the mixture constant pressure heat ca-
pacity are easily obtained from :

Cok Hy
Cpk = _W%’ hk = :V?k, Cp = ’;chpk- (18)

2.3 Transport properties

Comparisons between different mathematical approximations of the multicomponent transport
properties have shown that the following expressions provide a good trade off between precision and
computational costs [3] [15] [19] [25]. The diffusion velocity is divided into three parts :

Vk = vlc + Wk + ‘/cor) (19)
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where V; is the diffusion velocity due to species gradients and is given in the Hirschfelder-Curtiss
approximation [10] by
1
= —Dy—V X, =(1- Dr1,
Vi DkaV k Dy =(1 Yk)/likX{/ ki (20)

where the Dy, k=1,...,K,1=1,...,K, are the binary diffusion coefficients. The velocity W is due
to temperature gradients and is included only for low molecular weight species like H and H. The trace
light component limit is used for Wy and leads to

i Dp6; 1

Wi = =27, Ok :é\:;ok,, (21)

where the 3 can be expressed in terms of collision integrals [2]. The velocity V.o is a correction velocity
included to insure that the mass is conserved [3] [15] [17] :

K
Veor == 3 Yi(Vi + Wi). (22)

k=1

The mixture thermal conductivity A can be estimated either by the simple semi-empirical formula

K K
1
d= {2 X+ XA, (23
k=1 k=1
where )j is the thermal conductivity of the k'™ species, or by the more expensive Wilke formula :
K i 2
XAk 1 ( Wk) 2 ( mt, Wi ]_)
A= S e ¢H=-—-1+__ 1+_2_4 : 5]
k=1 E{f—_l Xl¢kl \/—8- WI ("1) (Wk) ( )

where 7 is the viscosity of the kth species, and the mixture viscosity 7 can be estimated with similar
expressions [3] [15] [17].

The transport coefficients 7, Ak, Dii and Oy have to be expressed in terms of the state variables p,
T, Ye,k =1,..., K, and molecular parameters. The corresponding formulas, which can be found in [2]
[11] [15], appear to be complex. However, while their dependence on the molecular parameters is indeed
complex, their dependence on the temperature is relatively simple. As a consequence, it is possible
to compute polynomial fits of the temperature dependent part of single component viscosities 7 and
conductivities A\, binary diffusion coefficients Dy; and reduced thermal diffusion coeflicients Or1/ Xk Xa
(3] [15] [17] [25]. This procedure leads to significant gains in computational efficiency with little or no
compromise in accuracy.

As for the Thermodynamic properties, we will consider the polynomial fits of the TRANSPORT
package [15] as a concrete exemple, but using any other type of fits would lead to similar vectorized
algorithms. These fits are in the form

lognk = big + bax log T + bak(log T)? + bax (log T)?, k=1,...,K, (25)
logAr =cig + corlogT + cak(logT)2+c4k(logT)3, k=1, K, (26)
log Dy = digt + daga log T + dai(log T)? + dasi(log T)°, { e (27)
(Bk1/ X Xa) = et + e T + ear T + ear T2, { ff f’_ Nl g (28)

where £ = {light(1); I =1,..., LIGHT?} denotes the indices of the light species, the fitting being done
at the beginning of the calculation.

3. EVALUATION OF AERO-THERMO-CHEMISTRY EXPRESSIONS
3.1 Computational considerations

Examination of Eqgs. (1)-(5) shows that, regardless of the particular problem under study, it is
necessary to evaluate the thermodynamic properties such as ¢p, cpr, k=1,..., K, ht, k=1,...,K, the
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chemical production rates wg, ¥ = 1,..., K, and the transport coefficients such as Dy, k =  ERE .
Dy, k=1,...,K,1=1,...,K, etc,, in terms of the state variables T, p and Y3, ¥ = 1,..., K. But
evaluating these aero-thermo-chemistry quantities is expensive since they involve multiple sums and
products as shown in the previous section. Typically, up to 70-95% of the CPU time may be spent for
these evaluations in a one dimensional laminar flame solver [21].

