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We investigate iterative methods for solving consistent linear systems arising from the kinetic 
theory of gases and for providing multicomponent diffusion coefficients for gaseous mixtures. 
Various iterative schemes are proved to be convergent by using the properties of matrices with 
convergent powers and the properties of nonnegative matrices. In particular, we investigate Stefan- 
Maxwell diffusion equations and we express the multicomponent diffusion matrix as a symmetric 
convergent series. We also rigorously justify the accuracy of Hirschfelder-Curtiss approximations 
with mass correctors often used to approximate diffusion velocities in gas mixtures. 6 1991 *cademlc 

Press, Inc. 

1. INTRODUCTION 

The species governing equations of multicomponent gaseous laminar re- 
acting flows are derived from the kinetic theory of gases and are given in 
terms of the species diffusion velocities. More specifically, the species mass 
conservation equations in these flows can be written in the form [l-5] 

d(PYk) ~ + V’(PVYk) = -o*(pYkVk) + WkOk, 
dt 

k E [l, nl, 

where p is the density, Y, the mass fraction of the kth species, t the time, t‘ 
the mass averaged flow velocity, Vk the diffusion velocity of the kth species, 
W’,w, the mass production rate of the kth species, and [ 1, n] the set of species 
indices, and the species boundary conditions at a reactive wall can be written 
as 

PYk(V + V,)*u = pv.vr; + w,;,, k E [I, n]. 
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where v denotes the outward unit normal at the wall boundary, Y “k the specified 
mass flux fraction, and IV’&, the surface mass production rate of the kth 
species. In order to render these governing equations soluble, the diffusion 
velocities V’, appearing in these equations must therefore be determined. These 
velocities, on the other hand, can be expressed as [l-3 ] 

vk = - c Dkd%, k E 11, nl, (1.1) 
IC[ I,nl 

where D = (Dk,) is the multicomponent diffusion coefficient matrix and where 
Gk is the diffusion driving force of the kth species. The vectors Gk incorporate 
the eIIects of various state variable gradients and external forces and can be 
written in the form 

Gk = vxk + (xk - yk) : + ; ,,z,, ykr,(f; -fk), k E [I, nl, 

where & denotes the mole fraction of the kth species, p the pressure, andfk 
the external force per unit mass of the kth species. Note here that thermal 
diffusion is not considered in this paper. Only the driving forces Gk such that 
c kE[1,j7] Gk = 0 and the Velocities Vk such that C&(l,n] Ykvk = 0 are ofphysical 
interest. A consequence of these expressions is that detailed modeling of the 
Species diffusion Velocities I$ reqUireS eVahating XCUratdy the mdtiCOm- 

ponent diffusion coefficients Dkl which are functions of the state variables T, 
pand Y,,..., Y,, i.e., Dkl = Dkl( T, p, YI, . . . , Y,), where T denotes the 
absolute temperature. 

These diffusion coefficients, however, are not explicitly known from the 
kinetic theory. Evaluating the Dkj requires solving large linear systems, namely 
of size j *it when j terms are retained in the Sonine polynomial expansions 
of the species perturbed distribution functions [ 1, 31. A dual formulation of 
( 1.1) (can still be obtained and written in the form 

Gk = - 2 &/l/l, k E 11, nl, (1.2) 
/El l,nl 

where A = (A,) is the dual multicomponent diffusion coefficient matrix and 
where the coefficients Ak, are function of the state variables L&l = Akl( T, p, 
Yl, . . . , Y,) [ 1, 61. In principle, the diffusion velocities could be obtained 
from the dual relations and the mass conservation constraint CkE[l,n] Ykvk 
= 0. However, the dual diffusion coefficients are not explicitly known when 
j 3 2. Indeed, they require eliminatingj - 1 blocks of size n in a linear system 
of size j* 12 as exemplified in [ 61. However, they are explicitly known when 
j = 1, i.e., when only one term is retained in the Sonine polynomial expansions. 
In this situation, the relations ( 1.2) can be written in the form 
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Gk= c 
lE[l.nl 

Jp+~)“, kE[l,nl, (1.3) 

/#k ,+f 

where ao,, denotes the usual binary diffusion coefficient for the species pair 
(k, I) which depends only on temperature and pressure, a)k, = a)k,( T, p) [ 1. 
4-61. These relations ( 1.3), which are referred as Stefan-Maxwell diffusion 
equations in the literature and which must be completed by the mass constraint 
c kE,,.nl Y,V’, = 0 in order to define uniquely the diffusion velocities, may 
now be inverted to yield the velocities I’, . It is also possible to use a modified 
formulation of the Stefan-Maxwell diffusion equations 

Gk= 2 
/E[ 131 

I#!7 

kE [l, n], (1.4) 

where p is a positive constant. This system defines uniquely the diffusion 
Velocities v, and yields that -p( &[,,n] Y,) &[,,n] Y,vk = &t[,,n] GA. In 
particular Ckr[l,n] Ykvk is zero as long as CLEtl,nl Gk is zero so that this system 
automatically handles mass conservation constraints as opposed to ( 1.3) where 
the mass constraint CkE(l,n] Ykv, = 0 is explicitly needed. This modified 
formulation has been introduced by the author in order to suppress artificial 
singularities in Jacobian matrices of discretized governing equations which 
may occur when all mass fractions are considered as independent un- 
knowns [ 71. 

However, inverting the Stefan-Maxwell diffusion equations ( 1.3), com- 
pleted with the proper mass constraint, or their modified formulation ( 1.4)) 
may be computationally expensive. Indeed, such inversions have generally 
to be performed at each time step-for unsteady problems-and at each com- 
putational cell. It is therefore interesting to use iterative techniques to invert 
these linear systems. Iterative methods are also a convenient way to define 
approximated diffusion coefficients, e.g., by truncating convergent series. It- 
erative schemes have been introduced in particular by Oran and Boris [ 8 ] 
and Jones and Boris [9] and accurate approximated solutions for diffusion 
velocities have also been considered by Coffee and Heimerl [lo], Kee, War- 
natz, and Miller [ 1 I], and Warnatz [ 121. In this paper, we investigate-from 
a mathematical and numerical point of view-various iterative techniques 
for solving these systems. We first introduce a mathematical framework needed 
to prove rigorously that iterative methods are convergent. We state the prop- 
erties of the matrices D and A and show that they are generalized inverses of 
each other [ 71. We also show that the matrices A corresponding to the Stefan- 



MULTICOMPONENT DIFFUSION 247 

Maxwell diffusion equations ( 1.3) satisfy the general properties required from 
the kinetic theory. We then prove that various iterative schemes, corresponding 
to regular splittings for A, are convergent. Similarly, various iterative schemes 
for ( 1.4) are considered and we also study the case of vanishing species mass 
fractions by investigating the iterative solution of the species fluxes Fk = Yk Vk 
in terms of the diffusion driving forces Gk. In particular, new algorithms are 
proposed and proved to be convergent and a rigorous proof of the convergence 
of Oran-Boris-Jones type algorithms is also obtained. Our results are based 
on the properties of matrices for which the powers converge and on the prop- 
erties of nonnegative matrices. Finally, we also justify rigorously the accuracy 
of Hirschfelder-Curtiss approximated diffusion velocities with mass correctors 
defined by 

: 
V,= -gGk+ V,, Dk* = (1 - Y/c)/ C (Z/&), (1.5) 

IE[lJl 
l#k 

where 0: is the diffusion coefficient of the kth species in the mixture and 
where the species independent correction velocity V, is chosen such that the 
mass constraint CkEI,,nl YkVk = 0 is satisfied. We indeed prove that these 
diffusion velocities correspond to the first term of a convergent series. 

In Section 2, we introduce a set of notations which will be used throughout 
this paper. Several results on generalized inverses and on iterative methods 
for singular systems are also summarized. In Section 3, we introduce a math- 
ematical framework needed to investigate iterative methods. Various iterative 
schemes for the Stefan-Maxwell diffusion equations are then proved to be 
convergent in Section 4 where the case of vanishing mass fractions is also 
considered. Finally, numerical experiments are presented in Section 5 and a 
summary of practical results is given in Section 6. 

2. NOTATIONS AND PRELIMINARIES 

We shall consider the various diffusion matrices of a given multicomponent 
gas mixture with temperature T, pressure p, and species mass fractions Y, , 
. . . , Y,. We shall denote by 12 the number of species, by [ 1, n] = { 1, . . . , IZ } 
the set of species indices, and we assume in the following that n 2 2. Since 
the linear relations ( 1.1 )-( 1.5) between the various vectors VI, . . . , V, and 
GI,..., G,, normally in R 3, and involving the n * IZ diffusion matrices D and 
A, may be decomposed on the canonical basis of R3, it will be sufficient to 
consider the case of scalar diffusion velocities V, , . . . , V, and scalar diffusion 
driving forces G, , . . . , G,. 
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For a vector x E R” we denote by x = (xl, . . , x,,) its components and 
by Rx the subspace span(x) = { Ax: X E R } . For x, y E R”, we denote by 
(x, y) the scalar product (x, y) = CL~[,.~] xkyk. For x E R”, x # 0, we 
denote by x’ the subspace x’ = {J’ E R”; (x, y) = 0 > . Finally, if each 
component of a vector x E 02” is nonnegative (positive) we write x B 0 (x 
> 0). 

We use the notations U = ( 1, . . , l)andY=(Y,,...,Y,,)forthemass 
fractions. Unless explicitly stated, it will be assumed in the following sections 
that Y > 0, i.e., that the species mass fractions are positive. In the case of 
vanishing mass fractions we assume only that Y > 0 and Y f 0. Note also 
that for any physical mixture one has the relation CkE,l,nl Y, = (Y, U) = I. 
However, this relation will not be needed in the following. Moreover, omitting 
factors such as (Y, U) when expressing diffusion velocities may modify Ja- 
cobian matrices of discretized systems when all mass fractions are considered 
as independent unknowns [ 71. We shall thus keep these factors in various 
formulas and not assume a priori that (Y. CT) = 1. Finally we denote by I’, 
G, and F the vectors I’ = (V, , . . . , I’,), G = (G,, . . . , G,), and 1: = (I;, 1 
. . . ) F,) where Fk = YkVk, k E [I, n]. 

