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Abstract

We investigate reactive gas mixtures in the kinetic chemical equilibrium regime. Our start-
ing point is a generalized Boltzmann equation with a chemical source term valid for arbitrary
reaction mechanisms and yielding a positive entropy production. We �rst study the Enskog
expansion in the kinetic chemical equilibrium regime. We derive a new set of macroscopic
equations in the zeroth- and �rst-order regimes, expressing conservation of element densities,
momentum and energy. The transport 
uxes arising in the Navier–Stokes equilibrium regime are
the element di�usion velocities, the heat 
ux vector and the pressure tensor and are written in
terms of transport coe�cients. Upon introducing species di�usion velocities, the kinetic equilib-
rium regime appears to be formally equivalent to the one obtained for gas mixtures in chemical
nonequilibrium and then letting the chemical reactions approach equilibrium. The actual values
of the transport coe�cients are, however, di�erent. Finally, we derive the entropy conservation
equation in the Navier–Stokes equilibrium regime and show that the source term is positive and
that it is compatible with Onsager’s reciprocal relations. c© 1998 Elsevier Science B.V. All rights
reserved.

PACS: 82A40, 82A70
Keywords: Boltzmann equation; Enskog expansion; Chemical reactions; Kinetic equilibrium;
Transport coe�cients; Entropy

1. Introduction

Extensive interest in the kinetic theory of gas mixtures with chemical reactions has
grown signi�cantly over the past few years. The subject is indeed related to a wide
range of practical applications, including spacecraft 
ights, plasma physics, combustion
processes and chemical reactors. An attractive approach for modeling gas mixtures with
chemical reactions relies upon a generalized Boltzmann equation with chemical source
term and the Enskog expansion. With this approach, the collision term in the Boltzmann

∗ Correspondence address: Alexandre Ern, CERMICS, ENPC (see above addressa) Tel.: +331-64153570;
fax: 33 1 64 15 35 86; E-mail: ern@cermics.enpc.fr.

0378-4371/98/$ – see front matter c© 1998 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(98)00303 -3



50 A. Ern, V. Giovangigli / Physica A 260 (1998) 49–72

equation is split into fast and slow processes, thus giving rise to a formal expansion
of the species distribution functions and the kinetic equations. Most applications are
concerned with the zeroth- and �rst-order terms in the expansion.
In this context, several kinetic regimes may arise for chemically reactive gas mix-

tures [1,2]. When the chemistry times are much larger than the relaxation times for
translational and internal energy exchange, the chemical source term in the Boltzmann
equation accounts for slow processes while the nonreactive source term results from
fast processes. This regime has been studied extensively in the past and gives rise,
in particular, to the tempered and slow reaction regimes, for which expressions of
transport coe�cients have been given [1,3–6]. On the other hand, when the chemical
characteristic times are of the same order of magnitude as the relaxation times of trans-
lational and internal energy, a kinetic chemical equilibrium regime arises. This regime
has been introduced formally by Ludwig and Heil [6] for dissociation and ionization of
gas mixtures, but these authors did not introduce the appropriate collisional invariants
associated with the chemical elements. The main goal of this work is now to derive
a general theoretical framework for gas mixtures in the kinetic chemical equilibrium
regime.
Our paper is organized as follows. In the next section we present the generalized

Boltzmann equation for chemically reactive mixtures in a semi-classical framework.
Our analysis is concerned with dilute, isotropic mixtures with fast relaxation of all
the internal energy modes, thus excluding cases such as external magnetic and electric
�elds or strong vibrational desequilibrium [7]. We discuss the form of the chemical
source term for arbitrary chemical reaction mechanisms and show that all nonreactive
and reactive collisions arising at the microscopic level yield a positive contribution to
the entropy production. We then introduce the collisional invariants associated with
chemical elements, momentum and energy and study the Enskog expansion in the
kinetic chemical equilibrium regime.
In Section 3 we investigate the Euler regime corresponding to the zeroth-order

Enskog expansion. In this regime, the species distribution functions are given by local
Maxwellian distribution functions, but the species number densities are constrained by
the chemical equilibrium conditions. We present the macroscopic equations expressing
conservation of element densities, momentum and energy.
Finally, in Section 4 we investigate the Navier–Stokes regime corresponding to the

�rst-order Enskog expansion. The macroscopic equations for element densities, momen-
tum and energy involve several transport 
uxes: the element di�usion velocities, the
pressure tensor and the heat 
ux vector. We express these 
uxes in terms of various
transport coe�cients including, in particular, the element di�usion matrix. Upon intro-
ducing the species di�usion velocities, we show that the �rst order kinetic equilibrium
regime is formally equivalent to the one obtained from a �rst order expansion with
nonequilibrium chemistry and then letting the chemical reactions approach equilibrium.
The actual values of the transport coe�cients are, however, di�erent. Finally, we derive
the conservation equation for the entropy and show that the source term is positive
and that it is compatible with Onsager’s reciprocal relations.
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2. Theoretical framework

In this section we derive a theoretical framework for the kinetic chemical equilib-
rium regime. We �rst derive a generalized Boltzmann equation for chemically reactive
mixtures and present explicitly the form of the chemical source term for an arbitrary
reaction mechanism. We then show that both nonreactive and reactive source terms are
compatible with the positivity of entropy production. We next present the collisional
invariants for reactive mixtures at equilibrium, accounting for element, momentum and
energy conservation. Finally, we investigate the Enskog expansion in the kinetic chem-
ical equilibrium regime.