Using a vector processor, e.g., Cray-1, CDC-205, Fujitsu VP200, NEC SX2, Hitachi S-820, FPS 264,
etc., or a multiple vector processor, e.g., Cray X-MP, Cray-2, etc., can significantly reduce these com-
putational costs, provided the corresponding algorithms vectorize. This problem is investigated in the
following. We refer to [12] [16] [18] for more details on vectorization techniques. Altough different groups
can have investigated this type of problem, there are few papers on the subject, e.g., Boris and Winsor
(1]. The paper of Boris and Winsor, however, investigates the vectorization of reactive flow solvers based
on timestep splitting, rather than the more specific problem of evaluating thermodynamic properties,
chemical production rates and transport coefficients.

To vectorize subroutines for evaluating these aero-thermo-chemistry quantities, two fundamentally
different situations have to be considered. Indeed, keeping in mind that in a flow field all these quantities
only depend on the local state variables T', p and Yx, k = 1,..., K, and since most combustion problems
are at least one dimensional, one has in general to evaluate these quantities for a large number of input
data, each of these corresponding to a grid point, regardless of the grid structure. Nevertheless, the
case of a single input data is still interesting for instance if an homogeneous problem is under study,
say with a huge reaction mechanism, or if a grid point needs a special treatment. In particular, on
a multiprocessor computer, both cases are of interest depending on how many grid points are treated
per processor. These two different situations require different treatments and, to distinguish between
them, the single imput data case is denoted SID and the multiple input data case MID. Moreover, if
we note that the subscripts k or ! are always used for the species and the subscript i for the chemical
reactions, we introduce the subscript j, j = 1,...,J, to index the different input conditions, J being
the number of them. In the following, whenever the MID case is considered, we will add the subscript
J to every quantity like cpj, cpkj, hkj, wkj, Drj, Drij, etc, which depend on the j*! input data T;, pj
and Yij, k= 1,..., K. Further note that the CHEMKIN and TRANSPORT libraries only consider the
SID case. Anticipating the results of the next sections, we point out that the best performances for the
MID subroutines are obtained when inner loops are j loops, that is to say loops in j, and the resulting
routines are significantly faster than the corresponding SID routines used J times, provided J is not too
small.

3.2 Vectorization of chemistry and thermodynamics
3.2.1 Evaluation of thermodynamic properties In the SID case, the simplest way to compute single
component thermodynamic properties, e.g., Cpr/R, k = 1,..., K, is to do a loop in k and to use
explicitly the polynomial fits, such that t :
dok=1 K
if T < Thiqx then
Cor/R = awx + a T + azi T? + ag T° + a5, T*
else (29)
Cor/R = ask + agk T + a10xT% + a11x T3 + a1 T*
endif
enddo

Although introducing an extra loop for the evaluation of the polynomial fits would allow the user-
friendly possibility of easily changing the degree of the fits, the faster unrolled algorithm (29) seems
more appropiate since changing of thermodynamic data base is infrequent. The unrolling of the fitting
polynomial save loads and more operation can be overlaped. It also minimize the number of loop setups,
even in scalar mode. We further note that it is the dependence of the intermediate range temperature
Tmidk on the species k (17) that introduces a conditional loop. With a species independent intermediate
temperature Tpiq [9], the if statements could be move outside the loop. We remark also that using only
one fit over a wide temperature range would clearly be more convenient as pointed out by Boris and
Winsor [1]. Conditional loops are vectorized on a Cray-1 with mask vectors, but (29) has to be rewritten
using non ANSI FORTRAN statements.