We denote by [w”,” the set of y1*n square matrices. For A E R”,“. we write 
A = (&) the coefficients of the matrix A, N(A) and R(A) the nullspace and 
the range of A, respectively, and AT the transpose of A. Let a, h E R”, then 
a @ b denotes the matrix c( @ b = (ak 6,). The identity matrix is denoted by 
Zanddiag(X,,. . . , A,) is the diagonal matrix with diagonal elements A,, . 
A,. In particular, we use the notation Y = diag( Y, , . . . , Y,). The projection 
matrix on a subspace S, along a complementary subspace ST, i.e., S, CD S’:! 
= R”, is denoted by Ps,,s2. For -4 E R”,“, a( A) and p( A ) denote the spectrum 
and the spectral radius of A and we also define ~(4 ) = max { 1 X j ; X E a( A ). 
X # 1 } . If each coefficient of a matrix ‘4 E R”.” is nonnegative (positive) we 
write A b 0 (A > 0). Finally. for A E [w”,“, we denote by 1) AlI its Frobenius 
norm defined by II A I] = ( CA.it,,,,,l A ?,) I”. 

Let A E Iw”,” and let T, S be two subspaces of R” such that N(A) $ S = IL!” 
and R(A) EB T = R”; then there exists a unique matrix 2 such that AZA = .1. 
ZAZ = Z, N(Z) = T, and R(Z) = S [ 13, p. 581. This matrix Z is called the 
generalized inverse of A with prescribed range S and nullspace T. In this 
situation the matrix Z also satisfies AZ = P RCA),7.and ZA = Ps,~(~) [13. p. 
581. Similarly, let A E El”-” be such that N(A) @ R(A) = R”. Then there 
exists a unique matrix Z such that AZA = A, ZAZ = Z, and ,4Z = ZA [ 13, 
p. 1621. The matrix Z is called the group inverse of A and is denoted A#. In 
this situation one also has the properties N(A) = N(A#). R(A) = R(A”). 
and AA# = A’A = PR~A~,,2.~A~ [ 13, p. 1621. The group inverse is also the 
generalized inverse with prescribed range R(A) and prescribed nullspace N(.4 ). 
Finally, we also consider the set Z”,” = {A E [w”.“; Akl < 0 for k # II and a 
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matrix A E 2 ‘GI is called an M-matrix if A can be split into A = SZ - B where 
s 2 ~(~6) and B > 0 [14]. 

A m.atrix TE IF” is said to be convergent when the limit 

lim Tk 
k++m 

exists, not necessarily being zero. Note here that we are using the terminology 
of Neu.mann and Plemmons [ 141 rather than the more conventional one. It 
is well known that the powers of a matrix T converge to zero if and only if 
PC T) <: 1. More generally, T is convergent if and only if either p(T) < 1 or 
p(T)=: l,lEo(T),y(T)<l,and(Z-T)#exists,i.e.,Thasonlyelementary 
divisors corresponding to the eigenvalue 1 [ 14- 171. Next, for a matrix A 
E R”S”., the decomposition 

A=M-Z (2.1) 

is a splitting if M is nonsingular. The splitting is said to be regular if M-’ 2 0 
and Z 2 0. In order to solve the system 

Ax= b, (2.2) 

where b E [w “, the splitting (2.1) induces the iterative scheme 

Xi = TXi-1 + AK’by i= 1,2,..., (2.3) 

where T = M-‘Z. If A is nonsingular, then the sequence of iterates (2.3) 
converges for every x0 to the unique solution of (2.2) if and only if p( T) < 1 
[l&19]. IPA is singular and if the system (2.2) consistent, i.e., M-lb E R(Z 
- T), then the sequence of iterates converges for every x0 if and only if the 
matrix T is convergent [ 14- 15 1. In this situation, the solution x, to which 
the sequence of iterates converges depends on the initial solution x0 and we 
have 

lim Xi = (I - T)#M-‘b + EXO, 
i--m 

where E = Z - (I - T)(Z - T)‘. The asymptotic convergence rate is also 
-log y( T) . We refer to Neumann and Plemmons [ 141, Berman and Plem- 
mons 1: 16 1, and Keller [ 15 ] for an introduction to the solution of singular 
consistent linear systems by iteration techniques. 
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3. DIFFUSION MATRICES 

In this section, we introduce the various diffusion matrices of a gas mixture. 
We first state the general properties of D and A and show that they are gen- 
eralized inverses of each other. We then derive the properties of the matrices 
A arising from the Stefan-Maxwell diffusion equations. Finally we introduce 
the corresponding matrices C and r relating the diffusion fluxes F = (Y, V, . 
. . . ) Y,V,,) to the diffusion driving forces G which will be needed in the case 
of vanishing mass fractions. 

3.1. The Matrices D and A 

We first consider the multicomponent diffusion matrix D = D( T, p. I-, . 
Y,) of a given mixture. Using the notations V = (V,, . . . , V,) and G 

=;&,...,G,,) we may write the linear relations ( 1.1) in the form 

V= -DG, (3.1) 

keeping in mind that only the case where I/E R” and G E R” is now considered. 
The diffusion coefficient matrix D = ( Dkl) is assumed to have the properties 

D= D7. (3.2) 

DY=O, (3.3) 

D is positive definite on UL . (3.4) 

Concerning these assumptions (3.2)-( 3.4) we make the following remarks. 
First note from (3.2) that the matrix D is symmetric. Symmetric diffusion 
coefficients have indeed been considered by Waldmann [ 3 1, Chapman and 
Cowling [ 11, Ferziger and Kaper [2], and Curtiss [ 201 and are consistent 
with Onsager reciprocal relations of thermodynamics of irreversible processes 
[ 2, 2 I]. An alternate definition, due to Hirschfelder, Curtiss, and Bird [ 4, 12, 
22-23 1, imposes the constraint D kk=0,forkE[l,n],insteadof(3.3),and 
unnecessarily breaks the symmetry of the diffusion process [ 2, 20, 2 11. The 
property (3.3) corresponds to the mass conservation constraint and implies 
that CK[I.~I YkV, = 0, i.e., that VE Y’ for all G E R” [l-3]. Finally the 
property ( 3.4) corresponds to the positiveness of the entropy production qua- 
dratic form -(p/T)(V, G) on the physical hyperplane {GE R”; CkELl,nl Gi, 
= 0) = U’ [2-31. 

Similarly, we consider the dual diffusion coefficient matrix A = A( T, p. 
Yl, . . . > Y,) and write the dual relations in the form 

G = -AV, (3.5) 



MULTICOMPONENT DIF-FUSION 251 

where IG E R” and VE R”. The matrix A is assumed to satisfy 

A = A’, (3.6) 

AU=& (3.7) 

A is positive definite on Y’, (3.8) 

and it is assumed that the following relation holds between D and A: 

V= -DG, G = -AV, 

GE U’, VE Yl. 
(3.9) 

Here again, the properties (3.6)-( 3.8) correspond respectively to the symmetry 
of the dual diffusion matrix A, the mass conservation constraints G E U’, 
for all VE [w ‘, and the positiveness of the entropy production quadratic form 
-(pIT)(V, G) on the physical hyperplane {V E Iw”; CkE.Il,nI YkVk = 0} 
= Y’ . IFinally the property (3.9) states that the restriction of D to the physical 
hyperplane U’ is a one to one mapping of U’ onto Y’ whose inverse is the 
restriction of A to Y’ and conversely. 

The relation between the matrices D and A can be clarified by using the 
theory of generalized inverses [ 13 1. We first derive some consequences of 
(3.1)-(3.9). 

LEMMA 1. Zf properties (3.2)-(3.4) hold, then we have N(D) = WY and 
R(D) == Y’ and denoting by X1 < * . * < h, the eigenvalues of D, we have 
X1 = 0 and Xk > 0, for 2 < k < n. Similarly, ifproperties (3.6)-( 3.8) hold, 
thenwehaveN(A)=LWandR(A)= U’anddenotingbyp,< ..* <pn 
the eigenvalues of A, we have p1 = 0 and pk > 0, for 2 < k < n. Finally, if 
properties (3.2)-( 3.4), (3.6)-( 3.8), and (3.9) hold, then DAD = D and ALIA 
= A. 

ProqC From (3.2)( 3.3) there exists an orthonormal basis consisting of ei- 
genvectors of D and 0 E a(D) since DY = 0. Let now X E a(D) and e E Y’ 
such that De = he and (e, e) = 1. Then there exists x # 0 such that x E U’ 
fl (RY CB Re) since dim( U’) = n - 1 and dim(RY $ Re) = 2. Now from 
(3.4) we have (Dx, x) > 0 since x E U’ and x # 0 and a straightforward 
calculation yields (Dx, x) = X(x, e) ‘. This shows that X > 0 and thus all 
eigenvalues of D with eigenvectors in Y’ are positive, and therefore R(D) 
= Y’ and N(D) = [WY. The properties of the matrix A can be obtained in a 
similar way. Now if x E R” then Dx E Y’ so that if we let V = Dx and G 
= -AVthen from (3.9) we get V = -DG = DAV = DADx = Dx and thus 
DAD = D and the proof of ALIA = A is similar. 



252 VINCENT GIOVANGIGLI 

Noting that [wU@ Y’ = (w” and IWY @ U’ = [w”, since (U, Y) # 0, we 
now deduce from Lemma 1 and the definition of generalized inverses with 
prescribed range and nullspace, the following important corollary. 

COROLLARY 2. Assume that properties (3.2)-( 3.4), (3.6)-(3.X), and (3.9) 
hold. Then A is the generalized inverse of D with prescribed range U’ und 
nullspace MJ and D is the generalized inverse of A with range Y’ and null- 
space WY. 

Using Corollary 2, we can then deduce the properties of D from the prop- 
erties of A and vice versa. 

