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We consider the equations governing multicomponent reactive flows derived from
the kinetic theory of dilute polyatomic reactive gas mixtures. Using an entropy function,
we derive a symmetric conservative form of the system. In the framework of Kawashima’s
and Shizuta’s theory, we recast the resulting system into a normal form, that is, in the
form of a symmetric hyperbolic-parabolic composite system. We also characterize all
normal forms for symmetric systems of conservation laws such that the nullspace asso-
ciated with dissipation matrices is invariant. We then investigate an abstract second
order quasilinear system with a source term, around a constant equilibrium state. As-
suming the existence of a generalized entropy function, the invariance of the nullspace
naturally associated with dissipation matrices, stability conditions for the source term,
and a dissipative structure for the linearized equations, we establish global existence and
asymptotic stability around the constant equilibrium state in all space dimensions and
we obtain decay estimates. These results are then applied to multicomponent reactive

flows using a normal form and the properties of Maxwellian chemical source terms.

1. Introduction

In this paper, we investigate the system of equations modeling multicomponent
reactive flows. We derive various symmetric forms of the system and we establish
global existence and asymptotic stability around constant equilibrium states for the
Cauchy problem 1n all space dimensions.

We first present the governing equations for multicomponent gaseous flows de-
rived from the kinetic theory of dilute polyatomic reactive gas mixtures [EG94].
We express the conservation equations, the transport fluxes and the thermody-
namic properties. An important point in these equations is that the transport



fluxes have their natural symmetry properties. We use in particular the symmetric
diffusion coefficients introduced by Waldmann and Tritbenbacher [WT62] [Gi91].
On the contrary, Hirschfelder, Curtiss and Bird [HCB64] have artificially destroyed
this symmetry [Gi91] [EG94]. The detailed form of the chemistry source term de-
rived from the kinetic theory is not needed in the first sections of the paper and is
postponed to Section 6.

We then discuss symmetrizability for an abstract system of conservation laws.
This property is closely related to the existence of an entropy function as shown
by Kawashima and Shizuta in the case of hyperbolic—parabolic systems [IKS88], ex-
tending previous work on hyperbolic systems [Go62] [FL71] [Mo80]. Starting from
an entropy related conservative symmetric form, Kawashima and Shizuta have fur-
ther investigated normal forms, that 1s, symmetric hyperbolic-parabolic composite
forms. These authors have shown in particular that symmetric systems of conser-
vation laws such that the nullspace naturally associated with dissipation matrices
is invariant can be recast into a normal form. In the framework of their theory,
we further characterize, in this paper, all normal forms for systems satisfying the
invariance property.

As an application, we exhibit an entropy function for the system of equations
modeling multicomponent flows. By using the corresponding entropic variable, we
derive a symmetric conservative formulation of the system. Chalot, Hughes and
Shakib [CHS90] have carried out similar calculations in the case of flows in ther-
mochemical nonequilibrium. However, they have used a multicomponent diffusion
matrix which is not symmetric [HCB54] and which prohibits complete symmetriza-
tion. These authors have thus advocated Onsager’s phenomenological coefficients in
order to achieve symmetrization. On the contrary, by using the symmetric form of
the transport fluxes and of the diffusion coefficients [WT62] [Gi91] [EG94], we have
obtained a naturally symmetric conservative formulation. The symmetrized multi-
component reactive flows governing equations are then shown to satisfy the invari-
ance property and are recast into two different normal forms. The first normal form
has simpler matrix coefficients and generalizes previous results from Kawashima
and Shizuta [KKS88]. The second normal form has dissipative terms in conservative
form and leaves unchanged the structure of the source term. Both forms can be
used for the asymptotic stability of constant equilibrium states investigated in the
paper.

We then consider an abstract second order quasilinear system which admits
an entropy function and satisfies the nullspace invariance property so that it can
be recast into a normal form. Under stability conditions on the source term, and
assuming conditions which guarantee the dissipative structure of the linearized nor-
mal system around the constant equilibrium state, we obtain global existence and
asymptotic stability of the stationary state. As stability conditions, we assume that
the chemical entropy production is nonnegative and that the source term lies in the
range of its derivative at equilibrium. Our method of proof relies on Kawashima’s
theory [Ka84], on a priori estimates provided by the entropy conservation law and



on stability properties of the source term. Decay estimates towards the constant
stationary state are also obtained in all space dimensions. This work extends previ-
ous results of Kawashima [Ka84] in space dimension d > 3 for general source term.
It also extend results of Kawashima [Ka84] concerning entropic systems with no
source term in space dimension d > 1.

We then apply these results to the system modeling multicomponent reactive
flows. We first investigate Maxwellian chemical source terms provided by the kinetic
theory. We restate the existence of constant stationary states and investigate the
structure of the corresponding linearized equations at equilibrium. We then obtain
global existence, asymptotic stability of the constant equilibrium state together
with decay estimates. To the authors’ knowledge, these results on multicomponent
reactive flows, obtained in a mathematical framework deduced from the kinetic
theory of gas mixtures [Gi91] [EG94], are new.

The governing equation for multicomponent reactive flows are presented in Sec-
tion 2. Symmetrizability for systems of conservation laws, entropy functions and
normal forms are investigated in Section 3. These results are then applied to mul-
ticomponent reacting flows in Section 4. In Section 5 we investigate an abstract
hyperbolic-parabolic composite system with a source term. Finally, Maxwellian
chemical source terms and equilibrium states are discussed in Section 6 and asymp-
totic stability 1s obtained in Section 7.

2. Governing Equations

2.1. Conservation equations

The equations modeling multicomponent reactive flows express the conserva-
tion of species mass, momentum and energy. These equations can be written in the
form [WT62] [EG94]

3tU—|—Z&Fi+Z&fi =Q, (2.1)

ieC ieC
where 0, is the time derivative operator, U the conservative variable, 0; the space
derivative operator in the i'" direction, C' = {1,2,3} the set of direction indices,
F; the advective flux in the i*P direction, F; the dissipative flux in the i*P direction
and €2 the source term. The variable U and the advective fluxes Fj, i € C, are given

by
t
U= (pla ] pnsa pU1, pU2, PU3, petOt) ) (22)
and

t
Iy = (mvz’, -o oy PngVi, pUIY;+8i1p, pUati+diap, pusvi+disp, PetOtvz’-l-Pvz’) , (2.3)

where p, is the density of the k' species, ng the number of species, S = [1, ng]
the set of species indices, p = ZkeS pi the total density, v; the mass averaged flow



velocity in the i*P direction, e'°* the total energy per unit mass of the mixture, and
p the thermodynamical pressure. For convenience, the dissipative flux F; is splitted
between the mass and heat diffusion flux F”* and the viscous flux F/ so that

Fi=FP+ 7. (2.4)

The fluxes FP* and F" i € C, and the source term 2, are given by

t
F = (0,000, oy, s, Thig, - Moy ) (2.5)
jec
t
fiDA — (plvlia ey pnsvnsia Oa Oa Oa QZ) ) (26)
t
Q= (mlwh cey MngWn_y PY1, Y25 PI3, pg~v) , (2.7)

where IT = (II;;); jec is the viscous stress tensor, Vi = (Vk1, V2, Vis)" the diffusion
velocity of the k'™ species, ¢ = (q1, g2, ¢3)" the heat flux vector, my the molar mass
of the k™ species, wy the molar production rate of the k' species, g = (g1, g2, 93)°
the external force per unit mass acting on the species, v = (v1, v2, v3)" the velocity
vector and ! the transposition symbol.

These equations have to be completed by the relations expressing the transport
fluxes II, Vi, k € S, and ¢, the thermodynamic properties p and e*°!, the chemical
source terms wy, k € S, and the specific force g.

2.2. Transport fluxes

The expressions for the transport fluxes rigorously derived from the kinetic
theory of dilute polyatomic gas mixture can be written as [WT62] [EG94]

Vi = — ZDkldl — 0,0, logT, ke S, (28)
les
M= —(k—29)(0;v)] — n(@xv + (3xv)t), (2.9)
g= —NOT —p> Oxde + > prhiVi, (2.10)
kes kes

where D = (Dkl)k,les is the diffusion matrix, di the diffusion driving force of the
k™ species, 6 = (0, .. .,Hns)t the thermal diffusion vector, 9, = (81,02, d3)" the
usual differential operator, T' the absolute temperature, x the volume viscosity, 7
the shear viscosity, A’ the partial thermal conductivity and h; the enthalpy per
unit mass of the k*® species. The vectors dy, k € S, take into account the effects of
various state variable gradients and are given by

O
dp = 0, X1, + X, pp, (2.11)




where X} denotes the mole fraction of the k" species. Alternate expressions for
the diffusion velocities and the heat flux vector are

Vi == Du(di +x10:1ogT), k€S, (2.12)
les
g= =ALT+pYy xVi+) mhVi, (2.13)
les les
where x = (x1,.- .,an)t is the thermal diffusion ratio vector and A the thermal

conductivity. Both expressions (2.8) (2.12) for the diffusion velocities and (2.10)
(2.13) for the heat flux vector will be used in the following.

These formulations of the pressure tensor (2.9), the diffusion velocities (2.8)
(2.12), and the heat flux (2.10) (2.13) are due to Waldmann and Triibenbacher
[WT62] [EG94]. In particular, the diffusion matrix D associated with these fluxes
1s symmetric as specified in Section 2.5 where the properties of the various transport
coefficients are expressed.

2.3. Thermodynamic properties

From the kinetic theory, the state law expressing the pressure p is

p=prT, (2.14)
where p
- L
pr_Rmek. (2.15)
kes

In these expressions, p = ) ;s pr is the total mass density, r the specific gas
constant of the mixture, and Ry the universal gas constant. The specific total
energy €' and the specific internal energy e of the mixture are given by

tot

et =e+ %vv, (2.16)

where

pe = Zpkek. (2.17)
kes
The quantity ey is the internal energy per unit mass of the k' species and can be

written
T

ex(T) = e +/ o (T") dT7, (2.18)
To

where e} is the energy of formation of the k™ species at the positive reference
temperature Ty and ¢y is the specific heat at constant volume of the k" species.
The mixture specific heat at constant volume ¢, is also defined by

pey = Zpkcvk. (2.19)

kes



Similarly, the specific total enthalpy k"' and specific enthalpy h are written

Riot — p 4 %vv, ph = Zpkhka (2.20)
kes

where hy, the enthalpy per unit mass of the £*® species, reads
hy (T) = ex (T) + ri T, (221)

and where 7, = Rg/my, is the specific gas constant of the k™ species. Tt is also

convenient to denote by €}°" the total energy per unit mass of the k™ species and

by hi°* the total enthalpy per unit mass of the k™ species
ezOt =er + %uv, hzOt = hy + %vv. (2.22)
The kinetic theory also yields the specific (physical) entropy of the k™ species

T 7
vk (1
selpr, T) = s + / ‘”“T(—,)dT’—mbg( & ) (2.23)
To

Yommg

where s?° is the standard formation entropy at the positive reference temperature
Ty and positive reference pressure voRz1p. Note that ps/mi = g is the molar
concentration of the k'™ species and ~p is the reference concentration. Finally, we
will also need the expression of the chemical potential pux(pg,T) of the k™ species

pr = ep +rl — spT. (224)

2.4. Source terms

The detailed description of the chemical source terms wg, k € S, is not needed
in the first sections of the paper. It will only be needed for investigating global
existence results and asymptotic stability of constant equilibrium states. Therefore,
the detailed description of the terms wy, & € S, is postponed to Section 6. In the
following, we only require that the chemical source terms wg, k& € S, are functions
of the natural variable Y = (p1, ..., pn_, v1,v2, s, Ty

W = wk(Y), (225)
with a similar assumption for the specific force term g

g=g(v). (2.26)

Remark 2.1. In this paper, for sake of simplicity, we only consider a species
independent specific force, as gravity for instance. When the specific forces are
species dependent, the overall force term reads ¢ = Zkespkgka and the diffusion



driving force terms become dj, = d, — (pr/p) gk, where gi denotes the specific force
acting on the k' species. In this situation, there are extra fluxes arising from the
modified diffusion driving force terms, and symmetrization of these fluxes can only
be achieved provided that special compatibility relations hold between the specific
forces and the transport coefficients [Ma96].