1 Loops are sketched in a symbolic way.
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In the MID case, a conditional loop is still needed since T; has to be compared to Tyidx. Since J
is usually larger than K it is better to put the j loops as the inner loops :
dok=1 K
doj=1,J
if T; < Thigr then
Cprj/R = ai + a2 Tj + aaijZ + a4ka + aska
else (30)
Cpkj/R = asi + aorTj + a106T7 + a1k T) + a12x T}
endif
enddo
enddo

Of course the evaluation of ¢y, hx, Zr = (S§/R) — (Hi/RT), etc., is similar.

In the SID case the mixture thermodynamic properties, e.g., ¢p, are then obtained with one inner
product (18). Keeping in mind that the number of species K is generally lower than 100, this type of
scalar reduction loop slows down the computer speed in vector mode, even if an optimized module is
used. However, in the MID case, no scalar reduction loops are introduced so that no optimized modules
are needed when the j loops are the inner loops and the k loops are the outer loops. Note also that in
this situation the outer k loop could be partially unrolled into the inner j loop.

3.2.2 Evaluation of chemical production rates Before computing wg, £ = 1,..., K, one has to eval-
uate the rate of progress ¢;, i = 1,...,I, of each reaction. This can be done with an ¢ loop. However,
difficulties arise due to the products II;; and II,; in (8), to the sums AZ; in (12), and to third body
concentrations ctb; in (13) :

K

K K K

/ "

I = [J%, b= [[lx)%, Az = > vkiZ, cth = > i [ (31)
k=1 k=1 k=1 k=1

Indeed the number of reactants or products in a chemical reaction never exeeds three and rarely two since
most three body reactions are treated differently (13), so that the matrix vg;, k=1,...,K,i=1,...,1,
is quite sparse. As a consequence, forming the products IIy; and II; or the sums AZ; with (31) would
be a great waste of time, regardless of the algorithm. The formulas (31) have to be replaced by

/ n
M= J] l%,  Ou= [ [, AzZi=- ) vhiZe+ D viiZe,  (32)
EER() kEP(5) k€R(i) ke P(i)

where R(i) = {kreac(i,I); I =1,..., KREAC(i)} denote the indices of the reactants the i*h reaction
for which v}; # 0 and and P(i) = {kprod(i,l); I = 1,..., KPROD(i)} the indices of the products the
ith reaction for which v}; # 0 respectively. As already pointed out the number of reactants K REAC(1)
or products K PROD(3) of the reactions rarely exeeds two and never three so that the k loops over
R(i) and P(i) of (32) have to be unrolled in an 7 loop. However the reactant indices kreac(s, 1),
I =1,..., KREAC(i), and the product indices kprod(,1), | = 1,..., K PROD(i), of the i*h reaction
are arbitrary since kinetic mechanisms have no special structures, and their numbers K REAC(7) and
K PROD(i) are varying with the reaction index i. Now on a CRAY-1 indirect addressing vector loops can
only be obtained by using gathering-scattering macro-instructions, temporary arrays and loop splitting
[18]. Furthermore variable-length loop unrolling can be achieved by introducing dummy species whose
stoichiometric coefficients are zero in such a way that there are always three reactants and products in
each reaction. Following these ideas, we introduce an extended set of stoichiometric coefficients ny,ny,n3
and m;, mg, m3 such that :

/
n; = { ykreac(i,l) (33)

o if 1 <1< KREACG), {u;;md(,.,,),., if 1 <1< KPROD(i),
0, if KREAC(i) <1<3, "~

0, if KPROD(i) < 1 <3,

and we set arbitrary values for kreac(itl) and kprod(i, 1) for KREAC(i) < 1< 3and KPROD(i) <1< 3
respectively. Then, if the molar concentrations of the reactants and products are gathered into the
temporary arrays Ry, R, R3, P, P; and P3 :

Ry = [Xkreac(i,l)] ) B = [karod(iyl)] J 1=1,2,3, (34)

T



497

and if the quantities Zy = (S}/R) — (Hx/RT) of the reactants and products are gathered into the
temporary arrays ZR,, ZRy, ZR3, ZP,, ZP5 and ZP5 :