2.1. Generalized Boltzmann equation

We consider a dilute isotropic reactive gas mixture consisting of n chemical species
having internal degrees of freedom. The starting point of our analysis is the Boltzmann
equation derived in [8] for polyatomic gas mixtures without chemical reactions. This
equation is obtained in a semiclassical framework, i.e., the translational motion of
the particules is treated classically and the internal degrees of freedom are treated
quantum mechanically. It preaverages the collision cross-sections over all the magnetic
quantum numbers and can be derived from the Waldmann–Snider quantum mechanical
Boltzmann equation [9,10]. For a relativistic kinetic gas theory, we refer to [11].
The state of the mixture is described by the species distribution functions denoted

by fi(t; x; ci ; I), where t is the time, x the three-dimensional spatial coordinate, ci the
velocity of the ith species and I the index for the internal energy state. For brevity,
the dependence on (t; x) is made implicit. For a family of functions �i, i∈S, where
�i depends on ci and I , we introduce the compact notation �=(�i)i∈S. The family of
species distribution functions f=(fi)i∈S is the solution of a generalized Boltzmann
equation written in the form

Di(fi)=Bi(f) + Ci(f); i∈S ; (2.1)

where S= [1; n] is the set of species indices. In the above equation, Di is the usual
di�erential operator

Di(fi)= @tfi + (ci · @x)fi + (bi · @ci)fi ; (2.2)

where bi is the external force acting on the ith species, and Bi(f) and Ci(f) are,
respectively, the nonreactive and reactive source terms. The nonreactive source term is
given by [1,8]

Bi(f)=
∑
j∈S

∑
J; I ′ ; J ′

∫ (
f′
i f

′
j
aiI ajJ

aiI ′ajJ ′
− fifj

)
WIJI ′J ′

ij dcj dc′i dc
′
j ; (2.3)

where I and J are the indices for the quantum energy states of the ith and jth species
before collision, I ′ and J ′ the corresponding numbers after collision, aiI the degeneracy
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of the I th quantum energy shell of the ith species and WIJI ′J ′
ij the transition probability

for the nonreactive collision. Note that the transition probabilities have been preaver-
aged over all the magnetic quantum numbers and satisfy the reciprocity relations [8]

WIJI ′J ′
ij aiI ajJ =WI ′J ′IJ

ij aiI ′ajJ ′ : (2.4)

It is also possible to consider a formalism based on collision cross-sections rather
than transition probabilities, but the present formalism is more convenient for reactive
collisions [2,6].
The reactive source term Ci(f) results from chemical reactions between species in

the mixture. We consider both bimolecular and trimolecular chemical reactions. In par-
ticular, although triple nonreactive collisions have been neglected in the nonreactive
source term (2:3), triple reactive collisions are retained since recombination reactions
cannot often proceed otherwise [6,12]. Triple reactive collisions can also be viewed as
a sequence of two bimolecular reactions proceeding extremely fast [2].
Before giving the general form of the reactive source term, we present some exam-

ples. Consider �rst a bimolecular reaction of the form

�i + �j
 �k + �l ; (2.5)

with species indices i; j; k; l assumed to be distinct and with �i denoting the chemical
symbol for the ith species. Let I; J; K; L denote the indices for the internal energy states
of the species. The reactive source term then reads [1,2,6,11,12]

Ci(f)=
∑
J;K; L

∫ (
fkfl

�kK�lL

�iI�jJ
− fifj

)
WIJKL

ijkl dcj dck dcl ; (2.6)

where the statistical weight �iI is given by

�iI =
h3P

aiIm3i
; (2.7)

and where hP is the Planck constant, mi the mass of the particules of the ith species
and WIJKL

ijkl the transition probability for the forward reaction in Eq. (2.5). In Eq. (2.6),
we have used the reciprocity relation between the forward and reverse transition prob-
abilities which reads [1,2,6,12]

WIJKL
ijkl

�iI �jJ
=

WKLIJ
klij

�kK�lL
: (2.8)

In the case, where i and j are the same in reaction (2:5), i.e.,

�i + �i
 �k + �l ; (2.9)

the forward and reverse reaction delete or produce, respectively, two molecules of the
ith species so that the reactive source term becomes [2,6,12]

Ci(f)= 2
∑
Ĩ ; K; L

∫ (
fkfl

�kK�lL

�iI�iĨ
− fif̃i

)
WI ĨKL

iikl dc̃i dck dcl ; (2.10)
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with f̃i denoting f̃i(t; x; c̃i ; Ĩ). In the case of a chemical reaction involving three prod-
ucts, as in

�i + �j
 �k + �l + �m ; (2.11)

with all the indices assumed to be distinct, the reactive source term reads [2,6,12]

Ci(f)=
∑

J;K; L;M

∫ (
fkflfm

�kK�lL�mM

�iI�jJ
− fifj

)
WIJKLM

ijklm dcj dck dcl dcm ; (2.12)

with obvious notation. Note that the Planck constant does no longer cancel out in
Eq. (2.12). Finally, in the case where the ith species is present as reactant and product
in reaction (2:5), i.e.,

�i + �j
 �i + �l ; (2.13)

the forward and reverse reactions do not account for the same statistical event regarding
species i so that the source term reads [2,6,12]

Ci(f) =
∑
J; Ĩ ; L

∫ (
f̃ifl

�iĨ �lL

�iI �jJ
− fifj

)
WIJ ĨL

ijil dcj dc̃i dcl

+
∑
L; Ĩ ; J

∫ (
f̃ifj − �iI�lL

�iĨ �jJ
fifl

)
WĨ JIL

ijil dc̃i dcj dcl : (2.14)

We now generalize the above expressions into a single formalism valid for arbitrary
reaction mechanisms. The reactive source term for the ith species reads

Ci(f)=
∑
(r)

C
(r)
i (f) : (2.15)

Here, C (r)
i (f) is the source term for the rth elementary reaction written in the form

∑
j∈R(r)

�j

∑

k∈P (r)

�k ; (2.16)

where R (r) and P (r) are, respectively, the indices for reactants and products. For in-
stance, for reaction (2:5), we have R (r) = {i; j} and P (r) = {k; l}, whereas for reaction
(2.9), we have R (r) = {i; i} and P (r) = {k; l}. We denote by �R

(r)

i and �P
(r)

i the sto-
ichiometric coe�cients of the ith species among reactants and products, respectively,
and we also denote by R and P the indices of internal energy states for reactants and
products, respectively. For a given species i∈S, we denote by R

(r)
i the set of reactant

indices where the index i has been removed only once. For example, for reaction (2:5),
we have R

(r)
i = {j} and for reaction (2:9) we have R

(r)
i = {i}. Finally, we introduce
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a similar notation for P (r)
i , RI and PI . With this notation, the source term for the rth

elementary reaction reads

C
(r)
i (f) = �R

(r)

i

∑
RI ; P

∫ (∏
P (r)