2.5. Mathematical assumptions

We introduce here the mathematical assumptions concerning the transport
coefficients, the thermodynamic properties and the simplified source terms. We
assume that the natural variable Y = (p1, ..., Png, V1, U2, U3, T)! takes its values in
the open convex set Oy

Oy = (0,00)" x R? x (Tp, o), (2.27)
where Tp is positive and we assume the following dependence and regularity prop-
erties.

(H1) The transport coefficients (Dgi)ries, (61, .., ng)t, (x1, - .,an)t, K, 1,

0
A, and A are O™ functions of (p1,..., pn,,T) € (0, 00)s x (Ty, 00).

(Hg) The specific heats ¢y, k € S, are C* functions of T' € [Tp, 00). Moreover
there exists a positive constant ¢ with 0 < a < ¢y (€), for £ > Tp and
kes.

(Hs) The force term g is a C'* function of ¥ € Oy.

(H4) The chemical production rate vector w = (wq, .. .,wng)t is a C'*° function
of Y € Oy.

(Hs) The shear viscosity , the thermal conductivity A, and the partial thermal
conductivity A’ are positive and the volume viscosity & is nonnegative.

(Hg) The matrix D = (Dg)xes 1s symmetric positive semi-definite and its
nullspace is spanned by ¢ = (p1, .. .,png)t. We have in particular the mass
constraints

ZkaklIOa lebs.

kes
(H7) The thermal diffusion vector 8 = (64, .. ., Hns)t satisfies the mass constraint
Z Pk Hk =0.
kes

(Hg) The thermal diffusion ratio vector x = (x1, .. ~,Xn§)t satisfies the relations

ZDlelzgk, kes, ZXk:O'

les kes



The partial thermal conductivity A’ is given by

(Hg) The chemical production rate vector w = (wq, .. .,wng)t satisfies the mass

Z mrWe = 0.

kes

conservation relation

We point out that all these assumptions are suggested by the semi-classical ki-
netic theory of dilute polyatomic reactive gas mixtures [Gi91] [EG94]. As previously
mentioned, the diffusion coefficients considered here are symmetric and, therefore,
are consistent with Onsager reciprocal relations. On the contrary, Hirschifelder,
Curtiss and Bird have introduced an alternate definition [HCB54] and artificially
destroyed the symmetry of the diffusion process [Gi91] [EG94]. The mass con-
straints of the diffusion matrix and the thermal diffusion vector also imply the mass
conservation relation ), - px Vi = 0. In addition, the positivity properties of the
transport coefficients are associated with the positivity of the entropy production
quadratic form [Gi91] [EG9Y4].

Further note that the gas species specific heats—and therefore the energies
and enthalpies—obtained from the kinetic theory, could also be extended—from
a mathematical point of view—up to zero temperature, but not the gas entropy
which explodes like logT. However, since the basic assumptions of the kinetic
theory of dilute gas mixtures are not valid at low temperatures, where the gases are
ultimately transformed into liquids and then into solids, we have chosen to restrict
the temperature domain to [Tp, o0), where Ty is positive, for modeling gas mixtures.

2.6. The quasilinear form

By expressing the natural variable Y in term of the conservative variable U, we
now rewrite the system of conservation equations (2.1) in a quasilinear form. For
this purpose, we first investigate the map ¥ — U and its range.

Proposition 2.2. The map Y —— U is a O diffeomorphism from the open set
Oy = (0,00)" x R? x (Ty, o) onto an open set Op. The open set Oy is convex
and given by

Op={zeR™™ 2 >0, 1<i<ng, Zno+a = @21,y Zng43) > 0}, (2.28)

where ) ) )
1 Zns+1 + Zns+2 + Zns+3

(1, oy 2nps) = & =~ +3 el
i€S <t

1€S




Proof. From Assumption (Hs) and the expression (2.2) we first deduce that the
map Y — U is C% over the domain Oy . The matrix dy U is easily shown to be
nonsingular over Oy thanks to its triangular structure. Finally, it is straightforward
to show that the map Y — U is one to one so that Y — U is a C*° diffeomorphism
onto an open set Op. From (Hag), it is then easily established that Oy is given
by (2.28). The convexity of Oy is then a direct consequence of the convexity of ¢
which is established by evaluating its second derivative. a

From (2.8)—(2.11) and Proposition 2.2, the dissipation fluxes can then be ex-
pressed as functions of the conservative variable gradients

Fi==Y_ Gi(U)o;U (2.29)

jeC

where G;;(U), i,j € C, are the dissipation matrices. These matrices are square
matrices of dimension ng + 4, and, from (2.4)—(2.6), they admit the following de-
composition

Gij =G+ G, (2.30)
where

FI == "G00 U, FPr == GINU)o;U.
JEC JEC
We may further introduce the jacobian matrices A;, ¢ € C', of the advection fluxes
FieC,
A; = Oy F, (2.31)

and finally rewrite the system into the quasilinear form

8tU—|—ZAZ»8iU = Z &(Gij@jU) —|—Q(U), (2.32)

1eC 1,jEC

where the matrix coefficients are defined on the open convex set Op. The detailed
form of the coefficient matrices 4;, i € C', and G;;(U), i,j € C, will not be needed
in the following, and, therefore, will not be given and we refer to [Ma96] for more
details.

3. Symmetrization and Normal Forms

For hyperbolic systems of conservation laws, the existence of a conservative
symmetric formulation has been shown to be equivalent to the existence of an
entropy function [Go62] [FL71] [Mo80]. These results have been generalized to the
case of second order quasilinear systems of equations by Kawashima and Shizuta
[KS88], using Kawashima’s definition of an entropy function [Ka84]. In this section,
we first restate these results on conservative symmetrizability. Following Kawashima



and Shizuta [KS88], we then investigate normal forms of the system, i.e., symmetric
hyperbolic-parabolic composite forms. Kawashima and Shizuta [KS88] have shown
that, when the nullspace naturally associated with dissipation matrices is a fixed
subspace, a symmetric system of conservation equations can be put into a normal
form. In the framework of their theory, we further characterize in this section all
normal forms for such symmetric systems of conservation laws.

3.1. Entropy functions and symmetric conservative forms

We consider an abstract second order quasilinear system in the form

QU™+ Y HFI(UT) = Y H(GHUNOUT) + (), (3.1)

ieCH ijECH

where U* € Oy, Opn 1s an open convex set of R”, and C* = {1, ..., d} is the set of
direction indices of B¢, Note that the superscript * is used in order to distinguish
between the abstract second order system (3.1) of size n in R? and the particular
multicomponent reactive flows system (2.32) of size ng + 4 in 3. All quantities
associated with the abstract system have the corresponding superscript *, so that
for instance the unknown vector is U*. We assume that the following properties

hold for system (3.1).

(A1) The flux vectors I, i € C*, the dissipation matrices G, ¢,j € C*, and
the source term Q~, are smooth functions of the variable U* € Oy, where

Oy is a convex open set of R".

The following definition of a symmetric (conservative) form, for the system
(3.1), is due to Kawashima and Shizuta [KS88].

Definition 3.1. Assume that V* — U~ is a diffeomorphism from Oy. onto Op.,
and consider the system in the V* variable

Tove+ Y Lave=3 o (éyjajv*) O (3.2)
ieC* 1,jECH
where _ _ _
A = 8,.U" Ar = ArA:,
~0 s ~ 0 (3.3)
Gy = GyAs, O = Q.

The system (3.2) is said to be of the symmetric form if the matrix coefficients satisfy
the following properties.

(S1) The matrix AS(V*) is symmetric and positive definite for V* € Oy,
(S2) The matrices AV:‘(V*), ¢ € C*, are symmetric for V*€0,.,

(S3) We have G5 (V*)t = G5,(V*) for i,j € C* and V* €Oy,



(S4) The matrix E*(V*, w)=>, jece éfj(v*)wiwj is symmetric and positive
semi-definite, for V* € Oy and w € 87! where $97! is the unit sphere
in d dimensions.

Note that both first and second order derivative terms are in conservative form in
(3.2). On the other hand, the following generalized definition of an entropy function
has been given by Kawashima [Ka84] [KS88].

Definition 3.2. A real-valued smooth function #*(U*) defined on a convex set
Oy is said to be an entropy function for system (3.1) if the following properties

hold

(E1) The function H* is a strictly convex function on Q. in the sense that the
Hessian matrix is positive definite on O,

(E3) There exists real-valued smooth functions ¢} = o7 (U*) such that

(OpeH*) AT = 0oy, i€C7, U* € Ops, (3.4)

(E3) We have the property

(0317 (U") ™ (G) = G5 (G2 (U") ™, i, jeC”, U e0y.
(3.5)

(E4) The matrix E*(V*,w) =2 jec G5 (U7) (32*7{*(U*))_1 wiw; 1s sym-
metric positive semi-definite for U* € Opn and w € S~ 1.

Kawashima and Shizuta have established the equivalence between conservative sym-
metrizability and the existence of an entropy function for the system [KS88].

Theorem 3.3. The system (3.1) can be symmetrized on the open convex set O if
and only if the system admits an entropy function #* on O . In this situation, the
symmetrizing variable VV* can be expressed in terms of the gradient of the entropy
function H*

V= (aU*%*)t. (3.6)

The mathematical entropy H* is generally taken to be the opposite of the
physical mixture entropy density per unit volume. The variable V* is usually termed
the entropic variable associated with the variable U*.

Remark 3.4. Note that, for convenience, we have considered source terms in the
previous definitions, which are minor modifications of [KS88]. Properties of entropy
functions associated with source terms are discussed in Section 5.2.



3.2. Normal forms

We now assume that the abstract second order quasilinear system (3.1) is
symmetrizable in the sense of Definition 3.1, that is, we assume

(As) The system (3.1) admits an entropy function H* over the domain Q..

Introducing the symmetrizing variable V** = O+ H™, the corresponding system
(3.2) then satisfies Properties (S51)—(S4). However, depending on the range of the
dissipation matrices éfj, this system lies between the two limit cases of an hy-
perbolic system and a strongly parabolic one. In this section, we use a sufficient
condition on the matrices éfj, t,j € C*, the Condition N introduced by Kawashima
and Shizuta [KS88], under which the system can be recast in the form of a symmet-
ric hyperbolic-parabolic composite system, defined as a normal form of the system.
We then characterize all normal forms for symmetric systems of conservation laws
satisfying Condition N.