2Ry = Zlcreac(i,l)) ZP; = karod(i,l): 1=1,2,3, (35)

then Ily;, II,; and AZ; can subsequently be estimated from

H.fi = R;‘ili niziR;t?iv Hri = 1’?1£ P2'?2i P-;?Bi’ (36)
AZ; = —n ZRy; — noiZ Ry — n3iZ Rg; + my; ZPy; + mo; Z Py; + ma; Z Py, (37)

Note that (34)-(35) has to be rewritten with gathering non ANSI FORTRAN statements on a Cray-1.
The extra cost due to the dummy variables in (36)-(37) is compensated by the vector speedup. Of
course, the quantities [Xz], £ = 1,..., K, have to be evaluated with a simple k loop, and the quantities
Zy = (SR/R) — (Hy/RT), k = 1,..., K, have to be evaluated like (29), before (34)-(35).

On the other hand, if ithb is a flag concerning third bodies such that ithd = 0 if the itP reaction
does not contain arbitrary third bodies, ithd = 1 if it does with unity efficiencies and ithb = 2 if some
efficiency differs from unity and if we denote kthb(,1), I = 1,..., KT H B(3), the species whose efficiency
ay; in the i*P reaction is not unity, then third body concentrations ctb; can be obtained from

doi=1,1
cth; = 1
if ithb(7) > 1 then
cth; = [M] (38)
endif

if ithb(i) = 2 then
do I =1, KTHB(i)
ctbi = ctb; + (orensinyi — 1) [Xeensiin)
enddo
endif
enddo

Indeed, only a few third body efficiencies differ from one, so that vectorizing the innermost loop of (38)
is not interesting. For the same reasons, only a small number of the chemical reactions are such that
ithb(i) = 2, so that the true rate of the corresponding test is small and the use of a mask vector is not
interesting. Only the two first statements are worth vectorizing by splitting the i loop.
Now the rate of progress ¢;, ¢ =1,...,1, can easily be obtained with an i loop :
doi=1,1
E

K:f‘ = A;Tﬂ" €Xp (— ﬁ)

b Patm \ ~A%i
Kri = Kyi ( RT ) exp(+n1iZ Ry; + n2iZ Ry; + n3i Z Ra;
—my; ZPyi — m9i Z Py; — ma; Z Ps;) (39)
¢ = ctb; (IC s Ry ROM ROM — K, P Py 2 P;;‘sf)
enddo

Note that the Lindeman form (15) or the irreversibility condition, i.e., Kr; = 0, could easily be included.
Finally, the chemical production rates wg, initialized to zero, are obtained with one scalar i loop :

doi=1,1
Wkreac(i,1) = Wkreac(i,1) — M1iQi
Wkreac(i,2) = Wkreac(i,2) — N2idi (40)

Wkprod(i,3) = Wkprod(i,3) + M3iqi
enddo
since none of the statements in (40) can vectorize [16] even by using scattering macro instructions, due
to the fact that a species can be involved in different reactions. Note that only a few K and I temporary
arrays are needed in the preceding algorithms.
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In the MID case, everything is simpler. All the j loops have to be put as inner loops. In this
situation, the number of operations is minimized, the vector lengths are maximized, and all the loops
vectorize. The corresponding algorithm can be sketched as follows. First, the molar concentrations
(X, k=1,...,K,j=1,...,J, and the quantities Zy;, k =1,...,K, j=1,...,J, are evaluated and
stored in K*J temporary arrays, and the production rates wxj, k =1,..., K, j=1,...,J, are initialized
to zero. Then begins an outer loop over the chemical reactions, followed by the initialization to one,
one and zero, of temporarry arrays of length J used to store the IIf;j, II;; and AZ;;, respectively. The
molar concentration products I;;; of the reactants of the i*P reaction are then evaluated together with