�kKfk −
∏

R (r)
�jJfj

)WRP
R (r)P (r)∏
R (r) �jJ

×
∏

R
(r)
i ;P (r)

dcj dck

+ �P
(r)

i

∑
R;PI

∫ (∏
R (r)

�jJfj −
∏

P (r)
�kKfk

)WRP
R (r)P (r)∏
R (r) �jJ

×
∏

R (r) ;P (r)
i

dcj dck ; (2.17)

with, for instance,
∏

R (r) ;P (r)
i

dcj dck standing for
∏

R (r) dcj
∏

P
(r)

i
dck . In addition,

WRP
R (r)P (r) is the transition probability for a reactive collision in which the reactants

R (r) with internal energy states R are transformed into products P (r) with internal
energy states P. Note that the following reciprocity relation holds for the transition
probabilities [2]:

WRP
R (r)P (r)∏
R (r) �jJ

=
WPR

P (r)R (r)∏
P (r) �kK

: (2.18)

2.2. Entropy production

We now show that the nonreactive source term (2:3) and the reactive source term
(2:17) are both compatible with the H -theorem or, in other words, that they yield a
positive entropy production. To this purpose, we introduce the kinetic entropy per unit
volume given by

Skin =−kB
∑
i; I

∫
fi(log(�iIfi)− 1)dci : (2.19)

Multiplying the Boltzmann equation (2:1) by −kB log(�iIfi), integrating over dci and
summing over i and I yields the entropy conservation equation in the form

@tSkin + @x · (Skinv) + @x · J kin = �kin ; (2.20)

where v is the mean average velocity de�ned later, J kin the entropy di�usive 
ux given
by

J kin =−kB
∑
i; I

∫
(ci − v)fi(log(�iIfi)− 1)dci ; (2.21)

and �kin the kinetic entropy source term. The source term reads

�kin = �kin;B + �kin;C ; (2.22)
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with the nonreactive source term given by

�kin;B =−kB
∑
i; I

∫
Bi(f) log(�iIfi)dci

=
1
4
kB
∑
i; j∈S

∑
I; J; I ′ ; J ′

∫


(

f′
i f

′
j

aiI ′ajJ ′
;
fifj

aiI ajJ

)
WIJI ′J ′

ij

(aiI ajJ )−1
dci dcj dc′i dc

′
j ;

(2.23)

and the reactive source term by

�kin;C =−kB
∑
i; I

∫
Ci(f) log(�iIfi)dci

= kB
∑
(r)

∑
R;P

∫


(∏

P (r)
�kKfk ;

∏
R (r)

�jJfj

)WRP
R (r)P (r)∏
R (r) �jJ

×
∏

R (r) ;P (r)
dcj dck ; (2.24)

with 
(x;y)= log(x=y)(x−y). It is readily seen that both �kin;B and �kin;C are a sum of
positive terms. In other words, all the collisions arising at the microscopic level, either
nonreactive or reactive, yield a positive contribution to the kinetic entropy production.
The generalized Boltzmann equation (2:1) is thus compatible with the H -theorem and
yields a dissipative structure. This property is particularly important in the modeling of
reactive gas mixtures where special care should be taken so that all the terms arising
in the entropy production yield a positive contribution.

2.3. Collisional invariants and macroscopic properties

As opposed to the nonreactive case where species, momentum and energy are con-
served by any microscopic collision, in the reactive case only elements, momentum
and energy are conserved. We denote by ne the number of elements in the mixture
and by E= [1; ne] the set of element indices. The ne+4 collisional invariants are then
given by

 l=


(Eil)i∈S; l∈E;
(mic�i)i∈S; l= ne + �; �=1; 2; 3 ;
( 12mici · ci + EiI )i∈S; l= ne + 4 ;

(2.25)

where Eil is the number of element l in the ith species, c�i the component of ci in the
�th spatial coordinate, and EiI the total internal energy of the ith species in the I th
quantum energy shell, given by the sum of the energy of formation plus the internal
energy. For later convenience, we denote by I the space spanned by the collisional
invariants.
For two families �=(�i)i∈S and �=(�i)i∈S, we introduce the scalar product

〈〈�; �〉〉=
∑
i; I

∫
�i�i dci : (2.26)
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More generally, when dealing with tensor quantities � and �, the scalar product becomes
〈〈�; �〉〉= ∑i; I

∫
�i � �i dci, where �i � �i denotes the maximum contracted product be-

tween tensors �i and �i.
The macroscopic properties are given by

〈〈
f;  l〉〉=


ñl; l∈E ;
�v�; l= ne + �; �=1; 2; 3 ;
1
2�v · v+ E; l= ne + 4 ;

(2.27)

where ñl denotes the number density for the lth element, �=
∑

l∈E m̃lñl the density
of the mixture, m̃l the molecular mass of the lth element, v� the component in the
�th spatial coordinate of the mean average velocity v, and E the total internal energy
per unit volume of the mixture. We introduce the partition function for internal energy
Qinti for the ith species

Qinti =
∑
I

aiI exp(−EiI =kBT ) ; (2.28)

where kB is the Boltzmann constant and T the temperature, as well as the translational
and full partition functions

Qtri =
(
2�mikBT

h2P

)3=2
; Qi=Q tr

i Q
int
i : (2.29)

We also introduce the averaged internal energy of the ith species

Ei=
1

Qinti

∑
I

aiIEiI exp(−EiI =kBT ) (2.30)

as well as the internal energy of the ith species and its enthalpy

Ei= 3
2kBT + Ei; Hi= 5

2kBT + Ei; i∈S : (2.31)

The species number densities are de�ned as

ni=
∑
I

∫
fi dci ; i∈S ; (2.32)

in such a way that

ñl=
∑
i∈S

niEil; l∈E : (2.33)

The total internal energy per unit volume of the mixture then reads

E=
∑
i∈S

niEi : (2.34)



A. Ern, V. Giovangigli / Physica A 260 (1998) 49–72 57

2.4. The kinetic chemical equilibrium regime

In this work we are concerned with the kinetic chemical equilibrium regime in which
both the chemistry times and the relaxation times for translational and internal energy
are much smaller than the characteristic times of the 
ow. An approximate solution to
the Boltzmann equation (2:1) is then obtained using an Enskog expansion. Rewriting
Eq. (2.1) in the form