PROPOSITION 3. Let D be a matrix such that (3.2)-(3.4) hold and let A 
be the generalized inverse of D with prescribed range U’ and nullspace RU. 
Then properties (3.6)-( 3.8) and (3.9) hold. 

PROPOSITION 4. Let A be a matrix such that (3.6)-( 3.8) hold and let D 
be the generalized inverse of A with prescribed range Y’ and nullspace RY. 
Then properties (3.2)-( 3.4) and (3.9) hold. 

Proof Only the proof of Proposition 4 is given. The proof of Proposition 
3 would be exactly similar. Let D be the generalized inverse of A with prescribed 
range Y’ and nullspace IWY. By definition we have DAD = D and ADA = A. 
Transposing these relations and using the symmetry of A we deduce that 
DTADT = DT and ADTA = A. Moreover R(DT) = (N(D))’ implies that 
R(DT)= Y’andN(DT)=(R(D))‘yieldsN(DT)=IWY.Fromtheuniqueness 
of the generalized inverse with prescribed range and nullspace we deduce that 
D = D T and (3.2) is proved. We also have ( 3.3) by construction since N(D) 
= IWY. Now, for x E U’, x f 0, we have (Dx, x) = ( DADx, X) = ( ALEX, 

Dx) since D = DT. Since N(D) = [w Y by construction and x E U’, x # 0, 
we also have Dx # 0 because ( U, Y) # 0. Thus ( ADx, Dx) > 0 from ( 3.8) 
and thus (Dx, x) > 0 and (3.4) is established. Finally, to prove (3.9)) assume 
that V = -DG and G E U’. Since R(D) = Y’ by construction, we have b’ 
E Y’ and AV = -ADG. Now from Lemma 1 we have R(A) = U’. Thus if 
G E U’, there exists z E Iw” such that AZ = G. Therefore AV = -ADAz 
= -AZ = -G. Conversely, if V E Y’ and G = - AV, then from Lemma 1 
wehaveR(A)= U’sothatGEU’,andsince VE Y’wehave VER(D) 
and there exists z E I&!” such that V = Dz. Thus DC = - DAV = - DADs 
= - Dz = - V and the proof is complete. 

From the properties of generalized inverses [ 131 we now deduce the fol- 
lowing important expressions for the matrices DA and AD [ 71. 

COROLLARY 5. Assume that properties (3.2)-(3.4), (3.6)-( 3.8), and (3.9) 
hold. Then the matrices AD and DA are projector matrices with ranges U’ 
and Y’ and nullspaces WY and RU, respectively, which can be written 
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AD = P”L,~~ = Z - <yY”, 

and 

DA = Py~,wu = Z - ~ 
(f-J,Y)~ 

(3.10) 

(3.11) 

As an immediate consequence of Corollary 5, we have the following very 
useful result [ 7 1. 

PROPOSITION 6. Assume that properties (3.2)-( 3.4), (3.6)-( 3.8), and (3.9) 
hold. Z;et (Y and p be positive constants such that c$( U, Y)” = 1. Then the 
matrices 

and 

A=A+pY@Y 

are symmetric, positive definite, inverses of each other, 

(A+ ,8Y@ Y)(D + aU’X’ U) 

= (D + aU@ U)(A+ ,f3Y@ Y) = Z, (3.12) 

and coincide respectively with D and A on the physical hyperplanes U’ 
and Y’. 

Proof First, the symmetry of D and A is obvious. Now the quadratic forms 
defined by D and CYU 8 U are both nonnegative and positive definite on U’ 
and RU, respectively, so that their sum is positive definite, and the same 
argument can be applied to A. Finally, the formula (3.12) is a direct conse- 
quenceof(3.3)(3.7)and(3.10)(3.11)sincefora,b,c,dEIWnandAEiW”,” 
onehasa@bc@d=(b,c)a@dd,a@bA=a@(ATb)andAa@b=(Aa) 
8 b. 

Note here that by using the matrices d and A instead of D and A, one can 
suppress artificial singularities arising in Jacobian matrices of discretized gov- 
erning equations when all mass fractions are considered as independent un- 
knowns [ 7 1. 
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3.2. Stefan-Maxwell Dcfusion Equations 

A motivation for introducing the dual relations (3.5) is that when only 
one term is retained in the Sonine polynomial expansions of the species per- 
turbed distribution functions, then the matrix A is explicitly known and can 
be written [ 1, 4-61 

Akk = c F, k E 11, nl, (3.13a) 
lE[lJT] h’ 

I#k 

x,x/ Akl = - - , 
akl 

k, 1 E [I, nl, k # 1, (3.13b) 

where .Bk, denotes the usual binary diffusion coefficient for the species pair 
(k, I) which depends only on temperature and pressure, a)k[ = aDkl( T, a), 
and where X, denotes the mole fraction of the kth species. The mole fractions 
X=(X,,..., X,) can be expressed in terms of the mass fractions Y by the 
formulas [l-5 ] 

ykw 
x,=-, 

Wh kE 11, nl, 

where W, is the molecular weight of the kth species and W the molecular 
weight of the mixture. The molecular weights of the species W,, k E [ 1, n], 
are simply positive constants and the molecular weight of the mixture W is 
given by [ 71 

( 2 yk)/w= c yk/w,. (3.14b) 
kEI I,nl kE[ I.n] 

Since the mass fractions Y have been assumed to be positive, it is easy to 
check that the corresponding mole fractions X are positive. Moreover, binary 
diffusion coefficients are always positive numbers and are symmetric, i.e., a)k/ 
= ark for k # 1. From these assumptions, we now prove that properties (3.6)- 
(3.8) hold. 

PROPOSITION 7. Let W,, k E [ 1, n], bepositive numbers, let a)kl bepositive 
numbers defined for k, 1 E [ 1, n], k # 1, and symmetric, and assume that Y 
> 0. Then the matrix A defined as in (3.13)( 3.14) satisfies properties (3.6)- 
(3.8). Moreover, this matrix is irreducible, is diagonally dominant, and is an 
M-matrix. 
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ProSoJ: The symmetry of A is obvious from definition ( 3.13 ) and the prop- 
erties (of the binary diffusion coefficients a k,. Similarly, the relation AU = 0 
is a consequence of (3.13). A straightforward computation also yields that 
for x C: R ’ we have 

@x,x) = 2 = (xk - xj)2, 

k,l;;/,n] 2a)kl 

so that (Ax, x) > 0 and (Ax, x) = 0 implies x E RU since X > 0. Therefore 
A is positive definite on Y’ since U 4: Y’ . The graph of A is also strongly 
connected since Ak, # 0 for all k, 1 E [I, n] so that A is irreducible [ 18, p. 
201 and the diagonal dominance [ 18, p. 231 is obvious. Now let s E R be 
suchthats~Akk,forkE[1,n],anddefineB=sZ-A.ThenB~Ofrom 
the definitions of A and s. Applying then the Gershgorin theorem [ 18, p. 16 ] 
toByieldsthat 1x1 <sforXEa(B)since Cr~,,,nlBk,=~forkE[l, n], so 
that A is an M-matrix. 

We can similarly derive some of the properties of the matrix 6 = A + ,L?Y 
8 Y. 

PROPOSITION 8. Keep the assumptions of Proposition 7 and let ,6 be a positive 
constant. Then the matrix B = A + pY C3 Y is symmetric and positive dejnite. 
Moreover, if0 c /3 =S p*, where /3* is defined by 

@* = W2/max{WkW,a)kl;k, 1E [l, n], k# 11, (3.15) 

then L% is strictly diagonally dominant, is an M-matrix, and d = i\-’ > 0. 
Finall.y, if 0 -C p c /3*, then A is irreducible and d = A-’ > 0. 

Proof From Propositions 6 and 7 we deduce that A is symmetric and 
positive definite. Then, if 0 < p < /3*, we have 

&, = -Y,Y, 
W2 

wkwakl 
- p < -YkY[(p* - p) G 0, 

k, 1 E [l, n], k # 1, 

so that A E Z”,“, andifO</3<~*,then&#Ofork,IE[l,n]sothatL\ 
is irreducible [ 18, p. 201. Now let s be such that s > &k, for k E [ 1, n], and 
define B = sZ - d. Then B 2 0 for 0 < /3 < /3* and B > 0 for 0 -C /3 < /3* 
and applying the Gershgorin theorem to B yields that I h I < s for h E a(B) 
since &I,~] &/ = s - Pyk &[~,n] Y, for k E [ 1, n] . Therefore fi = A-’ 
= s-’ CkrO (B/s)~ and d > 0 for 0 < p < p* whereas 6 > 0 for 0 < 8 < p*. 
Finally, proving the strict diagonal dominance is straightforward. 
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3.3. The Case of Vanishing Mass Fractions 

In this section we assume only that Y > 0 and Y # 0. Some of the mass 
fractions are thus allowed to vanish and the mole fractions X, given by ( 3.14), 
are then such that XL = 0 if and only if Yk = 0. In the limit of vanishing mass 
fractions, the diffusion matrix D and the diffusion velocities V are no more 
defined and the matrix A becomes singular on Y’ . Nevertheless, the quantities 
that are needed to formulate the multicomponent laminar reacting flow gov- 
erning equations are the mass fluxes F = (Y, V, , . , Y,V,,). Therefore. in 
this situation, we must solve for the fluxes Fin terms of G and only the fluxes 
F such that Ckr,l.nl Fk = 0, i.e., FE U’, are of physical interest. We are thus 
led to introduce the matrix T = ( Tkl) such that 

rkk = g 1 5, 
L lE[l,ll] Bki 

k E 11, n], (3.16a) 

lib 

rk, = - w x, 
w, ak/ ’ 

k, I E 11, nl, k # 1, (3.16b) 

and given G E U’, we want to find FE lJL such that 

G = -l?F. (3.17) 

Denoting by Y the diagonal matrix Y = diag( Y, , . . . , Y,), note that we have 
the relation A = I’Y. In the following proposition, we derive the properties 
of the matrix I? and of its group inverse C. 