the reactants’ contribution to the sums ‘AZ;; for every j =1,...,J,:
do!=1, KREAC(3)
doj=1,J s
Hft'j —— HfIJ [Xkreac(i,l)j] Vkreac(i,l)i (41)
AZij = AZij — Vipgac(iyyi Zkreac(i )i
enddo
enddo
The calculation of the II,;; and of the contribution of the products of the ith react‘ion to the sums AZ;;
is then done as (41) for every j =1,...,J. Note that the number of operations for calculating II;;, II,.;;
and AZ;; is minimized, at variance with the SID case where dummy species are introduced. The third
body concentrations for the i*h reaction ct;; are evaluated for every j = 1,...,J, using only vector

loops, which contrasts with the SID case :
if ithb(i) = 0 then
doj=1,J
cthi; =1

enddo
elseif ithb(i) > 1 then
doj=1,J
ctbi; = [M;] (42)
enddo

endif
if ithb(i) = 2 then
do I =1, KTHB()

doj=1,J
ctbij = cthij + (agenp(i,nyi — 1) [Xkens(i,ng)
enddo
enddo
endif
The rate of progress of the ith reaction is then easily obtained for every j = 1,...,J. Writing the

corresponding algorithm is straigthforward. Finally the contribution of the i*" reaction to the chemical
production rates of its reactants is evaluated from :
do!=1, KREAC(3)
doj=1,J
Wkreac(i,1)j = Wkreac(i,1)j — Vi:reac(i,l)iqij (43)
enddo )
enddo

followed by the analogous to (43) for the products of the i*? reaction, and the loop over the chemical
reactions ends. Note that the irreducible scalar kernel of (40) disappears in (43) and its analogous for
the products, and that only two K * J temporary arrays are needed, one for the [A%;] and one for the
Zyj, together with some J temporary arrays.

3.3 Vectorization of transport properties

3.3.1 Evaluation of Az and n; These evaluations are similar to those of cpi, with an inner k loop
in the SID case and an outer k loop with an inner j loop in the MID case, explicitely using the fits
(25)-(26). Writing the corresponding algorithms is straightforward.

3.3.2 Evaluation of A and 7 The vectorization of semi-empirical formulas like (23) is similar to that
of (18), so that we will not discuss it again. The vectorization of the Wilke formula (24) leads to the
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following algorithm, where sumy, k = 1,..., K, denotes a temporary array initialized to zero :

dol=1K

dOk‘—'—‘l,.K 1 W _% ]_W]_2

) B Lk Meyg (Mg
sumk—sumk+X1\/§(l+WI) <1+('71) (Wk) )

enddo (44)
enddo
dok=1 K

A=A+ Xpp/sumy
enddo

An optimized modules can also be used for the last loop which is a scalar reduction loop. In the MID case,
as usual, the j loops are put as inner loops and writing the corresponding algorithm is straightforward.

3.3.3 Evaluation of Dy;.and D In the SID case the binary diffusion coefficients can be evaluated
in a (k,1) loop :

do (k,1)=(1,1), (K,K)
Dyt = exp(digs + dagr log T + dagi (log T)? + dyi(log T)®) ~didE)
enddo
Although recent compilers, e.g., Fujitsu VP200, directly vectorize (45) as a (k,!) loop of length KK,
it is necessary to rewrite it as a one-dimensional loop on a Cray-1. On the other hand, exploiting the
natural symmetry of the binary diffusion coefficients leads to the the following algorithm :
dok=1K
do!l=k+1, K
Dyt = exp(diki + daki log T + dari(log T)% + dagi(log T)) (46)
Dix = Dy
enddo
enddo

which has to be used together with a compiler directive forcing the vectorization inhibited by a formal
recursivity. Now, in scalar mode, exploiting the symmetry of the Dy, is always faster than (45) which
approximately doubles the number of operations. This is true in vector mode if the number of interacting
species K is large enough. On a Cray-1 this minimum number of species is between 20-30.
In the SID case, the mixture diffusion coefficients Dy, k = 1,..., K, can then be obtained from the
following algorithm, where sumy, k = 1,..., K, denotes a temporary array initialized to zero :
dol=1K
dok=1K
if k£ # [ then (47)
sumy = sumg + X1/Dyy
endif
enddo

enddo
dok=1 K

Dy = (1 —Yy)/sumy
enddo
and where the conditional loop has to be rewritten with a non ANSI FORTRAN statement. Note also
that Dy is not defined for a pure species mixture so that some care must be taken in this latter case. A
procedure introduced by Kee,” Warnatz and Miller [15] consists in computing

