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Abstract

Global existence for multicomponent reactive fluids with fast chemistry is in-
vestigated. The system of partial differential equations derived from the kinetic
theory is symmetrizable hyperbolic-parabolic with stiff chemical sources. New
a priori estimates are obtained uniformly with respect to chemistry relaxation
times and lead to asymptotic stability results for well prepared initial conditions.
Convergence towards the chemical equilibrium fluid model when chemistry times
go to zero is established as well as error estimates.

1. Introduction

Chemical equilibrium fluids are reduced models which are of interest in vari-
ous scientific and engineering applications such as reentry of space vehicles into
Earth’s atmosphere [1, 42], engine rocket nozzle flows [52], or chemical reac-
tors [31]. These equilibrium models are valid when the chemical characteristic
times are smaller than the flow characteristic times and lead to an important
reduction of the number of unknown variables with species densities replaced by
atom densities. This is a strong motivation for investigating the fast chemistry
limit of multicomponent flow models. In this work, global existence results for
fast chemistry fluids are established as well as convergence towards the chemical
equilibrium fluid model as chemical characteristic times go to zero.

The system of partial differential equations modeling fluids out of chemical
equilibrium as derived from the kinetic theory of gases is first presented [18].
The balance equations express the conservation of species mass, momentum and
energy and involve convective, dissipative as well as chemical source terms. The
dissipative transport fluxes have a complex structure derived from the kinetic
theory and couple all species equations as well as the energy equation through
the Soret and Dufour cross effets. The chemistry terms are written for an arbi-
trary complex chemical reaction mechanism with rates deduced from the kinetic
theory as well as from statistical themodynamics. Thermodynamic properties
obtained from the kinetic theory of dilute gases coincide with that of ideal gas
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mixtures and chemical equilibrium states are characterized in terms of Gibbs po-
tentials. The reaction mechanism is assumed to be sufficiently detailed in such
a way that its chemical equilibrium states coincide with natural equilibrium
states obtained when all possible reactions are considered. The slow variables
of the out of equilibrium system—that are the relevant variables of the limit-
ing chemical equilibrium fluid—are then associated with atomic mass densities,
momentum and energy. The governing equations finally form a second order
quasilinear system of partial differential equations in terms of the conservative
variable u € R" that is of dimension n = n + d + 1 where n denotes the number
of reactive species and d the space dimension.

Symmetrized forms for the system of partial differential equations are then
discussed [30, 16, 48, 34, 36, 9, 21, 22, 18, 10, 58, 13, 56, 37, 4]. Existence
of symmetrized forms is related to the existence of a mathematical entropy o
compatible with convective terms, dissipative terms and chemistry. The natu-
ral entropic symmetrized form for fluids out of chemical equilibrium is evalu-
ated and appears as a symmetric second order system in terms of the entropic
variable v = (9,0)". These entropic forms or entropic variables have been a
key tool in the study of cross diffusion effects [21, 22, 18, 33, 8]. The source
term is shown to be of quasilinear form as is typical in a relaxation framework
and often encountered in mathematical physics [57]. Normal forms, that is,
symmetric hyperbolic-parabolic composite forms of the system of partial differ-
ential equations [34, 36] are further investigated using normal variables w and
the mathematical framework needed to investigate the fast chemistry limit is
completed by introducing the small parameter € associated with fast chemistry
relaxation. Strict dissipativity of the system in normal form is investigated and
it is established that there exists a compensating matrix K compatible with
the fast manifold. More specifically, denoting by E the slow equilibrium man-
ifold with respect to the normal variable and by 7 the orthogonal projector
onto the fast manifold %l, it is established that there exist a compensating
matrix such that K7 = 0. This is a natural assumption since, on the one hand,
hyperbolic-parabolic coupling aspects are associated with total mass, momen-
tum and energy conservation equations, and, on the other hand, chemical re-
actions neither create mass, momentum nor energy. The governing equations
at chemical equilibrium, the thermodynamics of chemical equilibrium, the cor-
responding symmetrized forms as well as strict dissipativity at equilibrium are
also investigated.

The system of partial differential equations in the normal variable w € R"
out of chemical equilibrium is found in the form

i€D i,j€ED i,jED
(1.1)

where 0; denotes the time derivative operator, 9; the space derivative operator
in the ith direction, D = {1,...,d} the spatial directions, w € R" the normal
variable decomposed into w = (w;, wy)*, w; € R™ the hyperbolic components
with n, = 1, w;; € R™ the parabolic components with n, =n+d, and € € (0, 1]



the positive relaxation parameter. The matrix Ag € R™" is symmetric posi-
tive definite and block-diagonal, A; € R™", i € D are symmetric, Eij e R™"
and §§j = §ji, 1,7 € D, E-j has nonzero components only into the right lower
Elj?” € R"™ blocks, B = 2 ijen Eli;?”(w)figj is positive definite for £ € 291
where 291 is the sphere in d dimension, L € R™" is positive semi-definite with
a fixed nullspace E, and M;; € R™™", i, j € D, are third order tensors. The
nullspace E C R" of the linearized source term L represents the slow manifold
and is of dimension ne = n, +d+ 1 where n, denotes the number of atoms. The
orthogonal complement Z° C R" of dimension n — N, is the fast manifold and
mw € R" the fast variable. The quadratic residual Q = 3, ;cp Mij(w) diw Ojw
may also be written @ = — 7, ., 9;(9,v)" (9,w)" Bi;0;w where v denotes the
entropic variable and only involves the parabolic components M;;(w)d;wojw =

(0, MIZ-I]?”’”(W)&WHQJ-WH)t. Various forms of the quadratic residual @ will be dis-
cussed in more details in the following. The system coefficients Ag, A;, i € D,
E-j, i,7 € D, and M;;, i € D, are assumed to be sufficiently smooth.

As a first mathematical step in order to solve the Cauchy problem in R?, a
local existence theorem for (1.1) is established—generalizing previous work on

the relaxation of internal energy [29]—without assuming that the matrix Ag in

front of the time derivative operator 0, leaves invariant the fast manifold fl,
or equivalently without assuming the commutation relation Agw = 7 Ay where
7w denotes the orthogonal projector on the fast manifold Z. The required a
priori estimates are more intricate to obtain than that in the ‘commutative
case’ where a simplified analysis is feasible using the commutation of © with
the differential operator Ag[0%, Ay 'L] [29]. For a suitable positive time 7, and
denoting by w* an equilibrium state, w — w* is estimated in CO([O,?],HI),
mw/\/€ in L*((0,7), H'), and yw and 7w/e in L?((0,7), H'=') for I > [d/2] +
2 where H' = H!(R?) denotes the usual Sobolev space in R%. These new
uniform estimates lead to local existence results on a time interval independent
of the relaxation parameter € € (0, 1] for well prepared initial conditions, that
is, assuming that wg is close to the equilibrium manifold. Stronger estimates of
9w and wdyw/e in L?((0,7), H'?), assuming that the initial time derivative
Ogwy is close to the equilibrium manifold, are not required in this work and
would only be needed for a two term Chapman-Enskog expansion [29].

A priori estimates on time intervals of arbitrary length are then investigated
by using the strict dissipativity of the system of partial equations (1.1), ex-
tending Kawashima theory to the stiff case. The differences with the estimates
established by Kawashima [34] are the inclusion of extra terms associated with
the rescaled fast variables mw/4/€ and mw/e and the coupling with the estimates
for time derivative J,w. These time derivative estimates indeed require to use an
energy method coupled to that of the solution as well as that of the fast variable
mw. Combining these estimates with the local existence theorem leads to global
existence results for well prepared initial conditions that may be summarized in
the following form where | - |; denotes the H'(R%) norm :

Theorem 1.1. Let d>1 and 1>[d/2] + 2 be integers and w* an equilibrium



state. There exists b > 0 small enough such that if wo satisfies wo — w* € H!
and |wo — w*[? + L|mwo|Z, < b? there exists a unique global solution to the
Cauchy problem with initial condition w(0,2) = wo(z) and

w; —wi e C9([0,00), H') N C*([0,00), H' 1), duw; € L2((0,00), H'71),
wy — wi € CO([0,00), HY) N C* ([0, 00), H'72), dowy € L2((0,00), H').

Furthermore, there exists a constant ¢ independent of € such that w satisfies the
estimate

1 t t 1 t
wit) = w i+ L+ [l dr o+ [oawipar o+ 2 [ aw(r)? dr
0 0 0
1 ¢ 2 ¢ 2 —2 *12 1 2
o [l dr+ [ 1wl dr < (Iwo —w} + ~lmwof_, ). (1.2)

and sup,cpa |W(t, z) —w*| goes to zero as t — oo.

Key points are notably the strict dissipativity of the second order terms, the
compatibility condition between compensating matrices and the fast manifold
Km =0, and the use of the appropriate norm (1.2) involving the fast variable
ww and the time derivative. Applying these results to the system of equations
modeling gas out of chemical equilibrium, global existence of solutions is ob-
tained around constant states in all space dimensions uniformly with respect to
the chemical relaxation time € € (0, 1] extending previous work associated with
finite rate chemistry [22, 18].

The singular limit ¢ — 0 for the system of partial differential equations
modeling fluids out of chemical equilibrium is finally investigated. Various
other relaxation models have also been investigated in the literature in dif-
ferent physical and mathematical contexts and notably in an hyperbolic setting
[9, 43, 59, 10, 37, 54, 55, 58, 60, 61, 53, 44, 45] as well as for reaction-diffusion
systems [3, 5, 14]. The limiting chemical equilibrium fluid describes the conser-
vation of atom mass, momentum and energy and global existence of solutions
has already been established [34, 18]. Such limiting equations for chemical equi-
librium fluids may also be deduced from the kinetic theory [12]. The limiting
equations may be symmetrized with an entropic variable v, as well as a normal
variable w, associated with w. Denoting by II. the embedding from the lower
dimensional space of equilibrium normal variables w, onto the slow manifold E,
then a priori estimates out of chemical equilibrium are combined with stability
results at equilibrium in order to establish the following convergence results :

Theorem 1.2. Let d > 1 and | > [d/2] + 4 be integers and let b from The-
orem 1.1. For any wo with wog —w* € H', 7wy = 0 and |wg — wH? < b2
there exists a unique solution w of the out of equilibrium system such that the
estimates (1.2) hold and there exists a unique global solution we of the limit-
ing equilibrium system starting from the equilibrium projection of wg. Then the
out of equilibrium solution converges toward the chemical equilibrium solution



pointwise lim._,ow(t,z) = Mewe(t, 2) and for any time 7 there exists a constant
¢ depending on T with the error estimate
sup |w — Iewe|;_2 < ce.
T€[0,7]

To the best of the authors’ knowledge, this is the first rigorous justification of
the fast chemistry fluid limit as well as the first error estimate. The dissipation
matrices at equilibrium are also given by Efj = ﬁégijﬁe in such a way that
cross effects also appear for the limiting fluid at equilibrium.

The nonequilibrium model is summarized in Section 2, symmetrization and
strict dissipativity is discussed in Section 3. Equations at equilibrium are dis-
cussed in Section 4. New a priori estimates and global existence results are es-
tablished in Section 5 and convergence towards the equilibrium reduced model
is established in Section 6.

2. Governing equations

The system of equations modeling multicomponent reactive fluids as derived
from the kinetic theory is presented [7, 15, 18]. The mathematical assumptions
on the system coefficients are summarized and the system of partial differential
equations is rewritten in quasilinear form.

2.1. Conservation equations
In multicomponent flows, the conservation of species mass, momentum, and
energy may be written in the form [7, 15, 18]

atpk+V'(pkU)+V'Jk = MKWk, keGq, (2.1)
O,(pv) + V- (pv@v +pl)+ V-IT =0, (2.2)
O,( + Lplof?) + V(€ + Lplvf + po) + V-(@Q+ w) =0, (2.3)

where 0; denotes the time derivative, V the space derivative operator, pj; the
mass density of the kth species, v the mass average flow velocity, J} the diffusion
flux of the kth species, mj the molar mass of the kth species, wy the molar
production rate of the kth species, & = {1,...,n} the set of species indices,
n = 1 the number of species, p = ), - px the total mass density, p the pressure,
IT the viscous tensor, £ the internal energy per unit volume and @ the heat flux.
It is assumed here for the sake of simplicity that there are no forces acting on
the species. The spatial dimension is denoted by d and the components of v and
V are written as v = (vy,...,vq)" and V = (0,...,04)" where v; denotes the
velocity in the ith spatial direction, 9; the derivation in the ith spatial direction
and bold symbols are used for vectors in R? or tensors in R%4,

These equations have to be completed by relations expressing the thermo-
dynamic properties like p and &£, the chemical production rates wy, k € &, and
the transport fluxes IT € R*¢, 7, € R4, k € &, and Q € R?,



2.2. Thermodynamics

The thermodynamics deduced from the kinetic theory of dilute gases cor-
responds to that of ideal mixtures with temperature dependent specific heats.
Nonideal thermodynamics—that are notably important for supercritical fluids—
could also be taken into account in the model but lay out of the scope of the
present work [25, 26].

Denoting by T the absolute temperature, the state variables p1,..., p, and
T are used for convenience and ¢ € R™ stands for the vector of species partial
densities ¢ = (p1,...,pn)t. The internal energy per unit volume £ and the
pressure p may be written as

E(0.T) = prex(T),  plo,T) =" piriT (2.4)

ked ke&

where ey, is the internal energy per unit mass of the kth species, 1, = R/my, the
specific gas constant of the kth species and R the universal gas constant. The
internal energy ey of the kth species per unit mass is given by

T

en(T) = e —|—/ ey (T) dT, ke, (2.5)
Tst

where €' is the standard formation energy of the kth species at the standard

temperature 7% and c,;, the constant volume specific heat of the kth species.
The formation energy at zero temperature of the kth species is defined by 62 =

st
ex(0) = e — fOT ¢vi(T) dr. The (physical) entropy per unit volume S may be
written in the form

S(0,T) =" prsrlor: T), (2.6)
ke®

where s is the entropy per unit mass of the kth species. This entropy si is
given by

" e () R (LT’CT“) ke, (27)

T) = s T T - — 1
Sk(pka ) Sk +/Tﬁ't T! mp 0g pst

where s3' is the formation entropy of the kth species at the standard temper-
ature T°* and standard pressure pt. Similarly, one can introduce the mixture
enthalpy per unit volume H = >, & prhr(T) with hp(T) = en(T) + ri T,
k € &, the mixture Gibbs function per unit volume G = >, prgr(pr, T),
with gr(pr, T) = hi(T) — Tsk(pr,T), k € &, as well as the species chemical
potentials per unit mass

Ik
T)=—=— . 2.
:uk(pka ) RT’ ke ( 8)

Using (2.5)(2.7) these chemical potential py, k € &, may also be written

mppr, = mipp(T) +log(px/mk), k€6, (2.9)



where p}(T") denotes the value of p, when pi, = my. The species mass fractions
Yk, k € &, partial pressures pi, £k € &, mole per unit volume ng, k € G,
and mole fractions xi, k € &, are further defined by yr = pi/p, pr = prriT,
ng = pr/mr = pr/RT, and x;, = pi/p, for k € &, respectively. The mole
fractions may be written x; = myy/mj, where m is the mean molar weight with
(X pes YE)/M = D 1 ce Yi/Mk, the mole and mass fraction vectors are defined
by x = (x1,...,%p)t and y = (y1,...,yn)%, the vector of chemical potentials by
pw=(p1,...,pun)t the vector of molar masses by m = (my,...,m,)?, the vector
T is defined by T= (1,...,1)" and x, y, u, m, T € R, with o = py.

2.3. Chemical kinetics

The reaction mechanism is composed by an arbitrary set of elementary chem-
ical reactions between the species and may be written

E:V&9ﬁkzﬁ E:VESRM i€ N, (2.10)
ke kes

where 91y, is the chemical symbol of the kth species, u,f”. and l/]?i the forward
and backward stoichiometric coeflicients of the kth species in the ith reaction,
R ={1,...,n.} the set of reaction indices, and n, > 1 the number of chemical
reactions. The overall stoichiometric coefficients are defined by v, = I/Ei —
f f )t7 I/b —

f : f b n £
V., and tgle reaction vectors v;, v, v; € R™, by v; = (vy;,...,V; i

(Vb ... vt and v; = (v44,...,vni)t. Note that elementary reactions are
natural molecular events and are always reversible [18].

The species of the mixture are assumed to be constituted by atoms, and a;;
denotes the number of [th atom in the ith species, 2 = {1,...,n,} the set of
atom indices, 1 < n, < n the number of atoms—or elements—in the mixture
and a; € R™ the [th atom vector a; = (ay,...,a,)" In order to investigate
chemical equilibrium, one may choose the set of species large enough in such
a way that the atomic species are present in the mixture and—without loss of
generality—it may be assumed that the atomic species correspond to the first
n, species. In this situation, m; denotes the mass of the /th atom for [ € 2,
ay = Ox for k,1 € A, and the atom vectors q;, [ € 2, are linearly independent.
Note that the atoms vectors q; € R™ are only defined for [ € 2 and have no
meaning for | € &\2. The Euclidean scalar product is denoted by ( , ) and
the conservation of atoms in chemical reactions reads (v;, a;) = 0 for i € R and
[ € 2. Letting M € R™" be the mass matrix M = diag(m;,...,m,), the mass
reaction vectors ;, U1, P € R", i € R, and the atom vectors per unit mass
a; € R", [ € 2, are given by

Ui =My, =M vP=MvP, @ =mM a, (2.11)
and these vectors are such that ay;, = 0y for k,1 € A, and (v;, ;) =0, for i € R
and [ € . The mass density of the [th atom present in the species then reads
p1 = {(a;, 0) and is distinct from the mass density of the /th atom as a species



p1. More specifically, letting ni be the number of mole of the kth species per
unit volume and 7; be the total number of moles of the [th atom present inside
all species per unit volume, then n; = ZkeG agny differ from n; and using
pr =myng, k € &, and p; = myny, | € A, yields that p; = (a;, o).

The vector space spanned by the reaction vectors in R" is denoted by R =
Span{ v;, i € R} and the vector space spanned by the atom vectors by A =
Span{a;, I € 2A}. From atom conservation one generally has R C A+ where
1 denotes the perpendicular symbol and it is assumed in this paper that the
reaction mechanism is sufficiently representative of natural elementary reactions
in such a way that the reaction vectors v;, ¢ € ‘R, are spanning the maximum
space

R=A" (2.12)

This condition further means that the chemical equilibrium states associated
with the reaction mechanism My € R+ coincide with natural equilibrium states
obtained when all possible reactions are considered My € A. In this situation,
the slow variables obtained from the species partial densities p1, ..., p, naturally
reduce to the atom partial densities p1, ..., pn,. The linear spaces A and R are
then of dimension n, and n —n,, respectively. Keeping in mind that the atomic
species have been chosen as the first n, species, one may introduce for species
that are not atoms k € G\ = {n, + 1,...,n}, the formation reaction vectors

o = (—ap1, ..., —gn,, 0,...,0,1,0,...,0)!, ke G\L, (2.13)

that may be written v, = e — >, o aner, k € G\, where e;, i € &, denotes
the basis vectors of R™. It is then easily checked that any reaction vector may
be decomposed as v; = ZkeG\Ql ViV, in such a way that the formation vec-
tors vg, k € G\2, form a convenient set of basis vectors of the linear space
R. These formation vectors correspond to the formation chemical reactions
Zlem apr My = My, k € G\A that are not necessarily in the reaction mech-
anism. The linear space A is thus of dimension n, and spanned by a;, [ € 2,
wheras the linear space R is of dimension n — n, and spanned by v, k € S\2L.
The mass weighted formation vectors denoted by vy = Muy, for k € G\, also
form a convenient basis of MR and are such that (bg,a;) = 0, for k € &\ and
el

The molar production rates that are considered are the Maxwellian produc-
tion rates obtained from the kinetic theory [18, 11] when chemical characteristic
times are larger than the mean free times of the molecules and the characteristic
times of internal energy relaxation. Denoting by w = (w1,...,wy)! € R™ the
vector of molar production rates then w = Eiem v;7; where 7; is the rate of
progress of the ith reaction and

Mw = Z’ﬁiﬁ'. (214)
i€ER

The rate of progress of the ith reaction 7; reads

73 = K (exp (. 71) — exp(, 7)), (2.15)



where K is the kinetic constant of the ith reaction assumed to be positive.
These rates (2.15) obtained from the kinetic theory of reactive gases [12, 18]
are compatible with the law of mass action and have also been derived from
statistical mechanics and statistical thermodynamics [41, 32, 38]. In the fol-
lowing lemma the quasilinear form of the mass production rates Mw is inves-
tigated [18, 57]. We denote by R** the vector space of matrices of size k > 1
and for any A € R¥* N(A) denotes its nullspace and R(A) its range.