PROPOSITION 9. Let w,, k E [ 1, n], bepositive numbers, let ak, bepositive 
numbers definedfor k, 1 E [ 1, n], k # 1, and symmetric, i.e., a)kt = Bu,for k 
# I, and assume that Y Z= 0 and Y # 0. Then the matrix r defined by 
(3.16)(3.14) is such that N(r) = WY and R(r) = U’ and thus admits a 
group inverse C = I”. The matrix C = I” is such that N( C) = L%Y and R( C) 
= U’ and we have 

Yc3U cr=rc=I-p 
(U, Y). 

Moreover we have the relation 

F = -CC, 

GE U’, 

G = -rF, 

FE CT’, 

(3.18) 

(3.19) 

and r is an M-matrix. Finally, when all mass fractions are positive, then C 
= YD and r = AY-i. 
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Pruc$ When all mass fractions are positive, the matrix Y is invertible and 
from A = I’Y we deduce that AY -’ = P and thus that N(P) = Y (N(A)) 
= RY and that R( I’) = R(A) = U’. In the case of vanishing mass fractions, 
we may assume, without loss of generality, that the species have been ordered 
sucht1~atY~~0,for1~k~p,andY~=0,forp+1~k~~,forsome1 
<p<rz.Usingthepartitioning[l,n]=[l,p]U[p+ l,n],wemaydecompose 
each x E lRn into x = (x+, x0) where x+ E Rp and x” E Iwnpp. Correspondingly 
we decompose each matrix A E Iw”,” into the blocks A++ E [wp9p, A+’ E IWp,(n-p), 
Ao+ E @n-P),P, and A00 E @n-P)dn-P) in such a way that y = Ax if and only 
ify+ = A+‘x+ + A”x” and y” = A”+x+ + AmxO. A straightforward calculation 
then shows that the matrix I admits the block decomposition 

r= 1 r ++ r+O 
,r”+ roe I I r pl ... r PP rp(p+l) .. . r,, 

= 

0 . . . 
0 r(P+l)(P+l) 0 

1: 0 . . . 0 0 r nn 1 , (3.20) 

SO that PO+ = 0 and I? is diagonal with positive elements Pti+lj(p+lj, . . . , 
Inn. Let then x = (x+, x0) E R” such that Px = 0. From (3.20) we get that 
I?x” = 0 so that x0 = 0 and P++x+ = 0. Now, if p > 2, I’++ is exactly the 
matrix I’ lpl that would be obtained from ( 3.16)( 3.14) by considering only 
the first p species with positive mass fractions Y+ = (Yi , . . . , Y,). In particular 
we have, with obvious notations, I’++Y ++ = A++ and thus, from Proposition 
7 and Lemma 1, N(I’++) = Y”(RU’) = RY’. The same result trivially 
holds if p = 1 since then I’++ is the zero l* 1 matrix and N( I’++) = lRY+ 
where Y + = ( Y, ) . Therefore Px = 0 if and only if for some X E Iw we have x 
=(x+,x’) = (hY+,O) = X(Y+,O) = hYsothatN(I’) = IWY.Moreoverfrom 
(3.16) we have R(r) C U’and thus R(I’) = U’. Now N(I’) C3 R(r) = 08” 
because Y $! U’ and thus P admits a group inverse which satisfies CP = PC 
= PRcrj,Ntrj which can be written Cr = PC = Z - (Y @ U)/( U, Y). The 
relations (3.19) are then easily shown as in the proof of Proposition 4. Let 
thenssuchthats~rkk,forkE[l,n],anddefineB=sZ-r.ThenB~O 
and applying the Gershgorin theorem [ 18, p. 161 to BT yields that 1 X 1 < s 
for X C! a(B) = u(BT) since CkE[l,nI Bkl=.sforZE[1,n],sothatI’isanA4- 
matrix. Finally, when all mass fractions are positive, we deduce from Prop- 
ositions 7 and 4 that there exists a generalized inverse D of A with R(D) 
= Y 1 and N(D) = [WY. Then from A = I’Y we get that I = AY -’ and we 
alsohaveN(YD)=N(D)=OBYandR(YD)= Y(R(D))= U’.Moreover 
we deduce from DAD = D and ADA = A that (YD)(AY-‘)(YD) = YD 
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and (AY -I)( YD)( AY -I) = AY -’ so that C = YD from the uniqueness of 
the generalized inverse with prescribed range and null space and the proof is 
complete. 

In the next proposition we establish some of the properties of the modified 
matrices C and F from which we deduce the smoothness of the matrix C as 
a function of the mass fractions Y. 

PROPOSITION 10. Keeping the notations of Proposition 9, let (Y and b’ be 
positive constants such that oP( U, Y) * = 1. Then the matrices 

and 

are inverses of each other, 

(I’+ @Y&3 U)(C+ aY@ U) = (C+ aYC3 U)(I- + /3YC3 U) = I, (3.21) 

and coincides with C and r respectively on the physical hyperplane 17’. More- 
over, $0 < @ =S p*, then p is an M-matrix and d is nonnegative, i.e., C > 0. 
Finally, the coeficients of the matrix C are smooth rational functions of the 
mass fractions in the physical domain { YE W”; Y > 0, ( U, Y > = 1). 

Proof Since R(C) = R(I’) = UL, we have N(C’) = N(rT) = RUand 
thus CTU = P ‘U = 0 and we also have CY = T Y = 0. From these relations 
and from (3.18) we now easily obtain (3.2 1) as in the proof of Proposition 
6. From this relation, we deduce that C = (P + flY @ U)-’ - LYY @ U. Now 
for any fixed positive value of /3 the matrix P + BY @ U is invertible on { Y 
E R”; Y > 0, ( U, Y) = 1 } . Moreover it is well known that the set of invertible 
matrices 9 is open in (w”~” and that the application M + AK’ from 9 to R”*” 
is smooth. This shows that the coefficients of C are smooth functions of the 
mass fractions in the domain { YE R”; Y > 0, ( U, Y) = 1 } . Moreover these 
functions are rational since I? is a rational function of Y and since for M E 9 
one has M-’ = adj(M)/det(llri)-with obvious notations-which is a rational 
function of M. Finally, for 0 < /3 < /3*, p can be shown to be an M-matrix 
and C > 0 as in the proof of Proposition 9. 

The next proposition gives the behavior of the matrices P and C when 
some of the mass fractions are vanishing. Without loss of generality, we assume, 
as in the proof of Proposition 9, that the species have been ordered such that 
the nonzero mass fractions are Y, , . . . , Y, for some 1 < p < n. Using again 
thepartitioning[l,n]=[l,p]U[p+ l,n],wedecomposeeachx~R”into 



MULTICOMPONENT DIFFUSION 259 

x = (x+, x0), where x+ E IFP, x0 E UVp, and similarly we decompose each 
matrix A E IR”,” into the blocks A++ E Rp*p, A+’ E lRp,(n-p), A’+ E lR(n-p)*p, 
and Aoo E R8(n-p),(n-p) in such a way that y = Ax if and only if y+ = A ++x+ 
+ A+(‘x’ and y” = A”+xf + Amxo. 

PROPOSITION 11. Assume that, fir some 1 G p < n, we have Y, > 0, for 1 
< k I: p, and Y, = 0, for p + 1 < k < n. Then the corresponding block 
decompositions of the matrices C and r, 

(3.22) 

are such that Co+ = I”+ = 0, Coo and I“@ are diagonal and inverse of each 
other, i.e., Coo = diag(dp+l, . . . , S,), l? = diag(I’ti+l,ti+l,, . . . , r,,), and 
&Jkk = 1, for k E [(p + l), n], and C+’ and I’++ are exactly the matrices 
CLpl and I’Ipl that would be obtained by considering only the mixture of p 
nonzero mass fractions Y + = ( YI , . . , Y,), with the convention that CL’] and 
I’[‘] are the zero 1 * 1 matrices. In particular, whenever Y, = 0, we have 

so that the mass f2u.x Fk is proportional to Gk. 

Proof: From (3.16)(3.14) we first get that I’++ = rfpl, Y”+ = 0 and I’O” is 
diagonal with positive elements r@+,)@+,), . . . , rnn. From the relation I’C 
= Z - (Y @J U)/( U, Y) and the block decomposition (3.22) we then deduce 
that l,O°Co+ = 0 so that Co+ = 0 and I”‘COO = Z since Y” = 0. Now let z+ 
E Rp such that z+ E R( CL?+); then z+ = C++x+ for some x+ E Rp. Letting 
now z = (zf, 0) and x = (x+, 0) we get z = Cx and thus z E R(C) = U’. 
Ther~:fore(U,z)=(U’,z’)=Oandz+E(U’)’.Converselyifz+E(U’)’ 
then for z = (z* , 0) we have z E U’ = R(C) and thus z = Cx for some x 
E R” . Now since Co+ = 0 and Coo is invertible we get that z” = Cooxo = 0 
so that x0 = 0 and x = (x+, 0), z+ = C++x+ and z+ E R(C++). We have 
thus shown that R( C++) = ( U+ )I and since CY = 0 we deduce that C++ Y + 
= 0 and thus N( C+‘) = [WY’. On the other hand we get from (3.18) that 
c++r++ = r++c++ = Z - (Y+ @ U’)/( U, Y). Finally, multiplying this 
equality by C++ and I’++ we obtain that Cf+ I’++C++ = C+’ and l?++C++I’++ 
= I’++ and thus C++ is the group inverse of I’++ = I’[pl. Therefore, if p > 2, 
C+’ is exactly the diffusion matrix C tpl that would be obtained by considering 
the p species mixture Y + = (Y, , . . . , Y,), whereas if p = 1, C++ is the zero 
1 * 1 matrix. 
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We now investigate the limit of the coefficients Dkl, k, 1 E [ 1, n], when 
some mass fractions are vanishing. From Proposition 9, we know that for Z 
E R”, Z > 0, we have Dk,(Z) = Ckl(Z)/Zk, k, 1 E [I, n]. Let then YE R’” 
with Y = (Y+, Y’), Y+ E Rp, Y” E (Wnep, Y+ > 0 and Y” = 0. Keeping in 
mind that the matrix C is a smooth function of Z, from Proposition 10, and 
that Ck,( Y) = 0 for p + 1 < k < n and k # I, from Proposition 11, we can 
pass to the limit in the latter relations to obtain that 

lim Dkl(Z) = y, kE [l,p], IE [l, n], 
Z--Y 
z>o 

ackl lim &l(Z) = - (Y), 
ark 

kEb+ l,nl, 1 E [l, nl, k # 1, 
Z+Y 
zzo 

and 

lim &&k(z) = &k(Y) > 0, kE [p + 1, n]. 
Z+Y 
z>o 

This shows that, in the case of vanishing mass fractions, all diffusion coefficients 
Dkl have finite limits, excepted the diagonal coefficients Dkk, p + 1 < k < n, 
corresponding to the vanishing mass fractions species, which are blowing up. 