Introducing a new variable W*, associated with a diffeomorphism from Oy
onto Oy, and multiplying the conservative symmetric form on the left side by the
transpose of the matrix dy. V™ we then get a new system in the variable W* and
we have the following definition of a normal form [KS88].

Definition 3.5. Consider a system in symmetric form as in Definition 3.1 and a
diffeomorphism W* — V* from Oy to Oy.. The system in the new variable W*

Tow+ 3 Taw =Y & ((‘;;‘jajw*) vH 4O, (3.7)

ieC* ijECH

where

Ty = O V) Ay (e V), Gy = (0 V)L Oy (0 V),
= @ V) A7 (0 V7), @ = (0 V)N,

(3.8)
H = = 3 0:(0u V7Y G5 (O V)W,

i,jeC*
satisfies
(S1) The matrix Z;(W*) is symmetric and positive definite for W* € Oy,

The matrices Z:(W*), i € C*, are symmetric for W* €Oy,

—*

S4) The matrix E*(W*,w) = Zi,jec* G (W )wjw; is symmetric positive

semi-definite, for W* € Oy and w € 841,

(52)
(S3) We have (_}rJ(W*)t = (_};Z(W*) for ¢,j € C* and W* € Oy,
(54)

This system is then said to be of the normal form if there exists a partition
of {1,...,n}intor={1,...,no} and m = {ng + 1, ...,n}, such that the following
properties hold.



(N7) The matrices A, and (_}:] have the block structure

—* 1,1

. Ag 0 . 0 0
P om0 ea)

—% 11T —k IT,IT

N3) The matrix B W* w) =) .cqw Gy (W™ )w;w; 1s positive definite,
iject Uij j
for W* € Oy and w € S%1,

—x —x =% ¢
(N3) We have H™ (W*, 0.W*) = (I, (W*,0.W5) 1, (W",0.W7))

where we have used the vector and matrix block structure induced by the parti-
tioning of {1,...,n} into r={1,...,no} and 11 = {ng + 1,...,n}, so that we have
W* = (W}, WZ)" for instance.

Remark 3.6. Note that, for convenience, we have kept the dissipative terms (_}:]

in conservation form and we have considered a source term € in Definition 3.5,
which are minor modifications of [KS88].

A sufficient condition for system (3.2) to be recast into a normal form is that the
nullspace naturally associated with dissipation matrices is a fixed subspace of R".
This is Condition N introduced by Kawashima and Shizuta which is now assumed

to hold.
(As) The null space of the matrix

BV w)= Y GV )wuwy,
i,jeC

does not depend on V* € Oy« and w € S?~! and we denote by ng its

dimension ng = dim(N(E*)).
In order to characterize more easily normal forms for symmetric systems of conserva-
tion laws satisfying Condition N, that is, satisfying (Asz), we introduce the auxiliary
variables U*' and V*', depending linearly on U* and V*, respectively. The dissi-
pation matrices corresponding to these auxiliary variables have nonzero coefficients
only in the lower right block of size n — ng, where ny = dim(N(E*)). Normal
forms are then equivalently—and more easily—obtained from the V* symmetric
equation.

Lemma 3.7. Consider a system of conservation laws (3.2) which is symmetric in
the sense of Definition 3.1. Denote by H* the associated entropy function and by
V* = (9 H*)! the symmetrizing variable, and assume that Condition N is satisfied
over Oy..

Further consider any constant nonsingular matrix P of dimension n, such that
its first ny columns span the nullspace N(E*) associated with Condition N, where
ng = dim(N(E*)). More specifically, assume that P is such that

span{ (Pij, .., Paj)ts 1< < ng } = N(E*)



The auxiliary variable

U*/ — PtU*,
satisfies the equation
au+ 3 Avou = Y ai(GHoUT) +9, (3.9)
ieC* i,jECT

where AY = PYAX(PY)7L, G = PtG;‘j(Pt)_l, and Q* = P'Q*. The corresponding
entropy is then the functional U* — H* ((Pt)_lU*’) and the associated entropic
variable V*' = (9 H*)? is given by

V*/ — P—lv*’
and satisfies the equation
Ao+ 3 Areve = 3 a(Grov) +97, (3.10)
ieCt i,jeC™

where ga’ = PthP , AVZ" = Ptngp’ é;‘]’ = Pté;‘jP, and Q7 = P'Q*. In particular,
é;‘]’ is in the form
0o 0

SR ITIT
0("—"0)X"0 Gzy

~ noX(n—ng)

oy = , (3.11)

and E*/H,H(V*/’ w) — Zi,jeS
Finally, the normal form (3.7) is equivalently obtained by multiplying the V*

equation (3.2) by (9. V*)? or the V*' equation (3.10) by (9. V*')".

Proof. Eq. (3.9) is easily established by multiplying Eq. (3.1) on the left by

Pt. This also yields the relations A = P'A*(P')~1 and G = PtG;‘j(Pt)_l, and

Q7 = P'Q*. It is also easily checked that the functional U*" — H* ((P")~1U*') is

the corresponding entropy. From V* = (Jy+H*)" and the chain rule,~we then~get

that V* = P=1V* and Eq. (3.10) is obtained as in (3.2) (3.3). Since Bi’ = P'B*P

and since the first ny columns of P span N(B*), we next deduce that B* is in the

G;‘;”’”wiwj is positive definite over Oy« x S¥~1.

form

0 0

ngXng nogX(n—ng)

B = (3.12)

Ty*/I1,IT
O(n—nD)XnD B ’

so that all the matrices éf]’, i,j € C*, are also in the form (3.11). Moreover, the
matrix E*’”’”(V*’, w) is positive definite since the n — ng last columns of P span a
subspace complementary to N(B*). O

Normal forms for symmetrizable systems of conservation laws satisfying Con-
dition N are now completely characterized in the following theorem, in terms of the
auxiliary variables U*' and V*'.



Theorem 3.8. Keeping the assumptions and notation of Lemma 3.7, any normal
form of the system (3.2) is given by a change of variable in the form

W = (v (U7), u (V) (3.13)

where ¥; and ¢;; are two diffeomorphisms of R™® and R"™"° respectively. The
ng components of U* can thus be termed hyperbolic components and the n — ng
components of V7' parabolic components. Furthermore we have

(W=, 0,W=) = (0, B, (W=, 0,W:))",

and when ¢ is a constant linear mapping, we also have H,, = 0 and the dissipative
terms are in conservative form.

Proof. The mapping U* —— W* is smooth from assumptions and a straightforward
calculation yields that

aUI*’1/)I O(n—nD)Xn

aU*/W* = —~ ~
Ouzrspu (AT Orpn (A7)

Inir ’

so that Jg=W* is invertible. On the other hand, the derivative of the mapping
Ui — V(U U, for afixed value of U™, is given by dy» V' = (g:;/_l)n’” and
is positive definite. Since Oy, is an open convex set, we deduce that U™ —— W*
Is one to one. As a consequence, the mapping U* —— W~ is a diffeomorphism
from Qg+ = P'Op. onto an open set denoted by Oy and, similarly, the mapping
V* — W* is a diffeomorphism from Qy+ = P=10y. onto Oy .

Evaluating and inverting the matrix dy+ W™, we next obtain the following
expression for dy V™

(ﬁz/ I,I) -1 (aUI*’1/)I> B
S <8VI}"90”>_1

1 _(AVS/ I,I)_lAv:;/ LII (aVI;"SDH)_l

O V* = , (3.14)

and a direct calculation using (3.14) then shows that Properties (Ny)-(N3) are
satisfied, keeping in mind that normal forms are equivalently obtained from the V*/
equation (3.10) or the V* equation (3.2).

Consider a diffeomorphism V* — 7% = (SDI(VI*/,VI;F/)MDH(VI*/,VH*/))t and
assume that the system (3.7) in the variable Z* is of the normal form. By using
the definition of B~ and the auxiliary variable V*' it is easily established that

B = (0ye 2°) B 0y 27).

Using the block structure of B and B* then yields that
((3v,*’Z?I)t§*M (Ovpus)  (Ovpes) B (av;Z;;)) - (0 0 )
—11, —11, - */ILIT |
OB T 0 25) 07 T ) )N



which implies that 3VI*1Z;‘I = 0 since B*™1 is positive definite, and thus that
Zy = en(V). (3.16)
On the other hand, by using the definition of Z;, it 1s easily establish that
Ay (0 27) = (9 V).

Using the block structure of Z; and the relation dz: V" = 0, derived from Ovie 27 =
0, we then obtain that 3U;}1Z;‘ = 0 and thus that

Z7 =4 (U), (3.17)

where we have defined o, (V' V') = ¢, (U, U'). This shows that any diffeomor-

y YIT )y IT
phism associated with a normal form is of type (3.13).

Moreover, a direct calculation yields

. ~ _ t
= (0,= 37 () ™) G (Ovn) 05055 (3.18)

1L,jeC*

This shows that ﬁj =0, and that ﬁ: = 0 when ¢;; is constant linear mapping as
was to be shown. O

Remark 3.9. Theorem 3.8 shows in particular that the general form (3.13) is
independent of the choice of P. It is also possible, however, to check it directly.
Consider indeed another matrix (), as in Lemma 3.7, and define U*” = Q'U* and
V*' = @Q~'V*. Denoting by P the matrix P = P~1Q, we thus get U*" = BU*
and V* = P~1V*. Since the nullspace N(E) is spanned by the ng first columns
of P and @, it is easily checked that B>" = 0. This implies that B>’ and P are
invertible so that U = (P)'U* and V" = (P7)" 'V and we recover that

the general form (3.13) is independent of P.

4. Symmetrization for Multicomponent Flows

We now apply the general results of Section 3 to the system of equations gov-
erning multicomponent reactive flows (2.32). We first exhibit an entropy function
and derive the corresponding conservative symmetric form. We then establish that
Condition N is satisfied. As a result, we recast the symmetrized system into two
normal forms. The first normal form has simpler matrix coefficients and generalizes
the normal form of the Navier-Stokes equations previously obtained by Kawashima
and Shizuta [KKS88]. This form also perturbs the structure of the source term. The



second normal form, given in the Appendix, is more natural but also more com-
plex, and has dissipative terms in conservative form. Both forms can be used for the
asymptotic stability of constant equilibrium states investigated in the next sections.

4.1. Entropy and symmetric conservative form

We first note that Property (A;) is a direct consequence of Assumptions (H1)-
(H4). We next define the mathematical entropy function #H as the opposite of the
physical mixture entropy density per unit volume

%I—Zpksk. (41)

kes
The corresponding entropic variable
t
v=(oun), (4.2)
is then easily obtained and is in the form
=2 : : 1 4.3
=7 H1— 35V0, ..., fin, — 35UV, Y1, U2, U3, =1}, ( . )

where gy, is the chemical potential of the k' species.

Proposition 4.1. The change of variable U —— V from the open convex set Oy
onto the open set Oy = R™sT3 (—o0, —1/Ty) is a C' diffeomorphism.

