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Abstract 

A novel theoretical basis for the evaluation of the thermal conductivity and the thermal diffusion 
ratios of dilute polyatomic gas mixtures is derived within the semi-classical isotropic kinetic theory. 
New expressions for species diffusion coefficients, thermal diffusion coefficients, and thermal 
diffusion ratios are also obtained by using an expansion vector based upon the total energy of 
the molecules. Finally, practical and accurate expressions for the thermal conductivity and the 
thermal diffusion ratios are derived by using the recent theory of iterative transport algorithms, as 
developed by the authors. The resulting expressions can be used in either theoretical calculations 
or computational models of multicomponent flows. 

1. Introduction 

Fundamental scientific interest as well as a wide range of  practical applications have 
motivated extensive interest in the study of  transport properties in dilute polyatomic 
gas mixtures. The purpose of  this paper is to provide a new theoretical basis and also 

practical expressions for the evaluation o f  two transport coefficients in dilute polyatomic 

gas mixtures: the thermal conductivity and the thermal diffusion ratios. As discussed 

later, these two coefficients arise in the kinetic theory expression of  the species diffusion 
velocities and the heat flux vector. 
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In this paper transport properties of dilute polyatomic gases are treated semi-classically 

[ 1] rather than quantum mechanically [2]. Indeed we will not consider the effects of 

applied magnetic or electric fields on transport properties, e.g., polarization of angular 
momentum, for which a quantum mechanical theory is needed. Furthermore, the quantum 
mechanical theory yields the same formal results as the semi-classical approach for 
the isotropic approximation valid in the absence of polarization effects [2-4].  We 
consider here the semi-classical theory as extended to dilute polyatomic gas mixtures 
in [5]. The corresponding Boltzmann equation preaverages the cross-sections over all 
the magnetic quantum numbers and can be derived from the Waldmann-Snider [6,7] 
quantum mechanical Boltzmann equation. This form of the Boltzmann equation is also 
equivalent to the Wang Chang and Uhlenbeck type equation considered in [ 8]. 

In the next section we introduce some useful notation and briefly restate some clas- 
sical kinetic theory results. We then derive, for the first time, a variational framework 
for evaluating the thermal conductivity and the thermal diffusion ratios directly. This 
allows the derivation of linear systems with which to evaluate these transport coefficients 
without cumbersome algebraic manipulations. Furthermore, we introduce new expres- 
sions for the species diffusion coefficients, the thermal diffusion coefficients, and the 
thermal diffusion ratios by generalizing the total-energy approach derived in [9,10] for 
the thermal conductivity of pure gases and in [ 11 ] for the partial thermal conductivity 

of binary mixtures. When some species concentrations become arbitrarily small, it is 
worthwhile to note that artificial singularities arise in the linear systems presented in 
Section 2. These numerical difficulties can be overcome by introducing rescaled linear 
systems [ 12] and will not be discussed further in this paper. Finally, in Section 3 we 
apply the general theory of iterative transport algorithms [ 12] to the evaluation of the 
thermal conductivity and the thermal diffusion ratios. Iterative methods provide indeed 
a particularly cost-effective approach to obtain accurate approximate solutions to the 
linear systems described in Section 2. Practical expressions for the thermal conductivity 
and the thermal diffusion ratios are then obtained by truncation. These expressions can 
be used at a low computational cost in numerical models of multicomponent flows such 
as flames [25-27] or chemical vapor deposition reactors. Numerical simulation of these 
flows indeed requires the evaluation of transport properties at each computational cell in 
space and time, since temperature, pressure and concentration distributions are generally 
not uniform. These simplified expressions are also directly related to the linear system 

coefficients written in terms of collision integrals. 

2. Theory 

2.1. Preliminaries 

We consider a multicomponent gas mixture with n species and we denote by S = 
[1, n] the set of species indices. For a family of functions ~:k, k E S, where (k = 
(k(Ck, K) depends on the particle velocity ck and the r th energy state Ekr, we introduce 
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the compact notation ~: = (~k)keS. Denoting by Ek the set of quantum energy shells of 
the k th species, we then introduce the scalar product 

(1) 
kES KE£~ 

where f~k is the Maxwellian equilibrium distribution function of the k th species. Follow- 

ing [13], we next define the integral bracket operator [~:, ( ]  = ((~:,Im(())), where Im 
is the linearized Boltzmann collision operator. 

In the Enskog-Chapman procedure, the species distribution functions are written as 
a linear perturbation of the equilibrium Maxwellian distribution functions [5,11,13]. In 

the first-order expansion, the species diffusion velocities may be expressed as 

Vk = -- ~ Dktdt - OkV log T, k E S, (2) 
IE,.q 

and the heat flux vector as 

q = ~ phkYkV~ -- A"UT - p E Okdk, (3) 
kE• kES 

where dk is diffusion driving force acting on the k th species given by 

dk = VXk + (Xk -- Yk) ? + P--_ ~ YkYl(bl -- bk), k C S,  (4) 
P t~8 

and where X~ is the mole fraction of the k th species, Yk its mass fraction, p the pressure, 
p the density, b~ the external force on the k th species, T the temperature, and hk the 
specific enthalpy of the k th species. Furthermore, several transport coefficients arise in 
(2) and (3): the diffusion matrix D = (Dkl)kd~S formed by the species diffusion 
coefficients, the thermal diffusion vector O -- (Ok)k~,s formed by the thermal diffusion 
coefficients, and the partial thermal conductivity A r. These transport coefficients can be 
written in the form [5,11,13] 

Dkl = - - T  [ dp , , k, l E S,  

Ok= -- [fb °k,(b a'], k E S ,  (5) 

, V -  1 ,V 

31~T 2 [ ~ , ckA' ] . 

Here, /~ denotes the Boltzmann constant and we have also introduced n + 1 families of 
functions ~b~ _- (~b~)keS, where/z stands for Dr, l E S, and A f. 