Dy = _VIVZ(XI + E)VVI/Z(XI + €)/D, (48)

1#£k 1£k

where ¢ is a small positive constant. The corresponding extra cost is small.

In the MID case the evaluation of Di;; must be done with j loops as inner loops in (46), and
that of Dy; with j loops as inner loops of (47). The extra cost introduced by (48) is small. Writing
the corresponding algorithms is straightforward. Note however that if only the Dy;, k = 1,...,K,
J =1,...,J, are needed, it is not necessary to introduce a K*Kx*J temporary array to store the
Dyaj, which can be a problem for small memory computers and large chemical networks, since one can
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evaluate the Dyj; only where they are needed. Note also that the choice of the fits (25)-(28) is not
without consequences. For instance, the (1 [2)K*(K—1)*J exponentials needed for evaluating the Dy;
are fairly expensive, especially in scalar mode. Finally, writing similar algorithms for the evaluation of
the thermal diffusion ratio O is an easy task.

4. NUMERICAL EXPERIMENTS

In this section, performances of the SID and MID routines and of a laminar flame solver are
presented. All tests are performed with Hydrogen-Air and Propane-Air mixtures. The kinetic scheme
for Hydrogen-Air mixtures involves K = 9 species and I = 19 reactions and is taken from Miller and Kee
[23]. For Propane-Air mixtures we have used a K = 33 species and I = 126 reactions reaction scheme
due to Warnatz [24]. All tests have been done on a Cray-1 computer with the CFT 1.11 compiler.

Furthermore, the SID and MID routines have been written to use the work arrays of the CHEMKIN
and TRANSPORT packages’ subroutines. These work arrays store information about the species, the
kinetic mechanism, the transport properties and they contain some work space. Larger work arrays were
necessary however to store the extended set of stoichiometri¢ coefficients and species names (33), and
for the larger work space needed, especially for the MID routines. Up to these modifications, SID and
MID routines may be embeded in the libraries of these packages. In particular, the excellent CHEMKIN
FORTRAN code which reads symbolic descriptions of reaction mechanisms, the ‘Interpreter’, and the
TRANSPORT FORTRAN code which computes the polynomial fits (25)-(28) can be used with the SID
and MID routines. We refer to [14], [15] for more details.

4.1 Methodology

To measure the performance of a given program, we have used two types of tests. The first one is
related to Amdhal’s law which states that if P is the vector /scalar performance of a code,—the ratio of
the execution times T, and T, with the vector mode inactive and active respectively, if S is the ratio
of the average rates S, and S, at which the computer process the code in vector mode and scalar, i.e.,
sequential, mode respectively, —sometimes called the vector speedup :

g P=T,/Tu, S'—_Su/s.n (49)

and if « is the the fraction of the code executed in vector mode, i.e., in the pipelined functional units,
__ also called the vectorization ratio, then we have : :

\
P=t/G+1-0) (50)

This formula indicates that the higher the S and o values, the faster the program is processed. The
vector /scalar speed ratio S depends of course on the computer but it also depends on the nature of the
program. The program attributes affecting the value of S are for instance the vector lengths and the
data reference method, i.e., the type of indexing. On a Cray-1 the workload dependent vector speedup
S can range from 5. to 10.. Assuming an average value of S = 7.5, (50) gives that a = 0.00 for P=1,
a:0.58forP=2,a=0.77forP=3,a=0.87forP=4,a=0.92forP=5,a=0.96for
P=6,a=099for P=71,s0 that Amdhal’s law provided an approximated method to measure ‘the
vectorization ratio of a code by measuring P.