Di(fi)=
1
”
(Bi(f) + Ci(f)); i∈S ; (2.35)

where ” is a formal expansion parameter, the species distribution functions are expanded
as

fi=f0i (1 + ”�i + O(”2)); i∈S : (2.36)

The family of zeroth-order distribution functions f0 = (f0i )i∈S is the solution of

Bi(f0) + Ci(f0)= 0; i∈S : (2.37)

In order to determine f0 uniquely, it is classical to impose that f0 yield the local
macroscopic properties〈〈

f0;  l〉〉= 〈〈f;  l〉〉 ;  l ∈I : (2.38)

We will see in Section 3 that Eqs. (2.37) and (2.38) uniquely determine the zeroth-
order distribution functions f0 and give rise to the Euler equilibrium regime.
The �rst-order perturbations �=(�i)i∈S are the solution of non-homogeneous inte-

gral equations written in the form

=i(�)=	i; i∈S ; (2.39)

where the right member 	i uniquely depends on f0 and reads

	i=−Di(logf0i ); i∈S : (2.40)

In addition, =i denotes the linearized collision operator for the ith species, which reads

=i(�)==B
i (�) + =C

i (�) ; (2.41)

where the nonreactive and reactive collision operators are given by

=B
i (�)=− 1

f0i

〈
@fBi(f0); f0�

〉
; =C

i (�)=− 1
f0i

〈
@fCi(f0); f0�

〉
: (2.42)

In order to determine uniquely the perturbation �, the integral equations (2:39) are
completed with the ne + 4 constraints〈〈

f0�;  l〉〉=0;  l ∈I : (2.43)

The �rst-order species distribution functions f1 = (f1i )i∈S given by

f1i =f0i (1 + �i); i∈S ; (2.44)
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are then such that〈〈
f1;  l〉〉= 〈〈f0;  l〉〉= 〈〈f;  l〉〉 ;  l ∈I ; (2.45)

and give rise to the Navier–Stokes equilibrium regime discussed in Section 4.

3. The Euler equilibrium regime

In this section we discuss the Euler equilibrium regime for reactive mixtures in ki-
netic chemical equilibrium. This regime results from the zeroth order Enskog expansion
discussed in Section 2.4.

3.1. Generalized Maxwellian distribution functions

The zeroth-order distribution functions f0 are generalized Maxwellian distribution
functions. Indeed, we have seen in Section 2.4 that they satisfy Eqs. (2.37) and (2.38).
Using Eq. (2.37), we �rst deduce that

�0 =−kB
∑
i; I

∫
(Bi(f0) + Ci(f0)) log(�iIf0i )dci=0 ; (3.1)

and hence the entropy production corresponding to f0 is zero. Since �0 is a sum of
nonnegative terms, it is readily seen from Eqs. (2.23) and (2.24) that �0 can vanish if
and only if the vector (log(�iIf0i ))i∈S is conserved in both nonreactive and reactive
collisions. We may therefore write

(log(�iIf0i ))i∈S ∈I : (3.2)

Using Eq. (2.25) we obtain that

log(�iIf0i )=
ne+4∑
l=1

�l l
i ; i∈S ; (3.3)

and the constants �l are determined from the macroscopic constraints (2:38). After
some algebra we get

f 0
i =

aiIm3i
h3P

ni

Qi
exp

{
− mi

2kBT
(ci − v)2 − EiI

kBT

}

=
(

mi

2�kBT

)3=2 aiI ni

Q int
i
exp
{
− mi

2kBT
(ci − v)2 − EiI

kBT

}
: (3.4)

These expressions are similar to those obtained for 
ows in both tempered and slow
reaction regimes, except that the species number densities are now constrained by the
relations(

log
ni

Qi

)
i∈S

∈ E ; (3.5)
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where we have introduced the element space

E=Vect(E1; : : : ;Ene) ; (3.6)

where El=(Eil)i∈S for l∈E.
It is important to point out that the constraints (3:5) actually yield the usual chemical

equilibrium conditions for the species number densities. Indeed, upon introducing the
zeroth order entropy per unit volume

S 0 =−kB
∑
i; I

∫
f0i (log(�iIf0i )− 1)dci ; (3.7)

we obtain after some algebra that

S 0 =
∑
i∈S

niS0i ; (3.8)

with the zeroth order molecular entropies S0i given by

S0i =
Hi

T
− kB log

ni

Qi
; i∈S : (3.9)

At the zeroth order, the species chemical potentials read

�0i =
1
mi
(Hi − TS0i )=

kBT
mi

log
ni

Qi
; (3.10)

and it is readily seen from Eq. (3.5) that the vector M�0 with components mi�0i is in
the element space

M�0 = (mi�0i )i∈S ∈ E : (3.11)

This relation simply states the usual equilibrium conditions for the chemical reactions,
as detailed for instance in [14,15]. In addition, the resulting equilibrium constant is
exactly the same as would be obtained using the rules of statistical mechanics [1,16].

3.2. Macroscopic conservation equations

The macroscopic conservation equations in the Euler regime are obtained from the
relations〈〈

 l;D(f0)
〉〉
=0;  l ∈I ; (3.12)

where we have introduced the family D(f0)= (Di(f0i ))i∈S. After some algebra, we
obtain

@tñl + @x · (ñlv)= 0; l∈E ; (3.13)

@t(�v) + @x · (�v⊗ v)= @xp+
∑
i∈S

�ibi ; (3.14)
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@t( 12�v
2 + E) + @x · (( 12�v2 + E)v)=−@x · (pv) +

∑
i∈S

�ibi · v ; (3.15)

where �i= nimi is the density of the ith species. These equations express conservation
of element densities, momentum and energy.
An equation for the temperature is easily recovered from the energy equation (3:15).