Proof. From Proposition 2.2, Y — U 18 a C* diffeomorphism from Oy onto Oy,
so that we only have to show that Y — V is a C'*° diffeomorphism from Oy onto
the open set Oy . From Assumption (Ha) and the expressions (2.18) (2.23) (2.24),
we first deduce that the map Y — V is C* over the domain Oy . The matrix dy V'
is then easily shown to be nonsingular over Oy thanks to its triangular structure.
Finally, it is straightforward to show that the map Y — V is one to one—since —sy
is an increasing function of pg at fixed T—and that its range is Oy, and the proof
is complete. a

The conservative symmetric form is now investigated in the following theorem.

Theorem 4.2. The function H is an entropy for system (2.32), that is,  satisties
Properties (F1)—(F4) of Definition 3.2. The system associated with the entropic
variable V' € Oy can then be written

AoV + Zﬁi&»v = Z G (éijajv) +Q, (4.4)

ieC i,jEC



and satisfies Properties (S1)—(S4) of Definition 3.1. The matrix go is given by

(p—kék,) Sym
Tk kles
= Pl
Ag = <_Ui) (Epviv; + PT(Sij)i,jec (4.5)
L ieC,les
(ﬁe}ZOt) (Eevj —|— pij)jEC Te
L les
where
L= Se=3 AT M= Al vk al).
P L ’ Tk ’ Tk
kes kes keS

Since this matrix is symmetric, we only give its block lower triangular part and write
“Sym” in the upper triangular part. On the other hand, denoting by £ = (¢1, €2, &3)"
an arbitrary vector of R?, the matrices A;, i € C, are given by

Z Aigi =

ieC
(&;lﬁvf) Sy
s kles
!
(PlT&' + 2y, v~€) (2, vi0j0-€ + pT(vi&j+uvi&i+v-€dij)), jec
Tl i€C,lesS 7
(h?Otﬁ vf) (Zhvjv€ + pTvjv§ + pTh* &) o ARERS
Tl les (4 6)

where

_ Pk tot _ PE 5 tot2
Eh_lgsahk , Th_lgsahk +pT (v-v+ (e +7)T).

Furthermore, concerning the dissipation matrices, we have the usual decomposition
Gy = éf]” + égx. (4.7)

The viscous matrices G%/

i b€ C, have the following structure

~ O"SX"S 0"5X4
Gi]n = ~ ’ (48)
Osen, K5



so that we only need the expressions of Eij, 1,5 € C. For sake of brevity, we only
express K11 and K19

(k+3m) 0 0 (5 + 3m)v1
~ 0 i 0 N2
Kll = T ’
0 0 i N3
(k+3mv1 nu2 oz (K4 g0)of + v
0 (k—3m 0 (k=3n)v
- i 0 0 Ny
IClZ = T ’
0 0 0 0
nva (K — %n)vl 0 (k4 %n)vlvz

the other matrices being obtained by circular permutation and using the relations
Kio =K%,  Kizs=Kg,  Kus=Ki,.

On the other hand, the heat and mass diffusion matrices éi[})‘, t,j € C, satisfy

SDX _ DX _ SDXA _ SDA ~iD X g
G =Gy =Ggg =677, Gij =0, i#7],

where
(Dkl)kyles Sym
GDA = 03><nS 03><3 ,
(E Dklhk+Pl9lT) O NT?42 5 prbphpT+ 5" Drihihy
kes les kES k€S

(4.9)
and the symmetric matrix D has been defined from the multicomponent diffusion

matrix D by
Dkl = pkplel/Tp. (410)

Finally, the source term Q is given by

Q=0q. (4.11)

Proof. The calculation of the matrices EO, ;L», 1€ C, and éij, 1,7 € C, 1s lengthy
but straighforward and, therefore, is omitted [Ma96]. This calculation is easily con-
ducted by using the natural variable Y as an intermediate variable. The symmetry
properties of Ay, A;, i € C, and éij, i,j € C, required in (S1)—(S4), are then



obtained. We also have the identity Q= {2, since (4.4) is derived by a change of
variable.

Consider then a vector & € ™™ with components (1,.. .,an+4). After a
little algebra, we obtain that k

2! Agz = o ((l‘ns+1 +v11‘n5+4)2+(l‘n5+2 +vll‘ns+4)2+(l‘ns+3+v1l‘ns+4)2) +

Pk tot 2 2.2
E . (l‘k + V1%n 41 + V2Tn 42 + V3T 43 + er’ l‘n§+4) + pc, T L 4
kes

so that from (H3) and the positivity of py, & € S, and T, we deduce that A is
positive definite.
On the other hand, by using (Hg)—(Hsg), one can establish that

'GP = Z 'Dkl<l‘k + (hi + P Xk )xns+4) (xl + (b + M)xns_H) + /\T2x721<+4a
kles Pk Pl i
(4.12)
which shows that GP* is positive semi-definite thanks to (He).
Furthermore, a straightforward calculation leads to the following expression for
the quadratic form associated with B(V, w)

xtE(V, w)er =T(k+ %77)(01101 + 09wo —1—03w3)2 —|—T77(0% + 02 —|—0§) —|—xt(§D>‘x, (4.13)

where 0; = LntitViln_ 44, t=1,2,3, and where w%—i—w%—l—wg = 1. We thus obtain
that the matrix B is symmetric, because it 1s the sum of symmetric matrices, and
is positive semi-definite for V € Oy and w € 8%, thanks to Assumptions (Hs) and
(Hg). Finally, H also satisfies (F1)—(F4) as is easily checked and is strictly convex
since Ag is positive definite over the open convex set Og. a

4.2. Normal forms for multicomponent flows
In this section we establish that system (4.4) satisfies Condition N and we

investigate normal forms.

Proposition 4.3. The nullspace of the matrix B associated with system (4.4) is
one dimensional and is given by

N(B) =span(l,...,1,0,0,0,0)". (4.14)

Proof. According to Eq. (4.12) (4.13), the matrix B is positive semi-definite, so
that its nullspace is constituted by the vectors z of R"** such that #! Bz = 0. On
the other hand, we have

xtE(V, w)r = (Kj + %77) T(o1wy 4 oows + 03103)2 + UT(O% + 0% + og)—l—



Z Dyt (ke + (hy + %)MQH) (z1+ (b + %)xnd_;;) + /\szflq_l_zl,
k€S Pk pro " k

where 0; = p_4i + viTn_44, 1 = 1,2,3. As a consequence, 2'Bx = 0 implies that
Tn+4 = 0 and that z,_1; = 0, ¢ = 1,2,3, thanks to (Hs). Therefore, z is in the
nullspace of E(V, w) if and only if we have

> Duwsa = 0. (4.15)
k€S

Using (Hg) and (4.10) we then obtain that the nullspace of E(V, w) is one dimen-
sional and spanned by (1,...,1,0,0,0,0)" and is thus independent of V € Oy and
we S a

Since the system of equations governing multicomponent reacting flows satisfies
Condition N, we can now obtain from Lemma 3.7 the auxiliary variables U’ and V.
From Lemma 3.7 and Proposition 4.3 the matrix P can be taken to be

r 0 - -~ 0 0 0 0 0
11 S
© 0 Do
[ S 0 (4.16)
1 6 -~ 0 1 0 0 0 0
0 01 0 0 0
0 00 1 00
0 00 010
0 00 0 0 1
in such a way that
' ¢ tot )’
U=rU= (pa p2a"'apnsapvlapv2apv3apeo) : (417)

The associated entropic variable is then V/ = P~1V where V is given by (4.3), and
the corresponding symmetric system is easily obtained from (4.4).

Proposition 4.4. The system in the new dependent variable V',

1 ¢
V= T(ﬂl — v, po—pia, .., Hng—H1, V1, V2, U3, —1) , (4.18)
can be written
o' + 3 Ao’ = 3 o (Grov') + 8 (4.19)

ieC i,jEC

where V/ € Oy = R%+3 » (o0, —1/Ty), A} = P'AP, A, = PPAP, i =1,23,
Gi; = P'G;P,i,j =1,2,3, and where @ = P'Q = (0,Q,,)".



In particular, Properties (S1)—(S4) of Definition 3.1 are satisfied and the dissi-
pation matrices are given by

0 01><(nS +3)

NITIT
0(ns+3)><1 Gij

Gl = (4.20)

where ég” is the lower right block of size ng + 3 of G.

We now investigate normal forms for system (4.4), or, equivalently, for sys-
tem (4.19). We first use the possibility of mixing parabolic components—the V),
components—established in Theorem 3.8, in order to simplify the analytic expres-
sion of the normal variable, and, consequently, of the matrix coefficients appearing
in the normal form. More specifically, we consider the variable

T r ¢
W= (pa log(P?/Pgl)a B log(PnSS /P1 )a V1, V2, U3, T) )

easily obtained by combining the V), components, and derive the corresponding
normal form of the governing equations. When there is only one gas, this normal
form 1s identical with the one previously obtained by Kawashima and Shizuta in
[KS88]. We also investigate, in the Appendix, the normal form associated with the
“natural” normal variable W = (U!,V!)" which guarantees a conservative form for
the dissipative terms of the system, leaves invariant the source term £2;;, but has a
more complex expression.

Theorem 4.5. The system in the variable W = (W,, Wy, )?, on the open convex set
Ow = (0,00) x R~ xR x (T, o0), with hyperbolic variable W, = p and parabolic
variable Wy, = (log(ph2/pit), - - -, log(p:;;s /p1t), v1, va, vs, T)t, can be written

ZSI&WI + 2 ice ZZ{’I&'WI + 2 icc Z;’H&WH =0, (4.21)
Zéf,nat VV}I + Ziec Z;I,Iaim 4 ZiEC ZZ{LHai VV}I =
> oG5 o) 4 B, (122

i,jeC

and is of the normal form. The matrix A is given by

L 0
X,
by X
0= 3
ﬁ]S
T C.
0 Py

TZ



where X is a square matrix of dimension ng — 1 given by

pr prpc 1
X = O — — — k.l 2 . 4.23
ki ki S, L€ (2, ng] ( )

Denoting by ¢ = (£1,&2,&3)" an arbitrary vector of ®? the matrices A;, i = 1,2, 3,
are given by

Sym

Lo coz %vffs

ﬁgt pcvv'€

0 le(ns—l) T T2

where Z is a vector of dimension ng — 1 given by

pLp
7“12[,’

Zi=p— L€ [2,ng].

DA

For the heat and mass diffusion matrices, (_}” ,

1,7 =1,2,3, we have

—DX —DX —DX —DX
Gy =Gy =Gg3 =G =

0 Sym
O(ns—l)x1 (Dkl)k,lzz
03><1 03><(nS —1) 03><3 ’
N Pk Ok Dyyrery
1
0 (S enernn) 0w el P
> kes klcS

. ., =Dx ., L .
whereas the nondiagonal terms vanish G;;~ = 0, 7 # j. The dissipation matrices

;;7, i,j = 1,2,3, still have the structure (4.8) and the

corresponding matrices K;;, 7,7 = 1,2, 3, are given by

due to the viscous effects G

kK+3n 0 0 0 0 k—2np 0 0

_ 1 0 5 0 0 4 lwn 0o 000
ICH—— ,IC12—_ 3
T 0 0 75 0 lo 0o 00

0 0 0 0 0 0 00

with the other ones deduced by circular permutation and from the relations

1612 = Etzla 1613 = E;p 1623 = IC32~



Finally, the terms H,, is easily computed from (3.18) whereas the corresponding
source term Q = (9. V*)! Q is given by

— g1 92 93 1 ¢
Q= (0, MaWa, ..., Mp Wn_, T T T —ﬁ(kezsekmkwk —|—g~v)) .