On the other hand, it is also usefull to compare the execution times T, and T, of a program when
the vector mode is inactive and active, respectively with the corresponding execution times T2 and
ToM of different versions of the code : ’

P, = Tfld/Tn Py = TuOId/Tv, (51)
to measure the improvements of the new versions.

4.2

4.9.1 SID subroutines The performances of the SID routines returning the species enthalpies hi, the
chemical production rates wy, the semi-empirical mixture conductivity A, the Wilke mixture conductivity
A and the mixture diffusion coefficients Dj exploiting or not the symmetry of the Dy, are presented
in Table 1 for a Hydrogen-Air mixture with K = 9 and I = 19, in Table 2 for a Propane-Air mixture
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with K = 33 and I = 126, and in the columns referenced by hx, wk, Ae, Aw, D™ and D, respectively.
These subroutines represent quite well all the different types of algorithms considered in Section 3. In
Tables 1 and 2, the first lines are the vector/scalar performances P of the SID routines, while the other
two are the performance ratios P, and P, of the SID routines over the corresponding modules of the
CHEMKIN and TRANSPORT libraries. The TRANSPORT subroutines [15] were modified in such a
way that the mole fractions Xy are in the calling list instead of the mass fractions Yj, which lead to
faster routines. Mixture diffusion coefficients are estimated with the modified formula (48).

hg W Ao Aw D:ym Dy,
P 2.10 1.95 1.62 4.06 2.04 3.89
Ps 2.10 1.26 1.39 1.05 2.43 1.72
Py 6.05 2.51 1.67 143 3.64 4.90

TABLE 1
Performances of the SID routines for a Hydrogen-Air mixture.

hk We Ae )‘w D:ym Dk
P 4.04 2.55 3.40 8.16 4.21 6.19

Ps 2.32 1.39 1.53 1.03 2.87 1.81
Py 13.59 3.57 2.96 1.31 8.36 7.72

" TABLE 2
Performances of the SID routines for a Propane-Air mixture.

The first important point is that the performances P of the SID routines depend on the reaction
mechanism. Indeed, the larger are K and I, the longer are the vector lengths involved in the SID
routines and therefore the larger is the speed ratio S, with a resulting larger P according to (50). The
presence of scalar reduction loops in the algorithms for A, and the irreducible scalar kernel (40) in the
evaluation of wy explain the corresponding performances. Note also the differences between D¥™ and
Dy, due to the small vector lengths in (46).

In scalar mode, the performances over the CHEMKIN and TRANSPORT routines are sligthly
‘larger than one. Indeed; a vectorized algorithm often run a little bit faster than a corresponding scalar
version because fewer loop setups, vector loads, etc., are usually needed in the vectorized version. The
higher values P, = 2.43-2.87 for D}’™ are due to the smaller number of arithmetic operations.

Finally, in vector mode, the improvements over the CHEMKIN and TRANSPORT routines range
from 1.31 to 13.5. The value P, = 1.31, for the evaluation of Ay, one of the most expensive subroutines,
shows that the corresponding TRANSPORT module is quite well vectorized. The unusual value P, =
13.5, for the evaluation of hy k = 1,..., K, is due in part to the bad vector/scalar performance P = 0.69
of the corresponding CHEMKIN module, due to scalar reduction loops of small length used in the
evaluation of the thermodynamic fits. More important, however, is the improvement for evaluating Dy,
k=1,...,K, which usually is a costly calculation. Note also that exploiting the symmetry of the Dy
is slower than (45) for Hydrogen-Air mixtures.