The auxiliary functions ~b~ are three-dimensional vector functions that are the solution 
of the following linearized Boltzmann equations 

{ Im(#~)  = ~ ,  

((~b ~, ~k/} = 0, k E [ 1, n+4] ,  (6) 
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where ~k are the n + 4 collisional invariants of the mixture. Furthermore, the right-hand 
sides in (6) have components given by [5] 

{ ~ D , =  ( 1 / ( X k p ) ) ( S k t - -  Yk)(Ck--V) ,  I E S,  
h' (7) 

where ~kl is the Kronecker symbol and v the mass averaged flow velocity. The reduced 
velocity Wk, the reduced internal energy ek,:, and the averaged reduced internal energy 
~k of the k th species are given by 

EkK 
( mk ~I/2(C k _ V) Ek,: kBT' ek = Z akxekxexp(--ekx)/ak, Wk = \21~T/  ' = 

rE£k 

(8) 

where mk is the mass of the molecules of the k th species, akx the degeneracy of the x th 

quantum energy shell of the k th species, and Ok = ~--~xeEk akxexp(--ekx) the partition 
function. 

2.2. Polynomial expansions 

The linearized Boltzmann Eqs. (6) are solved approximately with a variational proce- 
dure using polynomial expansions [ 5]. More specifically, a finite dimensional functional 
space .4 = span{ (rk, (r, k) E/3 } is first selected, where ~rk are orthogonal basis func- 

tions for the scalar product ( 1 ) and where/3 is a set of basis function indices. The basis 
functions s crk are generally chosen as simple linear combinations of the vector functions 
~)lOcdk defined by 

~/)lOcdk (S~3/2(Wk.wk) d ) -~ W~ (E.kx) W k ~kl IES' ( 9 )  

where ~/2  is the Laguerre and Sonine polynomial of order c with parameter 3/2, and W d 

the Wang Chang and Uhlenbeck polynomial of order d for the k th species. The notation 
in (9) is similar to the one in [ 11], but the basis functions (9) are not normalized since 
it would lead to artificial notational complexities and introduce concentration dependent 
functions. In particular, the following vector basis functions will be used to expand the 
auxiliary functions qV ~ 

{ t~ lO00k ---- (Wk~kl)lES, k E S,  

t~ 1010k ((25- --  Wk'Wk)Wk~kl)lES , k E S ,  ( 1 0 )  

t~ lO01k ((~'k -- Ifkx)Wk6kl)leS, k E 7 9. 

Here, 79 denotes the set of species that have at least two different energy levels. This set 
is generally taken to be the set of polyatomic species, and we denote by p the number 
of such species in the mixture. 
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Since the basis functions (b l°¢dk involve the polynomials W d in the internal energy e~r 
of the molecules, all the internal modes of the molecules, e.g., rotation and vibration, 
are forced to have the same internal temperature [ 14]. However, it is possible to 
consider polynomials in the energies of the various internal modes, which leads to 
larger variational approximation spaces for the species perturbed distribution functions 
[ 14,15]. This would only complicate the final expressions for the transport coefficients, 
but the general theory that is presented would equally apply. In addition, considering 
polynomials in the internal energy of the molecules only may sometimes lead to a 
faster convergence of the orthogonal polynomial expansions of the perturbed distribution 
functions. In particular, it has been observed experimentally in [ 16] that, for iodine at 
room temperature, in the presence of a temperature gradient, the perturbed distribution 
function ~b a' is linear in the total internal energy, but not in the different internal energy 
modes, i.e., rotation and vibration, for which the quadratic terms become significant in 
the orthogonal polynomial expansions. 

Expanding the auxiliary functions ~b ~ in terms of the basis functions ~rk yields linear 
systems in the form 

? rs Sl .L rt z "~kt°tt =ilk , ( r, k ) ~ 13, (11) 
( s,I) C:B 

completed with the appropriate constraints, where 

l'rs _ 2 mx/-mT-~ r t:rk I:sll 
L'kl -- " ~ T  t b  , b  J ,  

( 12) 
t~rkDt = VZ't3kr'n" ((~rk, ,I/tD,)), /~A' = 3 - F - ~  (<l~rk' ~[.rA')). 

The scaling factors appearing in (12) have been chosen for convenience. Furthermore, 
since we use the same functional space to expand ~b °' and ~b a', the same matrix L is 
obtained in (11) for /x = Dr and /x = A t. Finally, it is straightforward to relate the 
cross-sections appearing in the elements of the matrix L to those defined in [ 11 ]. 

2.3. Evaluation o f  D, A', and 8 

We now assume that the functions ~b l°°°k are in the functional space .4. This assump- 
tion is natural since the suppression of these functions in the polynomial expansions of 
~b a' would yield 0 = 0. The set {00} xS  is then included in the indexing set B. Hence, 
we obtain the following partitioning 

B =  {00}xS U B A, (13) 

and we denote by to and toa = to _ n the number of elements of B and B a, respectively. 
One may then easily verify that the partitioning (13) yields the following block 

structure for the linear system (11) 

: ' 1  : "  
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Here, L °°°° is a nxn matrix, L °°a is a nx~o ~ matrix, L ~°° is a toaxn matrix, and L Aa 
is a o/~x~o A matrix. Similarly, a °°~ and floo~ are n vectors and a A~ and flA~ are to a 

vectors. The linear system (14) must be completed by the constraint 

(15) 
k6S 

Furthermore, one can show [ 12] that the matrix L is symmetric positive semi-definite, 
and that the submatrix L AA is symmetric positive definite. In addition, the kernel of the 

matrix L is spanned by the vector U = (U°°, Ua) such that U~k = 1, k E S, and U ~ = 0, 
and the vectors fig are in the range of the matrix L since Ekes fl~o~ = 0, for/~ = Dl 
and /~ = ,V. As a consequence, the constrained singular system (14) and (15) is well 

posed and admits, therefore, a unique solution. 
Finally, the diffusion matrix, the thermal diffusion vector, and the partial thermal 

conductivity are given by 

Okl ~- ol~ODt = ollOOD" Ok = --olO~A" ~! = T' E ol krA',.-,rA'IJ k . (16) 
(r,k)6t3 