Upon introduing the particular derivative Dt = @t + v · @x, a straightforward calculation
yields

cmol DtT =

{
−(p+ E) +

∑
l∈E

(
ñl

∑
i∈S

@ni

@ñl
Ei

)}
@x · v : (3.16)

The molecular heat capacity cmol which appears in Eq. (3.16) consists of three contri-
butions

cmol = 3
2kBn+

∑
i∈S

nic
int;mol
i +

∑
i∈S

nic
chem;mol
i ; (3.17)

where n=
∑

i∈S ni is the total number density. The �rst term in Eq. (3.17) accounts
for the translational heat capacity, while cint;moli and cchem;mol

i are, respectively, the
internal and chemical molecular heat capacity of the ith species given by

cint;moli =
dEi

dT
; cchem;mol

i =
1
ni

@ni

@T
Ei : (3.18)

4. The Navier–Stokes equilibrium regime

In this section we discuss the Navier–Stokes equilibrium regime for reactive mix-
tures in kinetic chemical equilibrium. This regime results from the �rst-order Enskog
expansion discussed in Section 2.4.

4.1. Linearized Boltzmann equations

The species perturbed distribution functions �=(�i)i∈S are the solution of the in-
tegral equations (2:39) completed by the constraints (2:43). Using Eq. (3.2), the non-
reactive and reactive collision operators now read

=B
i (�)=

∑
j∈S

∑
J; I ′ ; J ′

∫
f0j (�i + �j − �′

i − �′
j)W

IJI ′J ′
ij dcj dc′i dc

′
j ; (4.1)

and

=C
i (�) = �R

(r)

i

∑
RI ; P

∫ ∏
R
(r)
i

f0j

(∑
R (r)

�j −
∑
P (r)

�k

)
WRP

R (r)P (r)

×
∏

R
(r)
i ;P (r)

dcj dck
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+ �P
(r)

i

∑
R;PI

∫ ∏
P
(r)

i

f0k

(∑
P (r)

�k −
∑
R (r)

�j

)
WPR

P (r)R (r)

×
∏

R (r) ;P (r)
i

dcj dck : (4.2)

The linearized collision operator ===B+=C has important structure properties which
generalize those discussed in [13] for nonreactive mixtures. We introduce the bracket
operator

<�; �==
〈〈

f0�;=(�)〉〉 ; (4.3)

keeping in mind that � and � may be either scalar or tensor quantities. It is readily
seen from Eqs. (4.1) and (4.2) that the bracket operator has the following fundamental
properties.
(i) it is symmetric: <�; �== <�; �=,
(ii) it is positive semi-de�nite: <�; �=¿0,
(iii) its kernel is spanned by the collisional invariants: <�; �==0⇔ �∈I.
On the other hand, the right member 	i in Eq. (2.39) may now be evaluated using

the zeroth-order macroscopic conservation equations derived in Section 3.2. For con-
venience, we introduce the partial pressure of the lth element and the partial pressure
of the ith species given by

p̃l= ñlkBT; l∈E; pi= nikBT; i∈S : (4.4)

With the ne + 4 macroscopic variables �l given by

�l=


p̃l; l∈E ;
v�; l= ne + �; �=1; 2; 3 ;
1=kBT; l= ne + 4

(4.5)

we obtain

	i=
ne+4∑
l=1

�l
i (Dt�l + (ci − v) · @x�l)− mi

kBT
(ci − v) · bi ; (4.6)

with

�l
i =

1
f0i

@f0i
@�l

=



1
pi

@pi

@p̃l
; l∈E ;

mi

kBT
(ci� − v�); l= ne + �; �=1; 2; 3 ;

Hi − kBT 2

pi

@pi

@T
− 1
2
mi(ci − v)2 − EiI ; l= ne + 4 ;

(4.7)

for i∈S. Using the relations presented in the appendix, it is easily veri�ed that for all
l=1; : : : ; ne+4, the vector

(
�l

i

)
i∈S

is a linear combination of the collisional invariants
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(2:25). After some lengthy calculations, we obtain the following expansion for 	i in
terms of the macroscopic variable gradients:

	i =−	�
i : @xv−

1
3
	�

i @x · v−
∑
l∈E

	D̃l
i · @xp̃l −	�′

i · @x(1=kBT )

+
∑
j∈S

	Dj
i · (�jbj) ; (4.8)

with

	�
i =

mi

kBT

{
(ci − v)⊗ (ci − v)− 1

3
(ci − v)2I

}
;

	�
i =

1
3

mi

kBT
(ci − v)2 −

∑
l∈E

p̃l

pi

@pi

@p̃l

+
1

kBT 2cmol

p+
∑
j∈S

(
nj −

∑
l∈E

ñl
@nj

@ñl

)
Ej


×
{
Hi − kBT 2

pi

@pi

@T
−
∑
l∈E

kBT
p̃l

pi

@pi

@p̃l
− 1
2
mi(ci − v)2 − EiI

}
;

	D̃l
i =

1
pi

 @pi

@p̃l
− Yi

∑
j∈S

@pj

@p̃l

 (ci − v) ;
	�′

i =

Hi − kBT 2

pi

@pi

@T
− Yi

∑
j∈S

@pj

@T

− 1
2
mi(ci − v)2 − EiI

 (ci − v) ;
	Dj

i =
1
pi
(�ij − Yi)(ci − v) ; (4.9)

where I is the identity matrix and �ij the Kronecker symbol. Letting �= �, �, D̃l

for l∈E, �′, or Dj for j∈S, we deduce from the expansion (4:8) for 	i a similar
expansion for �i, namely

�i =−��
i : @xv−

1
3
��

i @x · v−
∑
l∈E

�D̃l
i · @xp̃l − ��′

i · @x(1=kBT )

+
∑
j∈S

�Dj
i · (�jbj) ; (4.10)

and each of the expansion coe�cients ��=(��
i )i∈S in Eq. (4.10) is the solution of

the constrained integral equations{=i(��)=	�
i ; i∈S;〈〈

f0��;  l〉〉 =0;  l ∈I :
(4.11)
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It is easily veri�ed that the above systems are well posed for all �, i.e., the right
member 	�

i is in the range of the operator =i and the solution �� is unique.