Lemma 2.1. The chemical source term Mw € R™ may be written
Mw = —Ap, (2.16)

where the matrix A € R™™ is given by

A= ATeD; (2.17)
IER

The coefficients A;, © € R, are positive and may be written A; = K5(; where
ICS is the reaction constant of the ith reaction and ¢; the nonequilibrium factor
G o= fol exp((Tf, p) + &P — U, pu)) A€, The matriz A is symmetric positive
semi-definite with nullspace N(A) = M~'A and range R(A) = MR in R™.

Proof. The expressions (2.16)(2.17) of Mw and A are direct consequences of
(2.14)(2.15) and of the identity e® — e® = (8 — ) fol exp(a + £(8 — @) d&.
The coefficients A;, i € R, are positive since the reaction constants P are
assumed to be positive. From (2.17) it is deduced that A is symmetric and
that (Az,x) = >, 3 Ai (%, ) for & € R™. This shows that A is positive semi-
definite and that Az = 0 if and only if (7;, x) = 0 for ¢ € R, that is, if and only
if v € (MR): = M~1A. O

2.4. Transport fluzes

The transport fluxes IT € R4 J,. € R4 k € &, and Q € R? due to macro-
scopic variable gradients can be obtained from the Chapman-Enskog expansion
[49, 50, 7, 15, 11, 18]. The viscous tensor IT may be written

II = -k Vvl —n(Vo+ Vo' — 2(V-0)I), (2.18)

where x denotes the volume viscosity, 1 the shear viscosity, I the d dimensional
identity tensor, and d’ the dimension of the velocity space in the underlying
kinetic framework. It is assumed in the following that the dimension of the
kinetic velocity space d’ is such that 2 < d’ and 1 < d < d’. The assumption
1 < d < d’ means that the spatial dimension of the model has been reduced
from d’ to d so that IT is the left upper block of the full d’-dimensional viscous
tensor. The assumption 2 < d’ is also natural since d’ = 3 in our physical



world and Vv + Vo' — 2(V-v)I =0 when d’ = 1. The viscous tensor may be
rewritten for convenience as

II = —x'V-oI—n(Vv+ Vo' —2(V-)I), (2.19)

where the modified volume viscosity &' = k + 2n(d’ — d)/d'd is nonnegative,
keeping in mind that 1 < d < d’, and where the deviatoric tensor Vo + Vo? —
2(V-v) I is traceless.

The species mass diffusive fluxes J3, € RY, k € &, and the heat flux Q € R?
may be written in the form [49, 50, 7, 15, 11, 18].

T = =Y Cu(Vx +xViogp+xxViegT), k€6, (2.20)
e
Q= ~AVT+ > (RTE 4 hy) Ty, (2.21)
keS Mk

where Cyy, k,l € &, denotes the multicomponent flux diffusion coefficients, Yk,
k € ©, the rescaled thermal diffusion ratios and A the thermal conductivity.
When the mass fractions are nonzero, it is also possible to define the species
diffusion velocities v, € R, k € &, by letting

_ Ik
Pk

Vi = fZDkz(VxlerlVlongrxl)lelogT),

les

where Dy = Cri/pr, k,1 € &, are the multicomponent diffusion coefficients.
The transport coefficients x, n, A, C' = (Cki)rics € R™™, D = (Dyi)kics €
R™" or X = (X1,---,Xn)" € R", have important properties inherited from
the kinetic framework [50, 7, 15, 11, 18]. They satisfy symmetry properties,
mass conservation constraints, as well as positivity properties. These multi-
component transport coefficients s, 7, A, C = (Cr)kies, D = (Dgi)kics, Or
X = (X1,---,Xn)t, are also smooth functions of the state variables. Note that
the matrices C' and D are generally irreducible and the governing equations have
thus a complex structure [17, 18]. Finally, there exist many alternative forms
for multicomponent transport fluxes that are out of the scope of this work and
the reader is referred to [50, 7, 15, 18].

2.5. Mathematical assumptions

In order to investigate the fast chemistry asymptotic analysis, the reaction
constants are naturally rescaled as

Ky = =2, (2.22)

where € € (0,1] denotes the chemistry relaxation parameter and 16;, i € R,
the rescaled reaction constants that remain finite as ¢ — 0. The parameter €

10



typically represents a ratio between chemistry times and fluid mechanics times
and this parameter converges to zero ¢ — 0 in the fast chemistry limit. Ac-
cordingly, we introduce the rescaled reaction rates 7; = 7; /e, i € R, production
rates wy = Wi /€, k € &, production vector & = (W1, ...,0,)" € R", linearized
operator A = K/e € R™" and constants A; = Ki/e, 1 € R, in such a way

Ok =) wvti, k€6,  7i=Kj(explp,v7) —exp(u,7})), i€R, (2.23)
=
and R R R
M@ =—Ap, A= Aiview;. (2.24)
IER

The following assumptions on thermodynamic properties, rescaled chemical
production rates, and transport coefficients have been extracted from the kinetic
theory of gases. The integer » > 3 denotes the regularity class of transport
coefficients and thermodynamic functions. The assumption » > 3 is used in
Sections 2, 3, and 4, whereas it is assumed that > > [ 4+ 4 where [ denotes the
regularity class for strong solutions to the Cauchy problem with [ > [y + 1 in

Section 5 and I > [y + 3 in Section 6 where lo = [d/2] + 1.

(H1)  The molar masses my, k € &, and the perfect gas constant R are pos-
itive. The formation energies €5, k € &, and entropies s5', k € G,
are real constants. The specific heats cyi, k € &, are C* functions
of T € [0,00). There exist positive constants c, and T, such that
0<c¢, < yi(T) <C forT>0andk €.

(H2)  The stoichiometric coefficients vi, and vP;, k € &, i € R, the atomic
coefficients ag, k € &, 1 € A, are nonnegative integers. The atom
vectors a; € R™, | € A, and the reaction vectors v; € R™, i € R, satisfy
the atom conservation relations (v;,a;) = 0, i € R, | € A, and the
species molar masses m € R™ are given by m = Y, o my a;.

(H3)  The chemical reaction mechanisms is such that R = A C R™ and the
atomic elements are the first n, species. The rescaled reaction constants
I3 are C* positive functions of T > 0 for i € R.

(Ha)  The fluz diffusion matric C = (Cyi)k1ees € R™™ the rescaled thermal
diffusion ratios vector X = (X1,...,Xn)" € R™ the volume viscosity k,
the shear viscosity m, and the thermal conductivity A are C* functions
of (0,T) for T > 0 and p; > 0, i € &. These coefficients satisfy the
mass conservation relations N(C) = Span{g}, R(C) = T*, and X € x*-
in R"™ The dimension of the underlying kinetic velocity space d’ is such
that 2 < d and d < d'.

(Hs)  The thermal conductivity X\ and the shear viscosity n are positive. The
volume viscosity k is nonnegative. The diffusion matric D € R™™
where Dy = Cri/pk, k,l € &, is symmetric positive semi-definite with
nullspace N(D) = Span{o},
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Remark 2.2. The coefficients C, \, n, X and Kk have smooth extensions to the
domain p; > 0,1 € &, and p > 0. This is also the case for the non diagonal
coefficients D;; for i # j whereas the coefficient p;D;; has a finite positive limit
when p; — 0 [17, 11].

The properties (Hy)-(Hs) are assumed to hold whenever the equations mod-
eling multicomponent reactive fluids are considered. The constraints on C' and
D insure in particular that }7, .o Tk = > ,ce PrVe = 0 so that diffusion is
not artificially creating mass. Adding the n species governing equations indeed
yields the total mass conservation equation 9,p + V-(pv) = 0. On the other
hand, the positivity properties of transport coefficients—that are deduced from
properties of multicomponent Boltzmann linearized collision operators—further
insure that entropy production due to transport processes is nonnegative.

In the following proposition, we investigate the balance equation for entropy
and evaluate the rate of entropy production [18]. In this Proposition, dj =
Vi + xx Vlogp + xx XV log T denotes the diffusion driving force of the kth
species, k' the modified volume viscosity coefficient, D the differential symbol,
and for any matrices A and B, |A|* = ), - a; denotes the Frobenius norm and

J
A:B=)", j a;jb;; the corresponding scalar product.

Proposition 2.3. The differential DS of entropy is given by Gibb’s relation

TDS=DE- D gDpy. (2.25)
kes

Moreover, S satisfies the balance equation

Q

9,8 + V- (vS) + V- (T

> %’“Jk) = %]Vv + Vol — 2(Voo) I
keSS

K’ 2, A 2 | PR GRTMUWE
— (V- —|VT — Dydy-d; — . 2.26
+ 5 (V)" + 5 VT +mklze:6 ki dy g@; T (2.26)

Proof. From the expressions of £ and S it is first obtained that d,, S = s —
in such a way that 0,,S = ey /T —gr/T', and next that 0rS = >, .o prcor/T =
Or€/T, and this yields the volumetric Gibbs’ relation (2.25) since we have
DE =0rEDT + Zke@ er Dpy.

Using then (2.25), the convective derivative 9;S + v-V S is expressed in
terms of 0,€ + v-VE and Oipi, + v-Vpg, k € &. The convective derivative of
O:pir + v-Vpy, is given by the kth species conservation equation. On the other
hand, 0;€ + v-V & is deduced from the total energy conservation equation after
subtracting the balance equation for kinetic energy obtained by multiplying the
momentum equation by the velocity vector. After some algebra, this yields

1
oS +v-VS :?(fV-Q —&EVw—pVww—1II:Vv)

- Z g?k(mkwk ~V-Tx — pr V-v),
keS
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Noting that G =}, & prgr and (€ +p —G)/T = S, and using

e Ao e () e (2)

we obtain that

atS+V~(vS)+V.<%k€ZGg?kjk)ﬂ}Vv
QVT =S gev (G- e
ke& keS

From the expression (2.19) of the viscous tensor IT, the tensor product —IT:Vv

is then rewritten in the form £'(V-v)%+ (n/2)| Vv + Vo' — 2(V-v) I‘2. Finally,
using the thermodynamic identity

the expression (2.20) for the diffusive fluxes Ji, k € &, the relations pg/mi =
(p/m)xi and Cy; = pr Dy, k,1 € S, and the expression (2.21) for the heat flux
completes the proof. O

From assumptions (Hs) it is deduced that the entropy production terms
in (2.26) associated with transport processes are nonnegative whereas entropy
production due to chemical reactions — ", - grmiwr/T = —R(p, Mw) is in-
vestigated in the next section.

2.6. Chemical equilibrium

In the following lemma, entropy production due to chemistry is investigated
as well as the notion of chemical equilibrium.

Proposition 2.4. For any state (9, T)" € (0,00)" ! the entropy production due
to chemistry —R(u, Mw) is nonnegative and may be written

R{u, Mw) = Y RK (. 7)) — (1, 77)) (exp(p, 7}) — exp(p, 77)).  (2.27)
i€ENR
Furthermore the following statements are equivalent :
(i

(i

The entropy production due to chemistry vanishes (u, Mw) = 0.
The reaction rates of progress vanish 7; =0, j € R.

(#i7) The species production rates vanish w = 0.

)
)
)
) The vector u belongs to M~*A = (MR)*.

(iv

13



Any point (9, T)t € (0,00)" ! that satisfies these properties is termed a chemical
equilibrium point.

Proof. 1t is first deduced from (2.14) that —(u, Mw) = Y, o 7i{p, (UF — 7P))
so that from (2.15)

—(p, Mw) =Y K (g 7F) — (g, 57)) (explps, D) — exp, 7)),
iENR
and this yields (2.27). Note that each chemical reaction yields a nonnegative
entropy production as in the underlying kinetic model [18, 12].

From the expression of entropy production (2.27), it is then obtained that
(u, Mw) = 0 implies (, ;) =0, j € R,andso7; =0, j € R, andw = 0 and it is
established that (¢) implies (iz). The fact that (i¢) implies (4i7) is a consequence
ofw=>3" jem TiVi- One also deduces from the expression of entropy production
—R{u, Mw) that (i#i) implies (i) so that the three statements (i), (i), and
(i4i) are equivalent. Finally, it is easily established that (iv) is equivalent to
(u,7;) =0, j € M, so that (ii) and (iv) are also equivalent since A = R+. O

Only positive equilibrium states ¢ > 0 which are in the interior (0,00)™ of
the natural densities simplex [0,00)™ are considered in Proposition 2.4. Spu-
rious points with zero mass fractions where the source terms wy, k € &, also
vanish—termed ‘boundary equilibrium points’—are of a different nature [18].
Detailed chemical reaction mechanisms often exclude such boundary equilib-
rium points—unless some atom is missing in the mixture—because of three
body recombination reactions [18]. The expression of entropy production due
to chemical reactions (2.27) may also be seen as a macroscopic consequence of
Boltzmann H theorem involving only reactive collisions [12, 18].

Proposition 2.5. For any T, > 0 and any 0 = (p1,-..,pn, )t > 0 there exists
a unique equilibrium point e such that (e, a;) = py, for | € A. In other words,
there exits a unique g > 0 such that (1(ge,To) € M~ A and (0c,a;) = pi, for
1 € A and the equilibrium state go = (pe1, - - -, pen)’ is a CF function of (9, Te).

Proof. The proof is only sketched and we refer to [46, 39, 18] for more details.
For o > 0, letting o, = >0 P1€1 + 52k€6\mgk’ then (osp, ;) = p; and
0sp > 0 for § > 0 small enough. The equilibrium point is then investigated in
the simplex

J=(0sp + MR)N(0,00)".

The Helmholtz free energy F = £ — T,S is continuous on the closure J =
(0sp + MR) N [0,00)" of T and is strictly convex on J. Moreover F cannot
achieve its maximum at the boundaries where the appropriate derivatives have
the wrong sign [18]. The maximum is thus achieved in the interior g > 0 and
this point is shown to be an equilibrium point using 0,F = RT.u and that MR
is in the tangent space of the simplex so that (e, Mv;) = 0 for any i € RR. The
uniqueness of the equilibrium point on J is a consequence of the strict convexity
of F. Finally, the equilibrium partial densities g, are C* functions of (g, T) as
a direct application of the implicit function theorem [46, 39, 18, 26]. O
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The energy per unit volume at equilibrium &, is defined by &.(o,T.) =
& (ge@, T.), Te) and the specific heat at equilibrium ¢, at constant volume by
peCev = Op Ec(0,Te). The entropy per unit volume of the mixture is given
by S.(0,Tc) = S(Qe@, Te), Te) and the Gibbs function per unit volume by G, =
Ee+pe—TeSe. The pressure p, is given by p. = RT, Zkeg Pe: /My and the total
density p. can be written pe = Y ;e Pok = D_jeq p1- Differential expressions
as well as concavity properties of the entropy per unit volume S, in terms of
the state variables (g, T.) and (g, &) are now investigated in the following new
lemmas.

Lemma 2.6. The energy and entropy per unit volume at chemical equilibrium
Ee and S, are C* functions of the variables (9,Te.) over the domain T, > 0,
0 >0 and coy = 01,0/ pe is positive. Moreover, letting Sei, = Sk (pek(@ T.), Te),
k € S, then

PeCev

Or,So = =5 058: =Y (sek — 1) Opper, 1€ (2.28)
¢ ke&

Proof. The regularity of & and S, is a consequence of that of £, S, and g.. A
direct calculation using & = ), e Pek(0; Te) ex(Tt) then yields

D& = PeCovy DTo + Z Z 6;,;1 PekClk Dﬁl, (2.29)
leA ke

where D denotes the total derivative and

peCov = Op,Ec = ¥ O, per (8, T. )+ Y per(@Te) eor(Te).  (2.30)
ked keS

The second term in the right hand side of (2.30) is positive since mass densities
and specific heats are positive and it is thus sufficient to establish that the first
sum is nonnegative. Differentiating with respect to temperature 7, the con-
straint (a;, ge) = p1 yields (a, 87, ge) = 0 for | € 2, so that Oy, 0o € (M~LA)F =
MTR. Similarly, differentiating the relations (bg, pe) = 0, k € &\2l, with respect
to Tt yields Oy, pr, € M~* A = (MR)* and using (2.8) with (2.5)(2.7) it is next
obtained that

—RT?0r. 1, = (el(Te)frngaTe log pet, - - - s en(Te)franﬁTe log pen)t € M—tA.

Multiplying scalarly this relation by d7, 0o € MR = (M “1A)*L yields

> Or.per(@ T =Y 1 T2pek (8. 1) (97, log per (. T2))
ke& keS

and this proves that ce, > 0.
A direct calculation using Se = 3, . & ek (0, Te) sk (per (0, Tt), Te) next yields

DS, = 07,8 DT+ Y Y (sek — )05 per D, (2.31)

leA kes
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where

8TeSe = Tie Z PekCvi + Z (Sek - Tk)aTepek'
kES kES
However, since sex — 7 = (€ok — Gok)/Te, tek = Jek/RTe, e € M~1A, and
Or 0k € MR = (M1 A)*, we deduce the identity > ke (Sek = Tk)Or pek =
> ke CekOr, pek/Te and finally that Op, Se = pecev/Te = Op, Eo/Te and the proof
of (2.28) is complete. O

Lemma 2.7. The map (0,T,) — (0,&) is a C* diffeomorphism from the do-
main T, > 0, 0 > 0 onto an open set O ¢.). Over this domain O ¢y, denoting
by O the derivation with respect to the variable (9,&,) then

1 5 _ el

55689 = —, 05 Se =

T 7 R le, (2.32)

where get = g1 (pel(E, Te),Te) so that To DSe = DE — > o gt Dp1, where D
denotes the total derivative. Moreover, letting s; = Ekeg eekaﬁlpek = € —

mTf@Tclog pel for L € A, the following relations hold

— 1 = 5]
0% oS =——"— 02 ~Se=—"—+, le
ge7ge € peceng ? Eo 3Py € peceng ’ ’
2 _ sisr Z L aﬁl pekaﬁl,pek
PLPy e pecevTe2 m Pek ’

ked

and S, is a strictly concave function of (9,&.).

Proof. The fact that (o,Tc) — (0, &) is a C* diffeomorphism from the domain
T. > 0, 0 > 0 onto an open set is a direct consequence of ce, > 0 and of the
inverse function theorem. Using (2.29)(2.31) it is obtained after some algebra
that
Te ]D‘Se = Dge - Z Z gekaﬁlpek Dﬁl
leA ke

Differentiating the relations (a;, 0.) = py, for I’ € 2, with respect to p;, and
keeping in mind that ay; = ag; = oy for k,1 € 2, it is obtained that 05,0, —e; €
(M~tA)t = MR for | € A, where ey, k € &, are the basis vectors of R”. This
now implies that > reS 9ekOp, pek. = get and finally one obtains the relation

Te Dse = H])ge - delDﬁla
e

that is close to that out of equilibrium. This shows that 55589 =1 /_Te and
05,Se = —gei/Te and from (2.29) one also has 0g, T = 1/pecev and 0;Tc =
= e €k(Te)05, per/ pecCey, for I € A
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3 Differentiating 55086 :_1 /T with respect to & and p; then yields that
0%, £.Sc = —1/T2pecey and 8?5@ Se = kes eekﬁﬁl pek /T2 pecoy. The second ex-

pression of s; and thus of 5%6 5 Se is obtained by first noting that (Or, 1., 05, 0c —
e;) = 0 in such a way that

€cly - €on)t _
<—(61R#e) - M 18Te log o, aﬁlge—el> =0.
€

Differentiating (., vx) = 0, k € &\2, with respect to p; also yields 95 e €
M~'A, and using 05, ek = 05, 10g 0ck /My, yields

<M718Tc log e, aﬁl Qe> = <8Tc Qe; Mﬁlaﬁz log 96> =0,

and this now implies that s; = 3, & ex(Tc)05, per = €ct — rT20r, 1og pe. Fi-

nally, deriving the relation 05 S. = —gei/Te with respect to py yields the ex-
pression of 8% 5, Se-
) l/
In order to establish the concavity of S, letting @ = (x1,..., 2, ,xe)t, it is
noted that
@) = (e = Yo + 3 (S widpa)
_ xz,T) = Te — 51501) + —( 10p, k) )
’ pecevTd It kes Uk New nhe

and this expression is nonnegative. If it is zero, then ),y 105 per = 0 for any
k € & and this implies that Y, .o zie1 = Yo zi(e1 — 95,0¢) € (M~ A)*. This
implies that (a;, ;. zi€1) = 1 = 0, 1 € A, and next x, = 0 and finally 2 =0

so that S, is strictly concave. |

The open set Oge,) C R™*! may be investigated under stronger assump-
tions associated with stable atomic elements and heats of formation at zero
temperature [18] but the precise expression of this open set is not required
in this work. Since S, is a strictly concave function, thermodynamic stability
naturally holds at chemical equilibrium [25].

