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We investigate mass conservation in multicomponent diffusion algorithms. Usual diffusion 
matrices are indeed singular, i.e., noninvertible, because of mass conservation constraints. A 
consequence is that when all mass fractions are treated as independent unknowns-a widely used 
approach in complex chemistry reacting flow solvers-artificial singularities may appear in the 
governing equations. These singularities arise, for instance, with species flux boundary conditions 
or with steady flows involving stagnation points. In these situations, the Jacobian matrices of the 
discrete governing equations are singular. Modifications of the usual diffusion algorithms are 
introduced to eliminate these singularities. These modifications, of course, do not change the 
actual values of the diffusion velocities. Only their mathematical expressions are changed. o ,990 
Academic Press, Inc. 

1. INTRODUCTION 

The governing equations of multicomponent gaseous laminar reacting flows 
are the hydrodynamic equations derived from the kinetic theory of gases [l- 
41. Derivation of these equations shows that at any time and at any point of 
the physical space, various mass conservation constraints are satisfied. Ex- 
amples of such constraints are the relations CkEB Yk = 1 between the species 
massfractions Y,,kES = (1,. . . , N8 } , where S is the set of species indices 
and N8 is the number of species; C kES & = 1 between the mole fractions 
&; CkEs Y,Vk = 0 between the species diffusion velocities V,; CkES dk = 0 
between the diffusion driving force dk; and CkES Wk6& = 0 between the mass 
rate of production of the species wk Wk [l-3 1. These relations imply that the 
total mass conservation equation and the NS species mass conservation equa- 
tions are linearly dependent. More specifically, the second-order species mass 
conservation equations sum up to the first-order total mass conservation 
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equation when written in conservative form whereas they sum up to zero 
when written in nonconservative form. 

An attractive approach in problems having one species which is always in 
excess is therefore to consider only NC), - 1 species mass fractions as un- 
knowns-aside from the mixture density p, the gas velocity u, and the tem- 
perature T-and to evaluate the excess species mass fraction by using the 
relation CktS Y, = 1. All of the mass conservation constraints are then au- 
tomatically satisfied. However, this approach is not always feasible. In a typical 
diffusion flame, for instance, each species is deficient either on the fuel side 
or on the oxidant side and it is not accurate to evaluate one of the mass 
fractions by using CkES Y, = 1. An interesting approach still is to determine 
locally, at each computational cell, which species is in excess and to evaluate 
it by using CkES Y, = 1, but it requires solving a solution-dependent set of 
equations. 

An alternate approach-widely used in complex chemistry reacting flow 
solvers-is to consider all the species mass fractions as independent unknowns 
[5-141. In this situation, it is important to analyze which of the mass con- 
straints are automatically satisfied and which are consequences of the gov- 
erning equations. Indeed the various diffusion algorithms expressing the dif- 
fusion velocities V, first show that the relation CkES Y, V, = 0 is always 
satisfied. Similarly the relation C kE6x I+‘+, = 0 between the chemical pro- 
duction rates wk is a consequence of their expression in terms of the reaction 
rates of progress, Usual relations expressing the mole fractions also yield the 
identity C&S X, = 1 so that the driving forces satisfy C&S dk = 0 under the 
approximation dk = VXk. On the other hand, the relation C&S Y, = I 
between the species mass fractions Yk must result from the conservation equa- 
tions, the diffusion algorithm, and the boundary conditions. The equations 
for C&S Yk are indeed obtained by summing up the corresponding N,(- species 
equations. However, this latter set of equations may be artificially singular 
because of the constraints C&$ Yk vk = 0 and CkE$ Xk = 1 which also imply 
that diffusion matrices are noninvertible. These singularities may appear, for 
instance, with species flux boundary conditions or steady flows involving re- 
circulation zones or stagnation points. In these situations, the Jacobian ma- 
trices of the discrete governing equations are singular, i.e., noninvertible, and 
this may eventually lead to convergence difficulties of poor sensitivity infor- 
mation. 

Elimination of the singularities requires modifying the usual diffusion al- 
gorithms. Modifications are proposed for three different diffusion algorithms. 
namely for the complex formalism of the kinetic theory of gases, for the 
Stefan-Maxwell equations, and for the Hirschfelder-Curtiss expressions with 
mass correctors [ l-3, 5, 7, 9, 12- 17 1. These modifications, of course, do not 
change the actual values of the diffusion velocities or the mole fractions. Only 
their mathematical expressions are changed. 
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The governing equations of gaseous laminar reacting flows which are needed 
in our analysis are presented in Section 2. In Section 3, different singularities 
are exhibited in the governing equations. The modified diffusion algorithms 
are introduced in Section 4 and the properties of the corresponding modified 
governing equations are discussed. Finally, numerical experiments are pre- 
sented in Section 5. 

2. GOVERNINGEQUATIONS 

The governing equations of a gaseous laminar reacting flow are the equations 
for conservation of total mass, species mass, momentum, and energy. The 
corresponding dependent variables are the mixture density p; the N8 species 
mass fractions Y,, . . . , Y,,; the gas velocity u; and the absolute temperature 
T. These conservation equations must also be completed with the relations 
expressing thermodynamic properties, chemical production rates, and trans- 
port properties and suitable boundary conditions. Only the governing equa- 
tions which are needed in our analysis are presented in the following. 