2.4. The thermal conductivity and the thermal diffusion ratios 

The partial thermal conductivity coefficient At, appearing in the expression for the 
heat flux vector (3),  is not accessible to direct experimental measurement. Indeed, in a 
mixture of gases, a temperature gradient induces thermal diffusion and thus concentration 
gradients, so that the term )--~k6S Okdk is nonzero. It may then be convenient to introduce 

the thermal diffusion ratios X = (Xk)keS defined by the relations [5,17] 

{ D~=O, 

Xk = 0. (17) 

k6S 

The above system is well posed and, therefore, defines uniquely the thermal diffusion 
ratios [ 12,13]. Defining next the thermal conductivity A as [5] 

A = A t - (p/T) EOkXk, (18) 
k6S 

the species diffusion velocities and the heat flux vector may be expressed as 

Vk = -- E Dkl(dl + X l ~  l o g T ) ,  k C S, (19) 
16S 

q = E phkYkVk -- ArT + p E XkVk. (20) 
k6S k6S 

The thermal conductivity coefficient A is accessible to direct experimental measurement. 
Indeed, in a gas mixture with an external temperature gradient, the species diffusion 
velocities vanish at equilibrium so that the relation q = - A V T  is then recovered. 
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The thermal conductivity and the thermal diffusion ratios can be expressed in terms 
of the solution of a linear system which is simply a subsystem of (14). Indeed, denote 

A = L aa and fla = flaa'. Keeping in mind that the matrix A is symmetric positive 
definite, the linear system 

Ace a = fl'~, (21 ) 

admits a unique solution a a. Moreover, after some algebra, one can deduce from (17) 

and (18) that the thermal conductivity and the thermal diffusion ratios are given by 

a =  p ~ y ~  ra,-ra °tk Ok , (22) 
(r,k) E13 a 

X = L°°aota. (23) 

Expression (22) for the thermal conductivity has been derived in [18] also. On the 
other hand, the expression (23) for the thermal diffusion ratios generalizes the one 
given in [ 13], which is a first-order approximation valid for monatomic mixtures. 

2.5. New definition of the thermal conductivity and the thermal diffusion ratios 

We now show, for the first time, that the thermal conductivity and the thermal diffusion 
ratios can also be defined within the variational procedure described in Section 2.2. We 
first note that it is possible to express these transport coefficients in terms of bracket 
products. Indeed, let ~b a and gta be given by 

4, = + p k . r  
IES 

!ira = gta' + p l ~ T Z x t g t 3 , "  (24) 

IES 

By linearity, ~b a then satisfies the linearized Boltzmann Eq. (6) for/x = A. Furthermore, 
the function ~b a has necessarily to be orthogonal to the basis functions ~b l°°°l, l E S. 
Indeed, making use of (5),  (17), and (18), we first have the relations [~bo~,~b a ] = 0 
which imply that ((!t "D', q~a)) = 0 for l E ,5. On the other hand, it is straightforward to 
check that ~b l°°°t is a linear combination of !/'°' and of the vector collisional invariant 
~--~-kcS V/-~-~bl°°°k to which q~a must also be orthogonal. Hence, we conclude that we 
must have ((~bl°°°z,q~a)) = 0 for l E S. Finally, after some algebra, one may establish 
from (5),  (17), and (18) that 

a = [ ,b  

mk (25) 
Xk = 3pk~T [ Ck' ~ba ] '  k E S, 

where the family C k is defined by C k = ((ck - v)6kt)teS. The above expression for A is 
classical, but the one for X is, to the authors' knowledge, new. 
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Assume now that a functional space .A has been selected to approximate 4, D~ and ~b a' 
in such a way that the partitioning (13) holds. Such a partitioning yields the following 
decomposition for the functional space ,,4 

A =  span{ ~1000k, k E S }@.Aa, (26) 

where .Aa = span{ ~rk, (r ,k)  E B a }. Since ~b a is orthogonal to the basis func- 
tions q9 °°°t, l E S, the natural functional space for expanding ~b a is the space .Aa. 
The resulting matrix A~ = (2 mv'~'-~/3p)[~rk,~sl], ( r , k ) , ( s , l )  E 13 a, is clearly a 
submatrix of L in such a way that A = L ~a. Furthermore, consider the vector fl~A = 
( ~ / 3 p x / - ~ )  ((~rk,~a)), (r ,k)  E B a. Since the basis functions ~:rk in .A a are nec- 
essarily orthogonal to the functions ~v D~, l E S, we deduce from (24) that we have 
(((~k,~.a)) = ((~k, ~a')). Hence, the thermal diffusion ratios are eliminated from the 
computation of fla which simply becomes the subvector of fla' such that fla = flaa'. 

Conversely, assume that the thermal conductivity and the thermal diffusion ratios are 
defined by (25) and that the space ,4 a is used to approximate ~b a. Consider then the 
functional space .4 such that the decomposition (26) holds and the resulting diffusion 
matrix, thermal diffusion vector, and partial thermal conductivity. We now prove that 
the classical relations (17) and (18) are recovered. 

Let indeed .A t be the functional space 

A t = { s c E el, (((, ~ VQ-~4~'°°°k}} = 0 }, 
kES 

(27) 

and consider, for gr E .A, the functional .T'(~ c) = ½((gr, Im(g:))) - ((g,a',g:)). We note 
that ffa' minimizes .T" on .4 t whereas &a minimizes .T" on A a. Furthermore, it is 
straightforward to check that 

.Aa={ ( E . A  f, ((( ,wD'))=0, 1 < l < n - - 1  }, (28) 

keeping in mind t h a t  EIES Yl~[tDt = 0 and that ~b l°°°t, l E S, is a linear combination 
of ~Dt and of the collisional invariant Y']~es v/-~bl°°°k" As a consequence, there exist 
Lagrange multipliers r/1 . . . . .  r/n-1 such that Im(~b a) = g'a' + ~l<_t<_n-1 r/t ~D~" Letting 
now r/, = 0 and (pkBT) O~l = (~Tt - YI ~k~S  rl~), l E S, we deduce that 