2.7. Ozone decomposition

In order to illustrate the general formalism valid for arbitrary complex re-
action mechanisms described in previous sections, we consider here a simple
example of detailed chemical reaction mechanisms. More specifically, the de-
tailed reaction mechanism of ozone combustion [6, 51] is investigated. This
mechanism involves the three reactive species

{0, 0q, O3 }, (2.33)

and only one atom O. The species indexing set is thus & = {1, 2, 3} with atomic
oxygen O being species 1, oxygen Os species 2, and ozone Og species 3 with
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n = 3. On the other hand, O is atom number 1 with 2 = {1} and n, = 1. The
atom decomposition vector a; is then

a = (1,2,3)", (2.34)

and the species mass are m; = mo, mo = 2mo, and mg = 3mo where mo is
the mass per mole of atomic oxygen.

The ozone decomposition mechanism is typically written in chemistry as
(6, 51]

O3+M=0+0,+MM, (2.35)
O3 + O = 20,, (236)
O + 9 =20+ I, (2.37)

where 9 denotes any of the three species O, Oq, or O3. Reaction (2.35), as
written in chemistry, is thus a notational shortcut for the three reactions

035+0=0+02+0,
O3+ 02 =0+ 03+ O9,
03+03‘:‘O+02+03,

that are numbered as reactions 1,2,3. Reaction (2.36) is then numbered as
reaction number 4, whereas (2.37) is again a notational shortcut for the three
reactions

024+0 =20+ 0,
02+02 ;‘204’02,
02+03 ;‘204’03,

that are numbered as reactions 5,6, and 7. The detailed reaction mechanism
of ozone combustion therefore involves n = 3 species, n, = 1 atom, n, = 7
chemical reactions with & = {1,2,3}, 2 = {1} and R = {1,2,3,4,5,6,7}. The

corresponding reaction vectors can be written

1 -1 2

and it is easily checked that the O atom is conserved in each chemical reaction
so that (a1,v;) = 0 fori € {1,2,3,4,5,6,7}. The mass atom vector a; = M ~1a;
and mass reaction vectors v; = My, i € {1,2,3,4,5,6,7}, are easily evaluated
as

a = (1,1,1)"
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and

1 -1
;liggiggimo 2 , §4:mo 4
-3 -3
2
;5:;6:,[]7:7”0 —2 ,
0

and it is easily checked that (a;,7;) =0 for i € {1,2,3,4,5,6,7}. In particular,
the equilibrium condition for the ozone mixture reads

p € Ray; = Span(ay).
The reaction vector space R is then of dimension 2 and given by
R = Span{vy,v4} = Span{vy, vs} = Span{vy, vs},

with the linear relation —vq + v4 + v5 = 0 whereas the atom vector space A

reads
A = Span{a;} = Ra; = R*.

The species formation vectors vy, defined for k € G\2A = {2, 3} are given by

—2 -3
by = 1 b3 = 0 ’
0 1
and we observe that R = Span{bs, b3} with vy = —v5 and b5 = —vy — 2v5. The

formation reactions may be written 20 = O3 and 30 = O3 and are not part
of the mechanism (2.35)-(2.37) even though we have R = Span{vs, v3}.

Denoting by ny = pr/my the number of mole of the kth species per unit
volume where k € {1,2,3} then 1y = n; +2n2+ 3ng is the total number of moles
of the O atom present inside all species per unit volume. Since there is only
one atom, the partial atom mass density p; = min; also coincide with the total
density p; = p. At chemical equilibrium, for a fixed T' = T, and p; = min;,
there exists a unique positive equilibrium state 9o = (pe1, o2, Pe3)t such that
Mpu(oe,Te) € Ray. In order to investigate such equilibrium points, we may use
(2.9) where pi(7T') is the value of uj at unit molar concentration py = my or
ni = 1. Letting then

mao u u ms3 u u
K(T) = —5 exp(2mipy —mopy),  K3(T)= 3 exp (3mipi —msp3),
1 1

we have at chemical equilibrium 2mjp; = mops and 3mipu; = msps in such a
way that
pez = Kap2y, pes = Kspl.

Then pe; is the unique positive solution of the atom conservation relation

p1 = pe1 + Kop?, + K3p2,,
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easily shown to be a smooth function of p; = p and T so that the equilibrium
state ge is a smooth function p; and 7" in agreement with the general theory.
Finally the molar production rates are obtained in the form

w1 =T+ T2+ T3 — T4 + 275 + 276 + 277,
wy =T| +To + T3+ 214 —T5 — T — T7,
w3 = —T1 — T2 — T3 — T4,

where 7; denotes the rate of progress of reaction ¢ € {1,2,3,4,5,6,7}. These
rate of progress may also be rewritten as given by the law of mass action. More
specifically, defining the forward and reverse reaction constants as

K = K3 exp(u®, o), KP = K5 exp(u®, 7P),

and using (2.9) and (2.15), the rate of progress of the ith reaction may be written

f b
k O\ Vki k O\ Vki r b
Ti:ICZf-II(p—) —ICE’II(/)—) :ICZf-IIn:“—ICE’HnZ’”.
mg mg
kes kes kes

keS

We have in particular 71 = ICinlng — Kﬁ’n%ng, Ty = Iangng — lCSnln%, T3 =
Ian% — Kg’nlngng, Ty = K:fﬂllng — ICZ’n%, T = Ianlng — ICEn?, 6 = Kén% —
KEn3ng, and 7 = Kinans — K2n?ns. The ratio of forward and reverse con-
stants is also related to thermodynamics P /Kf = exp(fm”,ﬁz-)) as given by
the kinetic theory of gases and statistical mechanics. Such reciprocity rela-
tions between macroscopic forward and reverse reaction constants, that may be
seen as Onsager relations for chemistry, arise from reciprocity relations between
molecular reactive transition probabilities [11, 12, 18].

2.8. Vector notation
The equations governing multicomponent flows (2.1)—(2.3) can conveniently
be rewritten in vector form

; 1
du+ Y OF; +Y oFls = —Q 2.38)
t ZEZD ; 7 € (
where u is the conservative variable, 0; the spatial derivative operator in the
ith spatial direction, D = {1,...,d} the indexing set of spatial directions, d the
spatial dimension, F; the convective flux in the ith direction, F$!** the dissipative
flux in the ith direction, Q the rescaled source term, and € € (0, 1] the relaxation
parameter. Letting n = n + d + 1, the conservative variable u € R" is found
to be .

u= (pla <oy Pny PU, £ + %p|v|2) (239)

and the natural variable z € R" is defined by z = (pl, cevy Py U, T)t. For
convenience, the velocity components in R? of vectors in R" = R?xR?xR are
written as vectors of R? and bold symbols are used for vector or tensor quantities
in the physical space R?. The map z — u is a C* diffeomorphism from the open
set O, = (0,00)" xR?¥x (0, 00) onto a convex open set O, of R" [22, 18].
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Proposition 2.8. The map z — u is a C* diffeomorphism from the open set
O, onto the open convez set O, given by

Oy ={uweRuy;>0,1<i<n, up,—d(ur,...,uptrq) >0},

where ¢(u1, ..., Upta) = %(U%H +ot “721+d)/ Dice Ui T Dice uie] and e; is
the energy of formation of the i*™ species at zero temperature.

The convective and diffusive fluxes F; € R" and F{i* € R" in the ith direction
are given by

F, = (pﬂ)z‘, ..oy PrUi, PUU + PE;, (5 + %p|v|2 +p)vi)t,
F?iSS = (‘_717;’ ceey jni, Hi’ Qi + Hi"l))t,

where e; € R? denotes the ith basis vector in the physical space R%, Ji; the
diffusion flux of the kth species in the ith direction, @; the heat flux in the
ith direction, IT = (I;;); jep the viscous tensor, and IT, € R? the vector
Hi = (Hh', - ,Udi)t, so that Ji = (jkla - ,jkd)t and Q = (Ql; .. ;Qd)t-
The dissipative fluxes may further be expressed as F{ = — Y~ jep Bij(2)0;z

where @ij, i,7 € D, are—uniquely defined—matrices of R™" since all transport
fluxes are linear expressions in terms of the gradients of the natural variable z.
Since z + u is a smooth diffeomorphism, defining B;;(u) = B;;(z)0,z, for 4,j €
D, it is obtained that F{iss = — > jep Bij(u)dju, i € D, where the dissipation
matrix B;; € R™" relates the dissipative flux in the ith direction F{** to the
gradient of the conservative variable in the jth direction Oju. Further denoting
by A; = 0,F; € R™" i € D, the convective flux Jacobian matrices, and Q € R"
the rescaled source term

)

Q= (mlﬁl, ce ,mn@n,0,0)t,

one may write the system of partial differential equation in a quasilinear form
whose structure is addressed in the next section.

3. Hyperbolic-Parabolic structure

Symmetrization with respect to entropic and normal variables is first sum-
marized for abstract systems in quasilinear form as well as strict dissipativity.
Symmetrized forms are evaluated and strict dissipativity is next discussed for
the system of partial differential equations modeling multicomponent reactive
fluids.

21



3.1. Entropic variables
Consider a second order quasilinear system of conservation laws in the gen-
eral form

1
o,u + A;(u)o;u — 0;(Bij(u)o;u) — =Q(u) =0, 3.1
ti;() m_ze:D(g(g)e() (3.1)
where u € O,, O, is an open convex set of R", and n > 1. The convective
jacobians are defined by A; = 9yF; € R™" ¢ € D, and it is assumed that the
fluxes F; € R", i € D, the dissipation matrices B;; € R™", 4,5 € D, and the
source term €2 € R", are C* over O, where » > 3.

A mathematical entropy for the system of partial differential equations (3.1)
must be compatible with the convective terms, the dissipative terms as well as
the source term. The definition presented in [26, 27] is simplified to the situation
where the set O, is convex. In the following definition, properties (E;1)(Ez)
concerning the convective terms have been adapted from [30, 16], properties
(E3)(E4) associated with the dissipative terms have been adapted from [34, 47,
35, 36], properties (Es)-(E7) concerning the source terms have been adapted
from [9, 37], and £¢~! denotes the sphere in d dimension.

Definition 3.1. Consider a C* function u— o(u) defined over the open convex
domain O,. The function o is said to be an entropy function for the system (3.1)
if the following properties hold.

(E1)  The Hessian matriz 920 (u) = 0,(0,0)t(u) is positive definite over O,,.

(E2)  There exist C* functions u — q;(u) such that O,0(u)A;(u) = 9,q;(u)
forue O, andi e D.

(E3)  The relations (By;(u) (afa(u))_l)t = Bji(u)(afa(u))_l hold for u € O,
and i,5 € D.

(Esa)  The matriz 3, .cp Bij(u)(afo(u))il &€ is positive semi-definite for
u€ O, and & € X1

(Es)  There exists a fized vector space E C R" such that Q(u) € E*+ for
ue O, and Qu) = 0 if and only if (aua(u))t € £ and if and only if
Oyo(u) Q(u) = 0.

(Ee) If Q(u) = 0, then the matriz 0,Q(u) (afa(u))_l is symmetric and its
nullspace is given by N(9,Q(u) (020 (u))~!) = £.

(E7)  The inequality d,0o(u) Q(u) <0 holds for u € O,.

Existence of an entropy is closely associated with symmetrization properties
[30, 16, 34, 47, 35, 36, 9, 37, 26, 27, 28]. The difficulties associated with nonideal
fluids where only local symmetrization are feasible and where O, may not be
convex [26] are avoided here. Note also that more general source terms with no

symmetry properties at equilibrium have been considered by Chen, Levermore
and Liu [9] and Yong [56].
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Definition 3.2. Consider a C*~1 diffeomorphism u — v € R™" from O, onto
an open set O, and the system in the v variable

o)AV + Y Ai(v)dv — >0 (B ——Q() (3.2)

i€D i,j€D

where 2‘:0 = o,u, KZ- = A;0,u = 0,F;, Eij = B;;0,u, and Q= Q, have at least
reqularity »x—2. The system is said of the symmetric form if properties (S1)-(S7)
hold.

(S1)  The matriz Ao(v) is symmetric positive definite for v € O,.
(S2)  The matrices A;(v), i € D, are symmetric for v € O,.
(S3)  The relations gf] (v) = Eji(v) hold forv e O, andi,j € D.

(Sa)  The matriz g(v,{) = ijeD §ij (v)&:&; is positive semi-definite for v €
O, and & € X4~ 1.

(Ss)  There exists a fived vector space E C R" such that Q(v) € ZJ‘ for veO,
and Q( ) =0 if and only if v € E and if and only if <v >

(Se)  IfQ(v) =0, then ,Q(v) is symmetric and N (8.9( Q(v )) =
(S7)  The inequality (v, §~2(v)> <0 holds forv e O,.

The manifold £ C R" is naturally termed the equilibrium manifold or the
slow manifold, since Q(v) = 0 when v € £, and £ is termed the fast manifold.
The equivalence between symmetrization (S1)-(S7) and entropy (E;)-(E7) for
hyperbolic-parabolic systems of conservation laws is obtained with v = (9,0)!
26, 28].

Theorem 3.3. Assume that the system (3.1) admits a C* entropy function o
defined over an open conver domain O,. Then the system can be symmetrized
with the entropic variable v = (9,0)t. Conversely, assume that the system can
be symmetrized with the C*~ 1 diffeomorphism u +— v. Then there exists a C*
entropy over the open convex set O, such that v = (0,0).

Sketch of the proof. The equivalence of (S1)-(S2) and (Ej)-(Ez) is classical and
is essentially obtained with Poincaré’s lemma. Then (S3)-(S7) and (E3)-(E7) are
identical statements with v = (9,0)". O
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3.2. Normal variables

In order to split between hyperbolic and parabolic variables, it is next neces-
sary to rewrite the system in normal form, that is, into a symmetric hyperbolic—
parabolic composite form [34, 36, 21, 22]. The properties of normal variables
w € R" are specified in the following definition where O,, denotes the open set
where w lives.

Definition 3.4. Consider a symmetrized system as in Definition 3.2 and let
v = w be a C*~ diffeomorphism from the open set O, onto an open set O,,.
Letting v = v(w) in the symmetrized system (3.2) and multiplying on the left
side by (0,v)" a new system in the variable w is obtained

Ag(w)dw +> Ai(w)dw — Y 9, (Bij(w)d;w) — %ﬁ(w) =Q(w,d,w), (3.3)

ieD i,jED

where Rg = (,v)! Ao (8,V), Bij = (V)" By (8,V), As = (O,v)" A (8,v), 2 =
(O,V)'Q, have at least regularity »—2 and Q@ = — >ijep 0i(0,Vv)" (O, w)" B;;0;
18 quadratic in the gradients. The quadratic term may also be written Q

>ijep Mij(w) diw 9w where M;j(w), 4,j € D, are third order tensors that are
functions of w € O, and have at least reqularity s — 3. In other words, the kth
component Qi is in the form Qi = Zl<l,l/<n(Mij)k”/aiwlajwl/ with (M) =

I =

=2 1<r.scn Ow (Owy Vi) Oy, Wi (Bij ) sir This system satisfies in particular properties
(S1)-(S4), that is, properties (S1)-(S4) rewritten in terms of overbar matrices.
This system (3.3) is said to be of the normal form if there exists a partition of
{1,...,n} intor = {1,....,m} and 11 = {n; + 1,...,n, + ny} withn = n, + ny
such that the following properties hold.

(N1)  The matrices Ao and B;; have the block structure

LI
K _ AO Onnnu E _ 0n|7nl Onnnn
0 = 0 N ij = 0 B |-
Ny, Np 0 N, N ij

B (W)&:&; is positive definite for w €

(N2)  The matriz B (w, &) = 2ijep Bij

0, and & € R4,
(N3)  The quadratic residual is in the form
Q(Wa amw) = (61 (Wa azwﬂ)a 611 (Wa azw))t

The vector and matriz block structure induced by the partitioning of R" into
R" = R™ x R™ has been used in (N1)-(N3) so that w = (wy,wy)? for instance
and 0; ; denotes the zero matriz with i lines and j columns.
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The main interest of normal forms is that the resulting subsystem of partial
differential equations governing the variable w; is symmetric hyperbolic whereas
the subsystem governing the variable wy, is symmetric strongly parabolic [34, 36].
Incidentally, for the symmetric subsystem governing wy;, Petrovsky parabolicity
is equivalent to strong parabolicity, i.e., to the Legendre-Hadamard condition
[26]. A sufficient condition for system (3.2) to be recast into a normal form is
that the nullspace naturally associated with the dissipation matrix B is a fixed
subspace of R". This is Condition (N) introduced by Kawashima and Shizuta
[36] which has been strengthened in [22].

(N) The nullspace N(B) of the matriz B(v, &) = > ijeD E~3ij (v)&&; does not

depend on v € O, and & € X9~ and Eij(v)N(B) =0, fori,jeD.

Letting n, = dim(N(E)) and n; = n—ny, let P be an arbitrary constant non-
singular matrix of dimension n such that its first n; columns span the nullspace
N(B). In order to characterize more easily normal forms for symmetric systems
of conservation laws satisfying (N) one may introduce the auxiliary variables
v/ = P'u and v/ = P~lv [22, 18]. The dissipation matrices corresponding to
these auxiliary variables have nonzero coefficients only in the lower right block
of size n; = n — n;. Normal symmetric forms are then equivalently obtained
from the v/ symmetric equation [22, 18].

Theorem 3.5. Consider a system of conservation laws (3.2) that is symmetric
in the sense of Definition 3.2 and assume that the nullspace invariance property
(N) holds. Denoting by u' = Ptu and v/ = P~1v, the auziliary variable, all
normal forms of the system (3.2) are given by changes of variable in the form
w = (.E(u{),]—}(vfl))t where F; and JFy; are any diffeomorphisms of R™ and R™,
respectively, and Q = — Y, ., 0;(9,V)" (D,w)" Bij0;w is in the form

_ _ t —I1,11,1T ¢
Q= (07 QH(anmWII)) = (07 Z Mij (W) 0wy ajWH) ) (3-4)
1,J€D
—I1,11,1T

where M; (w) are third order tensors depending on w with reqularity at least
» — 3. Finally, when Fy is linear, the quadratic residual Q is zero.

It is further assumed in the following that the rescaled source term Q asso-
ciated with the normal variable w is in quasilinear form

Q= —L(w)w, (3.5)

where L(w) is a symmetric positive semi-definite matrix of size n with a fixed
nullspace N(L) = E of dimension n, = dim(Z) with 1 < n, < n and the
map w — L(w) is assumed to be C* over O,. Under these assumptions, it is
easy to establish properties (Ss)-(S7), that are analogous to (Ss)-(S7), for the

source term in normal form €. We use the terminology quasilinear since the
matrix L has several invariant properties being symmetric positive semi-definite
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with fixed range and nullspace. Source terms Q associated with the natural
entropic symmetrized form (3.2) that are in quasilinear form with respect to
v are often encountered in mathematical physics [57]. As a consequence, the
assumption (3.5) concerning Q is also natural in terms of properly chosen normal
variables w [28]. This is notably the case when the normal variable is such that
7w = m(d,w)v as investigated in [28]. More importantly, it is the case for
chemistry source terms as established in Section 2.3 and investigated in more
details in Theorem 3.10 and Theorem 3.12 as well as for energy relaxation terms
in multitemperature flows [28, 29].

3.8. Strict parabolic dissipativity

Consider an abstract system of conservation laws (3.1) with an entropy and a
constant state u* € R" such that Q(u*) = 0. The nullspace invariance property
(N) is assumed to hold and the system may be rewritten into a normal form.
Let v* € R" and w* € R" denote the corresponding constant states in the v and
w variables respectively. If one linearizes the system (3.3) around the constant
stationary state w*, the following linear system in the variable dw = w — w* is
obtained

wh)d,0w + > Ai(w)Didw — Y By (w*)0id;0w + — L( “ow =0. (3.6)

1€D 1,J€D

Investigating smooth global solutions around constant equilibrium states re-
quires such linearized normal form to be strictly dissipative [34, 47, 35, 36, 22,
18, 37, 24, 26]. By Fourier transform, the spectral problem associated with the
constant coefficient linear system (3.6) reads

Mao(w')o + (AW &) + B &) + - Lw))s =0, (37)

where ¢ € R, € € Ed‘l, ¢ € C AW E) = Yiep Ai(w)Si, B(w",€) =
ZHGD S(W*)E&5, and i2 = —1. Strict dissipativity for systems (3.6) with
fized € has notably been investigated by Kawashima [34] and Shizuta and
Kawashima [47]. Let 5(¢, &, €) denote the set of complex numbers A such that
there exists ¢ € C", ¢ # 0, satisfying (3.7). When investigating global solu-
tions, it will be assumed that the system is strictly parabolic dissipative, i.e.,
that the system without sources L = 0, is strictly dissipative. In other words, it
is assumed that for ¢ # 0 the eigenvalues of A € 5((, &, 00) have a negative real
part. The following equivalent forms of the ‘Kawashima condition’ have been
established by Shizuta and Kawashima [47] for (Ki)-(Ks) and Beauchard and
Zuazua [2] for (Ks).