Proof. The calculations are lenghty but straightforward and make use of Theorem
4.2, Proposition 4.4 and Assumptions (H1)—(Hg). O

Remark 4.6. Note that if ¢ = 0 and if the source term 2 remains in a fixed
subspace of IR x Ogs, the source term £ is no longer in a fized subspace of R"st* of
the same dimension because of the coefficients ey /T2 in the term ZkeS exmpwy /T?
which introduce an explicit dependence on the state variables.

5. Global Existence and Asymptotic Stability for an Abstract System

In this section, we further consider the abstract quasilinear second order system
(3.1). We assume that the system admits an entropy function and that Condition N
holds, so that the system can be recast into a normal form. Under stability condi-
tions on the source term, and assuming conditions which guarantee the dissipative
structure of the linearized normal system around the constant equilibrium state,
we prove global existence, asymptotic stability and decay estimates for the Cauchy
problem.

5.1. Equilibrium point and conservation of entropy

We consider an abstract system of conservation laws (3.1) satisfying Assump-
tions (A;1)—(Asz) of Section 3. This system can then be written in the symmetric
form (3.2) and in a normal form (3.7). We further assume in the following that
system (3.1) possesses a constant equilibrium state.

(A4) There exists a constant equilibrium state U* € Q. such that
QU™ =0.

The equilibrium states corresponding to the various variables are also denoted with
the superscript ©, so that the equilibrium states in the variables V* and W*, for
instance, are denoted by V*® and W*®, respectively.

In order to establish existence theorems, we will need a priori estimates for the
solution. To this purpose, we establish a conservation equation for the generalized



entropy function H*. This equation is easily obtained by taking the scalar product
of (3.2) with the vector ¥ and reads

OH + Y ot = Y a(VEALVT) = D (VS GOV + (VL Q(VT),
ieC* i,jEC* i,jECT

(5.1)

where o7, ¢ € C*, are the entropy fluxes. We also introduce the associated function

h(U*, U*®) defined by

Thanks to the strict convexity of H*, this function plays the role of a distance
between U* and the stationary state U*® and the following proposition is easily

established.

Proposition 5.1. The function b is a positive, smooth, strictly convex function of
U* € O, satisfying h(U*,U*°) = 0 if and only if U* = U*®. There exists also a
neighborhood © = { z € R"; |z — W*¢| < r } of W*¢ with r small enough such that
for any W* in O and U* = U*(W™)

C|W* _ W*e|2 S h(U*a U*e) S C|W* _ W*e|2’ (53)

where ¢ and C' are positive constants. In addition, the function fh satisfies the
conservation equation

o+ 30 07 (U7) = (U = (VI FF(U7) = FE(U))) =
i€C*
STV VG V) = > (VL GLa V) + (V= VO (V).
i,jEC* i,jEC*
(5.4)

5.2. Local dissipative structure

In order to establish global existence in time and asymptotic stability of a
constant stationary state, decay estimates for linearized equations are needed. A
condition which guarantees decay properties for the linearized system is the local
dissipative structure introduced by Kawashima [Ka84]. This dissipative structure
1s completed here by stability properties of the source term.

5.2.1. Linearized equations
If we linearize system (3.7) around the constant stationary state W*¢, we obtain
the following linear system in terms of the variable z = W* — W*¢

AW )z + Y A W)z = > G (W)0:0;2 — L' (W™)z,  (5.5)
ieC* 1,jECH



where L is defined by I = — Oy Q. We assume that this linearized system has
a dissipative structure in the sense of Kawashima.

(D1) The matrix E;(W*e) is symmetric and positive definite, the matrices
E:(W*e), ¢ € C* are symmetric, we have C_}:»Fj(W*e)t = (_};Z(W*e) for

1,7 € C" and the matrix E*(W*e) i1s symmetric positive semi-definite,

(D3) There exist compensating matrices K7, j € C*, such that the products
KjZS(W*e), j € C*, are skew-symmetric, and such that the matrix

S HEIE W) + (KA (W) Ywswy + B (W, w) + I (W),
i,jEC*

is positive definite for w € S41.

Remark 5.2. The existence of the compensating matrices K7, j € C*, implies that
the linearized normal form is strictly dissipative in the sense that the eigenvalues

A*(¢, w) of the problem

N (W)é +[C D A (W™ ywi = B (W™, w) + L (W)]6 = 0,
i€C*

for ( €iR and w € 8% ! have a negative real part [SK85]. However, the converse
is not known to be true [SK85]. The latter property only implies the existence
of a combined compensating matrix K (w), for w € 8471, such that w — K(w)
is C* on §471 K(w) is real, the product K(w)Zz(W*e) is skew-symmetric, and
K(—~w) = —K(w), for w € 8§41, and such that the matrix

S (K () A7 (W) + (K (w) T (W) Yy + B (W, w) + I (W),

ieC*
is positive definite for w € S4~1. It is not known, however, if the matrix K (w) is of
the form Zjec* Kiw; [SK85]. Nevertheless, all th}e results obtained in this paper
can be proved without the existence of matrices K7, j € C', by only using the com-
bined compensating matrix K (w), w € 8§91, that is, by only using the strict dissi-
pativity of the system. Nevertheless, in practical applications, it is generally possible
to obtain compensating matrices K7, j € C*, and to set K (w) = ZjEC Kiw;.

5.2.2. Locally stable source terms
We have already assumed that the matrix E*(W*e) is symmetric in (D). We
now further introduce local stability assumptions concerning the source term.

(D3) The smallest subspace containing the source term Q*(V*) = (U*(V*)),
for all V* € Oy~ is included in the range of L*(V*¢) = —(3V*§*)(V*e).

(D4) There exists a neighborhood of V*¢ in Oy« and a positive constant ¢ such
that for any V* in this neighborhood, we have
| VP < (V= veE, QT (V).



We can choose r small enough such that this inequality holds with V* =
V*(W=*) and W*in O ={z € R"; |z — W*|<r}.
Note that Properties (Ds) and (D4) only concern the source term Q*. Property

(D3) will be used for decay estimates whereas Property (D4) will be needed for the
existence theorem.

5.2.3. Global dissipative structure

The physical meaning of the entropy conservation equation (5.1) is that when

> @iVt GLa; V) >0, (5.6)

1,jECH

and

(V= QV*) <0 (5.7)

then the integral f]Rd H* dx is nonincreasing in time, which corresponds to the second
principle of thermodynamics.

Note however, that Property (S4) does not imply the stronger condition (5.6).
Similarly, we have only assumed, with Property (D), that the source term is lo-
cally stable, and it does not implies (5.7) globally. However, for multicomponent
reactive flows, Properties (5.6) and (5.7) are globally satisfied, as they should for
any physically reasonable model. This suggests the following definition of a strong
entropy which could be used in order to obtain global estimates, not necessarily in
the neighborhood of a constant state.

Definition 5.3. A function H* is be said to be a strong entropy for system (3.1) if
it is an entropy according to Definition 3.2 of Section 3 and if the inequalities (5.6)
and (5.7) hold over Oy~.

5.3. A global existence theorem

Now that we have stated Assumptions (A;)-(A4) and Dissipative conditions
(D1)—(D4), concerning the various forms of the governing equations, we investigate
global existence of solutions around the stationary state W*® and its asymptotic
stability. Of course, Assumptions (A;)—(A4) imply Properties (S;)—(S4), (S1)-
(S4), and (N1)—(N3) of Section 3. Asymptotic decay towards the equilibrium state
W*¢ will be investigated in Section 5.4.

5.3.1. The main result

Theorem 5.4. Consider the quasilinear system (3.1) and assume that (A;)-(A4)
and (D1)~(Dy4) hold. Let d > 1,1 > [d/2] + 2, and let W*°(x) such that

W — W e Wh(r?). (5.8)



Then if [[W* — *e
Cauchy problem

||, , is small enough, there exists a unique global solution to the

Tow + Y Taw =3 o ((‘;;‘jajw*) v+ (5.9)
ieC* i,jEC*

with 1nitial conditions

W*(0,z) = W* (), (5.10)
such that
{ W — Wi € CO([0, 50): WHEY)) 1 C ([0, 00): WEH(B) 1 12(0, 00 WAEY),

Wi = Wi € ([0, 00): WHEY) A O ([0, 00): WE~(B4) 1 L2(0, 00 WA (B4)).
(5.11)

This solution W* satisfies the following estimate

1-1,2 1,2’
(5.12)

t
@ -1, + [ (1 I, + 10-W5 I, ) dr < Clw -

and supga |W* () — W*°| goes to zero as t = .

In order to establish this result, following Kawashima [Ka84], we restate a local
existence theorem, we derive a priori estimates for the local solution of the Cauchy
problem and we show that this local solution can be extended indefinitely.

5.3.2. Local existence

In this section we restate a local existence theorem due to Kawashima [Ka84].
Local existence is proved for an initial data near the stationary state with a control
on the distance between the solution and the constant state.

Theorem 5.5. Assume that Properties (A1)—(A4) are satisfied. Let d > 1 and
[ > [d/2]+2be integers. Let Oy be a bounded convex open set such that Oy C Oy,
let di < d((’)o,ﬁ(’)w*), let by be positive and let O = {z € R"; d(2,00) < d; }.
Then there exists a positive constant 77, depending only on Oy, d; and by, such
that for any W*°(x) with W** — W* € Wi(R?) and

|IW*0 — W], < bo, W) € Oy, xeRY (5.13)

[
the system (5.9) with initial condition W*° has a unique solution W* satisfying
{wr W € ([0, T W) 1 O (0, T WA ) A £ (0, T WH(E),

Wi Wi € o0, Tyl WAEY) € (0, T WA2(84) 1 £2(0, T35 Wi (B),

(5.14)

and W*(t,2) € Oy, for (t,z) € [0, T3] x R?. This solution also satisfies the estimate,
for t € [0,T1]

N (t) < Cy||W* — w=e (5.15)

s



where C; > 1 1s a constant depending only on Oy, di, and by, where we have defined
Nl(t) = Nl(O,t), and

ta
Niftr,1)* = sup [ (r) = W, +J{ (oW, (PP, + 10 W5s (DI, ) dr
o (5.16)

This theorem is essentially obtained by first considering linear equations and
establishing a priori estimates. Successive iterations are then shown to be convergent
and we refer to Kawashima [Ka84] for more details.

5.3.3. A priort estimates
We first remark that the norm N;(T') can be used is order to control the solution
in a given neighborhood of W*¢ in Oy .

Lemma 5.6. Let ! > [d/2] 4+ 1 and let B be a bounded neighborhood of W* in
Oy . Then there exists a constant G(B) such that if the solution W* satisfies
Ni(T) < Bo(B), then W*(t,z) € B for any (t,z) € [0,T] x R?. In particular, when
Ni(T) < Bo(9D), then inequality (5.3) of Proposition 5.1 and the estimate of (Dy)
hold.