4.2. Macroscopic conservation equations

The macroscopic equations in the Navier–Stokes regime are obtained from the rela-
tions 〈〈

 l;D(f1)
〉〉
=0;  l ∈I ; (4.12)

where we have introduced the family D(f1)= (Di(f1i ))i∈S. We introduce two types
of di�usion 
uxes, the classical species di�usion 
uxes given by

niVi=
∑
I

∫
(ci − v)f0i �i dci ; i∈S ; (4.13)

and the element di�usion 
uxes de�ned as

ñlṼl=
∑
i; I

∫
Eil(ci − v)f0i �i dci ; l∈E ; (4.14)

in such a way that

ñlṼl=
∑
i∈S

EilniVi ; l∈E : (4.15)

After some algebra, we obtain the macroscopic equations expressing conservation of
element densities, momentum and energy in the form

@tñl + @x · ( ñlv) + @x · ( ñlṼl)= 0; l∈E ; (4.16)

@t(�v) + @x · (�v⊗ v) + @x ·P=
∑
i∈S

�ibi ; (4.17)

@t

(
1
2
�v2 + E

)
+ @x ·

((
1
2
�v2 + E

)
v
)
+ @x · (Q + P · v)

=
∑
i∈S

�ibi · (v+ Vi) : (4.18)

With the element di�usion velocities given by Eq. (4.15), we still need to specify
the species di�usion velocities Vi for i ∈ S, the heat 
ux vector Q and the pres-
sure tensor P. These transport 
uxes are expressed in terms of the species perturbed
distribution functions as follows:

Vi= kBT
〈〈
	Di ; f0�

〉〉
; i∈S ; (4.19)

P=pI +�; �= kBT
〈〈
	�; f0�

〉〉
+

kBT
3

〈〈
	�; f0�

〉〉
I ; (4.20)
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Q=−
〈〈
	�′ ; f0�

〉〉
+
∑
i∈S

(
Hi − kBT 2

pi

@pi

@T

)
niVi ; (4.21)

where � is the viscous stress tensor. In the next section we express the transport 
uxes
Eqs. (4.19)–(4.21) in terms of various transport coe�cients.

4.3. Transport coe�cients

We �rst consider the viscous stress tensor �. We introduce the shear viscosity �
and the volume viscosity � given by

�=
kBT
10
<��;��= ;

�=
kBT
9
<��; ��= ;

(4.22)

and the viscous stress tensor then reads

�=−�
(
@xv+ (@xv)t − 2

3
(@x · v)I

)
− �(@x · v)I : (4.23)

We next turn to the species di�usion velocities Vi, i∈S, and the heat 
ux vector Q.
We de�ne the species multicomponent and the thermal di�usion coe�cients as

Dij =
pkBT
3

<�Di ;�Dj =; i; j∈S;

�i=−1
3
<��′ ;�Di =; i∈S ;

(4.24)

the partial thermal conductivity as

�′=
1

3kBT 2
<��′ ;��′ = ; (4.25)

and the di�usion driving forces as

dj =
1
p

(∑
l∈E

@pj

@p̃l
@xp̃l − �jbj

)
; j∈S : (4.26)

The species di�usion velocities may then be written as

Vi=−
∑
j∈S

Dijdj − �i@x log T; i∈S ; (4.27)

and the heat 
ux vector as

Q=−�′@xT − p
∑
i∈S

�idi +
∑
i∈S

(
Hi − kBT 2

pi

@pi

@T

)
niVi : (4.28)
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It is also possible to use a formalism identical to the one arising for mixtures with
nonequilibrium chemistry. We �rst notice that

	D̃l =
∑
j∈S

	Dj
@pj

@p̃l
: (4.29)

Thus, by linearity, the corresponding solutions of the integral Boltzmann equations
(4:11) are such that

�D̃l =
∑
j∈S

�Dj
@pj

@p̃l
: (4.30)

We also introduce the quantities

	̂�′
i =(Hi − 1

2mi(ci − v)2 − EiI )(ci − v); i∈S ; (4.31)

in such a way that

	�′ = 	̂�′ − kBT 2
∑
j∈S

	Dj
@pj

@T
: (4.32)

Upon introducing the integral equations

=i(�̂�′)= 	̂�′
i ; i∈S;〈〈

f0�̂�′ ;  l
〉〉

=0;  l ∈I ;
(4.33)

we obtain by linearity that

��′ = �̂�′ − kBT 2
∑
j∈S

�Dj
@pj

@T
: (4.34)

We then de�ne the thermal di�usion coe�cients as

�̂i=−1
3
<�̂�′ ;�Di == �i − T

p

∑
j∈S

Dij
@pj

@T
; i∈S ; (4.35)

the partial thermal conductivity as

�̂′=
1

3kBT 2
<�̂�′ ; �̂�′ = ; (4.36)

and the species di�usion driving forces as

d̂j =
1
p

(∑
l∈E

@pj

@p̃l
@xp̃l +

@pj

@T
@xT − �jbj

)
; j∈S : (4.37)

The species di�usion velocities Vi are then given by

Vi=−
∑
j∈S

Dijd̂j − �̂i@x log T; i∈S ; (4.38)
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and the heat 
ux vector by

Q=−�̂′@xT − p
∑
i∈S

�̂i d̂i +
∑
i∈S

HiniVi : (4.39)

It is possible to rewrite the species di�usion velocities and the heat 
ux vector in
terms of the thermal di�usion ratios and the thermal conductivity [17]. The thermal
di�usion ratios �̂i, for i∈S, are the unique solution of the constrained singular system∑

j∈S

Dij�̂j = �̂i; i ∈ S;

∑
j∈S

�̂j =0 ;
(4.40)

while the thermal conductivity reads

�̂= �̂′ − p
T

∑
j∈S

�̂j�̂j : (4.41)

Upon introducing

�̂�= �̂�′ + pkBT
∑
j∈S

�̂j�
Dj ; (4.42)

we may write

�̂=
1

3kBT 2
<�̂�; �̂�=;

�̂i=
mi

3pkBT
<�i ; �̂�=; i∈S ;

(4.43)

with �i=((ci−v)�ij)i∈S, and we recover the formalism derived in [17] for nonreactive
mixtures. Using the thermal conductivity and the thermal di�usion ratios, the species
di�usion velocities and the heat 
ux vector read

Vi=−
∑
j∈S

Dij(d̂j + �̂j@x log T ); i∈S;

Q=−�̂@xT − p
∑
i∈S

�̂iVi +
∑
i∈S

HiniVi :
(4.44)

The transport coe�cients introduced above satisfy several important properties which
result from those of the bracket operator < ; =. First, the matrix of order n+ 1 1