3.4. Miscellaneous 

In the preceding sections, we have considered the linear relations between 
the diffusion velocities I’ and diffusion driving forces G which are given in 
terms of the gradients of the mole fractions V&. However, the mass fractions 
are often chosen as the fundamental unknowns-together with the density 
p, the mass average velocity IJ and the temperature T-for solving the mul- 
ticomponent laminar reacting flow governing equations. In particular, an 
especially interesting situation is the approximation Gk = V&, for which it 
becomes possible to express the diffusion velocities in terms of the gradients 
of the mass fractions Hk = VYk only. It is therefore interesting to investigate 
the corresponding linear relations between I’ and H where H = (H, , . . . 
H,,). Under the approximation Gk = V&, k E [ 1, n], the linear relation 
between G and H is easily deduced from (3.14) and can be written in the 
form 

G=EH, 
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with E = (Ekl) given by 

261 

kf 1. 

Since this matrix E is regular [ 71 it is therefore immediate to deduce the 
properties of the matrices D’ = DE and A’ = E-IA, which are such that V 
= -D’H and H = - A’V, by simply rewriting the corresponding properties of 
D and A. For instance we deduce from Lemma 1 that N(D’) = RM and 
N( D’) = Y’ , where EM = Y. We shall thus not consider these matrices any 
more in the next sections. Remark however that some of the properties of D 
and A do not hold for D’ and A’. For instance D’ and A’ are not symmetric 
in general and the matrix A’ is not always in the set 2 IV. 

Because of the considerable simplifications that may result, we now inves- 
tigate the situations where the diffusion process can be represented by a di- 
agonal matrix. In other words, we want to identify the cases where the matrix 
D coincides with a diagonal matrix on the physical hyperplane U’. Remark 
that this situation differs from the usual excess species approximation for 
which D is approximated by a diagonal matrix on a subspace S of dimension 
n - 1 which differs from U’. We first consider the case where the velocities 
I/are expressed in terms of the diffusion driving forces G and we then consider 
the case where the velocities I’ are expressed in terms of the gradients of the 
mass fractions H. 

PROPOSITION 12. The matrix D coincides with a diagonal matrix on the 
subspace U’ if and only if the numbers wkw$O,, k, 1 E [ 1, n], k # 1, are 
equal. In this situation we have 

(3.23) 

where B denotes the common value of the wkwia)ki/( w2( U, Y)) for k Z 1. 

PROPOSITION 13. The matrix DE coincides with a diagonal matrix on the 
subspace U’ if and only if the numbers a)ki, k, 1 E [ 1, n], k # I, are equal. In 
this situation we have 

(3.24) 

where B denotes the common value of the a)ki/( U, Y) for k # 1 and Z 
= y-‘E-‘y, 
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Proof: Only the proof of Proposition 13 is given. The proof of Proposition 
12 would be similar. By assumptions there exists a diagonal matrix @ 
= diag(h, . . . , 4,) such that U’ C N(DE - a). Thus there exists a vector 
C such that DE - + = C @ U. By transposing this relation. we also obtain 
that ETD - Q, = U 8 C. Next from DY = 0 and the latter relations we deduce 
that &Yk = -(C, Y) and that &Mk = -&(M, U), where we have intro- 
duced M = E-‘Y. Noting now that (Y, U) = (EM, U) = (M, E’U) we 
also obtain that (Y, U) = (M, U>, since ETU = U. Therefore, defining a 
= -(C, Y), we can write, after a little bit of algebra, that DE = a)( Y -’ - Z 
@ ul(u, Y)>, h w ere we have introduced Z such that Z = Y -‘Em’ Y. Mul- 
tiplying on the right by E-’ we then get D = a)((EY-’ - Z @ U/( U, Y)) 
since for a, b E R” and A E Iw”,” one has a 8 bA = a 8 (A Tb) and since 
(E-‘) TU = U. By using this expression of D, the relation DA = I - U 63 Y/ 
(U, Y), and the fact that ATU = AU = 0, we then deduce that A = ( I/ 
rO)EY(I - U @ Y/( U, Y)). Keeping in mind that for a, b E R” and A 
E R”,” one has Aa @ b = (Aa) G3 b, and using then the properties EY C; 
= EY = X and EY = X + X @ (Y - X)/( U, Y), where X = diag(X,, 
. . . ) X,), wefinallyobtain that A =(1/3)(X -X@X/(U, Y)). There- 
fore, all the binary diffusion coefficients 5?~k,, k, I E [ 1, n], k # 1, are equal 
to qu, Y). 

Conversely, assume that all binary diffusion coefficients are equal. In this 
situation, one can easily check that A = ( I /a))( X - X@ X/( U, Y)), where 
a)( U, Y) denotes the common value of the binary diffusion coefficients and 
where X = diag(X, , . . . , X,). Using then the relations X = EY and X = EY 
- x @ (Y - X)/(U, Y) we thus get that A = (1 /a))E(Y - 1 
QD Y/( U, Y)). Multiplying this expression on the right by D and using the 
identitiesAD=I-Y~UU/(U,Y)andDTY=DY=OwethusgetthatI) 
= .B(EY)p’(Z- Y@ U/(U, Y)). Multiplyingon theright by Eand using 
ETU = U we finally obtain (3.24) so that DE is diagonal on U’ and the proof 
is complete. 

Proposition 13 shows that a generalized Fick’s law of the type EL = Y, Vx 
= - qH,, , where ffk is a scalar, cannot be used for all the species, k E [ 1, n] . 
unless all the proportionality coefficients elk, k E [ 1, n], are equal, i.e., cyl 
= *** = %. In this situation, all the binary diffusion coefficients a)k[, k, 1 
E [l, n], k f I, are also equal. 

4. ITERATIVEMETHODSFORMULTICOMPONENTDIFFUSION 

4.1. Iterative Methods for D@usion Velocities 

In this section, we investigate the convergence of iterative methods for the 
Stefan-Maxwell diffusion equations (3.5), where A is given by (3.13)( 3.14). 
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More specifically, for a given vector G E U’ , we want to solve the consistent 
singular system G = - A I/ by iteration techniques and we want to obtain the 
only solution V which is in Y’ , i.e., V = -DG. We assume here that Y > 0. 
We now state the main result of this section. 

THEOREM 14. Let A be as in (3.13)( 3.14) and keep the assumptions of 
Proposition 7. Let M = diag( M, , . . , M,,) be such that Mk > Akk, for k E [ 1, 
n] , so that the splitting A = M - Z is regular. Denote P = Py~,wo, Q 
= P~-L,~~, and T = M-‘Z = Z - M-IA; let x0 E W, y. = Pxo, and G E U’; 
und define also 

x,+1 = Txj + M-‘(-G), i > 0, (4.1) 

yi+l = PTy; + PM-‘(-G), i 2 0. (4.2) 

V= P(lim x,) = lim yi, 
i+m i--cc 

(4.3) 

where V is the unique solution of A V = -G in the subspace Y’. Moreover, if 
D is the generalized inverse of A with prescribed range Y’ and nullspace WY, 
then ‘we have 

D = 5 (PT)kPM-lQ, 
k=O 

(4.4) 

and each partial sum Di = C:=O (PT)kPM-‘Q of this series is symmetric, 
satisj’les Di Y = 0, and is positive de$nite on U’. 

Proof Since Mk > Akk, for k E [ 1, n] , it is easy to check that A = M - Z 
is a regular splitting. Denoting T = M-‘Z, first note that we have T > 0 
because Z > 0 and from AU = 0 we also obtain TU = U. This shows that 
c &[r,n] Tkl = 1, for ZE [l, n]. From the Gershgorin theorem [18, p. 161 we 
thus get that p(T) < 1 and thus p(T) = 1 since TU = U. However T is a 
primitive matrix because T > 0 [ 18, p. 401 and thus T has only one eigenvalue 
of maximum modulus and this eigenvalue is p( T) [ 18, p. 351 and therefore 
y( T:) < 1. Since Z - T = M-IA, we also deduce from Lemma 1 that N( Z 
- T:) = IWU and R(Z - T) = M-‘( U’) = (MU)’ since M = MT. We thus 
obtahn that N( Z - T) n R(Z - T) = { 0 } because (MU, U) > 0 and thus 
(I - T)# exists and the matrix T is convergent. We now prove that p( PT) 
< 1. Let P’ denote the projection on the join of all root subspaces of T as- 
socia.ted with the eigenvalues other than 1 along the eigenspace of T associated 
with the eigenvalue 1, i.e., RU. By definition of y( T), we have the relation 
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y( T) = p( TP’) and it is well known that P’ commutes with T. One can also 
easily check that PP’ = P and P’P = P’. Keeping in mind that for any A, B 
E ill”,“, p(AB) = p(BA), we now obtain that [14, Theorem 21 

y( T) = p( TP’) = p( TP’P) = p( PTP’) = p( PP’T) = p( PT) 

so that p( PT) <. 1. Since T is convergent and AC’( -G) E R( I - T), we 
deduce that the sequence { xi ; i > 0 } is convergent and since p( PT) < 1 we 
deduce that the sequence { yi ; i 2 0} is also convergent. Denoting x, and 
y, the corresponding limits, we get from (4.1) that A(x, - V) = 0 so that 
X02 - V E RU. Therefore we have P(xK - V) = 0 and thus V = Px, since 
PV = V. Moreover a direct calculation yields that PT = PTP since TU = CT 
and PU = 0. Therefore from x1+’ = TX, + MP’( -G) we deduce that Px, + ’ 
= PTxi + PM-’ (-G) and thus Pxi+’ = PT( Px, ) + PM-’ ( -G) and a straight- 
forward induction shows that yI = Pxi for all i > 0 and thus ysL = Px, = V. 
Finally, since p(PT) -C 1, we know that the series in (4.4) converges in Iw”,” 
[18,p. 821. Moreover, forxE U’, wehave Qx=xandfrom(4.2)(4.3)we 
deduce that the images of x under both members of (4.4) are identical. More- 
over the same is true if x E R Y since then both images are zero and thus (4.4 ) 
holds since RY Cl9 U’ = IR”. Now from PT = PTP, one easily deduces by 
induction that PTk = ( PT)kP for k > 0 and this implies that ( PT)kPM-‘Q 
is symmetric since Q = PT and PTkM-‘Q = P(M-‘Z)kMp’ PT is symmetric 
for all k > 0 because M-’ and Z are symmetric. Therefore D, is symmetric 
and of course DiY = 0 by construction since QY = 0. Furthermore, after a 
little bit of algebra, one may check that for k = 21, 1 a 0, we have 