Theorem 3.6. Assume that the matriz Ag(w*) is symmetric positive definite,
that the matrices A; ( *), i € D, are symmetric, that the reciprocity relations
Bij(w*)t = Bj;(w*), i,j € D hold, that B(w*, &) = > i jep Big(w*)&&; is positive
semi-definite for € € 2971, and denote A(w*, &) =Y, cp Ai(W*)&;. The system
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of partial differential equations (3.3) is said to be strictly parabolic dissipative
at w* when any of the following equivalent properties holds.

(K1)  There exists a C* map K : X% — R4 such that for any & € 971
the product K(§)Ao(w*) is skew-symmetric, K(—§) = —K(§), and
K(&)A(w*, &) + B(w*, &) is positive definite.

(K2)  Forany¢ € R, (#0, and any &€ € X971, the eigenvalues A € S(, &, 0)
have a negative real part R(\) < 0.

(K3)  Let ¢ € R"\{0} such that B(w*,&)¢ = 0 for some & € £~ Then
OAo (W) + A(W*, &) # 0 for any 0 € R.

(Kq)  There exists § > 0 such that for any ( € R, € € X971 the eigenvalue
A € S(¢, &, 00) have their real part majorized by R(N) < —8|¢|?/(1+[¢]?).

(Ks)  Letting B* = (Ro(w*)) " B(w*,&) and A* = (Ao(w*)) ' A(wW*,£) the
Kalman condition is satisfied rank[@*, A* E*, ceey (,&*)“—1 @*] =n.

A physical interpretation of the ‘Kawashima condition’ (K1)-(Ks) is that all
waves ¢ exp(ft + x - €) associated with the hyperbolic operator Ag(w*)d, +
YieD A;(w*)9, lead to dissipation, i.e., entropy production, since there are not
in the nullspace of B, as shown by (K3). Note that only the symmetric part of the
product K (£) A(w*, &) plays a role in (K;). The traditional Kalman condition
involving the n? x n matrix with first block @*, second block B* ,&*, and kth
block B* (A*)*~1 has been rewritten in the form (Ks) with the n x n? matrix
[@*, A @*, cee (K*)"_l @*} thanks to the symmetry of Ag(w*) and B(w*, ). Tt
is not known in general if the matrix K (&) may be written » jep K5, but it
is generally possible to obtain compensating matrices in this form in practical
applications. One may now deduce some properties of the eigenvalues 5(¢, €, €)
for the complete system (3.7).

Proposition 3.7. Assume that the system (3.6) is strictly parabolic dissipative
at w*. Further assume that there exists a compensating matriz K compatible
with the fast manifold in such a way that

K@) m=0, gexnit, (3.8)

Then the system is also strictly dissipative for any € > 0 and there exists 6 > 0
such that for any ¢ € R, any & € L1, and any € > 0, the eigenvalues \ €
S(¢, &, €) of the linearized normal form after Fourier transform (3.7) are such
that R(\) < —4[¢/(1+ [¢]?).

Proof. The proof is identical to the proofs presented in [34, 47] using the com-
patibility between the compensating matrix and the fast manifold K7 =0. O

Remark 3.8. When the compensating matrices are not compatible with the
fast manifold and (3.8) does not hold, one may obtain estimates in the form
R(A) < —6[C[2/ (2 +1+[¢*) that degenerate as e — 0.
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3.4. Fast normal variable

In order to establish a priori estimates for the fast variable 7w it is first
required to have an appropriate governing partial differential equation. In the
situation where Ag and 7 commute, such a partial differential equation may be
obtained by applying the projector 7 to the governing equations in normal form
[29]. Such an equation is derived here in the general situation where the matrix
Ao and the projector 7 do not necessarily commute.

Let 3ai,...,a,, be a basis of the slow manifold or equilibrium space E and
An,+1;---,3an & basis of the fast manifold EJ‘, where 1 < n, < n denotes the
dimension of E. Let the linear operators IIe = R™ +— R" and II, = R" " — R"
be given by their matrices in the canonical bases

He:[gl,...,gne], Hr:[gne+1,.__7an].

The_metric matrices J. and J, of order_ ne and n — n,, respectively are defined
by Jeiy = (@,3;), 1 < i,j < ne, and J35 = (3,,3;), ne +1 < i, j < n. Each
vector v € R" admits a unique decomposition v = vz + vz. where vz € £ and

tzL € Z" and after a little algebra, it is easily shown that the vector J.ITit

represents the coordinates of vz with respect to ay,...,3,, whereas the vector
J.ITtt represents the coordinates of tz1 with respect to 3,41, ..,3n, in such a
way that

vz = [ JeIE v, v = ILJ 10 I, = e JeIIL + 11, 7,11,

where I, denotes the identity tensor in R", and 7 = L J 10, J IO, = 1, and
er)err = annc .

Proposition 3.9. The fast normal variable mw satisfies the following partial
differential equation

A (W)0;(tw) + > AT(W)diw — > B (w)d;0;w

i€D 1,j€D

1+ vl
+ EL(W)T('W = Z M, (w) Oiw 9w, (3.9)
i,J€D
where AF = mmpAom + (I — m)Ag(l — ), AT = wmpA;, BY, = 7maBy;, MJ; =

metric positive definite and the reqularity class of K’OT, K?, Efj, s at least »x — 2

and that of M7; is at least s — 3, as for Ao, A, gij, and M;j, respectively.
Proof. Letting w, = ﬁﬁ’ﬁw and we = Zﬁéw, then w = ILw, + IIewe and

aw = ILw,. Applying both operators II* and II¢ to (3.3), with Q in the form
(3.4), using w = IL,w, + Ilewe, and eliminating the time derivative dywe with
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linear combinations, the following governing equations for w, is first obtained

— — — — — — — 11— ——
HfﬂAAOHratWr +Z HfﬂAAZaZW — ZHfTFABZ‘jaZ‘ajW + EHfLHrWr =

i€D 4,j€D

Z HﬁTFA(Mij + aWBZ])(%W 8jw,

i,jeD
AoE with 2 = 75, N(my) = AoE, R(my) = T Multiplying this equation by
1.7, using w, = J,Otaw, 7 = ILJ,II¢, L = nl7, and adding for convenience
the matrix (I — 7)Ag(I — 7) to the resulting matrix in front of the time deriva-
tive then yields (3.9). One may then establish that 77, = m,, mam = 7, and
that WAKO = KO — Koﬁe(ﬁéxoﬁe)ilﬁgxo = K()TrtA. The matrix WAKO is then
symmetric positive semi-definite since m,Ag = T3Ag = mAAoTh with nullspace
N(mpAg) = N(7h) = R(my)* = E. This now implies that 77,Ag7 is sym-
metric positive semi-definite with the same nullspace since © = 7!, 77, = 74,
and mhm = mhrt = (7m,)t = 74. The matrix AJ is thus positive definite since
nmaAom has nullspace E and (I — m)Ag(I — 7) has nullspace Z". The regular-
ity properties of the system coefficients are then direct consequences of their
expressions. |

3.5. Entropic form for multicomponent flows

In this section the natural entropic symmetrized form for the system of par-
tial differential equations modeling multicomponent reative fluids is evaluated
[21, 22, 18]. The mathematical entropy o = —S/R is used where the 1/R factor
is introduced for convenience. For this particular system of partial differential
equations with n = n+d+1, the velocity components of all quantities in R?+4+1
are denoted as vectors of R? and the corresponding partitioning is also used for
matrices.

There is also a uniqueness theorem for mathematical entropies that are inde-
pendent of transport coefficients [27]. This result strengthen the representation
theorem of normal variable as well as the importance of the following natural
entropic symmetrized form.

Theorem 3.10. Assume that (H1)-(Hs) hold. Then the function 0 = —S/R
is a mathematical entropy for the system (2.1)—(2.3) governing multicomponent
fluids with the entropic variable

t
v=(9,0)' (91— 30l gn = 3ol 0, -1) (3.10)

1
~ RT
The map u +— v is a C*~1 diffeomorphism from O, onto O, = R"xR%x (—0c0,0).
The system written in term of the entropic variable v reads

Aoc()Av + > Ai(v)dv — > (B (v)dsv) + %E(v) v=0, (3.11)

i€D 4,j€D
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with ,KO = dyu, ,KZ = A0, gij = By;0.u, and Q=0Q-= ftv, and is of the

symmetric form. The matrix Ag is given by
r Sym
Ao = | voI'l (PL T)v@wv + pRTI , (3.12)
(Tetht (T, Mot + pRTY! Y

where T is the diagonal matriz T = diag(mip1, ..., Mnpn), ¢ the vector ¢ =
(efl,....et)t where ef! = e; + L|v|?, and T = (De™, &) + pRT|v|? + pRT?c,.

'y “n 7
Since Ag is symmetric, only its left lower triangular part is given with “Sym”
written in the upper triangular part. Denoting by € = (&1,...,&q4)t an arbitrary
vector of R? and letting A = Y iep SiAi and W =h+ %|v|2, then

0 Sym
A=vEAy+RT | €20  pl€®v + vRE) . (3.13)
v-€ot v-€pvt +phtle"  2phtlv-¢
The decomposition gij = EDA(;Z-]- + «kRT §fj +nRT EZ holds with

D Sym
gox _ BT

p

04, 0Og.a
(DR)! 010  ApT + (Dh, k)

: (3.14)

where D is the matriz of size n with components prp Dy and k is the vector of
size n with components h; = h; + %%Z Moreover, denoting by &€ = (&1,...,&q)"

and ¢ = (C1,...,Cq)t arbitrary vectors of R, the matrices Efj and EBZ, i, €D,
are given by
On,n On,d On,l
SO GGBE = | Oun €3¢ wE |, (3.15)
i,J€ED Ol,n ’U'£ Ct 'U'£'U'C
On,n On,d On,l
STGGBY = | 0un ECTH(RE-ZERC ECutvEl— FuCE
LieP O1n £CV' +0¢E — FvEl ECvv+ TGPuEud
(3.16)

The equilibrium manifold or slow manifold E is of dimension ne = n, +d+ 1
and given by
E=M1AxR!xR. (3.17)

The linear space E is spanned by the vectors a; = (a;,0,0)t, I € A, and the
vectors ap,+1 = fnt1, for 1 <1 < d+ 1, where f;, 1 < i < n, denotes the
basis vectors of R". The fast manifold E+ is spanned by the vectors agrqi1 =
(v,0,0)t, k € &\, where v, = Mvy, is the mass weighted formation reaction
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vector of the kth species for k € S\A = {n.+1,...,n}. The source term Q is
in quasilinear form with Q(v) = —L(v)v and

i€ER

with p; = (74,0,0)", i € R, where KZ- is the rescaled constant as described in
(2.24) and the nullspace of L is the equilibrium manifold N(L) = E.

Sketch of the proof. The variable v and the matrices KO, Ki, i € D, and
Bij, 7,j € D, are evaluated by using systematically the natural variable z.
More specifically, the following expressions are easily derived vt = 8,0(d,u)~1,
AO = 0,u(0,v) 1, A= 9,F;(0,v)~1, and Eij = éij (0,v)~1, where F; denotes the
convective flux in the ith direction and @ij, 1,7 € D, the unique matrices such
that F{iss = — >jep @ijajz, i € D. All derivatives with respect to z are easily
evaluated and subsequently—after lengthy calculations—the variable v and the
afore-mentioned matrices. B B
The symmetry properties then follow and using the expressions of Ag and B;;,
1,7 € D, it is next established that ;&0 is positive definite and B is positive semi-
definite [21, 22, 18, 26]. Finally, the properties of the source term Q(v) = Q(u)
are directly obtained from those of Mw analyzed in Section 2 O

8.6. Normal form for multicomponent flows

The symmetric system (3.11) may be rewritten in normal form, that is, in the
form of a symmetric hyperbolic-parabolic composite system, where hyperbolic
and parabolic variables are split [48, 34, 47, 35, 36, 21, 22, 23, 57]. It has been
established in previous work that the nullspace invariance property holds for
multicomponent flows [22, 18].

Lemma 3.11. The nullspace of the matriz g(v,{) =) ijep E~3ij(v)£i§j is in-

dependent of v € O, and & € X1 and given by N(B) = Span{(1,0,0)"} and
Bij(v)N(B) =0, 14,5 €D, forveO,.

From Theorem 3.5, all normal forms of the system (3.2) are obtained with
variables w in the form

_ — 18\ ¢
W:(J:I(p)a]:ll<g2Rj{,]15"'agRj;gla%a ﬁ)) ’ (319)

where F; and F;; are diffeomorphism of R and Rt Incidentally, the number
of hyperbolic variables for fluid flows may sometimes differ from unity as for
instance with ambipolar plasmas in three dimensions where it is seven and
includes density, electric field, and magnetic field [20]. In the following theorem,
the normal form corresponding to a normal variable especially convenient for
investigating chemical equilibrium fluids is evaluated.
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Theorem 3.12. Assume that (H1)-(Hs) hold and consider the normal variable

g2—91 In—91 t t
— (p, , ,T) — (p sy — s im — 1, 0, T, (3.20
w (p T Y (P 2 = pas s i — i1, 0, )7, (3.20)

and the diffeomorphism v — w from O, onto the open set O, = (0,00) X
R x R? x (0,00). Then the system of partial differential equations in normal
form may be written

6W—|—ZA )Oiw — Z 9;(B d;w) + 1E(W)W:6(W,6IW), (3.21)

€
i€D i,j€D

where the matriz Ag is given by

A Ag' Sym
0= — )
Opta1 Ag™
with _
) AlLI Sym
ALL AL
Ao = ('L 1) Ao = | an—1 grl
al 0 T

The quadratic residual Q = — 3, icp 0i(0,v)! (0, W) B;;0;w may be written @ =
0,...,0,Qu, Q)" with

o7
o= sl -> RTQaU] i 2ZRT3 (3.22)

€D 1,J€D €D

ol
\

The matriz A™" is the square matriz of dimension n — 1 with coefficients

('), (I,

KII,II — T —
kl kl <F]I; ]I> )

2<k,0<n,
a is the vector of dimension n — 1 with a,RT? = (Te™); — (P'T), (D™, T) /(I'T, 1),
2<1<mn,and Y is given by

T_ (Tet, ety + pRT?c, (Tet! )2
B R2T*4 R2T4(I'TL, 1)’

where T = (1,...,1)", &' = (ef,... el))!, and T’ = diag(mip1, ..., mnpn). De-

rn

noting by & = (£1,...,&9)t an arbitrary vector of R, the matrices A;, i € D,
are gien by

0 Sym
On-1,1 Op—1,n-1

2GR =R et i (F]I n| ¢ £oy  Oaa ’

€D

0 0p-11 2£° 0
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where y is the vector of dimension n—1 with components y, = (I'll, M)y, — (I'T),,
2 <1<n, and z = ((TT, WAt — (Te, T)) /RT2.

The matrices Bi; have the structure B;; = 6;;BP* + %Efj + %E?j and
denoting by € = (&1,...,&4)" and ¢ = (C1, ..., Ca)t arbitrary vectors of RY, then

On,n On,d On,l
Z &¢BY = | Oam €8¢ 041 |, (3.23)
»I€D Ol,n Ol,d 0
On,n Onyd On,l
> &GGBYL = | Oan &CT+CRE— 2£8C Oan |, (3.24)
»ieD 01,n 01,4 0
0 Sym
0 Du-1n-1
_ RT n N
DA
=5 |0 Oaa Od.a ; (3.25)
ﬁ t
0 (@R);Z,l Or.a /\pTI’%J;(lﬂﬁ,@

where Dy_1 -1 is the matriz of size n — 1 with coefficients (pxpiDri)2<k,i<n
and (Dh),—1 are the n — 1 last components of Dh.

The equilibrium manifold with respect to the normal variable is the linear
space E spanned by the vectors a; = fi, 3, = (a; — ay1,0,0), for 1 € A\{1} =
{2,...,na }, and 3, 41 = fryr, for 1 <1< d+1, where f;, 1 <i <n, denote the
basis vectors of R". The fast manifold T s spanned by the vectors agiq+1 =
(o), — b1xe1,0,0)!, forl € S\™A = {n,+1,...,n} where e;, 1 < i < n denote
the basis vectors of R™. The source term Q for the normal form given by

t
Q= (0,7’1’@@2, ce ,mn@n,0,0) 5

is in quasilinear form Q(w) = —L(w)w with
L=>" Aipjey), (3.26)
1ER
where p; = (7/,0,0)!, ¥/ = (0,mava, ..., Myyi,0,0), and A; is the rescaled

constant (2.24). The nullspace of L is the equilibrium manifold N(L) = E and

L = Lw = 7L where 7 denoted the orthogonal projector onto "

Sketch of the proof. The matrices Ag, A;, i € D, and Eij, 1,7 € D, are again
evaluated by using the natural variable z. We may write for instance that
Ao = (0,2)* (0,v)t O,u O,z with similar expressions for A;, i € D, and B,
i,j € D, using d,F; and By, i,j € D.

An interesting variant is to use the auxiliary variables u’ = Pfuand v/ = P~y
where P € R™" is obtained from the identity matrix by replacing the first column
vector fi by (I,0,0)" = >, g fi that spans N(B). The dissipation matrices
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corresponding to these auxiliary variables have nonzero coefficients only in the
lower right block of size n + d. The normal forms is then obtained from the v’
conservation equation with 9,,v' evaluated as 9,v' = 9,v/(9,w) 1.

Finally the properties of the source term Q = (8Wv)t§~2 are easily obtained
from that of Q. O

Strict parabolic dissipativity of the system in normal form is is now in-
vestigated. It is indeed possible to find a compensating matrix in the form
K(&) =) ep Kj& with € € »4=1 and such that K(&)r = 0 for any w € O,

Proposition 3.13. Letw € O,, be fized, 6 > 0, and K (&) be the matrixz defined
for € € £I71 by

0 01,n—1 ¢! 0
K(é) _ Zngj -5 On—l,l On—l,n—l On—l,d On—l,l (Ko(W))il.

, —£ Odn—1  Oga  Og:
<P 0 Oin  Oig O

Then for sufficiently small positive §, the map & — K(€) is a compensating
function, that is, the product K (&§)Ao(w) is skew-symmetric, K(—€) = —K(§)
and the matriz K(&€)A(w, &) + B(w, §) is positive definite for & € L4™1. Fur-
thermore, the compatibility relation between the compensating matriz K (€) and
the fast manifold K (&) = 0 holds.

Proof. 1t is obvious by construction that the products K jKQ(W), 7 € D, are
skew-symmetric. On the other hand, a direct calculation yields that

- 1€ O(€?) o(gl?) O(&P)

~ o On—11 On—in—1 Op—1,a On—11

KOAWO =01 |0(eP) 0anr O(f) 0
0 01,n—1 01,4 0

Using now the property that B™"(w, £) = > ijeD EIJ?”(W){Z-@ is positive definite
for £ € ¥97! and since RT/(I', T) > 0 and [£|> = 1 for £ € X971 one obtains
that K (£)A(w, &) + B(w, &) is positive definite for & € X471 and § sufficiently
small. The relation K(€)m = 0 is next established by first noting that the
equilibrium manifold £ is included in the linear space spanned by fa, ..., f,. For
any 2 < ¢ < n, it is then checked that the vector (KO(W))_lfi is in the space
spanned by fo,...,f, and f, with n = n+d + 1. All these base vectors are then
in the nullspace of K (&)Ao(w) = §(f1®fe — fe®f1) where fe = Y, .p &fnyr. O

3.7. Ozone normal variable

We illustrate the previous developments about normal forms associated with
arbitrary complex mixtures and chemical reactions mechanisms by considering
the special situation of ozone decomposition presented in Section 2.7.
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In this situation, the normal variable w € R*+¢ is found in the form

W = (pa/j/Q — M1, 13 _MlavaT)ta

and is of dimension n = 4 + d. The total mass density p also coincides with the
oxygen atom mass dentisy p; = p since there is only one atom. The equilibrium
manifold with respect to the normal variable £ is of dimension n, = 2 + d and
is spanned by the vectors

a; = fq, §1+l:f3+l; 1<I<d+1,

where f;, 1 < i < 4+ d, denote here the basis vectors of R*+4. Note that the
set A\{1} = 0 is empty in our situation since there is only one atom. The fast

manifold E" is of dimension n, = 2 and spanned by the renormalized vectors
3344 =(0,1,0,0,0)" =f2,  d1q=(0,0,1,0,0)" =,
so that _ B
I, = [f1,fs + 1,...,f54q, fatdl, I, = [f2, f3],

and the metric matrices reduce to J, = Io4+4 and J, = Iy. The fast variable
then takes the simple form

ﬂ-WZ(OaNQ_IU/Ia,uB_MlaOaO)ta jrﬁfW: (/1/2_:“1),
H3 — K1
and of course vanish at equilibrium where g becomes proportional to a; =
(1,1,1)%. On the other hand, the slow variable takes the simple form
We = jeﬁéw = (p’v’T)t’

and the limiting normal variable reads we = (pe, Ve, To)!. The limiting fluid
obtained when ¢ — 0 is then a compressible fluid with the chemical equilibrium
thermodynamics investigated in Section 2.6.