Im(~b a ) = ~a '  + pkBT Z wtqsD', (29) 
lES 

where ~ l c s  wt = 0 since ~ t e s  y/~O~ = 0. By linearity we obtain that 

03 JtDt ~a = ~b.~' + pk~T2.~ tu, , (30) 
IES 

and from (25) we then deduce that o~t = Xt, l E S. Hence, the relations (24) are 
recovered, and it is then straightforward to obtain the classical relations (17) and (18). 
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2.6. Translational-and-internal-energy approach 

Noticing that the right-hand side ~a '  can be written in the form 

!Fa'= Z vIZ(l~r)3/mkcklOlOk + Z x/Z(kBT)3/mk~bl°°lk' (31) 
kES kE'P 

a first natural approximation space .,4 for ~b °t, l E S, and ~b a' is then 

.,4 = span{ ~b l°°°k, k E S, ~b l°l°k, k E S, q~1001k, k E P }, (32) 

with the indexing set/3 = {00, 10}xS t3 {01}xP. We refer to this approach as the 
translational-and-internal-energy approach. Since it has been used traditionally to evalu- 
ate the diffusion matrix, the thermal diffusion vector, and the partial thermal conductivity, 
the resulting transport coefficients will still be denoted by D, 0, and ,V, respectively. 
The system matrix is still denoted by L and is given in the Appendix in terms of colli- 
sion integrals. The matrix L is given in its naturally symmetric singular form which is 
preferable for a cost-effective implementation of iterative transport algorithms and which 
also yields simpler analytic expressions [ 12]. On the other hand, the matrix L given 
in [ 8] is not symmetric and also contains one misprint. For/x = Dr, the right member 
may be written 

•OODt t'~ 10Dt ~0 k 1DI k = Ski -- Yk, t-'k = O, = O, 

and for/~ = h ~ the right member becomes 

fl~0k a' = 0, fl~0a' = 5Xk ' fl~kla' = 5rkXk" 

(33) 

(34) 

For convenience, we have introduced the ratio rk = 2c~nt/(5ka) where cik nt denotes the 
internal heat capacity of the molecules of the k th species. The explicit expressions for 
D, a, and ,V are directly obtained from the ones derived in Section 2.3 and are omitted 
for brevity. 

We now turn to the thermal conductivity and the thermal diffusion ratios. In the 
translational-and-internal-energy approach, the approximation space is given by .A a = 
span{ t~ 1010k, k E S, t~ 1001k, k E 7 ~ } with the indexing set B a = {10}xS O {01}xT'. 

Hence, the resulting linear system is of size n+p and admits the block structure 

a,010 AI0Ol] [al0a] [fll0a] 
a01l 0 aOlO , (35) 

Here, A 1°1° is a nxn matrix, A 1°°1 is a nxp matrix, A °n° is a pxn matrix, and A °1°1 is 
a pxp  matrix. Similarly, a l°a and ffoa are n vectors and a °la and flOla are p vectors. 
The matrix A is simply a submatrix of the larger matrix L given in the Appendix , 
and the right-hand side fla is a subvector of the vector fla' given by (34). The thermal 
conductivity and the thermal diffusion ratios are then given by 

5p XkrkotOla) A= ~ - ~ ( ~  Xka~Oa + Z , (36) 
kES kE'P 
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X = L0010°tl0"~ d- L0001a 01"t, (37) 

where L °°1° and L °°°1 are subblocks of the matrix L given in the Appendix. A result 
equivalent to (36) is presented for the thermal conductivity in [ 18]. Finally, as a result 
of Section 2.5, the relations (17) and (18) are automatically recovered. 

2. 7. Total-energy approach 

Upon introducing the functions ~b l°ek = ~b l°l°k + t$-p(k)~b 1001k, where for k E S we 
have defined 8~,(k) = 1 if k C P and 8~,(k) = 0 otherwise, the right member ~ '  can 
be written in the form 

~,a' = Z V/2(l~T)a/mk (blOek" (38) 
kES 

The superscript e is used here because ¢~10ek is associated with the total energy of the 
molecules, i.e., the sum of the translational and internal energy. The expression (38) 
then suggests the use of the approximation space 

•[e] = span{ ~b l°°°k, k E S, ~b l°ek, k E S }, (39) 

with the corresponding indexing set Bfel = {00, e} xS. This approach extends the ideas 
of [9,10] for the thermal conductivity of pure mixtures and [11] for the partial ther- 
mal conductivity of binary mixtures. The accuracy of the thermal conductivity in this 
approach has been verified in [4] for polyatomic gases and in [19] for atom-diatom 
gas mixtures. 

Using the approximation space .A[e], we obtain linear systems denoted by L[el Ol~e I = 
flu , with the block structure [el 

[ a[el ] /5~f u , (40) 
L[el ] oo~ oou 

el.t " ---~ 
L~eO~ L~e]J L°~[e]J [e]J  

and which must he completed by the constraint 

ZYkOt[~l~ =0. (41) 
kcS  

001~ e/~ 00~ Here, L[e0~O, L[e1,0oe Liel ,eoo and L~e I are n x n  matrices. Similarly, atel ,  a[el, fllel '  and ffte~l 
are n vectors. The matrix L[e] is explicitly given in the Appendix. For/.t = Dr, the right 
member may be written 

flooo, = 8kt - Yk, ffle°l'k = O, (42) [elk 

and for tz = A' the right member becomes 

3°°a'=0, /3~ealk ~(1 +rk)Xk.  (43) [elk = 

Applying the results of Section 2.3, we deduce that the matrix Ltel is symmetric 
positive semi-definite, and that the submatrix L~e I is symmetric positive definite. In 
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addition, the kernel of the matrix Lie I is spanned by the vector Ute] = (U~[e 1 , U~lel) such 
that U~tel k = 1, k E S, and U~elk = O, k E S,  and the vectors fl~'ej are in the range of 

the matrix Ltel since ~--~kes fl~e~k = 0, for /z  = Dt and/.t = A'. As a consequence, the 
constrained singular system (40) and (41) is well posed and admits, therefore, a unique 
solution. 