((PTjkPM-‘Qx, X} = (Mz, 2) 

and 

((PT)kpM-‘QX, X) + (UWk+‘~~-‘~x, X) = ((2M - A)z, Z), 

where z = T/M-‘Qx. On the other hand, for x E IR”, we obtain that 

((2M- A)x, x) = 2 2(Mk - Akk,X: + ; c iAk,l(Xk + x/j’, 
kE[l,nl klE[‘,nl 

k#l 

so that 2M - A is positive definite. Therefore we have for 13 0 and x E R” 

((2M - A)M-’ Qx, M-‘Qx) = (D,x, x) 

G (D (2/+1)x, x) G (421+2)x1 x)3 
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whereas (&x, x) = (MQx, Qx) . This shows that all the matrices Di , i 2 0, 
are positive definite on U’ and the proof is complete. 

Remark here that the proof of Theorem 14 is based on the properties of 
matrices with convergent powers and the properties of nonnegative matrices. 
However, some of the results established in this proof can also be deduced 
from the properties of singular M-matrices [ 141 or symmetric positive semi- 
definite matrices [ 15 1. First, it is shown in [ 141 that if A is monotone on a 
subspace S complementary to N(A), then, for any regular splitting A = M 
- Z, we have p( T) < 1 and (I - T)# exists [ 14, Theorem I]. Considering 
however Y’ , which is a complementary space to N(A) = RU, then A is 
monotone on Y ‘. Indeed, if x E Y’ and Ax > 0 then we have Ax = Ax 
> 0. But for any fixed value of /3 such that 0 < /3 =z p* we have 6 > 0. 
Therefore fiAx > 0 and thus x >, 0. The fact that p(PT) < 1 is also a con- 
sequence of the results of Neumann and Plemmons [ 14, Theorem 21. On the 
other hand, it is shown by Keller in [ 15 ] that if A is a symmetric matrix and 
A = M - Z a splitting such that M + Z r is positive definite, then the matrix 
T = M-‘Z is convergent if and only ifA is positive semidefinite [ 15, Theorem 
21. However, in our situation, we have A = A which is positive semidefinite 
from Proposition 7 and M + ZT = 2M - A which has already been shown 
to be positive definite and thus T = M-‘Z is a convergent matrix. 

It is interesting to note that the splitting 

Akk xk 

Mk = 1 - Yk/(y, u) = z ’ 

is well defined and satisfies the hypotheses of Theorem 14 since Y > 0 and 
thus 0 .< 1 - (Yk/ (Y, U)) < 1 and 0 < A& < Mk. For this particular splitting, 
the vector M-’ (-G) corresponds to the so called Hirschfelder-Curtiss ap- 
proximated diffusion velocities I/ [ 241 and the vector PM-‘( -G) exactly 
corresponds to the Hirschfelder-Curtiss approximated velocities with a species 
independent mass correction velocity [lo- 111. This shows that the widely 
used approximations I’ 1: PM-’ (-G) for I’, which have formerly been con- 
sidered as ad hoc approximations, have indeed a rigorous justification. Note 
that for G E U’, the latter approximations can be written in the symmetric 
form EM-‘Q( -G). Remark also that a justification for choosing this particular 
splitting is, for instance, to substitute the approximation D N M-’ into the 
relation (3.10) and to identify the corresponding diagonals. For this particular 
splitting, the iterative scheme (4.1) has been introduced by Oran and Boris 
[ 8 ] and Jones and Boris [ 91. To the author’s knowledge, the projected al- 
gorithm (4.2), the asymptotic expansion (4.4), and the convergence results 
are new. Note also that the components in RU, according to the direct sum 
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RU CB R( Z - T) = R”, of x0 and of successive roundoff errors remain un- 
damped with the algorithm (4.1) [ 151, at variance with the algorithm (4.2) 
for which p( PT) < 1. Finally, for this particular splitting, it is easy to show, 
by a straightforward calculation, that the iteration matrix PT = P( Z - M-IA) 
is zero if and only if the numbers W k W B I k,, k, IE [l, n], k # I, are equal. 

We now investigate the convergence of iterative methods for the modified 
Stefan-Maxwell diffusion equations. More specifically, for a given vector G 
E U’ , we want to solve the regular system G = -A I’, where ,& = A + /3Y 
@ Y, by iteration techniques. From the definition of i\, this solution V is in 
Y’ since U’ = &Y ‘). As an immediate corollary of Theorem 14 we deduce 
the following very useful result. 

COROLLARY 15. Keep the assumptions and notations of Theorem 14, let N 
and p be positive numbers such that c@(Y, U>’ = 1, and let d = A-‘. Then 
we have 

ri = 5 (PT)kPM-‘Q + cuU@ U, 
k=O 

(4.5) 

and each partial sum fi, = 1 izo (PT) k PM- ’ Q + (Y U C3 U of this series is 
symmetric, satisfies di ( Ui) = Y’, and is positive definite. 

The first approximation do = PM-IQ + (YU @ U has been used by the 
author in [ 71 (without the Q factor) in order to suppress artificial singularities 
due to mass conservation constraints when all mass fractions are considered 
as independent unknowns. On the other hand, it is also possible to obtain 
convergence results for different splittings of & which rely on more classical 
results for regular M-matrices. It is well known for instance that for A E lR “1”) 
if A = M - 2 is a regular splitting, A is invertible, and A -’ > 0, then p( M-‘Z ) 
< 1 [ 18, p. 891. We may therefore state: 

THEOREM 16. Let d be as in Proposition 8 and assume that p E (0, p* 1. 
LetalsoM=diag(M,,...,M,)besuchthatMk~;ikk,forkE[l,n].Then 
the splitting & = M - Z is regular and p(M-‘Z) < 1. There exist also a 
unique value of p in (0, p* ] and a unique splitting L\ = M - Z which yields 
a minimum value for the spectral radius p(M-‘Z) of the iteration matrix 
M-‘Z. This value is ,t3 = ,f3* and the splitting is M = diag( z\, , , A,). 

ProoJ First, the convergence statements are consequences of well known 
results on regular M-matrices [ 18, p. 891 since for p E (0, p*] we have d 
> 0. Assume then that /3 E (0, p* ) is fixed and let us denote by M* the matrix 
M* = diag(hi, . . . , d,) constituted by the main diagonal of d. Let then M 
= diag(M,, . . . , Mn) be such that M* < M and M* # M. Then, denoting 
Z * = M* - A and Z = M - & we have 0 < Z * < Z and Z * # Z. Now 



MULTICOMPONENT DIFF’USION 267 

since Ij > 0 for p E (0, /3* ), a classical comparison theorem [ 18, p. 901 yields 
that p( (M* )-‘Z* ) < p(M-‘Z) < 1 so that the asymptotic rate of convergence 
is minimized for the splitting A = M * - Z*. Let now consider this splitting 
A = M* - Z * and its iteration matrix T* = (M*)-‘Z*. The diagonal coef- 
ficients of T* are zero and its off diagonal coefficients are given by 

and thus are positive decreasing functions of 0 since Y > 0. On the other 
hand, it is easy to check that T* is irreducible because Tyk # 0 and Tz, # 0 
for k E [ 2, n] so that the graph of T* is strongly connected. However, it is 
well known that the spectral radius of an irreducible nonnegative matrix if a 
decreasing function of its coefficients [ 18, p. 301. Therefore we have p( T*( p’)) 
< p( T*( p)) for 0 < fi < ,f3’, with obvious notations. Using the continuity of 
the spectral radius and passing to the limit 0 --, /3* we deduce that the min- 
imum spectral radius is obtained for fi = /3* and the proof is complete. 

The approximated diffusion matrices corresponding to the iterative schemes 
of Theorem 16 will be shown to be of limited interest because the correspond- 
ing partial sums di = C I=0 TkA4-’ actually converge slower than the 6; of 
Corollary 15. Moreover these partial sums do not satisfy the mass constraint 
di(U’)= Y’foria 1. 

4.2. Iterative Methods for D#iision Fluxes 

In this section, we investigate the convergence of iterative methods for the 
equations (3.17), where r is given by (3.16)( 3.14). More specifically, for a 
given vector G E CT’, we want to solve the consistent singular system G 
= - I’F by iteration techniques and we want to obtain the only solution F 
which :is in U’, i.e., F = -CG. We now assume only that Y 2 0 and Y f 0. 
The following theorem is the main result of this section. 

THEOREM 17. Let r be as in (3.16),( 3.14) and keep the assumptions of 
Proposition 9. Let L = diag( L1 , . . , L,) be such that Lk > rkk, if Y, > 0, 
and Lk 3 rkk, ifyk = 0, fork E [l, n], so that the splitting r = L - Z is 
regular.DenoteQ= PU~,RYandS=L-lZ=Z-L-‘r;letx~EW’,y~=Qxo, 
and G #E U’; and deJine also 

Xi+1 = SXi + L-‘(-G), i > 0, 

Yi+l = QSyi + QL-'t-G), i 3 0. 