T 2 �̂
′ p

T (�̂i)i∈S

p
T (�̂i)i∈S

p
T (Dij)i; j∈S

 (4.45)

is symmetric positive semi-de�nite with kernel spanned by the vector (0; Y1; : : : ; Yn).
Equivalently, we may state that the thermal conductivity �̂ is positive and that the
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di�usion matrix D=(Dij)i; j∈S is symmetric positive semi-de�nite with kernel spanned
by the mass fraction vector (Y1; : : : ; Yn). On the other hand, the shear viscosity � is
positive and the volume viscosity � is nonnegative, the latter being zero only if there
are no polyatomic species in the mixture.
Finally, we point out that it is possible to de�ne multicomponent and thermal di�u-

sion coe�cients for the elements. Indeed, we may write the element di�usion velocities
Ṽk , k ∈E, as follows:

Ṽk =−
∑
l∈E

D̃kl
1
p
@xp̃l − �̃k@x log T +

∑
i; j∈S

ni

ñk
Eik

Dij

p
�jbj ; (4.46)

where we have introduced the element multicomponent di�usion coe�cients

D̃kl=
∑
i; j∈S

ni

ñk
Dij

@pj

@p̃l
Eik ; k; l∈E ; (4.47)

and the thermal di�usion coe�cients for the elements

�̃k =
∑
i∈S

ni

ñk
�iEik ; k ∈E : (4.48)

Note also that when all the species external forces are equal, i.e., bi= b for i ∈ S,
the last term in Eq. (4.46) vanishes. Introducing the matrix (
lm)l;m∈E de�ned in the
appendix, the element multicomponent di�usion coe�cients may be expressed as

D̃kl=
∑
m∈E

kBT
lm
∑
i; j∈S

1
ñk

DijniEik njEjm : (4.49)

As opposed to the di�usion matrix D, the element di�usion matrix D̃=(D̃kl)k; l∈E

does not appear to have any simple structure properties, such as symmetry or positive
de�niteness. We will see in the next section that this matrix does not appear directly
in the framework of Onsager’s reciprocal relations. As a result, it is more convenient
to use the species di�usion matrix D rather than the element di�usion matrix D̃.

4.4. Entropy production and Onsager’s reciprocal relations

It is well-known that at the �rst order in the Enskog expansion, the entropy may
be evaluated using the zeroth order Maxwellian distribution functions. The �rst-order
entropy per unit volume, denoted by S, reads

S =−kB
∑
i; I

∫
f1i (log(�iIf1i )− 1)dci

=
∑
i∈S

niS0i + O(”2) ; (4.50)
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where the zeroth-order molecular entropies are given by Eq. (3.9). The Gibbs free
energy per unit volume of the species

Gi=Hi − TS0i = kBT log
ni

Qi
; (4.51)

has several important properties. First, as a result of the chemical equilibrium conditions
(3:5) we have

(Gi)i∈S ∈ E : (4.52)

In addition, as a direct consequence of the �rst relation in Eq. (A.2), we obtain the
orthogonality property∑

i∈S

Gi
@ni

@T
=0 : (4.53)

We then de�ne the Gibbs free energy per unit volume for the elements as

G̃l=
∑
i∈S

Gi
@pi

@p̃l
; l∈E ; (4.54)

as well as the enthalpy per unit volume for the elements

H̃l=
∑
i∈S

Hi
@pi

@p̃l
; l∈E : (4.55)

Using the relations given in the appendix, one can easily show that

G=
∑
i∈S

niGi=
∑
l∈E

ñlG̃l ; (4.56)

and that

H =
∑
i∈S

niHi=
∑
l∈E

ñl H̃l + T
(

@p
@T

)
p̃l

: (4.57)

Using the above relations, we deduce that the di�erential of the volumetric entropy
in the Navier–Stokes equilibrium regime is given by the relation

T dS =dE −
∑
l∈E

G̃ldñl : (4.58)

This relation generalizes the Gibbs di�erential relation to the kinetic chemical equilib-
rium regime. A conservation equation for S is then easily obtained from Eq. (4.58)
and the macroscopic conservation equations stated in Section 4.2. A straightforward
calculation yields that

@tS + @x · (vS) + @x · Js= � ; (4.59)
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where Js is the entropy 
ux vector given by

Js=
1
T

(
Q −

∑
l∈E

G̃lñlṼl

)
; (4.60)

and the entropy source term � reads

�=−Q · @xT
T 2

− �:@xv
T

+
1
T

∑
i∈S

�iVi · bi −
∑
l∈E

ñlṼl · @x
(

G̃l

T

)
: (4.61)

For the sake of simplicity, we assume that all the external forces are equal, bi= b for
i∈S, so that the third term in the right member of Eq. (4.61) vanishes.
In order to expand the last term in Eq. (4.61), we use the following relations:

@
@T

(
G̃l

T

)
p̃l

=− H̃l

T 2
; l∈E ; (4.62)

and

@
@p̃k

(
G̃l

T

)
T; p̃m;m6=k

= kB
kl; k; l ∈ E ; (4.63)

where the matrix (
kl)k; l∈E is symmetric and given explicitly in the appendix. The
entropy source term may now be written as

�=−Q −∑l∈E H̃lñlṼl

T 2
· @xT − �:@xv

T
−
∑
k; l∈E

kB
klñlṼl · @xp̃l : (4.64)

Using the expressions for the transport 
uxes obtained in the previous section, we may
write

Q −
∑
l∈E

H̃lñlṼl=−�0;0
@xT
T 2

−
∑
k∈E

�0; k@xp̃k ; (4.65)

and ∑
l∈E

kB
klñlṼl=−�k;0 @xT
T 2

−
∑
m∈E

�k;m@xp̃m; k ∈ E ; (4.66)

and the coe�cients �k;m, 06k; m6ne, read

�0;0 = T 2�′ ;

�0; k = �k;0 =
∑
i∈S

�i
@pi

@p̃k
; k ∈E;

�k;m=
1
pT

∑
i; j∈S

Dij
@pi

@p̃k

@pj

@p̃m
; k; m∈E :

(4.67)

The above relations show that the entropy source term in the Navier–Stokes equilibrium
regime is compatible with Onsager’s reciprocal relations.
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Finally, we point out that the entropy source term may also be written using the
same formalism as for gas mixtures in chemical nonequilibrium. After some algebra,
we get

�= �̂
@xT · @xT

T 2
+

p
T

∑
i; j∈S

Dij(d̂i + �̂i@x log T ) · (d̂j + �̂j@x log T ) +
�
T
(@x · v)2

+
�
2T

(
@xv+ (@xv)t − 2

3
(@x · v)I

)
:
(
@xv+ (@xv)t − 2

3
(@x · v)I

)
: (4.68)

From the properties of the transport coe�cients stated in Section 4.3, we readily obtain
that the entropy production term � is a sum of positive terms.