The total-energy approach yields new expressions for the diffusion matrix, the thermal 
diffusion vector, and the partial thermal conductivity. These transport coefficients are 
denoted by Die], 0[el, and A~e 1, respectively, and are given by 

OODt OODk 
D[e] kl = ~[e]k = Or[el/ ' 

_ OOA' 
O[e lk=  --U[elk,  t 5p Z X k (  1 + Ale] ~'~ k)°t[elk" 

kE,$ 

(44) 

In the total-energy approach, the thermal conductivity and the thermal diffusion 
ratios are denoted by ,Ate ] and ,~[e], respectively. Using the approximation space ,A~e ! = 
span{ ~b ~°ek, k E $ } with the indexing set B~e I = {e}xS  yields the linear system 

A[elaI%] =fl~l"  (45) 

= ee and fl~e] is a n vector given by Here, A[e] is a n×n matrix given by A[e] L[e ], 

fl~el = meal . The system (45) is of size n and admits a unique solution a~e ], since 
the matrix Ale ] is symmetric positive definite. Finally, the thermal conductivity and the 
thermal diffusion ratios are given by 

5p ea 
`Ale] = ~-~ Z X k ( 1  + rk)atelk, (46) 

kES 

0oe a (47) X[e] = L[e] Or[el. 

The expression (47) is, to the authors' knowledge, new, whereas an expression equiva- 
lent to (46) has been derived in [18]. 

As a result of Section 2.5, we immediately obtain, without further algebraic manipu- 
lations, that the thermal diffusion ratios X[e] are also the unique solution of the linear 
system 

Dle lX[e ]  = 0[el ,  

~-'~ ,¥[elk = 0,  
kES 

(48) 

and that the thermal conductivity `Ale] is also given by 

ate l  -- a{e  - ( p / r )   O eikXieik. 
kES 

(49) 
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3. Practical, approximate expressions 

537 

3.1. Iterative methods 

In Section 2 we have expressed the thermal conductivity and the thermal diffusion 
ratios of dilute polyatomic gas mixtures in terms of the solution of various linear systems. 
These linear systems relate the transport coefficients to a series of collision cross-sections 

describing the dynamical interaction between polyatomic molecules. However, solving 
these linear systems by direct methods (such as Gaussian elimination) presents two 
serious drawbacks. First, it does not provide expressions for the transport coefficients 
that can be written explicitly in a tractable manner for an arbitrary number of species 
in the mixture. Second, this approach is extremely expensive in computational models 
of multicomponent flows since the size of the linear systems can be relatively large 
and since transport properties have to be evaluated at each computational cell in space 
and time. Numerical algorithms devoted to solve the nonlinear discretized equations 
governing these flows may also proceed by iteration, such as Newton's method for 
instance, and this even increases the number of transport properties evaluations. In this 

context, iterative methods offer an interesting alternative since they provide a rigorous 
way to define approximate transport coefficients by truncating convergent series. 

Iterative methods have been considered implicitly in [20,21 ] when deriving approxi- 
mate formulas for the thermal conductivity of monatomic gas mixtures. A general theory 
of iterative methods for evaluating transport coefficients in dilute polyatomic gas mix- 
tures has been developed in [ 12]. Convergence theorems were presented in a rigorous 
mathematical framework that was extracted from the Boltzmann equation and from the 
variational procedure used to expand the species perturbed distribution functions. Two 
categories of iterative methods were considered: standard iterative methods and conju- 
gate gradient methods. These two methods are now briefly described and we refer to 
[ 12,22-24] for a more mathematical description of these algorithms. 

Consider a linear system in the form 

G~ = r ,  (50) 

where, in our applications, the matrix G stands for A or A[e] and is, therefore, symmetric 
positive definite. Standard iterative methods are based on a splitting of the form 

G = M - Z ,  (51) 

where the matrix M is assumed to be symmetric positive definite. Consider the iteration 
matrix S = M - I z ,  the initialization x0 = 0, and for i > 0 the iterative scheme 

Xi+l = SX i -~- M-l  fl. (52) 

Then the iterates xi converge towards the unique solution of (50) if and only if the 
matrix 2M - G is positive definite. On the other hand, the conjugate gradient method 
is particularly cost-effective for solving symmetric positive definite systems. Let ( , )  
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denote the scalar product between vectors and consider the initialization x0 = 0, r0 = r ,  

P0 = 0, and to -- 0, and for i > 0 the iterates 

I Pi+l = M-lri  q- tiPi, 

Si+l -~ (ri, M-lri) / (Pi+l, Gpi+l), 

Xi+l = Xi -1- Si+lPi+l, 

ri+l -~ ri --  S i+ lap i+ l ,  

ti+l = (ri+l, M-lri+l)/(ri, M-lri). 

(53) 

Then the iterates xi converge towards the solution of (50) in at most to steps, where 
to is the size of the matrix G. The matrix M in (53) is termed the preconditioner. 

It is clear from the above discussion that an efficient implementation of both iterative 
methods requires a matrix M such that the action of M - l  on a given vector can be 

written explicitly in a simple form. Examples of such matrices are presented in the next 

section. 

3.2. The matrices db( A) and db( Aie]) 

A fundamental matrix in the theory of iterative transport algorithms is the matrix 
db(G) formed by the diagonal of the blocks of the matrix G [ 12]. In the translational- 
and-internal-energy approach, the system matrix A is composed of four blocks, as 

discussed in Section 2.6. The matrix db(A) is then given by 

[diag(A l°l°) diag(Al°°l))l 
db(A) = [diag(AOllO ) diag(AOlOl , (54) 

and it is straightforward to write the matrix db(A)-I  explicitly in terms of the inverse 
of the 2 × 2 subblocks 

.41010 a l001  -I 
lXkk ~kk  | 
a0110 A0101| • (55) 
~kk ~Skk J 

Furthermore, one can show that the matrices db(A) and 2db(A) - A are symmetric 
positive definite [ 12]. 