We now want to estimate the quantity N;(7T) when it satisfies a smallness
assumption. We first restate a result of Kawashima concerning the norms of higher
derivatives of W* and W;;. In the next lemmas, we complete this estimate by
considering lower derivatives. These estimates involve the orthogonal projector P
onto the range of " (W=¢). The following result has been established by Kawashima
[Ka84] and is given here without proof.

Lemma 5.7. Assume that Properties (A1)—(A4) and (D1)—(D32) hold. Let d > 1
and [ > [d/2] 4 2 be integers and let the initial data satisfy W* — W* € Wi(R%).
Let b be positive and W* be a solution of (5.9) (5.10) satisfying

{W,* — W e CU([0, 7], WiRY) n ¢ ([0, T]; WiHRY)) n L2 (0, T; Wi (RY),
Wy — Wit e ([0, T); Wh®Y) nct ([0, T]; Wi (RY) 0 L2(0, T; Wit (rY),

and N;(T) < b. Then there exists a constant Cy1 = Cy1(b) such that the following
estimate holds for ¢ € [0, 7]

t
* 2 * 2 2 * 2 2 * 2
wmwmhm+A(Wawvmﬂfwmmvmﬂfwmmvmﬂgw

< Gy (0002, + N(T)) (5.17)

We next estimate ||W* — I/V*QHOV2 and fg(H@xVVI}‘(T)HaZ + ||§*(7')||§72) dr by

means of the modified entropy function h.



Proposition 5.8. Keep the hypotheses of Lemma 5.7 and assume also that (D)
holds and that & < (). Then there exists a positive constant Cys = Cya(b) such
that the following estimate holds for ¢ € [0, 77

mww_ww@+/0w TN, I (DI2,) dr

< Cpo (||W*0 — W, + N (T)3) . (5.18)

Proof. Integrating the conservation equation (5.4) for b over [0, T]xR* using in-
equality (5.3) and (D4) we easily obtain that

W= () = W2, + > // (0:;V,G3;0;V™) dwdr

i,jEC*
t ~ 2
+/ | (V)| dadr < CIW =W . (5.19)
0JR ’

From Property (N1) we also have <3¢V*,éz‘j3jv*> = (V)G GHI Y, V') since

ij
V* = P~1V* and G = PtG;‘jP, and there exists constants ¢ and C such that

Z // ‘/Is;/’G*/HHa V*/ dedr > c// |6 Vt/|2dl‘d7' — CNl(t)Sa
i,jEC* R

since ) ;e o G*/H "(W*¢)w;w; is positive definite. The proof is then complete since
Wk = o, (V¥) where ¢, is a diffeomorphism of R"™"° and Q= Oy V*)? Q. O

5.3.4. More a priori estimates
L . ¢
We now focus on a priori estimates concerning [; [|0s VVI*(T)Hg ,dT
:

Lemma 5.9. Keep the assumptions of Lemma 5.7. Then there exists a positive
constant Cyz = Cy3(b) such that the following estimate holds for ¢ € [0, T

t
AHMWW%ﬂFﬁﬁ@WT — e, /wrw*n

+ 1o art [V 2 ar) < o (90~ W2, M)
(5.20)

Proof. We rewrite the system (5.9) in the form

Ap(W)o W=+ > A (W)W= = > Gy (W)0:0; W
1€C 1,j€C



Ag(W*) (Ag(W*)) Q" = h, (5.21)
where
h= 3 A [ TA) - ()T A0 Jaw
- 3 mor) [ SV ) TG W) — (A5 (W) T G () |0
+;(W*e) (Z Oy Gy (W)W oW + )

1,jEC

Multiplying this equation by K7, taking the scalar product with J;W*, summing
with respect to j, and integrating over [0,¢] x R yields the estimate (5.20) up to
the rightest term which reads fo T)d7 with T given by

Z/ (0;W*, K7h) d (5.22)

eC*

This results form the skew-symmetry of KjES(W*e) which implies that
<ajW*, KjZS(W*e)&W*> - §8t<ajw*, K9 (W) (W™ — W*€)>
+ Lo (W =W, KA 0w,

from Property (D) and from the structure of C_}*(W*e)ij, i,7 € C* and E*(W*e)
which yield that

3 <ajW*, KJ’Z}‘(W*e)aZW*> > @, W2 — C(|8xW;§|2 + |8x7?W*|2).
i,jEC*

We further deduce from expression (5.22) that

T(t) = 0(/ (10 WP+ [W* = W W5 |* + W — W 0. W |0; W) dx),
]Rd

and, therefore, we have fot T (t) dt < CNi(t)® and the proof is complete. a

We can now combine the preceding lemmasin order to obtain a priori estimates

for Ni(T)).

Proposition 5.10. Keep the hypotheses of Lemma 5.7 and assume also that (D)
holds. Then there exists a positive constant C; = Cy(50(9)), depending only on
B0(9D), such that the following a priori estimate holds for ¢ € [0, T

Ni(t) < Cy|[|W™0 — W= (5.23)

Iy



Proof. Letting b = 3y(9) in Lemma 5.7, Proposition 5.8 and Lemma 5.9 yields
the inequality N;(T)? < Cya(||W*° — VV*eHlZ2 + Ni(T)?). As a consequence, for
Ni(T) < 1/(2C44), we obtain the estimate (5j23). |

5.3.5. Global existence proof
We now use repeatedly the local existence theorem and the a priori estimates
[Ka84]. We apply Theorem 5.5 with Oy = 9, di < d(D, 00y, ), and by = (D),

and we assume that W*Y satisfies

] e | Bo(©)  B(D)
W — W ||l72 < by = min ( OC'l ’ 09(10+ Clz)é) ) (5.24)

The solution is then defined on [0, 71] and from (5.15) we obtain that N;(t) < Cjby <
Bo(D) over [0,T1]. As a consequence, the estimates obtained in Proposition 5.10
hold and N;(Th) < Cybi. We then apply again Theorem 5.5 on [17,277], with T3
as a new initial time, still with Oy = O, and with the same d; and by. The solution
on [T1,2T7] then satisfies the estimate N;(T1,271) < CiN;(T1). As a consequence,

we obtain Nj(271) < (Ni(T1)? + Ni(T1,271)%)? < (14 CF)ZNi(T1) so that
Ni(2Th) < (14 CHECh1 < Bo(D).

The estimates of Proposition 5.10 are therefore again valid on [0, 27}] and we can
again use Theorem 5.5 on [277,37}]. An easy induction then yields global existence
and N;(t) < Cy||W*0 — w=e]|,, fort > 0.
Defining then ®(t) = [|8, W*(t)||? it follows from the a priori estimates and

1—-2,2’
the relations (5.9) that

[l [ oewla < e - wee,
0 0 ’

which shows that ®(¢) — 0 as t — oco. From the interpolation inequality

sup W= () = W] < CIOT W15 o IW™ (0)]]o2",

with @ = d/(2(I—1)) > 0, we then deduce that supgs [W*(t) — W*¢| = 0 as t — co.

5.4. Asymptotic decay

In this section we establish decay estimates towards the equilibrium state.

Theorem 5.11. Assume that Properties (A;)—-(A4) and (D1)—(D4) hold. Let d > 1
and [ > [d/2] + 3 be integers and let W*°(z) be such that

W — W e Wh(r?). (5.25)



Assume that [0 — W] ,
solution to the Cauchy problem from Theorem 5.4. Assume further that W*° —
W € Wzl(}Rd) N Lp(Rd), where p=1,if d = 1, and p € [1,2), if d > 2. Defining
for r <1

is small enough so that there exists a unique global

HW*O _ W*e||772|p — HW*O _ W*eHTyz 4 HW*O _ W*e (526)

HO,p’

then, if (|0 —1<]]

problem satisfies the decay estimate

is small enough, the unique global solution to the Cauchy

[|W=(t) — W™ S C(L4+8)77| W — w|| (5.27)

Hl—z,z 1-2,2|p’

for t € [0,00), where C' a positive constant and where v = d x (1/2p — 1/4).

Proof. Introducing the new variable 2(U*) = (8, W*(U*)) (U* — U*®) we obtain
from (3.1) that

AW )ohz+ > A (W)diz— > Gu(W)0idjz+ L'z = h' + b, (5.28)
ieC* 1,jEC*

and z(0,2) = z(U*?). The first nonlinear term h® is in conservative form and reads

ht =" 0; (b + b))

ieC*
where
bi — <8W* V*(W*e))t<FZ*(W*e) _ FZ*(W*)) +Z:(W*e) z,
b= Y ((8W*V*(W*e))thj(U*)8W*U*(W*e)— (‘;;‘j(w*e)) d;z.

Jjecs
On the other hand, the second term h? reads
h? = (B V(W) Q0 + LT(W™) 2z,

and lies in the subspace R(E*(W*e)) thanks to (Ds), so that (I —P)h? = 0.
We now introduce the symbol associated with the linear part of (5.28)

S(©) = A Hi Y AW et YD G W eg + L) A 9k,

1€C* 1,jEC*
and we define for ¢ € LZ(]Rd)

exp(—tS)o(x) = W /R expliz-€) exp(~13(6)) (6) de.



where q/; is the Fourier transform of ¢. We can then express the solution of system

(5.28) by the relation [Ka84]

t t
z(t) = exp(—t5)z(0) + / exp(—(t — 7))t (1) dr + / exp(—(t — 7)S)h?(r) dr,
0 0

(5.29)
and we estimate ||z (%) in two steps. We first deduce from Proposition 3.12 of

s
[Ka84] the estimate

1—2,2|p’
(5.30)
where ¥ = d x (1/2p—1/4) and C denotes a positive constant, since the nonlinear
term h? satisfies (I — P)h% = 0.
On the other hand, by using the estimate 3.A.14 of [Ka84] or Theorem 1.2 of
[SK85], we also obtain that

||eXp(—t§)z(0)+/0 exp(=(t = 7)S)h*(r)drll,_,, < C(L+1)77]|=(0)]|

I [ expl—tt = nS ) drl_y, < € [ explectt=)IE (P o , o

t
O [ t= Y e ) () (6531
0 ,

ieC*
where ¢ and C' are positive constants. Since the initial data (5.10) is supposed to
be sufficiently near W=¢ in W (Rd) N LP(X), the a priori estimates show that ||z]|,

remains small for any time and we can write that b; = O(|z]?) and b; = (8;2) O(]z|).
We thus obtain that for [ > [d/2] + 3, and for [|2[|, , sufficiently small, we have

S (I0illy , + 18l ) < CI=IE . (5.32)
i€C*
S (198bill, gy + 1038211y, ) < Cllzll_y 171, (5.33)

i€C*

Combining (5.29) with inequalities (5.30) (5.31) (5.32) and (5.33) finally yields

||z(t)||l_2y2 < C(1+t)_v||z(0)”l—2,2|p+C/0 exp(—c(t—r))”z(r)”lyz||z(7')||l_272 dr

t
+ c/o (1+t— T)_d/4_1/2||z(7')||iz dr. (5.34)

Defining then ||2(¢)[li-2 = supy<, <, (1 + 7)7[|2(7) we obtain

ez

2O i-2y < ClI2O,_y 5y, + CrsOll2(0)]], 2O hi-2y + Cra® =D .



where

ps(t) = sup (1—1—7’)7/ eXp(—C(T—T1))(1—|—T1)_’Yd7'1,
0<7<t 0

pa(t) = sup (1—1—7’)7/ (1—|—7'—Tl)_d/4_1/2(1—|—7'1)_27d7'1.
0<7<t 0

Since pz(t) and p4(t) are uniformly bounded with respect to ¢, we obtain the desired
estimate for ||2(0)[|i=2,4 small enough and this completes the proof. O

6. Equilibrium Points for Maxwellian Chemistry

In order to apply Theorem 5.4 and 5.11 to the multicomponent reactive flow
governing equations (2.32), it is first necessary to establish the existence of equilib-
rium states and to investigate the corresponding linearized source terms. This is
the purpose of this section where we introduce the detailed structure of the source
term wg, k € 5.