_ Fir_lally, the matrix L only ha_s nONZEro entries Eij for 2 < 4,7 < 3 since
L = L7 and the reduced matrix L"" = IItL IT, may be written

= o( —23)®(—23) +9/(—43)®( —43) +91/(I)2)®( 52)

where 6, 6’,0" are positive so that L"" is positive definite and L positive definite
over Span{fy,fs}.

4. Equations at equilibrium

Projectors associated with the slow and fast variables are first discussed as
well as reduced equilibrium equations in a general setting. The special situation
of chemical equilibrium flows is then considered.
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4.1. Reduced systems at equilibrium

The proper projectors associated with the slow manifold £ need to be intro-
duced in order derive the equilibrium limit equations. Proceeding as in Sec-
tion 3.4, let aj,...,an, denotes a basis of the slow manifold or equilibrium
space £ and an +1,.-.,an & basis of the fast manifold £+, The linear oper-
ators Il = R" — R" and II, = R"™"e — R" are defined by their matrices in
the canonical bases

Ile = [a1, ..., an.] IT, = [an 41 - - -, an] -

The metric matrices Je and J, of order n, and n—n,, respectively, are defined by
jejlj = (a;,a;), 1 <4,j <ne and jrzi = (a;,a;), ne + 1 <4, j < n. Each vector
t € R" admits a unique decomposition t = tz+t,z1 where vtz = HejeHZ t € Eand
tyr = ILJI € 5 and T, = I JeITE + L, J01E, JLILLMl, = 1, , J 110, =1, .
and 7 = I, J,I1! where 7 is the orthogonal projector onto E*.

It is assumed that there exists u* with Q(u*) = 0 and the corresponding
entropic variable is denoted by v*. The state v* is in the equilibrium manifold
O, N E so that O, N E # (. Tt is then possible to parametrize the equilibrium
manifold by its projection on the slow manifold denoted by u, as shown in the
following lemma [28].

Proposition 4.1. There exists a conver domain O, containing uf = ITLu*
such that for any u, € O, there exists a unique ueq € e(’)u such that Q(ueq) = 0
and ue =TT ueq. The map ue — Ueq is a C* diffeomorphism from O, onto an
open set O C Oy containing u* and its differential satisfies ‘

9,2 (Ueq) Oy tieq = 0, IT% Oy, Ueq = I, - (4.1)

Denoting by veq = V(ueq) the symmetric variable associated with ueq, then the
Map Ue — Veq 5 at least C* ! and Veq € E.

Proof. The proof is only sketched and the reader is referred to [28] for more
details. The map

D = (u,ue)’ — (IFQ(u), IMiu — ue)t,

from O, x I O, to R" is C*, ®(u*,u?) = 0, and its partial differential with
respect to u is invertible at (u*, u?)’. Denoting (9,Q)* = 9,Q(u*), the two condi-
tions IT(9,Q2)*t = 0 and ITit = 0 indeed imply that v = 0. This may be checked
by writing v = (d,u)*t’ which yields II(8,2)*t" = 0 and thus v/ €  since
T(8.Q)* = (8,2)*t' and N((8,Q)*) = £, and then (v/,t) = ((Qu)*¢,¢') =0
since ITiv = 0 and finally v/ = 0 = v since (O,u)* is positive definite. From the im-
plicit function theorem, one may parametrize locally the equilibrium manifold in
the form (ueq(u,), u.) with u, € Oy, and the corresponding map u, — ueq(u,) is
C*. The proof is then complete observing that Q = 0 if and only if IT!Q = 0 and
differentiating Q(ueq(ue)) = 0 and Miucq(ue)) = ue in order to obtain (4.1). O
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The limiting governing equations for the slow variable u. as ¢ — 0 may
then be obtained formally by applying the projection operator II¢ to the gov-
erning equations in conservative form, letting u, = IIfu, and superimposing the
equilibrium condition u = ueq(ue). These equations are obtained in the form

O,ue + ZA?(ue)aiue - Z 95 (B§; (ue)djuc) =0, (4.2)

i€D i,j€D

where Af(ue) = TIEA; (Ueq(Ue)) Bu,Ueq, BS;(ue) = TIEBy;(Ueq(Uc)) Oy, Ueq, and ueq
is the unique equilibrium point obtained in Proposition 4.1. The convective
terms are in conservative form with AS(ue) = 0y F$(ue) and the convective
fluxes at equilibrium read F$(ue) = ITLF; (ueq(ue)), @ € D. From the properties
of A;, i € D and By, 4,5 € D, and since u + ueq has regularity C*, we
deduce that A7 and Bj; are C*=1 over O,, and the natural initial condition
for ue is uep = IMfug. Note that the equilibrium system (4.2) is equivalent to
a one term Chapman-Enskog expansion of the conservative variable u in the
fast chemistry limit [40, 9, 28, 29]. Our aim in this work is to establish that
the difference u — ITiu between the equilibrium solution u that satisfies (4.2)
and the projection IT:u of the out of equilibrium solution u that satisfies (3.1)
is O(e). This will rigorously justify (4.2) and will also yield an error estimate.

More accurate equations at equilibrium may also be obtained by using a two
term Chapman-Enskog expansion [40, 9, 28, 29] instead of a one term expansion
(4.2). These higher order equations obtained with two term Chapman-Enskog
expansions are required in particular when dissipative terms are of first order
with respect to € but lay out of the scope of the present work. Symmetrizability
of the system of partial differential equation at equilibrium has been established
in [28].

Proposition 4.2. The C* map u. — 0c(ue) defined over the open convex
domain O,_ by
oe(Ue) = o(ueq(ue)), ue € 0, , (4.3)

is a mathematical entropy for the system of partial differential equations (4.2).
Denoting by veq = V(Ueq) the symmetrizing variable corresponding to ueq, the
corresponding entropic variable ve is given by

t
Ve = u7eHe Veq;

and such that veq = Ileve. The map ue — Ve s a C*~ 1 diffeomorphism for the
open set O, onto an open set O, and the symmetrized equations read

Ag@tve + Z z\?(ve)aive — Z ai(é% (Ve)Ojve) =0, (4.4)

i€D i,j€D

where Ay = dy ue = MEAGILe, AY = ASD, ue = AL, and B = B0y ue =
Hégijﬂe have reqularity at least s — 2.
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In practical applications, for suitable choices of normal variables w, the re-
sulting equilibrium manifold Z in terms of the normal variable—that may gen-
erally be obtained from £~ = (OwV)PEL or E = (Oyv) "1 E—is also a fived linear
space. Appropriate projections of w then often coincide with a normal variable
w, of the reduced system. This will be indeed the case in the special situation of
chemical equilibrium flows investigated in the next section. It is also often found
in practical applications that N(B) C E so that the source terms generally only
concern the parabolic variables.

4.2. Application to multicomponent flows

In the particular situation of multicomponent flows, the slow manifold £ =
M~1A x R x R is of dimension n, = n, + d+ 1 and is spanned by the vectors
a, = (0,,0,0)%, 1 € A, and a4y = fuyy, for 1 < 1 < d+ 1. The vectors
a =my M ta;, | € A, are associated with atom or elemental decomposition per
unit mass and f;, 1 <4 < n, denotes the basis vectors of R". On the other hand,
the fast manifold £ is spanned by the vectors ag g1 = (0%,0,0)!, k € G\A =
{na+1,...,n}, where vy, k € &\2, denotes the mass weighted formation
reaction vectors. The corresponding linear operators Ile = [a1,...,a,.] and
IT, = [an.41,.-.,2an] are introduced as in Section 4.1 as well as the matrices
Je and J, so that I, = I JIT. + IL 710, 7@ = ILJ IO, JeIidle = I, , and
T, =T, ..

The slow conservative variable then reads [12, 18]

t

Ue = (He)tu = (ﬁla cee ﬁnaapevea Eo + %pelve|2) )
and its components are associated with atom mass densities p; = (a;, 0o) , [ € 2,
momentum p.v,, and total energy &, + %pe|ve|2. From Lemma 2.7, for given in-
ternal energy & and atom densities g, there exists a unique equilibrium state g
and equilibrium temperature T,. Equivalently, from Proposition 2.5, the equi-
librium state o.(0,Te) = (pel(@ T),..., Pen(0; Te))t is the unique equilibrium
species densities for given atom densities 0 = (p1,...,0n,)" and temperature
T.. The internal energy at chemical equilibrium per unit volume may be writ-
ten E(0,Te) = E(0e(0,Te), Te) and similarly, the entropy at equilibrium S, per
unit volume is given by S.(9,7.) = S(0.(0,Te),Te) and thermodynamics at
chemical equilibrium has been investigated in Lemma 2.6 and Lemma 2.7 of
Section 2.6.
The system at equilibrium may be rewritten in quasilinear form

Opue + ZA?(ue)aiue - Z@i(B%(ue)ajue) =0, (4.5)

i€D 4,j€D

where AS(ue) = HZAi(ueq(ue)) Ducleq and BS; (ue) = HéBij(ueq(ue)) Oy, Ueq for
i, € D. The formulation is conservative with A = 0, F;, i € D, where

F¢(ue) = (TIe)'Fi(ueq(uc)), i € D, denote the convective fluxes at equilibrium.
Letting ne = n,+d+1, then ue, € R" and the natural variable z, € R" is given
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by z. = (/71, ey Py Ves Te)t. The map z, — u, is a C* diffeomorphism from
the open set O,, = (0,00)™ xR%x (0, 00) onto an open set O, keeping in mind
that the specific heat at chemical equilibrium coy = 0, Ec(0,Te)/pe is positive
from Lemma 2.6. For multicomponent flows, the open set O,  can be fully
characterized and shown to be convex under stronger assumptions associated
with stable versions of the atomic elements and the associated heat of reactions
at zero temperature [18]. The natural initial condition for u, also reads uep =
Ifup and when ug is an equilibrium state then ug = ueq(Ueo)-

The governing equations at chemical equilibrium (4.5) are notably used in
practical applications like astronautics, chemical engineering and combustion
[1, 42, 31, 52, 24] and may also be obtained from a kinetic framework [12].
These equations lead in particular to an important reduction of the number of
dependent variables from n + d + 1 down to n, + d + 1 and also suppress the
stiffness associated with chemical sources. These models are valid when the
chemical characteristic times are shorter than the fluid mechanic characteristic
times.

The natural entropic symmetrized form is now evaluated as well as a normal
form for the system of partial differential equations (4.5) modeling fluids at
chemical equilibrium [18, 28]. The symmetric form may also be related to that
out of chemical equilibrium and in the following theorem veq is the entropic
symmetric variable associated with ueq.

Theorem 4.3. Assume that (H1)-(Hs) hold. Then the function oo, = —Se/R
is a mathematical entropy for the system (4.5) and the corresponding entropic
variable is

1
" RT,

t
Ve (’yl—%|ve|2...,7na—%|ve|2, Ve, —1) , (4.6)
where 7y, 1 € A, are uniquely defined by (gle, cee gne)t = > eV @ and fur-
thermore Veq = leve and ve = Jelliveq. The map ue — Ve is a C* 1 diffeomor-
phism from O, onto the open set O,, = {v € R"; v, 1441 < 0}. The system
written in terms of the entropic variable vo is of the symmetric form

A (Ve)Dve + > AS(Ve)Dive — > 0;(BS(ve)Djve) = 0, (4.7)
i€D i,j€D
where Ay = O,ue = ML AL, AY = AfO,u. = ILALL, BY = B, ue =
I éine, have at least regularity » — 2.

The nullspace invariance property for the symmetrized system (4.7) modeling
fluids at chemical equilibrium has been established with N (ge) = R(1,,0,0,)*
where T, € R™ and I, = (1,...,1)" [18]. A normal variable w, similar to (3.20)
is selected for convenience

Y2~ Tna — N
RT. '~ RIT,

t
We = (Pe7 ; Ve, Te) ) (48)
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and the commutative diagram of changes of variables at equilibrium is presented
in Figure 1 where double arrows denote diffeomorphisms and where linear maps
are mentioned.

Ue > Ve > W,

A

Figure 1: Schematic of the changes of variables at equilibrium with linear maps indicated.

More specifically, for any change of variable a — b, denoting by ¢ the
diffeomorphism with b = ¢,p(a) from the corresponding open sets Oy +— O,
then v, = ¢UCHVC(UE); We = ¢VC>—>WC(VE)7 Ueq = (bucwucq(ue)v Veq = ¢u»—>v(ueq)a
and Weq = @visw(Veq). It is then remarkable that many maps are linear with
Ue = Héueqv Ve = jeHéVeqa We = jeHéWeqa Veq = IIeve, and Weq = TTewe.
The corresponding equations in normal form are investigated in the following
theorem [18].

Theorem 4.4. Assume that (H1)-(Hs) hold. Then the map ve — we is a C*~1
diffeomorphism from O, onto the open set O, = (0,00)xR™ 1 xR¥x (0, 00).
The system in the we variable is of the normal form

AG(we)dwe + Y AT (We)Diwe — Y 0i (B (We)Ojwe) = Qe(We, D,we),  (4.9)

1€D i,JED

where A = (0, Ve)* AsQ,, Ve, A(D,, ve)tﬂea Ve, B = (0, ve) $i OwNe, have
at least reqularity » — 2 and the term Qe 1is quadmtzc in the gmdzents Qe =
=i jep 0i(OyVe) (D, we )" ij Ojwe. The quadratic residual may be written
Qe = ii,jGD M Oiwe0;W, with coefficients Mj; that have at least reqularity s—3
and only involves the parabolic components Qe = (0, (Qe)”)t. The system coeffi-
cients are also given by A§(we) = TTEAQ(TTewe ) TTe, AS(We) = TTEA; (TTew, )TTe, 4 €
D, BS (we) = B, (Tlewe)Ie, 4,7 € D, and Qe(We, IyWe) = IEQ(Weq, OyWeq) -

Proof. The equations at equilibrium in normal form are obtained through the
usual change of variable v, = ve(we) in (4.7) after multiplication on the left
by (Ow.Ve)!. The relation A = TILAq(TTew,)II, is next derived by using the
commutative diagram of Figure 1. From this diagram, it is indeed obtained that
Vo (We) = JeITiv(Ilew,) and by differentiation one gets that Oy Ve = NAL MU
Since v(w,) stays on the manifold £ we also have OyvIl, = Il¢JeIT%0VIL,.

Further using the expression of Ag, a direct evaluation of A = (4, ve)tAoﬁ Ve
then yields that A§ = TT¢Aq(ITew, )Tl and the relations expressing A¢, B¢, and

Z] ?
Qe are obtained in a similar way. O
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_ From the general expression of dissipation matrices at chemical equilibrium
B, and E%, the definition of atom vectors, and the dissipation matrices out of
equilibrium associated with diffusive processes (3.14) and (3.25), we deduce that
cross effects between the atom concentrations and energy also arise at chemical
equilibrium. It is now established that the system in normal form at chemical
equilibrium is strictly dissipative and that it is possible to find a compensating

matrix in the form K*°(§) = > ,.p K5¢; with § € »d-1,

Proposition 4.5. Let we, € O, be fired and K°(§) be the matriz defined for
Eexnd1 py

o & o] _ »
K°(€) = Z §KS =06 =€ O0aa 041| (A5(we)) .
JED 0 Oiq O

Then for sufficiently small positive 6, the map & — K°(&) is a compensating
function for the system of partial differential equations in normal form at equilib-
rium, that is, the product K°(&)A§(we) is skew-symmetric, K¢(—¢&) = —K°(€),
and the matriz K°(€)A®(w,, &) +B°(we, &) is positive definite for & € X9~ where

§e(we,£) = Zi,jeD ij (We)&i&;-
Proof. The proof is similar to that of the nonequilibrium case. O

Denoting by w a solution of the out of equilibrium system (3.21) and by w,
a solution of the limiting equilibrium system (4.9), one of the goal of this paper
is to establish that w is close to Ilew. when € is small on any fixed time interval
of arbitrary size. Equivalently, according to the diagram of Figure 1, one may
establish that the equilibrium projection J.IItw of the normal variable w out of
chemical equilibrium is close to the normal variable w, at chemical equilibrium.
Such an asymptotic analysis first requires to establish a global existence theorem
out of equilibrium uniformly with respect to the relaxation parameter € and this
is the object of the next section.

5. Hyperbolic-parabolic systems with stiff source terms

Existence theorems for symmetric hyperbolic-parabolic systems of partial
differential equations are of fundamental importance in mathematical physics
[30, 16, 48, 34, 35, 40, 36, 9, 21, 22, 23, 18, 10, 58, 13, 56, 37, 20, 4, 19, 29, 44,
45, 61]. Global existence theorems for hyperbolic-parabolic systems of partial
differential equations in normal form with stiff sources are investigated in this
section.
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5.1. Structural assumptions

An abstract hyperbolic-parabolic system (3.1) with a mathematical entropy
as in Definition 3.1, and such that the symmetrized form (3.2) satisfies the
nullspace invariance property (N), is considered, as in Section 3. The system
is written using a normal variable w € R" as in Theorem 3.5 and assuming a
quasilinear stiff source term

_ _ _ 1_
Ag(w)o,w +> A;(w)o;w— 0; (Bii(w)o;w) + —L(w)w = M, (w)O;wd;w,
(0043 ()0 3504 (Bi )0y + LTl = 37 5w,
(5.1)
where w = (w,w,)t € O, C R", w, € R™ denotes the hyperbolic compo-
nents, w; € R™ the parabolic components, and € € (0,1] is the relaxation
parameter. The matrix Ag(w) € R™" is block diagonal and symmetric posi-
tive definite, the matrices A;(w) € R™", i € D, are symmetric, the matrices
Ej (w) € R™" have non zero component only in the Elj’n € R™™ Jower block,

§§j(w) = Bji(w) for i,j € D, are such that B™"(w, &) = Zi,jGD E?j’”(w)«fi@
is positive definite for w € O,, and ¢ € X9°'. The matrix L(w) € R™"
is positive semi-definite with a fixed nullspace N(L(w)) = Z C R". The
quadratic residual Q = 37, ;cp Mij(w)O;wd;w € R" may also be written Q =
=2 ep 0i(0,V)" (0,w)! B;j0;w and the third order tensors M;; € R™™" only

involve parabolic components M;;(w)d;wO;jw = (0, M;IJ?H’H(W)&WHQJ-WH)t. Ac-
cording to Theorem 3.5 and Definition 3.4 the coefficients of (5.1) have at least
regularity s — 2 and the coefficients M;;, 7, € D, of Q have at least regularity
» — 3. The regularity class s is assumed to be as large as required by the theo-
rems established in Section 5 and more specifically such that »—3 > [+1 > [p+2
where [y = [d/2] + 1.

Denoting by u and v the conservative and entropic variables associated with
w, using the diffeomorphisms w — u and w — v, then u satisfies (3.1) and
v satisfies (3.2) that may be used for convenience along with (5.1). For such
systems, a governing equation (3.9) for the fast variable 7w € R" also holds as
established in Proposition 3.9 where 7 denotes the orthogonal projector on the
fast manifold . Only the situation of well prepared initial data is considered
in this work, that is, the initial condition w, is assumed to be close to the
equilibrium manifold ‘E in such a way that mw is small.

Let u* € R", v* € R" and w* € R" denote a constant equilibrium state
in the u, v and w variables respectively, so that v € O, N E, w* € O, N E
and mw* = 0. The system of partial differential equations in normal form is
assumed to be strictly parabolic dissipative at w* with a compensating matrix
K € R™", compatible with the fast manifold, that is such that K7 = 0. For the
purpose of simplicity, the compensating matrix is assumed to be in the form K =
ZjeD K ;& where K; is a constant matrix, as established in Proposition 3.13
in the situation of nonequilibrium fluids. The norm in the Sobolev space H' =
H'(R) is denoted by | e |, and otherwise by | e |, in the functional space A.
Similarly, | e | denotes the Euclidean norm in R or R", the Frobenius norm in
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R™" and the FEuclidean distance between any v € O,, and the boundary 00,,
is denoted by dist (1o, 00,,).

If o = (aq,...,aq) € N is a multiindex, 9% denotes the differential operator
o7t --- 09 and |a| the order | = a1 + - -+ + ag. The square of k"' derivatives
of scalar functions ¢, like T', p, or v;, 1 < i < d, is defined by

oo = 3 2oz = 3 @007 (5.2)

lo|=k 1<is,.. ik <d

where |a|!/a! are the multinomial coefficients and similarly for a vector function
like v the norm |0%v|? stands for |9*v|? = di<i<d |0 v;|2. Finally, for any map
¢ : [0,7]xR? s R", where 7 > 0 is positive, ¢(7) denotes the partial map
x = ¢(1,2) for 7 € [0, 7.