In the total-energy approach, the system matrix Ale] is composed of one block, as 
discussed in Section 2.7. The matrix db(A[e]) is simply given by 

db(Atej) = diag(A~] ), (56) 

and one can show that the matrices db(Ate]) and 2db(A[el) - A[e] are symmetric 
positive definite [ 12]. The total-energy approach is particularly attractive since the 
diagonal matrix db(A[e] ) is trivially inverted. 
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3.3. Truncated convergent series 

539 

Using standard iterative methods, the thermal conductivity and the thermal diffusion 
ratios can be expressed as convergent series [ 12]. Truncating these series then provides 
explicit, approximate expressions for the thermal conductivity and the thermal diffusion 
ratios. In the translational-and-internal-energy approach, we obtain 

{ a[i] ~-T(E SJdb(A)- ' f la ' f la) '  
j=o 

i (57) 

X [i] = [L 0010, L 0001 ] E SJdb(A)-l f la '  
j=0 

where S = I - d b ( A ) - l A ,  I is the identity matrix, and [L°m°,L °°m] is a n×(n + p )  
matrix formed by the blocks L °m° and L °°m. Similar expressions are easily derived in 
the total-energy approach [ 12]. 

Explicit approximate expressions for the thermal conductivity and the thermal diffu- 
sion ratios can also be obtained by truncating the conjugate gradient method. In the 
translational-and-internal-energy approach, this yields sequences of iterates in the form 

p (ea'p'>2 

• ( 5 8 )  

~-'~ (,Sa,pj} xtil = [ L°m°,L °°m] 
j=l (pj'ApJ)PJ' 

where the vectors pj are given by the iterative scheme (53). Similar expressions are 
easily derived in the total-energy approach [ 12]. 

The explicit expressions (57) and (58) are relatively straightforward to implement on 
a computer and the evaluation of the first few terms in the series requires significantly 
less computational effort than if Ganssian elimination were employed on the original 
linear system. Furthermore, these expressions are directly related to the matrix elements 
of the original systems, as detailed in Section 3.1. Thus, they can be written explicitly 
in terms of collision integrals. 

3.4. Numerical experiments 

In this section we verify the accuracy of all the transport coefficients obtained in 
the total-energy approach. We also consider iterative methods for the evaluation of the 
thermal conductivity and the thermal diffusion ratios. The numerical experiments are 
performed on four gas mixtures. Mixture 1 is air, i.e., a binary mixture consisting of 
oxygen and nitrogen with mole fractions Xo2 -- 0.21 and Xr% = 0.79. Mixture 2 is a typ- 
ical ternary mixture often considered in crystal growth applications [ 25 ] ; it is formed by 
hydrogen, arsine, and trimethylgallium with mole fractions XH2 = 0.9895, XAsH3 = 0.01, 



540 A. Ern, V. Giovangigli/Physica A 214 (1995) 526-546 

Table 1 
Reduced errors for the transport coefficients in the total-energy approach 

Mixture 1 Mixture 2 Mixture 3 Mixture 4 

e,he j 1.90E-3 2.66E-3 8.15E-4 1.56E-3 
e~e 1 1.90E-3 2.68E-3 7.22E-4 1.51E-3 

extel 2.13E-2 3.26E-2 1.68E-2 4.66E-2 
e0tcj 2.18E-2 3.28E-2 4.03E-3 9.11E-3 
eotel 5.07E-4 6.09E-6 5.48E-3 6.29E-3 

and XGa(CH3) 3 = 0 . 0 0 5 ,  respectively. Mixtures 3 and 4 contain more chemical species 
and are typical mixtures considered in hydrogen and methane combustion applications 
[ 25-27]. Mixture 3 is an equimolar hydrogen mixture composed of the n = 9 species 

H2, 02, N2, H20, H, O, OH, HO2, and H202. Mixture 4 is an equimolar methane 
mixture composed of the n = 26 species CH4, CH3, CH2, CH, N2, H2, 02, H20, H, O, 

OH, HO2, H202, C2H6, C2H5, C2H4, C2H3, C2H2, C2H, CHO, CH20, CH30, CH2CO, 
CO2, CO, and C2HO. Finally, mixtures 1 and 2 are considered at pressure p = 1 atm 
and temperature T = 300 K, and mixtures 3 and 4 at pressure p = 1 atm and temperature 
T =  1500 K. 

In the present numerical experiments, the linear system coefficients given in the Ap- 

pendix are evaluated using approximate collision integrals [ 12,28-30]. The convergence 
of the iterative algorithms in the framework of these approximations has been proven in 
[ 12]. The validity of some of these approximations is sometimes questioned [4], but 
we point out that the general theory presented in this paper does not rely upon these 
approximations since convergence theorems are valid for the exact systems also. 

In Table 1 we first present the reduced errors associated with all the transport coeffi- 
cients obtained in the total-energy approach. More specifically, we evaluate 

eato~ - ~ , ea~ej - A' ' (59) 

I Ix  - xte  II0 - 0te  Iloo l i D  - ole  Iloo 
exte~- Ilxlroo , e0te~- II011oo ' eo~,= IlOllo~ ' (60) 

where we have defined I[vtl~ = maxk~s Ivkl and IIAII~ -- maxk.t~s IAkll for a vector v 
and a matrix A, respectively. For the four test mixtures, the thermal conductivity A¿el and 
the partial thermal conductivity ~e] are within 2x  10 -3 accuracy, the diffusion matrix 
D[el is within 6× 10 -3 accuracy, and the thermal diffusion vector 0[el and the thermal 
diffusion ratios X[e] are within 4× 10 -2 accuracy. The transport coefficients 0[el ,  X[el, 
and Die] provide, therefore, a new and accurate means of evaluating thermal and species 
diffusion coefficients in polyatomic gas mixtures. 