Then y,; = QXi , for all i 3 0, p(S) = 1, p( QS) < 1, and 

F = Q( lim Xi) = lim JJi , 
i-too i-+00 

(4.6) 

(4.7) 

(4.8) 
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where F is the unique solution of l?F = -G in the subspace U’. Moreover, ij 
C is the group inverse of I?, then we have 

C = +c” (QS)“QL-‘Q. 
k=O 

(4.9) 

Proof: Since Lk 2 I?&, for k E [ 1, n] , it is easy to check that Z = L - I? 
2 0. Arguing now by contradiction, assume that for some k we have Lk 
= 0. This implies that Lk = Pkk = 0 and thus that Y, = 0, for Z E [ 1, n], Z 
# k. But since Y # 0 we deduce that Yk > 0 and thus that Lk > P,& by assump- 
tion, an obvious contradiction. Thus Lk > 0, for k E [ 1, n], and P = L 
- Z is a regular splitting. In order now to prove that y(S) < 1, assume 
first that the mass fractions are positive, i.e., Y > 0. Then we have S > 0 
so that S is a primitive matrix. Furthermore from I’Y = 0 we deduce that 
SY = Y and 1 E a(S). Let now X E a(S). Then, noting that we have 
u(S) = a(ST) = a(ZTL-‘) and a(ZTL-‘) = a(L-‘ZT), we deduce, from 
the Gershgorin Theorem, that ] X ] < 1 since for A = LplZT we have A 
2 0 and CEFI,~I & = 1. Therefore p(S) = 1 and since S is primitive we 
have -r(S) < 1. In the case of vanishing mass fractions, we may again as- 
sume, without loss of generality, that the nonzero mass fractions are Y,, 
. . . ) Y, for some 1 < p < n. Introducing then the partitioning [ 1, n] = [ 1, p] 
U [p + 1, n] , we decompose each vector of R” and each matrix of Iw”,” as 
in Proposition 11. It is easy to check then that So+ = 0 and So0 = diag( p,,+ , , 
. . . ) p,,) where 0 < yk = 1 - ( &k/Z+) < 1 since 0 < Pkk < Lk for k 
E [p + 1, n]. Therefore, if p = maxkE[p+l,n]pk, then we have r(S) 
= max(r(S++), IL). Now, if p > 2, S ” is exactly the matrix that would 
be obtained by considering only the mixture constituted of the p nonzero 
mass fractions, for which we already know that y( S++) < 1, whereas if p 
= 1, then S++ is the unity 1 * 1 matrix and thus y(S”) = 0. This shows 
that y(S”) < 1 and thus that y(S) < 1. Since Z - S = L-II’, we deduce 
from Proposition 9 that N(Z - S) = RY and R(Z - S) = L-‘( U’) = (LU)’ 
since L = LT. We thus obtain that N( Z - S) fl R( Z - S) = { 0 } because 
(LU, Y) > 0, keeping in mind that Y # 0, Y > 0 and Lk > Ikk 2 0 when- 
ever Yk > 0 by assumption, and thus (I - S)* exists and the matrix S is con- 
vergent. Moreover, proceeding as in the proof of Theorem 14, one can easily 
prove that y(S) = p( QS), so that p( QS) < 1. Now since S is convergent 
and L-’ ( -G) E R (I - S), we deduce that the sequence { xi ; i 3 0 1 is con- 
vergent and since p( QS) < 1 we deduce that the sequence { y, ; i > 0 } is 
also convergent. Denoting by x, and y, the corresponding limits, we get 
from (4.6) that T(x, - F) = 0 so that x, - F E RY. Therefore we have 
Q(x, - F) = 0 and thus F = Qxoo since QF = F. A direct calculation also 
yields that QS = QSQ which in turn implies that y, = Qx;, for i > 0, and 
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thus that yrn = Qxa, = F. Finally, the formula (4.9) is obtained as in the 
proof of Theorem 14. 

Assume now that there are at least two nonzero mass fractions, i.e., p 2 2. 
Then -the usual splitting 

rkk 

Lk =’ 1 - Y&Y, u) 
w 1 =-- 
WkD; ’ 

is well defined since 0 < 1 - (Yk/( Y, U)), for k E [ 1, n], and satisfies the 
hypotheses of Theorem 17 since 1 - (Yk/( Y, U)) < 1 if and only if Yk > 0, 
and thus 0 < rkk < Lk, if Yk > 0, and 0 < r,&k = Lk, if Yk = 0. Here again 
the vector L-’ (-G) corresponds to the Hirschfelder-Curtiss approximated 
diffusion fluxes F and, for G E U’, the vector QL-’ ( -G) exactly corresponds 
to the Hirschfelder-Curtiss approximations with mass correction fluxes pro- 
portional to the mass fractions Y. This shows that the widely used approxi- 
mations F N QL-’ ( -G) for F also have a rigorous justification, even in the 
case of vanishing mass fractions, provided there are at least two nonzero mass 
fractions in the mixture. On the other hand, in the case of a pure species state 
ofthemixture Y=(l,O,..., 0), we have ri, = 0, and it is easy to check 
that any splitting r = L - Z such that L = diag( ‘I’, 12*, . . . , I,,), where ‘l” 
> 0 is arbitrary, leads to a one step convergence of the sequence (4.7). Although 
the coefficients 0: , k E [ 1, n] , do not provide such a splitting, because then 
0: is undefined, an interesting numerical procedure for evaluating these 
mixture diffusion coefficients has been introduced by Kee, Wamatz, and Miller 
[ 111. It consists in evaluating perturbed coefficients 0: ( 6) defined by 

I 
2 (4.10) 

IZk 

where c is a small positive constant, typically smaller than the machine pre- 
cision. Now for a pure species state Y = ( 1, 0, . . . , 0), this formula yields 
0: (E) = 0: + 0( t ), for k E [ 2, n], whereas it gives an arbitrary but positive 
DT(~)>O,fork= l.DefiningnowLk= W/(WkD:(t)),forkE[l,n],we 
obtain a regular splitting, and thus a one step convergence of the algorithm 
(4.7), with an arbitrary but positive LI = ‘T > 0. Finally, to the author’s 
knowledge, the algorithms (4.6) and (4.7), the asymptotic expansion (4.9), 
and the convergence results are new. 

We now investigate the convergence of iterative methods for the modified 
fluxes equations. More specifically, for a given vector G E U’, we want to 
solve the regular system G = - ?F by iteration techniques. From the definition 
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of F, this solution F is in LJ’ since U’ = i’Ui. As an immediate consequence 
of Theorem 17 we deduce the following very useful result. 

COROLLARY 18. Keep the assumptions and notations of Theorem 17, let cy 
and p be positive numbers such that &I( Y. U>” = I, and let d = ?-‘. Then 
we have the identity 

t = 5 (QS)kQL-‘Q + aY63 U. 
kiO 

(4.11) 

Different algorithms could also be used to invert i and, as in the preceding 
sections, one may indeed prove the following theorem whose proof is omitted. 

THEOREM 19. Let r’ be as in Proposition 10, assume that /I E (0, p* 1, and 
let L = diag(L,, , L,) be such that Ll, > p&, for k E [I, n]. Then the 
splitting F = L - Z is regular and p(L-‘Z) < 1. Moreover, assuming that 
there are at least two nonzero mass fractions, there exists a unique value 
of p E (0, /3*] and a unique splitting ? = L - Z which yields a minimum 
value for the spectral radius p(L-‘Z) of the iteration matrix L-‘Z and 
a one step convergence for the velocities vk corresponding to the vanishing 
mass fractions species. This value is p = p* and the splitting is simply M 
= diag( ?, , . , F,). 

5. NUMERICAL EXPERIMENTS 

In this section, we test numerically the iterative schemes introduced in the 
preceding sections. Numerical tests are performed for a 9-species mixture 
used for hydrogen-air flame chemistry [ 25 ] and a 26-species mixture used 
for methane-air flame chemistry [ 261, at temperature T = 1000 K and pres- 
sure p = 1 atm conditions. The binary diffusion coefficients a)k/ have been 
taken in the form 

a, = 2 d2&T3hk, 
hl 

16 p&R (1.1)* ’ (5.1) 

where Pk/ is the reduced mass of the species pair (k, 1)) Ukl the collision diameter 
of the species pair (k, I), kB the Boltzmann constant, and Q(“‘)* a reduced 
collision integral. The reduced collision integrals D (‘*‘)* depend on the reduced 
temperature T: = k,T/c k(, where tk/ is the Lennard-Jones potential well 
depth of the species pair (k, I), and on various other molecular parameters. 
The Chemkin and Transport packages have been used to evaluate these binary 
diffusion coefficients [ 11, 23, 271. The mixture used for hydrogen-air flame 
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chemistry [ 251 is constituted of the n = 9 species Hz, 02, NZ, H20, H, 0, 
OH, HO*, and H202 and will be refered as “the hydrogen mixture.” The 
mixture used for methane-air flame chemistry [ 261 is constituted of the n 
= 26 species CH4, CH3, CH2, CH, Nz, HZ, 02, H20, H, 0, OH, HOz, H202, 
CzHcj, GH5, CzHz,, Cd-b, C2H2, C2K CH20, CH30, C&CO, CHO, CO29 

CO, and C2H0 and will be refered as “the methane mixture.” 
First, for each state Y that we have considered and such that Y > 0 and 

(Y, U) = 1, we have evaluated the first terms of the sequences of matrices 
{Di; i z= O}, {D;; i>O}and{dj;i>O}definedby 

Di = i (PT)kPMp’Q, 
k=O 

(5.2) 

8, = i (PT)kPM-‘Q + aU 8 U, 
k=O 

(5.3) 

and 

where M = diag(M, , . . . , M,,), Mk = A,,/( 1 - Yk), T = 1 - M-‘A, P 
= Py’,+ Q = &+y, L-I = 1 /p*, M = diag(M,, . . . , M,,), & = A!&, f = 1 
- &‘A, and A = A + p*Y 8 Y. For these sequences, which converge 
respectively to D, d, and 6 from Theorem 14, Corollary 15 and Theorem 
16, we have evaluated the corresponding reduced errors 