5. Concluding remarks

In this paper we have derived a theoretical framework for the kinetic chemical equi-
librium regime introduced formally by Ludwig and Heil and we have presented a
detailed investigation of the associated Euler and Navier–Stokes regimes. As a conclu-
sion, it is interesting to consider the following points.
(1) The preceding sections show that the underlying structure of the governing equa-

tions for gas mixtures in the kinetic chemical equilibrium regime is formally
identical to the one obtained for gas mixtures in chemical nonequilibrium and
then letting the chemical reactions approach equilibrium. This remark is valid for
both the transport 
uxes and the entropy production. It is important to notice,
however, that the actual value of the transport coe�cients is di�erent in each
case. Indeed, in the kinetic chemical equilibrium regime, the linearized Boltz-
mann operator = contains terms accounting for reactive collisions, as opposed to
the linearized Boltzmann operator that would be obtained if the chemical reactions
were considered as a slow process.

(2) It is also interesting to point out that although the macroscopic governing equa-
tions in the kinetic equilibrium regime express conservation of element densities
instead of species densities, the simplest structure in these equations is recovered
by introducing species di�usion velocities. It is actually impossible to eliminate
completely the species from the governing equations since the volumetric energy
of the mixture cannot be expressed as a combination of quantities only depending
on the elements.

Appendix. Di�erential relations

In this appendix, we present some useful di�erential relations needed in this work.
We restate that in the kinetic chemical equilibrium regime the macroscopic independent
variables are the element number densities, the mean average 
ow velocity, and the
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temperature. As a result, the species number densities ni, i ∈ S, are functions of the
element number densities ñl, l ∈ E, and the temperature T . They are given by∑

i∈S

niEil= ñl ;(
log

ni

Qi

)
i∈S

∈ E ;
(A.1)

recalling that E is the element space de�ned by Eq. (3.6). Di�erentiating Eq. (A.1)
with respect to T �rst yields(

@ni

@T

)
i∈S

∈ E⊥ ;(
Ei − kBT 2

ni

@ni

@T

)
i∈S

∈ E ;

(A.2)

while di�erentiating Eq. (A.1) with respect to ñm, for m∈E, yields∑
i∈S

@ni

@ñm
Eil= �lm; m ∈ E ;

(
1
ni

@ni

@ñm

)
i∈S

∈ E; m∈E :

(A.3)

Rather than number densities, it is also possible to consider partial pressures for the
elements and the species, as given by Eq. (4.4). With the macroscopic variables (4:5),
the species partial pressures are functions of the element partial pressures p̃l, l∈E,
and the temperature T . Eqs. (A.1) now read∑

i∈S

piEil= p̃l ;(
log

pi

kBTQi

)
i∈S

∈ E ;
(A.4)

and di�erentiating Eq. (A.4) with respect to T and p̃m, for m∈E, yields(
@pi

@T

)
i∈S

∈ E⊥;

(
Hi − kBT 2

pi

@pi

@T

)
i∈S

∈ E ;

(A.5)

and ∑
i∈S

@pi

@p̃m
Eil= �lm; m∈E ;

(
1
pi

@pi

@p̃m

)
i∈S

∈ E; m∈E :

(A.6)
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From the second relation in Eq. (A.6) we deduce that there exist a matrix 
=(
kl)k; l∈E

such that

1
pi

@pi

@p̃l
=
∑
l∈E


klEil; i∈S; l∈E ; (A.7)

and a straightforward calculation shows that


kl= 
lk =
∑
i∈S

1
pi

@pi

@p̃k

@pi

@p̃l
: (A.8)

References

[1] A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, new series monographs, vol. m24,
Springer, Berlin, 1994.

[2] B.V. Alexeev, A. Chikhaoui, I.T. Grushin, Phys. Rev. E 49 (1994) 2809–2825.
[3] I. Prigogine, E. Xhrouet, Physica 15 (1949) 913–932.
[4] I. Prigogine, M. Mahieu, Physica 16 (1950) 51–64.
[5] J. Ross, P. Mazur, J. Chem. Phys. 35 (1961) 19–28.
[6] G. Ludwig, M. Heil, in: Advances in Applied Mechanics, vol. 6, Academic Press, New York, 1960,

pp. 39–118.
[7] A. Ern, V. Giovangigli, Physica A 224 (1996) 613–625.
[8] L. Waldmann, E. Tr�ubenbacher, Zeitschr. Naturforschg 17a (1962) 363–376.
[9] L. Waldmann, Transporterscheinungen in Gasen von mittlerem Druck, in: S. Fl�ugge (Ed.), Handbuch

der Physik, vol. 12, Springer, Berlin, 1958, pp. 295–514.
[10] R.F. Snider, J. Chem. Phys. 32 (1960) 1051–1060.
[11] W.Th. Hermens, W.A. van Leeuwen, Ch.G. van Weert, S.R. de Groot, Physica 60 (1972) 472–487.
[12] I. Ku�s�cer, Physica A 176 (1991) 542–556.
[13] A. Ern, V. Giovangigli, Phys. Rev. E 53 (1996) 485–492.
[14] F.J. Krambeck, Arch. Rational Mech. Anal. 38 (1970) 317–347.
[15] N.Z. Shapiro, L.S. Shapley, SIAM J. Appl. Math. 13 (1965) 353–375.
[16] R.H. Fowler, Statistical Mechanics, Cambridge Univ. Press, Cambridge, 1936.
[17] A. Ern, V. Giovangigli, Physica A 214 (1995) 526–546.