We now consider iterative methods in both the translational-and-internal-energy and 
the total-energy approaches. Only the numerical experiments obtained with conjugate 
gradient methods are discussed here, and we refer to [ 12] for those related to standard 
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Table 2 
Conjugate gradient method. Reduced errors for ,I[il -[e] 
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i Mixture 1 Mixture 2 Mixture 3 Mixture 4 

1 1.07E-2 7.78E-5 8.60E-3 4.48E-3 
2 - 2.41E-11 5.23E-6 3.01E-7 
3 - 2.00E- 16 1.28E- 10 5.09E- 12 
4 - - 7.26E-15 2.01E-16 

Table 3 
Conjugate gradient method. Reduced errors for XI~ 

i Mixture 1 Mixture 2 Mixture 3 Mixture 4 

1 1.20E+0 9.00E-4 9.87E-2 1.11 E- 1 
2 8.24E-16 3.34E-7 2.27E-3 9.74E-4 
3 - 1.93E-16 1.13E-5 3.39E-6 
4 - - I. 19E-7 2.24E-8 

iterative methods. We first apply the conjugate gradient method to the system A[el Ol~e I = 
fl~e] preconditioned by the matrix db(A[e] ) defined in Section 3.2. The reduced errors 

e[i| I [el - -_  [eli ~[i] 
aLo,- ale] ' ~xte~ = H-,1'-Tel I - ~  ' i =  1,2,3,4,  (61) 

are presented in Tables 2 and 3 for the four test mixtures. For the thermal conductivity, 
the first iterate, A[~], is within 10 -2 accuracy of Ale] and may be expressed as 

~lll P (fl~el,db(A[el~-laa \2 = _ ; t"lel/ P (~ke,Saee a;2"~ 2 = "'[el kkvk ] 
Aee , (62) "'le] T (db(AIel)-]fl~el'A[e]db(A[e])-lfla[el/\ T ~-~k,16,S lelktVkVt 

where Vk = ~llaelk/A~]kk. An additional iteration yields the approximate expression 

at2] = ~[ll P (fl~e] ' p 2 ) 2  
[el "'[el + T (P2, AIelP2)' (63) 

with P2 given by (53). We deduce from Table 2 that a[21 is within 5x 10 - 6  accuracy "'[e] 
of '~[el for the present test mixtures. For the thermal diffusion ratios, two iterates yield 
the approximate expression 

( ' P l )  a a ' 2 ) <file] P > ,,t21 00e (fl~el_ Pl + (64) 
ate] = Lie] \ ( p l , a [ e -~J )  (p2,a[elp2) p2 ' 

which is within 2x  10 -3 accuracy of XIe]. 
Similar results are obtained in the translational-and-internal-energy approach for the 

system Aa a = fla preconditioned by the matrix db(A) defined in Section 3.2. One 
iteration yields the expression 
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atlj P 2 
= T (db(a) -~3 a, adb(A) - l f a )  ' (65) 

which is within 2x 10 -2 accuracy of A. Instead of the matrix db(A), one can also con- 
sider the simpler preconditioner diag(A) which can be trivially inverted. The expression 
for the thermal conductivity, after one conjugate gradient iteration, is given by 

= - (66) 
AklW~W~ T E(r,k),(s,l)El3 rs r s '  

where V~ = t-'knra/likk'/Arr Finally, for the thermal diffusion ratios, the approximate expres- 
sion 

((f l '~,Pl)  Pl (fl'~,P2> p2" ~ XI2I=[L°°'°'L°°°'] ~l,~Pl) +(-'~2,~P2) J '  (67) 

obtained after two conjugate gradient iterations, is within 3x 10 -3 accuracy of X for the 
mixtures considered in this paper. 

4. Conclusion 

In this paper we have derived, for the first time, a variational framework with which 
to evaluate directly the thermal conductivity and the thermal diffusion ratios of dilute 
polyatomic gas mixtures. By considering basis functions in the variational space based 
on the total energy of the molecules, we have also introduced new expressions for the 
diffusion matrix, the thermal diffusion vector, and the thermal diffusion ratios. Finally, 
we have obtained practical, approximate expressions for the thermal conductivity and 
the thermal diffusion ratios of dilute polyatomic gas mixtures. These expressions are 
associated with a low computational cost and are directly related to the collision integrals 
appearing in the linear system coefficients. Hence, they are particularly appealing to use 
in numerical calculations of multicomponent flows - such as flames or chemical vapor 
deposition reactors - and may also provide further incentive to compute collision cross- 
sections of polyatomic gases. 

Appendix 

In this appendix we restate the explicit expression of the system matrix L in its 
naturally symmetric singular form [ 12]. We also present, for the first time, the explicit 
expression of the system matrix Lie ]. The subblock L~e ] has already been written in 
[ 19] for a monatomic-diatomic binary mixture. The present expression is more general 
since it is valid for arbitrary polyatomic gas mixtures. There are no approximations in it 
beyond those involved in the semi-classical isotropic kinetic theory and the total-energy 
approach. 
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The notation used in this appendix follows that in [13]. For a species pair (k, l), 

we denote by Dkt the binary diffusion coefficient and by "Dkint,/ the binary diffusion 
coefficient for internal energy. Furthermore, we introduce the quantities Aet, t = Aek +Ac t ,  

where Aek = ~kx' -- ek,, and Act = ere - elL. The  primes denote values after the binary 
collision in which a molecule of the k th species in energy state x interacts with a 
molecule of the l th species in energy state ~.. The superscript ~ is used to distinguish 
one of the collisions partners from the other, in the case where k and I are the same. We 
denote by g the modulus of the relative velocity ck - Pt of the colliding particles before 
collision, and by X and ~o the polar and azimuthal angles which describe the orientation 