5.2. Local existence

The local existence theorem previously established for symmetrized systems
with small second order terms and stiff sources [29] is extended in this paper to
the situation where the matrix Ag(w) and the projector onto the fast manifold
7w do mot necessarily commute. In other words, the slow manifold E or the
fast manifold Z are not assumed to be left invariant by Ag. The essential
difference with the ‘commutative case’ is the derivation of new a priori estimates
for linearized equations. These new estimates, established in Appendix A, are
considerably more intricate to establish than in the ‘commutative case’ where
Ay = Agm leads to the commutation of = with Ag [80‘,K0_ '] and thus to the
relation Ag[0%, Ay ') = 7Aq[0°, Ay '] which drastically simplifies the analysis.
The rest of the proof is essentially similar and is only sketched [29].

Theorem 5.1. Letd > 1,1 > 1o+ 1, lo = [d/2] + 1, be integers and let b > 0.
Let Oy be such that Oy C Oy, a1 such that 0 < a; < dist(@o,an), and
Oy ={w € O;dist(w,0g) < ay }. There exists T > 0 depending on Oy and b,
and independent ¢ € (0,1], such that for any wo with wo € Op, wg —w* € H!,
and

1
wo —w[} + <lmwol?_, <17, (5.3)
there exists a unique local solution w to the system
— — — 1— —
1€D i,j€D i,j€D
(5.4)
x)

with initial condition w(0,2) = wo(x), such that w(t,z) € Oy for (t,x) €

[0, 7] xR?, and

w, —w; € C°([0, 7], H") nC*([o, 7], H'71),
w, —wj € C0([0, 7], HY) nC' ([0, 7], H'=2) n L*((0,7), H'*1).
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Moreover, there exists cijoc > 0 only depending on Oy and b such that

1 . 17
sup (jwir) —w' i+ (D) + [ fwa(r) = wilfy dr o+ ¢ [ o) ar
0<7<7 € 0 € Jo
1 T 2 T 2 2 *|2 1 2
+ A mw(T)[}_y d7 + . |Opw ()] ;—1 d7 < Cioe Iwo — W) + ;|7TW0|171 :
(5.5)

Proof. Solutions to the nonlinear system (5.4) are fixed points w = w of the
linearized equations [34]

Ag(w)d W + > Ai(w)OwW — Y Bij(w)d;05W + %E(W)W =g(w,d,w), (5.6)

i€D 4,j€D

with g(w, d,w) = >, ;cp 0; (Bij(w)) QW=7 sep 0i(OyV)" (0,w)*B;; 9;w. Fixed
points are investigated in the space w € le (Ol,M, Ml) that is defined by
w, —wy € CU([0,7], HY), ow; € CO([0,7], H'™Y), wy —wj € C°([0,7], H) N
L2((0,7), H*1), 0wy € CO([0, 7], H'=2) N L%((0,7), H'™1), w(t,z) € Oy, and

0<r<7

T 1 T
supw(r) = wlf+ [ Tnr) —wilfyy dr + 1 [ el ar < 2%
0 0

T T
© s mw(nlE, + 5 [ Iy dr+ [ 10wl dr < 02
€ o<r<7 € Jo 0

For w in XL ((’)1, M, Ml), the solution w of the linearized equations (5.6) is
estimated with Theorem Appendix A.1 of Appendix A involving the constants
cl(Ol) and CQ(Ol,M). Letting Mb = 2C1(01)b, Mlb = CQ(Ol,Mb)2C1(Ol)b,
assuming that 7 < 1 is small enough such that exp (cQ(Ol, My) (T + Mlbﬁ)) <
2, c3(0y, Mb)?(2c1((’)1))2 < 1, and coMip/T < a1 where ¢y is such that
@[l < col¢li—1, then XL(O1, My, M) is a stable subspace. For any w €
le(Ol,Mb,Mlb), any wo such that wg —w* € H', wg € O, and |wg — w*r|? +
|Two|?_, /e < b?, and any € € (0,1], the solution w to the linearized equations
(5.6) with initial condition wy stays in the same space XL ((91, My, Mlb)-

The sequence of successive approximations {w¥};>q starting at w® = w* is
defined with w*™t = W*, ie., wF™! is obtained as the solution w = wF*+! of
linearized equations with w = w¥ and with the same initial condition wg. Let
d*w denotes the difference §*w = w**? —w¥ for k > 0. For a suitable 7. small
enough, the sequence of approximations {w"} k>0 1s successively estimated over
each interval [j7., (j+1)7] C [0, 7] by induction on j. Uniqueness of the solution
is also established over [0, 7] and gradually over each [j7, (j + 1)7¢] included in
[0, 7].

Consider w and W in XL ((91, My, M1b), and define dw = w—w and dw = w—w

where W and W are the solutions of the corresponding linearized equations with
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initial condition wy. Forming the difference between the linearized equations,
one may obtain that

(W)0,00 + Y Aj(W)Didw — Y Bij(W)0id;6W + — L( )ow = of + dg,

1€D 1,7€D

where 6f and dg are such that g, = 0, |6f|7 | + [6fu]7_; < (co/€)|ow|?_; and
|6gu|?_5 < coldw|?_; where the 1/e factor arises from stiff sources. Defining
N? | (a,a’,0w) for any [a,a’] C [0,7] by

/

~ ~ 1, .
Wy (0,,0%) = swp (IS + ieoR(,) + [ 16 () ar

a<t<a’

1 1o S
b [ mownpydr+ 5 [ mown)ydr+ [ osue,dr

it is obtained, using the difference equations with w = wf*! and w = w¥, and
the linearized estimates over [j7, (j + 1)7], that

. ) . 1 N
Ny (7, (5 + 1)7e, 65 'w) < C2(|5’“+1W(ﬁe)lz{1 + = [rd" (7))

c2

sjtl 1(]7_65 (.7 + 1>7_655kw)7

where ¢}, is independent of j and k keeping in mind that all iterates are in
XL (Ol,Mb,Mlb). Assuming that 7. is small enough such that cj7./e < 1/4
while 7/7. is an integer denoted by N, + 1, using

. 1 L2 . .
|oF w7, + E|7T6k+1w(jn)|l72 < m%_l((j — 1)7‘6,37'6,6k+1w),

letting ﬂé =N, (47, (]+1>7’E,5 w), for 0 < kand 0 < j < N, and ﬂk =0 for

0 < k, yields ﬁkJrl < cQﬁkJrl + 4ﬁj Multiplying by 2¢+1 and letting 'yk = Zkﬁj
for 0 <k and 0 < j < N, we get

. 1 . )
’YIJC.H §C27i+1+%7i’ 0<k 0<j<N,

whﬂe for the first interval v, L'=0for k> 0. It is then easily obtained that

i < I' where the majorizing bounds I'? are defined by ' = M2 | (0, 7, 8°w)
and I = 2coI" "1 + 92 | (i7e, (i + 1)7¢, W) for 1 < i < N.. Moreover, the
differential inequalities implies uniqueness over each interval by induction on j.
Letting for short cc = > ;. T, it has been established that

Ce

N, (0,7,6"w) < =5, 0<k,

[\

where ¢, depends on €, 01, b, and the data but is independent of k. The se-
quence of successive approximation {w*} ;¢ is thus convergent over [0, 7] for the
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norm ;1 (0, 7, wk — W) towards a fixed point wW. Since the sequence {w*};>0
is bounded in the space XL ((91, My, M 1b), it follows from standard functional
analysis arguments using weakly convergent subsequences that w is the unique
solution of the system of partial differential equations with the required regu-
larity. The estimates (5.5) are next established by using that the solution is a
fixed point w = w [29]. O

The estimates obtained in Theorem 5.1 will be sufficient to investigate the
convergence of solutions as € — 0, that is, to investigate a one term Chapman-
Enskog expansion. Only two term Chapman-Enskog expansions would require
stronger time derivative estimates, that is, estimates of J,7w/e assuming that
0wy is close to the equilibrium manifold [29].

5.3. New a priori estimates

A priori estimates of solutions over time intervals of arbitrary length are
now investigated when w remains close to a constant equilibrium state w*. It is
assumed that for some time interval 7

w, —wie CO([0,7], H) nC* ([0,7], H'™Y),  Oyw, € L*((0,7), H™Y), (5.7)
wy —wie CO([0,7], H) nC* ([0,7], H'™?),  Opwy € L?((0,7), H").  (5.8)

Let N;(t) be defined by for 0 <t <t by

N 1
NE(t) = sup (Jw(r) —w [} + = rw(r)[7_, )
0<r<t €

t
+ [0l + 0,walr)F) dr
0
I 2 I 2 ¢ 2
+ - O|7TW(7')|l dr + = 0|7rw(7')|l_1 dr + 0|8tw(7)|l_1 dr. (5.9)

This norm notably differs from that used for non stiff sources by the presence of
the terms involving mw/\/e, mw/e, and dyw, and differ also from 917 used over
bounded time intervals.

Lemma 5.2. Consider the modified entropy & defined over O, by
o(u) =a(u) —a(u*) — dyo(u*) (u — u), ue 0, (5.10)

and the diffeomorphism w — u from Oy, onto Oy. There exists a neighborhood
O ={we Oy, wW—w|<r}ofw" and 0 < éz < 1 such that Oz C O and

Szlw —w*? <7 (u(w)) < (1/65)|w — w*|?, w € Og, (5.11)

Szlmw|? < —0uo(u(w)) Q(u(w)), w € Og, (5.12)
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Proof. The inequality (5.11) is a consequence of the the strict convexity of o over
O, and the smoothness of u — w. On the other hand, since L is positive definite
over fJ‘, there exists § such that d|mw| < |[L7w| = |Q| < ¢|Q| keeping in mind
that Q = (9,,v)'Q2. We may then use the stability inequality §|Q*> < —9,0 9
established from (Ss)-(S7) in Proposition 3.2 of reference [37] and also introduced
in [22].

This stability inequality may be obtained as follows using for convenience
the variable v obtained with the diffeomorphism w ~ v and the corresponding
source term . Denoting by 7 the orthogonal projector onto £ we first note
that for any v in the neighborhood of v* we have v* + (I—7)(v—v*) € £ keeping
in mind that v* € £ from (Ss). Therefore ﬁ(v* + (I —=7)(v—v*)) =0 from (Ss)
so that ﬁ(v) = ﬁ(v) - ﬁ(v* + (I —7)(v—v*)) and

Q(v) /Oavﬁ(v*+(]1fr)(vv*)wfr(vv*)) do (v — v¥).

This relation first implies that §|Q| < |#(v — v*)| in a neighborhood of v*.

In addition, further using v* € £ and Qe 1, we may rewrite —0,0 Q =
—({v—v*,Q(v)) in the form

—0y0 Q= —(7(v—Vv*), /o avﬁ(v* + (I—=7)(v—=v*)+07(v—v*))db (v —v")).

On the other hand, the matrix 8,Q(v*) is symmetric with nullspace Z from (Se)
and it is easily deduced using (S7) with vectors in the form v = v* + av that
a2(v,0,Q(v*)2)+O(a?) < 0 so that letting a — 0 we obtain that d,Q(v*) is neg-
ative semi-definite and thus negative definite over £+. Combining this property
with the above expression of —0,0 Q yields that for v in the neighborhood of

v* we have 6’7?(v —v*) ’2 < —0,0 Q2 and this completes the proof of the stability
inequality. O

Lemma 5.3. Let w with w — w* € C°([0,7], H') such that (5.7)(5.8) hold.
There exists by such that

Ni(t) <by = w(r,2) €05, 0<7<t, 2cR (5.13)
Proof. This property (5.13) is a consequence of the assumption I > . |

Lemma 5.4. Assume that w is a solution of (5.1) over [0, 7] xR¢ with regularity
(5.7)(5.8). Using the diffeomorphism w +— u from O, onto Oy, let us consider
the corresponding modified entropy E(u(w)). Then E(u(w)) satisfy the following
partial differential equation

07+ 0i(ai — af—(9u0)* (Fs = F})) = > 9i((9,0 — 9,0*)B;;05u)

i€D i,jED

_ 1
+ > (B 0w, Oiw) — “0,0Q=0, (514)
i,j€D
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where q; = q; (u(w(t,z)) and (0y0)* = dyo(u*).

Proof. Since w is a solution of the system in normal form, the corresponding
conservative variable u = u(w) obtained from the diffecomorphism w — u is a
solution of the system of equations in conservative form (3.1) and similarly v =
v(w) obtained from w — v is a solution of the system in entropic symmetrized
form (3.2).

In order to derive (5.14) we then multiply the u conservation equation by
9,0 — 0,0 =v' —v*! and evaluate each term of the resulting equation. For the
time derivative term, we note that

(0,0 — 0,0%)0u = 0y (0 — 0™ — D,0*(u — u*)),

whereas for convective terms, using the property of entropy fluxes 9,0 A; = 0,49,
1 € D, we obtain that

Z(@ua — 8ua*)Ai8iu = Z ai (qz — qj — Gua*(Fi — F:))
i€D ieD
The dissipative terms are next integrated by part
> (9,0 = 0,6%)0:(Bi;Oju) =
i,jED

> 0:((0,0 — 0,0)Bi05u) — > 9i(9,0 — 9,0™)Bi;d;u,

i,j€D i,j€D
and the second term may be rewritten
81-(8110 — 8uo*)Bij8ju = <8iv, Bij[?ju> = <81-v, Eijajv>,

since B;;0;u = Eijajv from Eij = B;;0,u. Moreover, using d;v = 9d,,vO;w and
Bi; = (9,v)!B;;0,v as well as the block decomposition of B;;, we obtain that

<§ij8jv, 81v> = <§Z—j8jw, 81W> = <E;I]?Hajwn, aiWH>.

Finally, using the equilibrium condition (9,0*)! € £ and 9,0*Q = 0 completes
the proof of (5.14). O

The aim of this section is to establish estimates with constants independent
of the time interval [0, 7].

Theorem 5.5. Assume that w is a solution of (5.1) over [0,7] x R? with
(5.7)(5.8). There exists contants by < bz and ¢y > 1, independent of € € (0,1]
and independent of T, such that

1
Ni(7) by = N7 < (lwo —w'[; + —|mwol}_ ). (5.15)
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Proof. Tt is sufficient to establish that there exists constants b’ < bg, ¢/, and ¢”
such that N;(t) < b’ implies N2(t) < ¢’ (jwo — w*|7 + L |mwol;_,) +c” NP (t) since
it directly yields (5.15). It is also sufficient to consider smooth solutions of (5.1)
since one may use mollifiers and convolution operators [34]. Since it is assumed
that ' < bz, one may further use the inequalities (5.11) and (5.12).

Step 0. In the following 61 = §(Oz) < 1 denotes a generic small constant only
depending on Oz, ¢; = ¢1(Oz) > 1 a generic large constant only depending
on Oz, and c3 = c2(Oz,b5) > 1 a generic large constant depending on Oz
and bz. The various occurrences of these constants may be distinguished and
the minimum of all §; and the maxima of all ¢; and c; may be taken at the
end of the proof so that only single constants ultimately remain. In order to
alleviate notation in the proof dw denotes for short dw = w — w*. The classical
nonlinear estimate | f(¢)—f(0)|x < collfller o,y (1+ 101 L) [¢lx where k > 1,

¢ € H*NL>, O, is an open ball that contains the range of ¢, f is a C* function
over Oy, and ¢y denotes a generic constant independent of Oz and bz will be used
repeatedly. We will also use the estimates |uv|i < c0|u|%|v|i, where 0 < k <1
and [|@]| e < co|¢|; valid for any [ > Iy = [d/2] + 1. The commutator estimate

ZOS‘Q|§Z‘[80‘,U]U‘O < co|Opul,_q|v|,_, is also valid for any I > lp + 1 where
[0%, u]v = 0% (uv) — ud*v denotes the commutator between 9* and w.

In the proof, we will successively derive a 0th order entropic type estimate, a
{th order entropic type estimate, a(l — 1)th order estimate for the time integral
of hyperbolic terms, a (I — 1)th estimate for the fast variable, a (I — 1)th order
estimates for the time derivative and combine them all in order to establish
Theorem 5.5. The assumptions required for these new estimates are that of
Section 5.1 and we will use in particular the normal form, the smoothness of
the coefficients, the regularity properties (5.7)(5.8), the modified entropy and
the related entropic estimate, the parabolic strict dissipativity, the compensat-
ing matrix compatible with the fast manifold, and the fast variable governing
equation.

Step 1. The zeroth order estimate. The entropic type governing equation
(5.14) is rewritten by using B;; = Bj; + (B;; — B};), where B, = Bj;(w*), and
integrating over z € R? and 7 € [0,] yields

t o ) t
51/ |5W|2d$+z // (BIiI]?H*ajwn,aiwlﬁdszqL—1// |7w|? dzdr
R4 ijep /0 /RY € Jo Jra

¢
<cq / |owo|? da + g / [((B;" — B3 )0 wur, Qiw)| dzdr. (5.16)
Re ijep /0 /R

Noting that the last term in the right hand side is majorized by

t t
3 / B B w2 dr < ¢4 Ni(1) / wa2 dr,
0 0

i,J€D
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since |BII 1 E?JYHHLOo < calw —wr; e < crlw — w1 < c1Ni(t), the zeroth
order estimate is obtained by further using Parseval identity and parabolicity

t t
)
51|5W|(2) + 0y / |8IWH|3 dr + ?1/ |7rw|(2)d7 < c1|5wo|(2) + clNl?’(t). (5.17)
0 0

Step 2. The lth order estimate. Let 0% denotes the ath derivative spatial
operator. Differentiating the partial differential equation (5.1) yields

Ao(w)0,0%W +>  Ai(w)d,0%w— > Bij(w) 6860‘w+ L(w)d%w = h®, (5.18)

1€D i,j€D
where the residual h® reads
h* = R0 (Ag'Q) = > Ao[0%, Ay Al diw
i€D
1— - - _ -
— —AQ [6a, AO_I L}ﬂ'W + Z AO [(’)a, Ao_l Bij]aiajw,

¢ i,j€D
and Q' = qQ + ZZ e 8W§ij8iw8jw is quadratic in the gradients. Multiplying
equation (5.18) by 9%w and |a|!/a!, writing B;; = gjj +(Bij — Bw) integrating
over z € R?, summing over 1 < |a| < [, integrating over 7 € [0,1], and adding
the zeroth order estimate (5.17), yields that

t 5 t
51|5w|l2+51/ |8ZWH|12dT+—1/ |mw|? d7 < ¢ |owo|? + 1 Ny (t)?

|
+ Z Ja! // [(0;A0*w, 0°W)| dzdT
1<a<t @ Re
|Oé|' o
|(0;A;0%W, 0°w)| dadT
zGD Rd
1<]al<t
!
|O‘|/ (8 ((Biy — B;)0%w), 9,0°w)| dadr
R4

z]ED
1<|a|<L

+ Z |a| // [(h®, 0%w)| dadr.
1<ar<t @ Re

The various terms in the right hand side are then estimated using |O,w| o <
colOpwli—1, [0, W[y < cold, w11, keeping in mind that I > Iy + 1, as Well as
|0wAo| o < €1y |OwA] e < c1, and [0uBij| e < c1, for i,j € D, since these
maxima over Oz are independent of bz. The right hand side terms estimates
are then obtained in the form

t t
/ (DA™ 0w, 9 dw)| dwdr < ¢y / O, |O,w[2 | dr < i N3(2).
Rd 0
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t t
/ / (OB 0%0w, 9% dw)| dwdr < oy / O], |0, dr < I N3(2),
0 JRd 0

t
/ / ((Bi;—B3,)0;0%w, 8:0°w)| dwdr
0 JRd

t
< c1/ W — W [ O wal2 dr < i Ni(),
0

t
/ / 1(9;(Bi; —E*j) 0%w, 9;0°w)| dzdr
0 JRd
t
Scl/ |8ZW|L<X,|(9$WH|171|8ZWH|1dT SClNl(t)g.
0