4.2.2 MID subroutines The performances of the MID routines returning the species enthalpies hg;,
the chemical production rates wg;, the semi-empirical mixture conductivity A j,'the Wilke mixture con-
ductivity A; and the mixture diffusion coefficients Dy;, are presented in Table 3 for a Hydrogen-Air
flame with K = 9, I = 19 and J = 77, and in Table 4 for a Propane-Air flame with K = 33, I = 126
and J = 63, and in the columns referenced by hy, wg, Ae, Ay and DP™, respectively. Again, these
subroutines represent quite well all the different types of algorithms considered in Section 3. In Tables 3
and 4, the first lines are the vector/scalar performances P of the MID routines, while the other two are
the performance ratios P, and P, of the MID routines over the corresponding SID routines used repet-
itively. In the column D}’™ the performance ratios are measured in comparison with the SID routine
using the algorithm (45) ,which does not exploit the symmetry of the binary diffusion coefficients, and
mixture diffusion coefficients are estimated with the modified formula (48).

At variance with the SID routines, the performances P of the MID routines are independent of
the reaction mechanism, and essentially depend on the number of input data J. Fairly uniform values
are obtained for P, ranging from 6.91 up to 7.88, except with h; for which P=3.72-3.79, due to the
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complex formulation (16) (17) and to the fact that there is only one path to/from memory on a Cray-1.
These very good results of the MID subroutines are due to their vectorization by ‘replication’ for which
all statements fully vectorize with vectors of length J and which minimizes the number of arithmetic
operations. The only disavantage could be the amount of memory needed, but the largest temporary
array, the one used to store the Dyij of length K#K +J, can be omitted if there are memory problems.
A consequence is that in vector mode the MID routines are significantly faster than the corresponding
SID modules used repetitively, especially for small reaction schemes like Hydrogen-Air.

hy wi Ao fihg | BY
RO I am o

P, 2.45 1.75 1.13 3.36 1.63
Py 3.95 6.59 5.14 5.82 2.88

TABLE 3
Performances of the MID routines for a Hydrogen-Air flame.

hi Wi Ae Aw V5 i
3.79 7.36 7.88 6.91 7.33
2.11 1.53 0.97 3.58 1.59
1.82 4.69 2.08 3.01 1.91

||

TABLE 4
Performances of the MID routines for a Propane-Air flame.

Now in scalar mode, the MID routines are slightly faster except for scalar reduction loops in the
Propane case. The relatively large values P,=3.36-3.58 obtained for Aw are due to the smaller number
of operations in the MID case, since for instance the quantities like (1/v8)(1 + (Wi/W1))=1/2 and
(Wi/Wi)'/4 involved in ¢y, (31) have to be evaluated only once for J=1.,4d.

4.2.3 A laminar flame solver To test the MID routines in a practical situation we have computed
several laminar premixed stagnation point flow flames, including extinction limits. For the purpose of
the present paper it is enough to know that in this flow configuration Egs. (1)-(5) reduce to a two-point
boundary value problem. More details on the modeling can be found in [6]. The laminar flame solver is
based on Newton’s method, adaptive gridding and continuation techniques. We refer to [5] [6] [7] [21]
for more details on the solution method. :

For a wide variety of Hydrogen-Air, Methane-Air and Propane-Air flame structure calculations,
we have found that typically 70-80% of the CPU time is spent in the MID routines in scalar mode,
so that this part of the CPU time is approximately divided by a factor of 7. in vector mode. The
remaining 20-30% of the CPU time in scalar mode is spent for linear algebra, adaptive gridding and
the form of the governing equations once thermodynamic properties, chemical production rates and
transport coefficients are known. These parts of the solver are only partially vectorized by the compiler.
Nevertheless, average vector/scalar performance P around 4. have been obtained for the laminar flame
solver, allowing considerable savings in CPU time in our different applications [4] [6] [7].

5. CONCLUSION

The evaluation of thermodynamic properties, chemical production rates, and multicomponent trans-
port coefficients, has been investigated. Vectorizing algorithms have been obtained for single and mul-
tiple input data subroutines. These subroutines have allowed important savings in CPU time.
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