! ~ 
of c k - c~ with respect to ck -- ct- 

We consider the averaging operator [[ ]]kt defined in [12] and equivalent to the 
one introduced in [8], and we define the following classical collision integrals/2~]'1) = 
[")/2--')/')/COS.'¥] k/' f ~  2'2, = [ ~ 4 - - ~ 2 ~ ' 2 C O S 2 x - - l ( A ~ : k l ) 2 ] k l ' t ' ) ( l ' 2 " k '  __ [,~4__,~3,)/t c o s x ]  kl' 

and  $"~k(¢ '3) = [3/6 -- ")'3")it3 COSX] kl' w h e r e  y = g ( m k t / 2 1 ~ T ) 1 / 2 ,  y,  _ g ! ( r n k t / 2 1 ~ T ) 1 / 2 ,  and  

m,t  = m k m l / ( m k  + mr). The  quantities a-kl, gkl, and (kt are classical ratios of collision 

integrals given by 

1 ~1~/2,2) 1 5~'~],2) __ n(1,3) 11,2(12) 
Akl '= f f  kl = -- ""kl , ( k l  -- kl 

2 ak(] '1)' 3 a~] '~) 3.19' l ' l  ) " . k l  

We also introduce 

(A.1) 

The matrix L may then be expressed as 

L 0 00 = k s ,  
IES ~)kl ' 
l¢=k 

LktO~O o = X~, XI 
79kt , k, l E S ,  k 4= l, 

XkXl ml (6Ckt - 5), 
Lk0~kl0 = -- Z 27)k  I mk + m------~l 

IES 
l¢-k 

k c S ,  

(A.4) 

(A.5) 

(A.6) 

[~0 (~,2 _ yy '  cosx)]  u 
ff. kl = n( l ,1 )  , 

~kl 

Ir~0 ( 4 yyt3 cosx)] 
ITkl = 5ffkl  _ II kx ~/ - -  kl ( A . 2 )  

0 0 2 [ 'k~( ' lLr  -- ,°L, r r '  cos x ) ]  kt 
Gkl = n ( l , l )  , 

"~kl 

0 where ek~ = ek~ - ~ k  is a shifted reduced internal energy. Finally, the pure species 

thermal conductivity Aielk is defined as 

1 8 T X/de 1 [ 5 1 79~k 1 [(Ae*/,)2]tc~] 
= _---- r k - -  + ( A . 3 )  

Alelk 25 p Dkt ( 1 + rk)2 [1 --[- ~ Akk ]Dkint, k 6 /2kk(2'2) ] • 
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L~10 = XkXt mk (6(kt -- 5), k, l E S, k 4= l, 
279kl mk + mt 

Xk Xt _ k E 79, 
Lkk0~01 = - -  Z 79k----7 -Ekt '  

I E 8  
l~k  

LkO~ O1 = Xk  Xl  - 
79kl Elk, k G S,  I E 79, k q= l, 

XkXI mkml [ 15 mg 25 ml 3 ml gkt + 4Xkl f l O l O  _ _  _ _  _ 

~k~ = Z Dkl (mk+ml) 2 L--2-mll + 4 mk mk IES 
le-k 

L i p  10 = - -  _ _  

L ' ? '  = - 

+ 1~ f'~7 'l) "~ 2--~k [ 4A-kk + 1--2 o(', ') 
t, kk 

X k X I  m k m l  [554 
Dkt (mk+mt) 2 -- 3gkt -- 4Ykt 

25 [(Aekl)2]k,] k, l  E S, k =/= l, 
1 2  O ( I ' I )  ' 

~kl 

XkX, mk [5 [AekAekl]g, + mt gk,] 

Dkl mk+m! 4 0 (l ' l )  mk a 
lES ~kl  
l~k  

8 Dkk r ) ( l ' l )  ' 
~kk 

LifO , XkX, ml 5[~etAek']k' Flk] 
-- ~ mk"+mt[ 4 ~ + ' ~kl 

k E S ,  

k E S ,  

l E T  9, 

Lolol 
XkXt r5 v,, 3 mk [ ( A e k ) 2 ] k t ]  

kk = Z - ~ - k / [ 2 r k ~  + 4 mt /2kC] '') J 
lES 
l~k  

+ ~ - - ~ [ ~ " ~  + 8 ,-,"'> ~kk 

Lo,o ,  x,x,[ 3 [a, ,~, ,]~,  1 
kl -- ~ Ckt ~ ~ -j, k, l E P,  

~kl 

k E 79, 

k ¢ l ,  

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

k @ l ,  

(A.13) 

(A.14) 

(A.15) 

and the matrix L[el as 

X k X I  oooo , k E S, 
LIelkk = ~ ~)kl 

IES 
l~k  

oooo Xk XI k, l C S, 
Lle]kl = ~)kl ' k ~ l ,  

(A.16) 

(A.17) 
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ooe XkXt[  mm__~ ~ ] Ltelkk = -- Z ~ (6C-kl -- 5) q- 2£kl , k C S, (A.  18) 
IES 
14~k 

L i e l k t = ~  ( 6 f f k t - 5 ) + 2 f . t ~  , k, l E $, k 4= l, (A .19 )  

ee 1 .15m2 25 _ 3gkt)m~ + 4mkmtK~l) Lie] kk= z X k X l [ ( m k + m / ) 2 ~ - 2 - -  k + ( - ~ -  
IES ~)kl 
14=k 

5 ~Dkl 2 ml 3 m k [ ( A C : k - - 5 ~ d e k l ) 2 ] k l  ] 
'1- "2 rk Dkint,l mk -k- ml Fkl -4- 4 mt f-~/,1----~ j 

25 p X 2 
+ - ~ - ~ ( 1  + rk) 2 , k E S ,  (A .20 )  

'~[elk 

Lle~] kt - 

+ 

-4- 

[554 mkml 1 (m~Fkl + mtFtk) XkX179kl ( -- 3ffkl -- 4Xkl) (mk -q- ml) 2 mk + m-~l 

5 mk(3mk--2ml)[(Aek)2]kl 5 ml(3mt--2mk)[(AEl)2]kl 
~kt + 12 ~m--kk~--m/-~ ~o(13),,kl + 1-2 (mk + ml) 2 f2~] '1) 

1 25 mkmt ~ [AekAel]kl] k,l C S, k 4= I. (A .21)  
~ ( 1  - T(mk..f_ml)2 , ~Q(],I) ' 
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