6.1. Maxwellian chemistry

In the following Sections, in order to investigate asymptotic stability of constant
equilibrium states, the source term is taken to be

Q= (mwi, ..., mpwn_,0,0,0,0), (6.1)

where my, is the molar mass of the k™" species and wy the molar production rate
of the k' species. More specifically, we no longer consider force terms in € and
only chemistry effects are included in the model. The molar production rates that
we consider are the Maxwellian production rates obtained from the kinetic theory
[EG94]. These rates are obtained in a reactive kinetic framework when the chemistry
characteristic times are larger than the mean free times of the molecules [EG94].
Therefore, we consider a system of ng reversible reactions for ng species

v = > viiSk,  i€R, (6.2)
kes kES

where 8j is the chemical symbol of the k' species, vi, and v}/, the stoichiometric
coefficients of the k' species in the i*P reaction, and R = [1, ng] the set of reaction
indices. The chemical species are assumed to be constituted by elements and we
denote by & the number of I element in the k'™ species. We also denote by
E =[1, ng] the set of element indices and by ny the number of elements.



The molar production rate of the k' species is then given by

Wk = ZVMTZ', (6.3)

iER

where
1 !
Vgi = Vig — Vi (6.4)

and where 7; is the rate of progress of the i*P reaction. This rate 7; is given by

T = Arfi H’y;jk’ — K, H’y;jk’, (65)
kes kes

where v = pr/my is the molar concentration of the k™ species, Ky; and K,; are
the direct and reverse rate constants of the i*" reaction. The quantities Ky; and
K,; are functions of the temperature and their ratio is the equilibrium constant K;
of the M reaction

Kpi(T)

Kei(T) = TorlT)’ (6.6)

The equilibrium constant K;(T) is given by

hi(T)

log i (1) = 3 =5 (s (i, T) = =),

kes g

(6.7)

where hy, is the enthalpy per unit mass of the k*" species | Ry the universal gas con-
stant, and si(my, T) is the specific entropy of the k*® species at unit concentration,
that is at pgp = my.

Remark 6.1. The direct rate constant is usually approximated by using an
Arrhenius empirical relation

<
Ki(T) = AT ex (— i )
ri(T) =2 Pl-RT
where 2; is the pre-exponential factor, b; the pre-exponential exponent and ¥; the

activation energy of the i'" reaction, but the exact expression of K¢ (T) will not be
needed in the following.

6.2. Mathematical assumptions for chemistry terms
The mathematical assumptions concerning the chemical productions rates are

the following.

(H1p) The rate constants <Kfi(T))ieR
T € [Ty, 00) and the reverse constants are given by Ky;(T')/K.;(T) where
K.i(T) is the equilibrium constant of the i reaction.

are ('™ positive bounded functions of



(H11)

(H12)

(H1s)

The element vectors &, | € E, defined by & = (&, .. .,Sngl)t, and the
reaction vectors v;, ¢ € R, defined by v; = (v, ..,ani)t, satisfy the

element conservation relations
<Viagl>:0a ZERa lEEa

where (x, y) denotes the scalar product between vectors # and y. The space
spanned by the reaction vectors is denoted by R and the space spanned
by the element vectors is denoted by &

R =span{v;, € R},

E=span{ &, € E},
in such a way that

RCE, ECR.

The vector of chemical production rates w = (wy,. ..,wng)t is given by
(6.3) (6.4) which can be written in vector form

w = Z T V;, (6.8)
i€R

with the rate of progress 7; given by (6.5). In particular, we always have

w(U)eR for U € Op.

The species molar mass my, k € S, are related to the elemental masses a,

l € FE, by the relations
mrp — Z aj gkl~

leE
Denoting by m the mass vector m = (my, ..., mns)t, these relations can
be written in vector form
m=> aé. (6.9)
leE

With respect to these assumptions, we make the following comments. We
first note that Properties (H1g) and (Hi2) imply the smoothness Property ().
Similarly, since the force term g is taken to be zero in the following sections, the
smoothness Property (H3) is also trivially satisfied. Properties (Hy2) and (His)
also imply the mass conservation relation (Hg) since

Z MV = (M, v;) = Zm(&, vi) =0,

kes leE

and therefore

Z mwy = (M,w) = Zn(m, vy = 0.

kes iER



The element vectors may taken to be the atomic elements provided that the corre-
sponding vectors are independent. When this is not the case, it is first necessary
to eliminate linearly dependent atomic elements. Finally, the fundamental relation
between the direct and reverse rate constants K,;(T) = K (T)/Kei(T) is a direct
consequence of the kinetic theory [EG94].

6.3. Miscellaneous

In the following, we will have to manipulate the mass weighted production rates
mywy, k € S. To this purpose, we introduce the mass weights matrix M, of order
ng, defined by

M = diag(my,...,my,),

which acts on vectors of length ng. The mass weighted stoichiometric coefficients
are then the vectors Mv;, ¢ € R, and the specific elemental compositions are the
vectors M~1&, 1 € E. The corresponding spaces MR and M ~'&, spanned by these
mass weighted vectors, are also such that MR C (M~1€)~ and M~ C (MR)~
in the composition space R". In particular, we have Mw € MR and the mass
relation (6.9) can also be written

U = ZalM_lé'l,
leE

where U € R"S is the unity vector defined by & = (1,...,1), which implies that
Ue(MR)” .

Various forms of the multicomponent reactive flow governing equations have
been investigated in Section 4. We present here some additional properties of the
corresponding source terms. We first observe that the source term Q of the sym-
metric form (4.4) is identical to that of the original formulation, that is, Q=0Q. As
a consequence, we have

Q== (mwi,...,muwn_,0,0,0,0)" € MR x Oga. (6.10)

On the other hand, the source terms for the auxiliary variables U/ = P'U and
V! = P71V, where the constant matrix P is given by Eq. (4.16), are given by
Q' = Q' = P'Q, that is to say

Q' =Q = (0,maw, ..., my_wn_,0,0,0,0)". (6.11)
In particular, Q' is also in a fixed subspace of R"s%* of dimension dim(R) since
Q' € P (MR x Oga). (6.12)

Finally, the source terms Q corresponding to the variable W is given by

_ 1
Q= (0, mows, ..., Mp_wn_, 0, 0,0, ~7a Z exmpwi)’. (6.13)
kes



6.4. Equilibrium points

In this section we establish the existence of constant equilibrium states when
the source terms are taken as in (Hyig)—(H13). We restate existence and uniqueness
of an equilibrium density vector at a fixed temperature in a given affine submanifold
of element conservation, as well as detailed balance at equilibrium [Kr70] [SS65].

Let us introduce the vector ¢ of species densities

Q:(pla"'apns)ta (614)
and the vector Y of reduced chemical potential

1

Y= R

(ul,...,uns)t, (6.15)

which coincides with the first ng components of V up to a scaling factor and up to
a term proportional to & = (1,...,1)".

Proposition 6.2. The reduced entropy production due to chemical reactions

1
a(p1 . ..,an,T) =y, Mw) = T Zﬂkmkwka
€7 kes

defined on (0, 00)" x (Tp, 00), is nonpositive and admits 0 as a maximum at equi-
librium points. Any equilibrium point (5, ..., pflg,Te)t in (0,00)" x (Tp, o0), that

is, any point (p5, ..., prS,Te)t where the source terms vanish
wk(pi,...,pfls,Te)ZO, kes, (6.16)
is also such that the rates of progress of each reaction vanish
Ti(p(f,...,pfls,Te)ZO, i€ R, (6.17)
which can also be written in the form

<y(p§, P T, MVZ»> =0, i€R (6.18)

Proof. Some straightforward calculation yields that

= Ai(l - exp<)/,M1/i>), (6.19)
where )
A=K [[*,  i€R, (6.20)
kES

thanks to the expression of the equilibrium constant K.;. As a consequence, we
have

o= Y, M) = 3 Ay, Muy) (1 — exp(Y, Myi>), (6.21)

IER iER



and, since A; is positive, we deduce that o(g,7) < 0 and that ¢(g,7) = 0 if and
only if (¥, Mv;) =0, ¢ € R, that is to say, if and only if , = 0, { € R. In addition,
7= 0,2 € Rif and only if wg =0, k£ € 5, from the expression of o. a

Proposition 6.3. Consider a temperature 7°¢ € (Tp, 00), a point g, of (0,00)"s
and the associated reaction simplex (g. + MR) N (0, 00)"s. Assume that Properties
(H10)—(H13) hold. Then there exists a unique equilibrium state ¢° in the reaction
simplex (g + MR) N (0, 00)" where the source term w vanishes, and, therefore,
where the reaction rates of progress also vanish. Finally, as a function of g, the
entropy production due to chemical reactions admits 0 as a strict maximum at ¢°
over the reaction simplex (g. + MR) N (0, 00)"s.

Proof. We characterize the equilibrium point as the only extremum of the reduced
Helmbholtz free energy function [Kr70][SS65]

Sj(g’T) = <Qay - M_1U>,

where & = (1,...,1)". The function § is a C* strictly convex function of g in
(0,00)" at a fixed temperature T' = T, and is given by

1
H(e, T) = o Z repr(log pr — 1+ ar(T°)),
€ kes

where ap(T) = pug(1,T)/rgT. The partial derivative with respect to the mass
density vector g is also given by

99 =Y.

The function $ is easily extended over the closure of (g. + MR) N (0,00)"s into a
continuous function by using 0log0 = 0, and, therefore, $ admits a minimum on
this convex compact set. Note that the boundedness of the reaction simplex is a
direct consequence of Y € (MR)™, that is, of mass conservation. This minimum
cannot be reached at the boundaries as easily checked by inspecting the sign of the
normal derivative. As a consequence, it is reached in the interior, and, thanks to
the strict convexity of §, this mimimum is unique. Since the minimum is reached
in the interior of the reaction simplex, we also have

YE = Y(eF, T¢) € (MR)~. (6.22)

As a consequence, o = (Y, Mw) vanishes at (¢°,7°) which is therefore an equilib-
rium point. Conversely, from (6.21), any equilibrium point on the reaction simplex
is such that the quantities (¥, Mv;), ¢ € R, vanish so that the partial derivatives
of § along the reaction simplex are zero. Since $ is a strictly convex function, it
reaches a minimum at this point. Therefore, this point coincides with the unique
minimum of § and the proof is complete. a

As a direct consequence of the preceding results, we obtain the following propo-
sition, which implies Property (A4).



Proposition 6.4. Given a temperature 7° and a mass density vector g., and
under Assumptions (Hig)—(Hy3), there exists a unique constant stationary state

Ue =U(Y*®), with Y* = (p5,. ..,prQ,O,O,O,Te)t, such that
QU*) =0, (6.23)

and ¢° € (¢ + MR) N (0,00)"s, v =0, and Y° € (MR)™.