The first of the residual terms involving h® is majorized by using that Q' is
quadratic in the gradients of wy

t t
/ J<K080‘(K516’),6aw>’ dzdr < C2/ |0, Wy |7 [0, wi|i—1 dT < caNy(t)3.
0Jr 0

More specifically, @' = (0,Q},)" and Q] is a sum of terms M;;"" (w)d;wy 9wy and

each term is majorized in the form
t
/ y@oaa (Ko—lmjaiwajw) , 8“w>‘ dadr
0 Jrd
¢
< IR g [ RIS OOy 0,
0

with |Kg*“71M?]?H’H<9iwnajwn|l < co|0,wy|? as established by decomposing the

ALLII—1—I1,11,1T
product Ay’ M OiwyOjwy; as the sum
A KT —1—% II,11,I1 AL I — 1 —11,11,11 A KT —1—% II,I1,1I
AO ’ Mij e aiwn@jwn + (AO, Mij, = AO ’ Mij ” )&'w”@jwn,

using |uv|, < colul,|v|, for any u,v € H'(R?), the classical nonlinear estimates,
as well as Nj(t) < bz. The other residual terms involving h* are majorized by
using the commutator estimates

t t
/ |(Bo [0 Ay A O, 0°w)| dadr < ¢ / Ol dr < caNi(1)?,
0 JRd 0

1 [t _ o t
—/ |(Ao[0%, Ay L]mw, 0%w) | dadr < C—2/ |rw|;_q |0 w|i AT < coNy(t)3,
€ Jo Jra € Jo

t
/ |(Ro[0%, Ay B;] 0:0;w, 0%w) | drdr
0 JRd

t
<o / 10wt |9, w1 BT < o N ().
0
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A key point for such estimates is the inclusion of the terms fot |Ow|? | dr
and fg |Tw|?_, d7/€* in the norm N2( ). We have also used that the Sobolev
norms of products in the form |9, (A;'A; i)|1=1 is majorized by |0, Ay A i-1 <

c2|0,w|;—1 as established by decomposing A 'A; as the sum
Ag A= AGTIAT (AT = ATTHAT AT (A = AT) + (AgT = ASTH(A - A,

using |uv|,_; < colul,_,|v],_, for any u,v € H'71(R?), the classical nonlinear
estimates, as well as N;(t) < bz. Collecting all contributions it is established
that

t t
1)
51|5W|l2 + 51/ |8IWH|12 dr + ?1/ |7rw|l2 dr < c1|5wo|l2 + CQNl(t)B. (5.19)
0 0

Step 3. Estimate of the time integral of hyperbolic terms [34]. Linearizing the
system of governing equations in normal form yields

Asow + > Ardw— Y Boidw + - L* = hlin, (5.20)
i€D i,j€D
with
hlin — — Z(Kaﬂalﬂi — A Ow + Z (AsAG'Bi; — B;) 005w
i€D i,jeD
1 = - o= 1
- Z(AgA0 T-T)rw+ > AjA; ' 0iBi0w + AjA; G,
i,jeD

Applying the differentiation operator 9%, multiplying on the left by K; and
la|!/al, using K;L = K;nL = 0, taking the scalar product with 9;0%w, summing
over 0 < |a| <1—1and j € D, and integrating over z € R? and 7 € [0, ¢] next
yields

|
E // |a! KA*@@QW 0;0%w) dzdr
jeD Rd O
0< || <l—1

|
+ ) // o0 k¢ s D10w, 0,0 w) dudr
R4

1,j€D
0<|a|<I-1

/ KJBW@ 0;:0%w, 0;0%w) dxdr
Rd

i,5,5'€D
0<]e|<I—1

=y // |O‘| (K;0°h™ 9,0%W) dzdr. (5.21)
R4

j€D
0< || <1—1
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The terms fotfRd (K;A50,0%w, 0;0%w) dodr in (5.21) are rewritten with the iden-
tity

2(K;A;0,0%w, 0;0%W) = 9,(K;A50% 6w, 0;0%W) + 0; (K jA§0,0%W, d*dw),
where dw = w — w*, by using that KjKB are skew symmetric for j € D, so that
t — —
2/ (KjA50,0%W, 0;0%w) dzdr :/ (KjA50%dw, 0;0%w) dx
Rd Rd

- /d<KjK68a5WO; 8j8°‘w0> dx
R

and the right hand side is directly majorized by ci|w —w*[? 4+ c1|wo — w*|?. The

term
Z Z // Ja! (K;Af0,0%W, 0;0%w) dxdr,
R4

4,j€D 0< || <I—1

associated with first order derivatives is rewritten using Parseval identity and,
using the strict dissipativity, is further minorized as

¢ ¢
61/ |8zw|l2_1dr—c1/ |8zwn|12_1 dr
0

< ¥ // |O‘! KAR8,0%w, 8;0°w) dzdr.
Rd O

1,J€D
0<|al<i-1
The terms associated with second order derivatives are majorized with

t t
/ ) |<K]‘§;j/ 8i8j/ aaW, 8j8°‘w>| dzdr S C1 / |81W|l71 |(9$WH|1 dr.
R 0

It now remains to examine the residuals associated with (K;0h1"", 9;0%w). The
first contribution associated with convective terms is majorized using

t
/ |<K]8”‘((K6K51K1 — K;)azW) , 8j80‘w>| dxdr
R
t
< c2/ W — w1 |A, w2, d7 < caN3(1),
0

with similar estimates for the second derivatives contributions. The terms as-
sociated with sources are estimated in the form

t
! / ;0% (BgAg ' T-T%)w), 0;0°w) | dadr
Rd

t
Co
< ?/ lw — w1 |mw|—1|O,w|—1 dT < C2Nl3(t).
0
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Moreover, the contributions form (K;0%h" 9;0%w) associated the terms of
hlin quadratic in the gradients are cubic with respect to first order derivatives
and easily majorized by C2Nl3(t). Collecting previous estimates it has been
established that

t t
51/ |8zw|1271d7§c1/ |8IWH|1271C1T+C1|W7W*|12+C1|W07W*|12+C2Nl3(t>.

0 0
(5.22)

Combining this estimate of the time integral fot |0,w|?_, d7 with (5.19) finally
yields

t 5 t

Sulowlt + 01 [ (0, -+ 10wl dr+ 2 [ frwl?dr < calowolf + i)
0 0

(5.23)

Step 4. Estimates of the fast variable 7w. A linearized equation for the fast
variable 7w is first derived by applying II¢ and II% to (5.20) and proceeding as
in Section 3.4. Equivalently, one may linearize the governing equation (3.9) of
the fast variable. This linearized equation is in the form

_ _ _ 1—
AT 0w+ Y AT Ow — Y BIF0i0;w + —Lrmw =hT,

J
i€D 4,j€D

where AT* = mrxA§T + (I — m)AS(I — 7), AT* = maxAT, BT

— * R* T
5 = mmaAB}, h™ =

R

to this equation then yields
A TTH o 1_* [ T
AJ*0,0%w + ;L 0%mw = h"%, (5.24)

where h™® = 9°h™ — 3., AT*0;0%w + > ijen Egj*aiajaaw. Multiplying equa-
tion (5.24) by 9%(mw)/e and |a|!/a!, integrating over x € R?, summing over

0 < |a] <1—1, and integrating over 7 € [0, 1], it is obtained that

o1

€

61 /[ c i
rwlt s + 5 [ Il dr <oty [ ol dr
0 0

t t
+C1/|8ZWH|Z2dT+C1/|h7r|l2_1dT.
0 0

All contributions arising from h™ = Fﬂ;hlin may then be investigated as in
previous steps and since h™ is quadratic in the solution, it is easily obtained
that fot |h™Z , d7 < coNi(¢)? in such a way that using the /th order estimate
yields

5 5 [t 1
—frwlf_y + 5 / rwlf_ dr < e (jwol? + —lmwolf_, ) + caNi(t)”. (5.25)
0
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Step 5. Estimates of the time derivative. Using the above estimate of the fast
variable (5.25) combined to the governing equations directly yields estimates
for the time derivatives. Equivalently, one may multiply the derived equation
(5.20) by 9,0w and |a|!/a!, integrate over z € R?, sum over 0 < |af <1 — 1,
and integrate over 7 € [0, t], to get that

¢ ¢
1) f
51/|8tw|1271d7+?1|7rw|1271 §:1|7TW0|1271 +C1/|axW|1271 dr
0 0

t t
+c1/|6mwn|l2d7-+c1/|h1‘“|12_1dr,
0 0
and next that
! 2 51 2 2 1 2 3
61 [ 10pwliy dr + Zawlfy < i (lwolf + [rwoly ) + c2Ni(®).  (5.26)
0

Combining the estimates (5.23) with (5.25) and (5.26) finally completes the
proof. O

5.4. Global solutions

Global existence of solution uniformly with respect to € may now be derived
by combining local existence from Theorem 5.1 and the estimates of Theorem 5.5
[34].

Theorem 5.6. Let d>1 and 1>[d/2] + 2 be integers. There exists b > 0 small
enough such that if wo satisfies wo —w* € H'(RY) and
1 _
[wo — w*[7 + —[mwo[7_, < 7,

there exists a unique global solution to the Cauchy problem

_ _ _ 1- _

AoatW + Z A; 0w — Z 81(sz8]w) + ELW = Z M;; (W) O;wW 8]-w,

1€D 1,J€D 1,J€D

with initial condition w(0,x) = wo(x) and
w; —wy € CY([0,00), H') N C* ([0, 00), H'71), duw; € L2((0,00), H'7Y),
wy; —wii e C0([0,00), H') N C* ([0, 00), H'2), Doy € L?((0,00), HY).

Furthermore, there exists a constant ¢ independent of € such that w satisfies the
estimate

1 t t 1 t
wit) = wlF + imw Oy + [l dr+ [ owffdr + 1 [ () dr
0 0 0

I K 1
45 [l dr o+ [10ml dr < e (o —wl} + ¢ lmwol?,),
0 0
(5.27)

and sup,cga |W(t, ) —w*| goes to zero as t — oc.
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Proof. Apply the local existence Theorem 5.1 with Oy = Oz where 0 < a1 <
dist(Og, 00y ), and b = bsy. There exists a positive time 7 > 0 and a local solu-
tion defined over [0, 7] whenever [wo —w*|? + L |mwg|?_; < bZ. From Theorem 5.1
one gets the estimates

Nl(%) < Cloc(|W0 - W*|12 + %lﬂ-W0|l271) )

where cjo. > 1 depends on O and b = bz. Let then

- b b
(b B )
Cloc Cyy/1+ ¢,
where b, < by and ¢ are given by Theorem 5.5 and assume that (Jjwo — w*[? +

%|71'W0|1271)1/2 < b. One first has a solution defined on [0, 7] with
_ . 1/2 -
NZ(T) < Cloc(|W0 - W |12 + %|7TW0|12,1) / < Cloch < bN < ba-

Since Ni(7) < by one also has Ni(7) < cy(jwo — w*|? + L|mwo|i 1)1/2

cyb.
One can now start again from w(7) at 7 since (|w(7) —w*[? + L 7w (7)|7_ 1)1/2 <
N;(T) < bz and this yields a solution defined on [7’ 27] with N/(7,27) <
ClocNi(T) where N/(7,27) is naturally defined as

s N 1
NA(7,27) = sup (w(r) = w'F + ~|rw(r)l, )
F<r<2F €

27
+ [ Q0mEy + o)) dr
1 27 5 1 27 9 27 9
+ ~ /| |7rw ()|, dT + = [ |7w(T)|,_y dT + 7 [Oyw(T)|,_, dT
As a consequence, one obtains
NI(QT) (1 + Cloc)l/QNl( ) (1 + C%oc)lchE < bN < bz,

so that from of Theorem 5.5 with 7 = 27 it is obtained N;(27) < c b < by <
bz. This shows that w(27) € Oz and one can start again from w(27) at 27
and an easy induction shows that the solution is defined for all time intervals

(57, (j +1)7] for any j > 0 and that Ny(t) < &(|wo —w*[7 + %|7rw0|1271)1/2 where

¢=cy\/1+ci for any t > 0 and this yields (5.27).
Letting ®(¢) = |9, w(t)|?_, and it is next established from (5.27) that

[ 1e@ide+ [ o0 de < c(jwo— wlt + Hawolt ).
0 0

so that lim;_, o |0, w(t)];—2 = 0. Using the interpolation inequality

sup |w(t, ) —w*| < co 85wl [wlp™?,
z€RC

where a = d/2(l — 1) € (0,1) then completes the proof. O
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Applying these results to the system of equations modeling reactive fluids,
global existence theorems are obtained uniformly with respect to the chemistry
relaxation parameter e for well prepared data. The asymptotic behavior as
e — 0 of such solutions in investigated in the next section.

6. Convergence analysis

The difference w—weq (II5u) between the normal variable w out of equilibrium
and the equilibrium state weq(IIfu) associated with the slow variable projection
1, = ITu is first estimated in R" in an algebraic way. We then consider a solution
of the equations in normal form, and following the diagram of Figure 1, it is
next estimated to what extend the corresponding normal equilibrium variable
wo = J eIt Weq(ITEu) satisfies the equations of the normal variable w, at chemical
equilibrium (4.5). Using a stability result at equilibrium the difference w, — we
is then estimated and next weq(IT{u) — Tlew, and w — II.we. This yields a
convergence theorem towards the chemical equilibrium fluid in the fast chemistry
limit € — 0 and a first rigorous justification of the chemical equilibrium limit
system of partial differential equations (4.5).

The first idea is that since mw goes to zero, w should be close to an equi-
librium state associated with the corresponding slow variables weq(IIfu). A
second idea is that the equilibrium states weq(IT{u) is such that the correspond-
ing residual for the equations at chemical equilibrium is small and stability at
equilibrium completes the proof.

0.1. First estimates

In this section, the differences u — ueq(ITfu) and w — weq (ITLu) are estimated
is terms of the fast variable out of equilibrium 7w.

Lemma 6.1. Let u € R" be in a neighborhood of u* and denote by w € R"

the corresponding normal variable. Denote by ueq(IIiu) the unique equilibrium

chemistry point ueq with projection IILu in the neighborhood of MLu*. There

exists a smooth linear operator L(u) defined in a neighborhood of u* such that
™wW

U — Ueq(IMiu) = L(u)mw = eL(u)—, (6.1)

€

and L is in the form

1 1
L= Hr{/ It &,v(ueol +7(u— ueq))Hr dr } It
0

Proof. From Proposition 2.5 and Lemma 2.6, or equivalently from Proposi-
tion 4.1, for any u. in the neighborhood of u} = Il.u* there exists a unique
equilibrium point ueq (%) with projection u, = ITfueq. We may thus introduce

o7



Ueq(ITtu) where u is in a neighborhood of u* and the corresponding entropic
variable, obtained from the diffeomorphism u ~ v, is denoted by veq. The dif-

ference v — veq may then be written in the form v — veq = fol &.v(ueol +7(u—
Ueq)) d7 (U — ueq) SO that

1
iy = / I Ouv (Ueq + 7(u — teq) ) IIr d7 JIIE (U — ueq),
0

since ITfveq (ITLu) = 0, 7 = ILJII and u—ueq = 7(U—Ueq) When Ueq = Ueq(ITiu).
The linear operator fol Hﬁauv(ueq +7(u— ueq))Hr dr is invertible as an average
of positive definite matrices and this yields

1 1
\%Hf (U - Ueq) = {/ Hfauv(ueq + T(U - ueq))Hr d'T} HfV
0

Using then m = HrJrHﬁ and u — Ueq = (U — Ueq) ONE gets

! —1
U — Ueq(ITLu) = Hr{/ IOy (Ueq + 7(u — ueq) )11, dr} v,
0

The linear operator II, may be written II, = [an_41, ..., an] where the basis vec-
tors of the fast manifold £+ are associated with the formation reaction vectors
aptrar1 = (Mvy,0,0), for k € S\A = {n, +1,...,n}. The mass weighted
formation vectors may be written

t
Moy, = (—maag1, ..., —Mp, 0kn,,0,...,0,mg,0,...,0)"

for k € G\ in such a way that

1
(V)1 = (Aktd1,V) = T (mkgk - mlakzgz)-
e
On the other hand, the linear operator II, may be written II, = [an. 41, ..,3n)

where the basis vectors of the fast manifold = are in the form Aktd+1 =
(Mvy, — miviier,0,0), for k € S\ = {n,+1,...,n} where ¢;, i € S, are
the base vectors of R™. The modified mass weighted formation vectors may be
written

Mvoy, — mivpe = (0, —Maag2, ..., —0kn,,0,...,0,m,0,..., O)t,
for k € G\A = {n,+1,...,n}in such a way that
(W) k41 = (@rtdrt, W)

1
T RT (mk(gk —g) = D mian(a - 91)) = (TGV)ktd+1,
leRn\{1}

using the mass relation my = myag; + Zlem\{l} myag;. This shows that TIfv =

TI'w and using the above expression of u — Ueq(ITtu) completes the proof. |
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Lemma 6.2. Let u € R" be in a neighborhood of u* and denote by w € R"
the corresponding normal variable. Denote by weq(ITLu) the unique equilibrium
chemistry point weq associated with the slow variable ITtu. There exists a smooth
linear operator L'(u) defined in the neighborhood of u* such that

W — Weq(IThu) = £/ (1)rw = €L/ (u) 2, (6.2)

€

and L' is a smooth function of u in the neighborhood of u*, or equivalently a
smooth function of w in the neighborhood of w*.

Proof. Since w is a smooth function of u, the lemma is a direct consequence of
Lemma 6.1 with £/ = ZL£ and Z = fol auw(ueq +7(u— ueq)) dr. O

0.2. Residual estimates

The equations governing fluids at chemical equilibrium have been investi-
gated in Section 4.2 and the corresponding system in normal form (4.9) reads

A8 (We) Oy we + ZK?(WQ)&'WQ - Z 0; (Efj (we)ajwe) — Qe(We, d,we) =0, (6.3)

ieD i,jED

where w, denotes the normal variable at equilibrium (4.8). On the other hand,
let w be a solution of the system in normal form (5.1) and denote by u the
corresponding solution of the equations in conservative form (3.1). We may then
consider the natural slow variable IT{u and the corresponding equilibrium state
in normal form weq(ITiu) and conservative form ueq(IIfu). Then, according to
the diagram of Figure 1, the proper projection of the normal variable weq(ITu)
that should be close to we is we = Jelliweq(ITLu). In order to establish that
w, is close to w,, that satisfies (6.3), we thus have to investigate the ‘default to
equilibrium residual’ h of w, defined by

A8 (we)0, we + Zﬂﬁ(we)aiwe - Z@i (BS; (we) 0 we) — Qe (e, 8, we) = h. (6.4)

i€D 4,j€D

From bounds on h one may then estimate the difference w, — w, and thus
Weq(ITEu) — Mew, and finally w — Tlew, using the results of Section 6.1. The
residual h is now estimated in the function space L?((0,00), H'~?) uniformly
with respect to the parameter e¢ € (0,1]. The regularity class s is still assumed
to be such that s —3 > [+ 1 but in this section | > lo+ 3 with lp = [d/2] + 1, as
more regularity is required for estimating h. The main ideas for estimating this
residual h is to evaluate the related residual of the conservative form at equilib-
rium (4.5), to subtract the equilibrium projection IT} of the out of equilibrium
equations in conservative form (3.1), and to use the estimates of Section 6.1 and
Theorem 5.6.
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Theorem 6.3. Assume that | > ly + 3 and that wq is such that |wo — w*|l2 +
%|7rw0|12_1 is uniformly bounded independently of € € (0,1]. Then the residual h
may be written in the form

h=e(h+h) (6.5)
where h € C°([0,00), H'~2) is bounded in L*((0, 00), H'~2) independently of € €
(0, 1] whereas h" € C°([0,00), H'=3) with h| = 0 is bounded in L?((0,00), H'~?)
independently of € € (0, 1].

Proof. Using the diffeomorphism w +— u from O,, onto O, we associate to the
solution w its conservative variable u(w). Then u(w) is the solution of the system
in conservative form (3.1). On the other hand, by definition of the normal form
the residual h = h,, defined by (6.4) associated with the normal form (6.3) or
(4.9) is directly related to the residual h,, associated with the conservative form
(4.5) by the relation h = h,, = (8% z/e)thuc where 4, = IT{u, and v, and w, are
the symmetric and normal variables associated with u.. The residual h, with
respect to the conservative variable form is by definition

hy, = O,ITbu + > AZ(TTLu)ailTiu — > 0; (BS; (IMLu)d,TTlu),
1€D i,j€D
where A¢(te) = TILA; (Ueq(te)) De, Ueq(te) and BS;(te) = LB (Ueq(te)) e, Ueq(te)

for any te in the neighborhood of ug. Using these expressions of A7 and Bf; it
is next obtained that

hi, = O,TTou + D TIEA (ueq)Ditieq — Y 0, (TTEBy; (ueq)jueq)
€D 1,7€D

where Ueq = Ueq(ITiu) is the equilibrium point associated with the slow variable
ITLu. Since u is the solution of the out of equilibrium equations, one may subtract
from the above expression of h, the projection on the slow manifold of the
nonequilibrium equations which are zero since u is a solution of the full out of
equilibrium system. This directly yields that

= Z ITLA; (Ueq) O Ueq — Z LA (u)O;u
i€D ieD

— Za I1.B;; (Ueq)jUeq) + Za (TILB; (u)d;u).

i,j€D i,j€D

One may thus write h,, in the form

h.. ZHt i(Ueq) — 8ueq ZHt 0;i(Ueq — U)

€D i€D

— Z@( Bij(ueq) — Byj(u 6 ueq) Z@ ‘B Bij (u)9;(ueq — u))

i,j€D i,j€D
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Keeping in mind that ueq = ueq(ITLu) is the equilibrium point associated with the
slow variable IT{u, from the expression of u — ueq(ITlu) = e£L(u) = of Lemma 6.1
one deduces that h,, = e(h + h’) where

h == TL(0A (ueq; u)>£<u)¥@ueq =S mAWe (L™, (6.6)

Z (Ht 8 Bij (Ueqs )>£(u)%8jueq) Za (Ht i (E( )wew)),
o (6.7)

and the average operator is defined by < Ueg, U > fo (9ueq (1 —=0)u ) de.
One may then use the L* bounds of u as well as the uniform estlmates of Tw/e
in L? ((0, 00), Hl_l) to conclude that h is uniformy bounded in L? ((0, 00), Hl_Q)
independently of € € (0,1] whereas h’ is uniformy bounded in L?((0,00), H'=3)
independently of ¢ € (0,1].