4Di) = IID - DiIIIIIDII, 

4fii) = Ilfi - ~‘iII/Il~lI, 

and 

em = lld - mml, 

where for any matrix A E [w”,“, ]/A I] denotes its Frobenius norm. 
Similarly, for each state Y that we have considered and such that Y > 0, 

(Y, U) = 1, and Y is not a pure species state, we have evaluated the first 
te~sdthesequencesofmatrices(C~;i~O},{d~;i~O},and{~~i;i~O} 
defined by 

Ci = i (QS)kQL-‘Q, 
k=O 

(5.5) 



272 VINCENT GIOVANGIGLI 

i;, = i (QS)/‘QL-‘Q + aY ~3 U, 
k=O 

(5.6) 

and 

(5.7) 

where L = diag(L,, . . , L,), Lk = rkk/( 1 - Yk), s = I - L-‘r, Q 
= Pul,Ry, cy = l/p*, i = diag(L,, . . , i,), i, = ii!&, ,!? = L - L-II?, and 
F = r + p*Y @ U. For these sequences, which converge respectively to C’, 
i(, and c from Theorem 17, Corollary 18, and Theorem 19, we have evaluated 
the corresponding reduced errors 

4Ci) = IIC- C~ll/llCll, 

e(C) = IIC- i;ll/ll~ll~ 

and 

e(C) = IIt- Ql/llCll. 

The errors e(Dj), e(fii), e(d,), e(C,), e(d,), and e(c;), for i = 0, . . , 
4, corresponding to the hydrogen and methane mixtures in the equimolar 
state, i.e., Xk = 1 / IZ, k E [ 1, n] , are given in Tables I and II respectively. 
These tables clearly indicate that the iterates (5.3) and (5.6) converge faster 
than (5.4) and (5.7), respectively, so that they are significantly more accurate. 
We also observe that the convergence behavior of the iterative schemes ( 5.2) 
and (5.5), and thus of (5.3) and (5.6), is excellent and is about the same for 
these two mixtures. On the other hand, in the case of vanishing concentrations, 
we have considered the hydrogen mixture in the two states Xn, = X0, 
= 4 and Xu, = X0, = X,, = f, with all the other mole fractions set to zero. 

TABLE I 
REDUCED FROBENKJS ERRORS: HYDR~CEN MIXTURE IN THE EQUIMOLAR STATE 

i e(Dz) e(a) 4,) 4C,) e(C) dd,) 

0 3.91E-2 3.65E-2 1.75E-1 2.92E-2 2.52E-2 2.45E- 1 
1 2.37E-3 2.22E-3 7.27E-2 1.02E-3 8.87E-4 7.86Eb2 

2 1.47E-4 1.38E-4 3.05E-2 4.19E-5 3.61E-5 2.88E-2 
3 9.43E-6 8.82E-6 1.29E-2 2.13E-6 1.84E-6 I .02E2 
4 6.00E-7 5.61E-7 5.45E-3 1.19Eb7 1.03Eb7 3.68EF3 
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TABLE II 
REDUCED FROBENIUS ERRORS: METHANE MIXTURE IN THE EQUIMOLAR STATE 

i GA) e(G) 4,) e(G) e(C) e(C) 

0 1.21E-2 l.l4E-2 2.11E-1 1.62E-2 1.42E-2 3.15E-1 
1 2.63E-4 2.48E-4 1.35E-1 4.57E-4 4.01E-4 1.98E-1 

2 6.97E-6 6.55E-6 8.74E-2 1.46E-5 1.28E-5 1.24E-1 
3 2.15E-7 2.02E-7 5.63E-2 4.19E-7 4.20E-7 7.866-2 
4 6.95E-9 6.53EE9 3.63E-2 1.58E-8 1.39E-8 4.95E-2 

and the methane mixture in the state where all mole fractions are equal to 
1 /(it -- 2) excepted that of the light species H and H2 which are set to zero 
and in the state where all mole fractions are equal to 1 /(n - 1) excepted that 
of the last species C2H0 which is again set to zero. The errors e( Ci ), for i 
= 0, . . . 4, corresponding to these four states of the hydrogen and methane 
mixtures are given in Table III, in columns one to four respectively. This 
table again indicates that the convergence behavior is about the same as in 
the case of positive mass fractions. Note also the two step convergence for 
the 9-species hydrogen mixture in the state where only two mass fractions 
are nonzero. Finally, in the case of a pure species state, we have tested the 
modified expressions (4.10) with t = 10 -*’ and we have observed a one step 
convergence up to the machine precision. 

6. A SUMMARY OF PRACTICAL RESULTS 

In this section, we summarize some practical aspects of the theoretical 
results obtained in the preceding sections. 

Let us first consider a mixture in a state Y such that Y > 0. The results 
obtained in Proposition 4, Proposition 6, and Proposition 7 then show that 
the Stefan-Maxwell diffusion matrix A, defined as in (3.13), satisfies the 

TABLE III 
REDUCED FROBENIUS ERRORS: HYDROGEN AND METHANE MIXTURES 

WITH VANISHING MASS FRACTIONS 

i e(G) e(C) e(C) e(C) 

0 6.78E-2 5.64E-2 1.61E-2 l.llE-2 

1 8.01E-17 5.85E-3 4.368-4 2.15E-4 

2 - 3.66E-4 1.34E-5 4.86E-6 
3 - 3.8OE-5 4.24E-7 l.l7E-7 

4 - 2.38E-6 1.358-g 2.88E-9 
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properties required from the kinetic theory and that the multicomponent 
diffusion matrix D is given by 

D = (A + /3Y@ Y))’ - olU@ U, 

where CY and p are positive constants such that olp( U, Y )’ = 1. This matrix 
D is symmetric, satisfies DY = 0, so that mass is conserved, and gives a 
positive entropy production on the physical hyperplane of zero-sum gradients. 
The matrices D and A also satisfy the properties ( 3.9)) ( 3. lo), and ( 3.1 1 ). 

Define now M = diag(M, . . . . , M,,) with Mk = A,,/( 1 - Yk/(U, Y>) 
andT=M-i(M-A)=I-M-‘AandletP=I- UC3Y/(U, Y)andQ 
= I - Y @ U/ ( U, Y) . Then the sequence of iterates 

D, = i (PT)‘PM-IQ, 

is convergent, that is to say the spectral radius ,o(PT) of PT is lower than 
unity, p( PT) < 1, and converges towards the multicomponent diffusion matrix 
D. Moreover, these iterates satisfy the same properties as the matrix D, namely 
symmetry, mass conservation, and positiveness of the entropy production on 
the physical hyperplane of zero-sum gradients. The first iterate Do = PM-IQ 
also coincides, on the hyperplane of zero-sum gradients U’, with Do = PM ’ . 
since QG = G for G E U’, and - PM-‘G corresponds to the Hirschfelder- 
Curtiss approximated diffusion velocities with species independent mass cor- 
rectors, often used to evaluate diffusion velocities in gas mixtures. Further 
note that for a given vector G, the numerical evaluation of D,G requires no 
matrix multiplications. Only products between matrices and vectors have to 
be performed, giving a computational cost of order 0( n’). Although evaluating 
Di requires in general U( n3) operations, one can still evaluate Do and D, in 
0(n2) operations since P and Q are rank-one perturbations of the identity 
matrix I and since M is diagonal. Finally, the modified iterates 

may also be used when all mass fractions are considered as independent un- 
knowns, in order to avoid artificial singularities [ 71. 

When some mass fractions are allowed to vanish, the diffusion matrix D 
is no longer defined. More specifically, the diagonal coefficients of the matrix 
D, corresponding to the vanishing mass fractions, blow up. In this situation, 
it is necessary to use the flux formulation F = -CG instead of the velocity 
formulation I/ = -DG, where Fk = Yk vk, k E [ I, n] . Let us thus consider a 
mixture in a state Y such that Y > 0 and Y # 0. The results obtained in 
Proposition 9 and Proposition 10 then show that the Stefan-Maxwell flux 
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equations are well defined and that the multicomponent flux matrix C is 
given by 

c= (r + prc3 u)-’ - aY@ u, 

where I’ is defined as in ( 3.16 ) and where a and p are positive constants such 
that &( U, Y) 2 = 1. The matrices C and r also satisfy the properties ( 3.18 ) 
and(3.19).FurthernotethatifY>O,thenC=YDandr=AY-‘sothat 
considering C and r instead of D and A corresponds to factoring Y = diag( Y, , 
. . . ) Y,) and eliminating the associated singularities. 

Define now L = diag( L, , . . . , L,) with Lk = Tkk/( 1 - Yk/( U, Y)) and 
S = L-‘(L - r) = Z - L-‘r and let Q = Z - Y @ U/( U, Y). Then the 
sequence of iterates 

Ci = i (QS)kQL-‘Qy 
k=O 

is convergent, that is to say the spectral radius p( QS) of QS is lower than 
unity, p( QS) < 1, and converges towards the multicomponent flux diffusion 
matrix C. The computational costs associated with these iterates Ci are the 
same as for the iterates Di . The modified iterates 

may also be used when all mass fractions are considered as independent un- 
knowns, in order to avoid artificial singularities [ 7 1. Note again that if Y > 0, 
then, with the above definitions of A4 and L, we have L = MY -I, Q 
= Y P’Y -‘, and S = Y TY -’ , so that C, = YDi and Ci = Ydi for all 
i 3 0. 

Finally, rather than evaluating the coefficients Lk = rkk/( 1 - Yk/( U, Y)), 
one may evaluate Lk = IV/( I+‘, 0: ( c ) ) , where the modified formulation ( 4.10) 
is used to automatically handle pure species states of the mixture. In this 
situation, the modified coefficients yield a well defined splitting matrix L and 
give a one step convergence, i.e., C = Co = QL-‘Q, for pure species states of 
the mixture. 
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