We will denote by V¢ and W* the equilibrium states in the variables V and
W, respectively. In the following proposition, we establish Property (Dy).

Proposition 6.5. Let U¢ = U(Y*®), with Y° = (p(f,...,pflg,0,0,0,Te)t, be a

constant equilibrium state in Op. Then we have V¢ € (MR X Ogs)” and there
exists a neighborhood U of V¢ such that

AVP < (v —VEQV), Ve, (6.24)

where ¢ 18 a positive constant.

Proof. We first note that Y° = (1/Rs)V* from (4.3) since v® = 0. This implies
that V° € (MR x 0g+)~ from Proposition 6.4. Combining this property with (6.10)
and noting that

(Vi, .., Vo)t = Ry + L(wv/T) U,

S

where U = (1,...,1)" € (M'R)™, we obtain
~ 1
(V-ve.Q)) == > pmpwi = Rg(Y, Mw). (6.25)
kes
From (6.21) we also have
VY, Mwy = 3" A, Myi>(1 — exp(Y, Myi>), (6.26)

iER

where A; = Ky [[1es 'y,:“, t € R, 18 a positive function. Denoting by U any closed
ball centered on V¢ and included in Oy, we deduce that for any V in U

eV, My < = (Y, Mw) < CY (Y, My)?, (6.27)
i€R i€R
for positive constants ¢ and C' depending on 2U. On the other hand the relations
Mw =3, g iMv; and (6.19) also imply that
(Mwl” < Oy r? < C"Y (Y, My, (6.28)
iER i€R

where C” and C" are positive constants, and combining (6.25), (6.27) and (6.28)
completes the proof. a



6.5. Linearized source term

In this section we describe the linearized chemical source term around an equi-
librium state and we establish Property (Ds).

Proposition 6.6. The linearized source term E(Ve) = —(3V§)(V6) around the
stationary state V° is given by

(Crt)iies  Ongxa

L(Ve) = : (6.29)
04)<ns 04)(4
where
Ci = ZAZ' MgV My, (6~30)
i€ER
and K5i(T°) i (T9)
L i ‘ e\, (Ti ‘ ey
A= LT ) = TH(%) (6.31)
g kes €  kes

The matrix E(Ve) can also we written in the form
E(Ve) = ZAZ' n;eon;,
iER
where n; denotes the vector n; = (Mwv;,0g+)". This matrix E(Ve) Is symmetric
positive semi-definite and satisfies

R(L(VE)) = MR x O,

in such a way that we have Q(U(V)) = Q(V) € R(E(VS)), for all V € Oy,.

Proof. Evaluating the matrix E(Ve) is straightforward from (Hyg)—(His). The
expression (6.30) shows that L(V®¢) is symmetric and yields

<l‘, f(ve)x> = ZAZ'<T12', l‘>2 = ZAZ (Z l‘kmkljki)z, (632)

IER 1ER kes

where = (z1,..., xns+4)t, so that E(Ve) is positive semi-definite. Furthermore,
the nullspace of E(Ve) is also constituted by the vectors orthogonal to the vectors
n;, i € R, and we thus conclude that R(E(VS)) = N(E(VS))_ = MR x Oga. O

Property (Ds) is now a direct consequence of Proposition 6.6.

Remark 6.7. The fact that the rank of L is maximal at V¢ shows that the
equilibrium point is regular in the sense of Krambeck [Kr70].



7. Asymptotic Stability for Multicomponent Reactive Flows

In this section we apply theorems 5.4 and Theorem 5.11 to the multicomponent
reactive flow governing equations (2.32). To this purpose, we have to establish that
Properties (A1)—(A4) and (Dy)—-(D,) are satisfied. In the previous sections, we have
already established Properties (A;)-(A4) and (D3)—(D4). Therefore, we now only
have to investigate the dissipative structure of the linearized normal form and to
establish (Dy1)-(D3). We will use the normal variable W introduced in Theorem
4.5 but the natural normal variable W could be used as well.

7.1. The linearized normal form

If we linearize the symmetric hyperbolic-parabolic system (4.21) (4.22) around
this constant stationary state ¢, we obtain the linear symmetric system
Ag(W)ohz + > Ai(We)diz = > Gij(W)0;0;2 — L(W*)z. (7.1)
1€C 1,j€C
The relation Q = (Jw V)t§~2 first yields by linearization that
T e e\t Frire e
LWe) = (0w V (We)) L(V®) Oy V (W), (7.2)

taking into account that (~2(V€) = 0. As a consequence, L(W¢) is also symmetric
positive semi-definite. Taking into account that (4.21) (4.22) is a normal form, we
thus obtain that Property (D;) is satisfied. We now investigate the existence of
compensating matrices K7, j € C.

Proposition 7.1. For a sufficiently small positive a, the matrices K7, j € C,

defined by

0 0 & 0
,» 0 0 0 0} ,— .-
ijfﬁ] = £ 0 0 0 (AO(W )) ) (7.3)
jec 0 0 0 0

where € = (£1,&9,&3), are compensating matrices. In particular, the products K7 Ag
are skew-symmetric and the matrix

Yot (KjZZ»(We) + (KjZZ»(We))t) wiw; + B(W®, w) + L(W*),
i,jEC
is positive definite for w € §2.

Proof. It is obvious by construction that the products K7 Ay, j € C, are skew-
symmetric. On the other hand, a direct calculation yields

al* al*

— €7 —2Z")¢P 0 arc|¢)?

57 € pZ € €
> GEIA (W) = 0 0 0 0 |, (74
i,jeC 0 0 —ap®TeERE 0

0 0



where Z is a vector of R"s ™! given by

2 = e P

p
! 7“[22’

l € [2a nS]a

and where the superscript © indicates that the corresponding quantity is evaluated
at We. As a consequence, for € € 87, we have |¢| = 1, and there exists C' € (0, 00)
such that

(@', S GEIA(W)ge) > gg (s1-c X ).
P

ijeC le[z,ns+4]
Using now Property (N2), the matrix
S (KA + (K9 A(W)) Jwiwy + BV, w),
ijeC
is positive definite for w € §? and o sufficiently small. a

Remark 7.2. The particular normal form in the W variable has additional prop-
erties. More specifically, we have the relations

KA, (We) (A,(W)) ' Q=0, jec, (7.5)

which can be established by a direct calculation. Indeed, from (6.13) and the
expression of Ay in Theorem 4.5 we easily get that

Wo Wi Wn,

_ 1 ¢
Q=R (0, (———7),...,(—= ,0,0,0,— epmEwy |
S(0CE =T (G- e 2 i)

- -1

(Ao(W))

Wi

and from the sparse structure of Zjec &K1 Ag(W¢) we immediately obtain (7.5).

As a consequence, for this particular formulation, the term involving ||§||0 , 18 ot
needed in the estimate (5.20).

Remark 7.3. Similarly, with the “natural” W formulation of the Appendix, one
can establish the particular estimate

[PW — W) < Q| < CIP(W — W*)),

where ¢ and (' are positive constants. As a consequence, the terms involving the
norm [|©[|, ., in a priori estimates can be replaced by the corresponding terms in-
:

volving the norm ||77(/VT7 — /We)HO I



7.2. Global existence and asymptotic stability for reactive flows

In the previous sections, we have established that Properties (A41)—(A4) and
(D1)—(D4) are satisfied. Therefore, Theorem 5.4 and Theorem 5.11 can be applied
to the system (4.21) (4.22) governing multicomponent reactive flows, written in the

W = (W;, Wy;)! variable, with the hyperbolic variable
W, = p, (7.6)
and the parabolic variable

ro /T "'n 71 t
Wi = (log(p2 /o0, log(pnsS /p1Y), vi, va, vs, T) . (7.7)

Theorem 7.4. Consider system (4.1) (4.2), let d € {1,2,3},1 > [d/2] + 2 and let
WO (z) such that
WO — we e Wi(RY).

Then, if ||W° — We|l, , is small enough, there exists a unique global solution to the
the Cauchy problem
Zo@tW—l— ZZZ@ZW = Z 0; ((_;”a?W) + H + Q,
1€C 1,j€C
with initial condition
W(0,z) = W),
such that
{ W, = WE € €010, 50) WHE) 1O (0, 50)s WE () (1 L2(0, 50 WH(ES)),
Wi = Wi € C°([0, 00); W3(RY) N CH([0, 00); Wy~ *(R)) 1 L2 (0, 00; Wyt (R)).

Furthermore, W satisfies the estimate

t
) =1, + [ (Mo, + 3 110s tostof /A,

E>2

+ 10, + 10T, ) dr < W= we2,,

and sup,ege |W(t) — W¢| goes to zero as t — oo.
In addition, assume that [ > [d/2]+ 3 and W° — W* € Wi(R4) n LP(RY), with
p=1,ifd=1,and p € [1,2), if d > 2. Then, if [|[W° — We||l 2l

the unique global solution to Cauchy problem also satisfies the decay estimate

is small enough,

W) = Well,_y, SCA+OTTIW? = We t€l0,00),

1-2.2[p’

where (' is a positive constant and v = d x (1/2p — 1/4).



Appendix

We consider here the normal form of the multicomponent reactive flows system
of equations obtained with the “natural” normal variable W = (U], V})" suggested
by Theorem 3.8. This normal form has dissipative terms in conservative form and
leaves unchanged the parabolic components of the source term €2;,. This form,
however, has a more complex expression than the one obtained in Theorem 4.5.
Theorem 7.4 can also be applied to this normal form of the system.

The system in the new variable

-1 ¢
W:T(PT, Ba = Py -y flng — 1, U1, U2, U3, —1) ; (A1)

on the open convex set O = (0,00) x R~ 5 R3 x (=00, —1/Tp) can be written
in the form

A 0Ws 4 Yiee AL OW, + Sice A Wy = 0, (A.2)

AILIT

A 0 W + Ciee A OWr + e Ar - O W =
3 o (éjjf”aj W) F 0, (A3)

i,jeC

and is of the normal form. The matrix ;10 is given by

EL,, Sym
~ 0 X
Ag = , (A.4)
0 (B)t pTvt YL
where =, 1s a vector given by given by
— Pl o Ee
:elzg<e;t_2_p)a 16[2,715],
and where
' Pk tot? P
Te:dek —|—pT(v~v—|—cUT)—E—p.
kes
The matrices ﬁi, t=1,2,3, are also given by
v-€
—— Sym
Xy
0(n5—1)><1 va
S Aigi=| T , (A.5)
Py E_p TERZ plv-& I3
pT ot ¢ = et /
—v-& (W&E, pT(v-&)v' + pTEpE" Thv-€

X



where =9 and Zj; are defined by

n o pT P Xy
Zho = AN — =2 4 Su= A —22), 1€[2,nd],
b0 4 =2 (b - 2,15]
and where
' PE 5 tot2 E%L (PT)2
h:Z_hk +pT (vv+ (ep +7)T) — 2+ :
kes L Ep Ep

For the dissipative part, we also have

ATLIT

and an explicit expression for ég” is given by (4.7)—(4.10). Finally, concerning the
source term, we have

Q=0=0=0, Q,=0,=0,=0,. (A7)
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