Letting next h = (8% ve)tﬁ and h' = (8 z/e) , we have h = h,, = e(h +h’)
as well as similar uniform estimates for h and b as for h and h’ and moreover
h =0 since h’ = 0 and the left lower (11, 1) block of (O ve)t is zero since (vo)y
only depends on (w,); and the proof is complete. |

0.3. Stability at equilibrium and convergence

Using estimates of the out of equilibrium solution and stability at chemical
equilibrium valid on any finite time interval [0, 7] convergence of the out of equi-
librium solution towards the chemical equilibrium solution is now established.

Theorem 6.4. Let d > 1, 1> 1o+ 3, lo = [d/2] + 1, be integers and let b from
Theorem 5.6. For any wg € Qg with

mwo = 0, lwo — w*|? < b, (6.8)

there exists a unique solution w of the out of equilibrium system such that the es-
timates (5.27) hold. For b small enough there exists also a unique global solution
We of the equilibrium system starting from J Jiwg. Then the out of equilibrium
solution converges toward the chemical equilibrium solution pointwise

li =11 :

lim w(t, x) oWo(t, ), (6.9)
and for any time T there exists a constant ¢ depending on T with the error
estimate o

sup |w — Iewe|—2 < ce.

T€[0,7]

Proof. Global existence for reactive fluids with fast chemistry is first obtained
by combining the symmetrized form of Theorem 3.12 with the existence result
of Theorem 5.6. On the other hand, at chemical equilibrium, when there are
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not anymore sources, one may directly use Kawashima’s theory [34] in order
to obtain a global existence theorem starting from J.IIwg assuming that b is
small enough.

Using estimates of the out of equilibrium solution, it is then deduced that
the residual h defined by (6.4) is in the form h = e(h +h’) where h is uniformy
bounded in L?((0,00), H'=?) and h’ uniformy bounded in L?((0,00), H'~3).
One may then use the local stability theorem established in Appendix B for
the chemical equilibrium equations in normal form with f = ¢h, g = ¢h’, and [
replaced by [—1, to deduce that w, —we is small in C ([0, 7], H'~2) for any interval
since the stability theorem may be used iteratively. We thus obtain that on any
time 7 there exists ¢ depending on 7 with the error estimate sup, ¢ 7 |we —

Weli—2 < ce or equivalently sup,co 7 [w — Mewe|;—2 < ce. O

7. Conclusion

Global existence theorem have been obtained for multicomponent reactive
fluids uniformly with respect to chemical characteristic times. Convergence
of the out of equilibrium solution towards the chemical equilibrium fluid solu-
tion has been established as well as an error estimate. The limiting system of
partial differential equations governing fluids at chemical equilibrium has been
rigorously justified in the fast chemistry limit with arbitrary complex chemistry
and detailed transport derived from the kinetic theory. Various generalizations
may further be investigated as for instance the situation of partial equilibrium
chemistry [24]. Higher order Chapman-Enskog expansions may also be inves-
tigated [29]. Boundary value problems in domains with boundaries involving
surface reactions and surface heat transfer are also of high scientific interest as
well as initial layers for ill prepared initial data.

Appendix A. Linearized equations estimates

The linearized estimates used in the local existence theorem of Section 5.2
are established in this Appendix A. In the non stiff case, such estimates have
been established notably by Kawashima [34] and the estimates in the stiff case
differ by the inclusion of new terms associated with the fast variable involving
mw/+/e and mw/e as well as for the coupling time derivatives. In comparison
with previous work [29] it is not assumed that the matrix Ag commutes with the
orthogonal projector on the fast manifold 7 and the derivation is considerably
more intricate.

The linearized equations are in the form

Ag(wW)d W + > Ai(w)dw — Y Bij(w)d;0;W + %E(W)W =f+g, (A1)

i€D 1,j€D
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and it is assumed that w is such that

{WI —w; e ¢°([0,7], H) nc' ([0, 7], H1), 42)

wy —wyy € CO([0,7], H') nC* ([0, 7], H'=2) n H'((0,7), H'71),
where 7 > 0,1 > lp+1, lo = [d/2] + 1. The quantities M and M; are defined by
* (2 2 T 2 2
sup |w(r) —w*|; = M?, / [Oyw(T)|;_, dT = M}. (A.3)
0<r<7 0
It is assumed that Oy C Oy C Oy, 0 < a1 < dist(Oy, d0,,), and
01 = {w € O,; dist(w,0p) < a; }, (A4)

wo(x) = w(0,7) € Op, and w(t,z) € Oy, for (t,z) € [0,7]xR%. Moreover, it is
assumed that
fec?(jo,7], H ') nL'([0,7],H'), (A5)

ge C'([0,7], H'™), g = 0. (A.6)

Theorem Appendix A.1. Letl >y + 1 with lo = [d/2] + 1 and assume that
the solution w of the linearized system (A.1) is such that

W —wr e ([, ] Hnct(lo,7], HY),

Wy — W} € CO([ T ) N Cl([O,ﬂ,Hl_Q) N LQ((O,T'),HH'I), (A7)

where W* = (W}, W) is a constant state W* € ‘E and denote by Wq the initial
state wo(x) = w(0,z). Then there exists constants c1(O1) > 1 and co(O1, M) >
1, with co(O1, M) increasing with M, such that for any t € [0, 7]

_ . 1, i . I
sup {[#(r) = &} + LB} + [ ulr) = @l dr o+ ¢ [ (ol ar
0 0

0<7r<t

- - 1, -
< cfexp(ca(t+ M1\/Z)) (|W0 — W7+ E|7TW0|1271

t 9 t t
+cQ{/|f|ld7} +c2/|f|l2_1d7+c2/|gn|%_1d7), (A.8)
0 0 0

— sup |mw(T |l 1+ /|7rw |l 1d7'+/|8w |l 1 d

€ 0<r<t

< cpexp(ca(t + MivV')) (|W0 — W+ E|WW0|12—1

t 9 t t
+{ [ithar} + [it ar+ [lafar). a9)
0 0 0
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Proof. In the following §; = 6(O1) < 1 denotes a generic small constant only
depending on O1, ¢; = ¢1(0O71) > 1 a generic large constant only depending on
O1, and ca = c3(01, M) > 1 a generic large constant depending on O; and
M. The various occurrences of these constants may be distinguished and the
minimum of all 4; and the maxima of all ¢; and co may be taken at the end of
the proof so that only single constants ultimately remain. The dependence on
d, I, n of these estimating constants is left implicit. For k¥ > 0 and ¢ € H k the
norms E2(¢) and E2(¢) are defined by

! _
ZHOEESY @ {Ao(w)0%¢,0%¢) du, (A.10)
0<lal<k IR
EXo)= Y lof! / (L(w)0*¢,0%¢) da (A.11)
0<|a\<k

In order to alleviate notation in the proof éw denotes for short ow = w — w*.
The estimates |f(¢) — f(0)lx < collfller(o,) (1 + @) " [0]r where & > 1,
¢ € H*(R?), O, is an open ball that contains the range of ¢, f is a C* function
over Oy, |uv|i < c0|u|72|v|i, for 0 < k <1, and ||¢[|p < co|¢l; for any | >
lo = [d/2] + 1 are used in the following where ¢y denotes a generic constant
independent of @; and M. The commutator inequality zogla‘gl“a&,u]v[o <
Co|Ozul,_4|v];_; also holds for any [ > ly + 1 where [0, ulv = 0%(uv) — ud*v
denotes the commutator between 0% and u. The Garding inequality also reads
[53]

51|¢H|1 =~ Z / BHH z¢11, g¢11>d$+c2|¢11|07

4,J€D

for ¢, vector valued function ¢ : R? — R™ in the space H'.

The projected fast normal variable 7w also satisfies a system of partial dif-
ferential equations obtained in a way similar to (3.9) by applying the proper
projectors that reads

AF(wW)d,mW +> AT(W)OiW — Y BT (W)Di0;W + — L( Jmw = 7 4+ g™, (A.12)
€D i,j€D

keeping the notation of Proposition 3.9 for AT, AT, ij, whereas f™ = 7w, f and

g™ = mmag. The corresponding norm is denoted by

Bl (o)=Y ﬂ (AF(W)0%p,0%¢) da. (A.13)

d
0<lal<k R

Step 1. Zeroth order inequalities. Multiplying (A.1) by 6w = w—w* integrating
over R%, using the symmetry of Ag and A; and Garding inequality, noting that
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|0zw|;_; < M and that co may depend on M, yields after some algebra that

OB (OW) + b1 |0wy |7 + 6_61|7TV~V|(2J < c1[flo|oW]o + c1lgulg + ca(1+ [wl,_q ) EF (6W).

(A.14)

Multiplying the projected governing equation (A.12) by (1/¢)mw and pro-
ceeding similarly yields

1, =, ~ 01, - o - _ ~
O3 + S5t [3 < calf3+c1lgulf+ < Owl,y B (rw) +cu |5 + a6 .

(A.15)
In addition, multiplying the governing equation by 9w, integrating over R4,
using the symmetry of L, one obtains that

~ 1.~ [¢ ~ ~ ~
110053+ 01 B3 () < a3+ culgulf+ 10wl _ B (mi0) +c1 6] + c1 |3 3
(A.16)

Step 2. The Ith order inequality. Applying the ath spatial derivative operator
0™ to (A.1) yields

N ~ N o o) o 1— o [e%
Ao (w)d,0%W +ZA1-(W)81-8 W— Z Bij(w)9;0;0"W + —L(w)0W = h?,
1€D i,j€D
(A.17)
where

he :KOGO‘(Ko_lf) +K080‘(K0_1g) — ZKO [8Q,K0_1Kl]8lv~v
i€D
1+ a A-=177..3 A a p—-1Q[ oY
_ EAO[a ’AO 1 L]ﬂ'W + Z Ao [0 ’AO 1 Bw]aﬁjw
i,j€D
Multiplying (A.17) by 9%6w and |a|!/a!, integrating over RY, summing over

0 < |a| <, and proceeding as for the zeroth order estimate (A.14), it is obtained
that

~ ~ o1, _
OREE (0W) + 61]0Wulfyy + — W[} <ca(L + |Owl, 1) EF (6W)

|a|! .
+ — he, 0%0w) dz.
Z Oé! ]Rd< >
0<|a| <l
Keeping in mind that the zeroth order terms with o = 0 in the residuals
Jga(h®, 0%6W) dz have already been examined with (A.14) it is sufficient to
analyze the terms such that 1 < |a| < I. The nonstiff terms are estimated us-

ing commutator estimates (and integration by parts for the terms Agd” (K(;1 g)
when |a| =) and this yields [34]

’/dﬁoaa(xglf),a%mdx’ < [Poloo [Ag 1], |6W], < colfl; |6W]:,
R
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‘Ad<ﬂ08a(ﬂo_lg)vaa5w> dz’ < calgulj—q [0Wi 41,
| / (R0 Ag " A0, 9%0%) | < col
Rd
]/d@ [0, Aq " By 010, 0°6W) da| < cz |0l [0
R

On the other hand, for the stiff terms %KO [8Q,K071 UmTv it is obtained that

1

(Ro[0°, Ay ' T 7w, 0°W) dx‘ < %|m~v|l_1|5v~v|l,
R4

and this is an important difference with the ‘commutative case’. Indeed, when
7Ag = Apm then A [6Q,K0*1 U = A, [aa,K(;l U so that the right hand side
is simplified into (co/€)|nw|,_,|7w|, that is much easier to handle using the
term |7w|? /e of the Ith order entropic estimate, interpolation inequalities, and
the Oth order entropic estimate. In the noncommutative case, the upper bound
thus involves the product co|7w|,_, |0W|, /€ instead of the easier co|mw|,_, |7w]; /€.
Collecting all contributions it has been established that

O E} (0w) + 51|5Wn|l+1+ |7} < a1+ |Oewl;_1) EF (W)
+ Gl By (5W) + colgul?_y + = |7TW|l 1E,(0w). (A.18)

In order to handle the term <|7w|;_1E;(0w) in the right hand side, a new
inequality involving the projected normal variable 7w is now required.

Step 3. The (I — 1)th order projected inequality. Differentiating (A.12) with
respect to the space variable yields

AT (W)0,0%Tw + — L( )O“mw = h™, (A.19)

where

Ko :Kgaa((ﬂg) —1f7’l’) +K6raa((Aw) —1 7T ZAﬂ'aa Aﬂ') —17x Afra W)
€D

1~ AT —17 o ATQa (AT -1 R™T oy
— EAS[&“,(AS) "Claw+ Y Ao~ ((AF) ~' B 0i0W). (A.20)

i,J€D

Multiplying (A.19) by 0%rw/e and |a|!/a!, integrating over z € R?, summing
over 0 < |a| <1 —1, and proceeding as above yields that

1, = 01 .
EatEl{l(W w) + 2|7TW|1 1= _|atW|l L Ef (nw) ch|h |0-

0<lal<t
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Since the zeroth order residuals [h™|2 for |a| = 0 has already been examined
with (A.15), it is sufficient to analyze the terms [h™®[3 for 1 < |a < 1 — 1.
The nonstiff terms are estimated directly (using commutator estimates) and it
is obtained that

[ g0 (&) 1) de < calf
[ Ao ((A5) ") do < caleli.
3 /d|zgaa((zg) Rz o) [P dr < 5w + ol
iep /R
RJ S Apo((AF) 1B a:0;w) | dr < caldWul?y + coloWal?.
i,j€D

On the other hand, for the stiff term %KO [8“,&;1 E]WV~\I it is obtained that
1 ~ faa 1T ~2 Co,
6—2/Rd‘A0[6 AT L]rw|"dz < 6—2|7rw|l272.
Collecting all contributions yields
L = ~ 01, 1o €2 =2 ~ 2 2
EatElﬂ(WW) + 6_2|7TW|171 §?|atw|lf1Ezf1(7TW) + colf[i_y + colguliy

_ _ Co,
+ Cal W[} + eal0Wnlfyy + S |mW . (A21)

Step 4. The combined estimate. In order to handle the term <2|ww|;_; E;(dw)
arising in the right hand side of (A.18) the following inequality is used where
6 > 0 is a positive number

w2 2
I 6';* + %Ef(éw). (A.22)

w1 By (W) < &
€

=21
From the interpolation inequality |¢[;—2 < co|¢|,~;|¢|y " and Holder’s inequal-
ity one also obtains the following estimate where # > 0 and §’ > 0 are positive

numbers

(9C2C0)l_

1
Oco|mw|?_y < &'|7w|?P_, + = |Tw|2. (A.23)

67



Forming the combination (A.18) + 6 (A.21) 4+ 0’ (A.15) now yields that

~ ~ 01, ~ 0, = 001, -
OREE(0W) + 61]0Wulf, + — W[} + 0B}y (mw) + 5 |m W]}y

0’61, - ~ ~
621 W[5 < ca(1 + [Bpwl,_y ) B} (0W) + cof], £, (W)

0 -, -
+ :atEg(ﬂw) +
C ~ ~ C — ~
+ Calgulf ) + = rli 1 By (@) + 0 (2 |owl,_ B (wi0)
~ ~ C ~
+ calflP_y + colgulfy + cal0Wf} + ca|dWul?y, + S5 |mif?)
C — ~ ~ ~
+ 0" (calfly + calenld + ol B (r#) + ca oW1} + caloWal3).  (A:24)
Combining (A.24) with (A.22) and (A.23) next gives that
205 0 =2 ~ 0 =, ~ ~ 12
01 (EP(0W) + =B}, (w) + —E3(x@) ) + (01 — 0c1) |32,

D
06, — Ol

€2

061 —6 -0

01, ~ pe ~
+ W W+ L

. 0 SO ~
< ca(1+ Opwl, ) (BF (0W) + — B}, (wit) + — B (vi0))

+ C2lf|, B, (6W) + calf[7_y + calguli_y- (A.25)

In order to control the terms in the left hand side of (A.25) and it is required
to insure that

(9C2C0)l_1

61 > Ocq, 061 > 0 + 6/, 9’(51 > ) (A26)
To this aim, one may chose
44 e , 1
o 51’ =7, o= 5’

with ¢ small enough such that

52 0 !t
s <min{ T () 1b
< min 4C1 4COC2

and this choice guarantee that (A.26) holds in such a way that

. 0= SN - ~ 01, ~ 001, -
0,( B (6W) + ~ B (n#) + — B (x) ) + 810, + miil? + il
g Oy 0y
< o1+ Qpwl; ) (BF (0W) + ~ B}, (wit) + — E(ni0))

+ caf], By (0W) + colfI7_y + colguliy. (A.27)
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Using Gronwall lemma then yields the first estimates (A.8).

Step 5. The Ith order derived estimate. Multiplying equation (A.17) by 0;0°w
and |a|!/a!, integrating over R?, summing over 0 < |a| <1 — 1, and proceeding
as for the zeroth order derived estimate, it is obtained that

. 1.~ . - .
510w, + EatE1271(7TW) <cp|ow[f + C1|5WH|12+1

C = ~
+ Lol BE () + Y e
0<|a|<i-1

Keeping in mind that the zeroth order residuals [h%|2 with || = 0 have already
been examined with (A.16), it is sufficient to analyze the terms |h®|3 when
1<|al <1-1.

The nonstiff terms in h® are estimated as usual whereas the stiff terms are
estimated with

1 ~ faa 1T ~2 Co —~ 12 ~ Co,
—2/ Ao [0 Ay L]rw|" dz < = [Rof% |0.(Ag D], lnw[P_y < = |77,
€2 Jpa € €

and collecting all contributions it has been established that

~ ~ Co ~
Z h[5 < ca(Ifliy + lgulf_1 + 0WIF_1 + [6Wnl7) + 6_2|7TW|12—2-
0<al<i—1

This inequality is now combined to (A.27) multiplied by a large constant Ko
so as to compensate the terms c1|(5v~v”|l2+1 and §—§|7rv~v|l2_2 of the right hand side.
From the Gronwall inequality one gets after some algebra the second estimate
(A.9).

Finally, the various occurencies of the constant cy in the proof all involve
simple polynomials in M with positive coefficients, either arising as simple mul-
tiplication by M or through the estimates of nonlinear terms, so that the final
constant cg is an increasing function of M and the proof is complete. O

Appendix B. Local stability at equilibrium

Theorem Appendix B.1. Let d > 1 and | > [d/2] + 2 be integers and let
b > 0 be given and consider the perturbed system of equations

Ao (w)I,w + in(w)@w — Z 0; (Eij (w)ajw) —Qw,0,w)=f+g, (B.1)

i€D i,jED
where Q = — 32, cp 0(D,v)" (B,w)'Bij d;w and where for some positive T > 0
fe ([0, 7], HY) N LH([0, 7], HY), (B.2)
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g < CO([Ov%m]a Hlil)v gr=0. (B.3)

Let O be given such that Oy C Oy, ay such that 0 < a; < dist(Op, 00y), and
define -
01 ={w € 0y; dist(w,Op) < ay }.

There exists T with 0 < 7 < 7y and x > 0 depending on Oy and b, such that for
any wo with wo € Oy and any f and g satisfying (B.2)(B.3) with

t 9 t t
wo —w P <% ] / flar) + / 712, dr < xB2, / g2, dr < xP2,
0 0 0

(B.4)
there exists a unique local solution w to the perturbed system (B.1) with initial
condition w(0,x) = wo(z) such that w(t,z) € Oy, fort € [0,7] and x € RY, and

w, —w; € C°([0, 7], H") nC*([o, 7], H'71),
wy; —wj € C°([0, 7], HY) nC' ([0, 7], H'=2) n L*((0,7), H'*1).

In addition, there exists C' > 0 only depending on O1 and b, such that

f
sup fw(r) — w[t+ [ () = wiff, dr
0

0<r<7
< 0w —wi+ { [uar} + [lgii o). @3)

t 7 2 7 7
J1owzydr < ¢ (o —wli +{ [1uar} + [ ar+ [leftydr).

0 0 0 0
(B.6)

Moreover, if w and w' correspond to two different inital conditions and different
perturbations, letting ow =w —w', 6f =f —f', g =g — g, then
T T 2 T
sup fow(r)fy + [ wa(r)? dr < ©((owol? +{ [Ioles ar} + [ lagi , dr).
0<r<7 0 0 0
(B.7)
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