2.1. Species Conservation Equations and Boundary Conditions 

The species mass conservation equations in a gaseous laminar reacting flow 
may be written as 

~5 + p(U’v)Yk = -v-(pykvk) + wkak, kE 8, (2.1) 

where p is the density. Yk the mass fraction of the kth species, t the time, u 
the mass averaged flow velocity, vk the diffusion velocity of the kth species, 
wk the molecular weight of the kth species, Wk the molar production rate of 
the kth species, 8 = (1, . . . . Ng} the set of species indices, and Ns the 
number of species [ l-3 1. The total mass, momentum, and energy conservation 
equations and the law of state, which are not needed in our analysis, are not 
presented. Equations (2.1) are usually simplified according to the problem 
under study, e.g., steady flow or boundary layer flow. 

Typical boundary conditions for the species mass fractions can be of Dir- 
ichlet, Neumann, or mixed type. Dirichlet boundary conditions are often 
involved with truncated infinite domains [ 61 and may be written 

Y, = Y;, kE 8, (2.2) 

where Y g denotes the specified mass fractions, which of course must be such 
that .&EB Yf = 1. Neumann boundary conditions often occur in symmetric 
problems [ 61 or truncated infinite domains [ 111 and lead to the relations 
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VYx* n = 0, k E s, (2.3 1 

where n is the unit normal vector at the boundary. On the other hand, typical 
flux boundary conditions arise in the general form [ 11. 13 ] 

pYfJu + v/o-n = pus nrfl+ w/g&, kE 8, (2.4) 

where Yz, k E S, denotes the specified mass flux fractions, which of course 
are such that ZkES Y :! = 1, and iLlk is the surface molar production rate of 
the kth species. 

These equations have to be completed by the formulas expressing the dif- 
fusion velocities V, and the chemical production rates @k and &k. Only the 
relations involving vk, Wk, and ijk which are relevant for our discussion are 
written in the following. 

2.2. D(jiision Velocities Vk 

2.2.1. hfU/tiCOmpOnent D@ision COt??CientS Dkl 

Different algorithms can be used to determine the diffusion velocities V, . 
A first possibility is to use the complex formalism of the kinetic theory of 
gases. In this situation, the diffusion velocities are written in the form [ 1, 2. 
151 

vk = - 2 Dk,( d, + fl,v log r), 
ICE s 

(2.5) 

with 

d, = VX, + (X1 - Y,) 7 + $ c Y,Y,(E;, - F,), 
rnES 

(2.6) 

where D = ( Dk,) is the symmetric multicomponent diffusion coefficient matrix, 
dk the diffusion driving force of the kth species, ok the thermal diffusion ratio 
of the kth species, T the absolute temperature, & the mole fraction of the 
kth species, p the pressure, and Fk the external force per unit mass of the kth 
species. The mole fraction & of the kth species is given by 

(2.7) 

where W is the molecular weight of the mixture [ 1-5, 81 

l/w= 2 Y,/w,. (2.8) 
ktS 
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Note that there is considerable variation among authors in the nomenclature 
and definition of the multicomponent diffusion and thermal diffusion coef- 
ficients. The diffusion coefficients Dkl of Eqs. (2.5 ) are defined with the con- 
straints Cl,s Y/D, = 0 [ 1,2, 151. These definition are consistent with Onsager 
reciprocal relations of thermodynamics of irreversible process [ 2, 181 since 
Dkl = Dlk, i.e., D = D’, and lead to the relations 

c YkDkl = 0, 1E 8, (2.9) 
kE6 

i.e., DY = 0, where Y = (Y,, . . . , Y,, ), so that ( Dkl) is not invertible, and 
to 

c or = 0. (2.10) 
ES 

An alternate definition, due to Hischfelder, Curtiss, and Bird [ 3, 7, 12- 14, 
161, imposes the constraints Dkk = 0 and breaks the symmetry of the diffusion 
process [ 2, 15, 181. These later coefficients however are still such that 
(2.9) holds. 

A direct consequence of Eq. (2.9) is that the relation 

c Y, v, = 0 
kE6 

(2.11) 

is satisfied independently of the driving forces dk and &V log T. An important 
property is also that the quadratic form [ + &JEB D&& in [RN’ iS non- 
negative and positive definite on the “physical” hyperplane { [, C,,S &= 0 } 
= U’, where E = ([,, . . . , &v,)Tand U = (1, . . . , l)T [2]. This is a direct 
consequence of the following expression for the entropy production due to 
particle collisions uc in a gas mixture [ 21 

UC = (p/T) 2 Dk,(dk + f&V log T). (d, + 6,V log T) 
k&8 

+ X(V log T).(V log T) + (7/2T)(Vu + (VU)~ - ; (V.v)l) : 

(Vu+(Vu)‘.-$V.u)I), (2.12) 

where h and n are the thermal conductivity and viscosity of the mixture. 
Strictly speaking, the quadratic form should be considered in R 3*Ns, but 
using the canonical basis of R3 shows that it is equivalent to consider it in 
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tR”#. Note also that D kl = 0( 1) for k # 1 whereas Dkk = O( I IX,) so that 
D~~-+ccwhenXk-+O[1,2]. 

2.2.2. Dual Multicomponent Di#iision Coeficients Ak, 

It is also interesting to introduce the dual relations 

dk + BkV log T = -C Ak,V/, 
IES 

(2.13) 

where A = ( Akl) is the dual multicomponent diffusion coefficient matrix. 
These coefficients are also symmetric, Akl = Ark, i.e., A = A’, and satisfy 

1 A/c/ = 0, 1E 8, (2.14) 
kE8 

i.e., AU = 0, so that the relation 

2 dk=O 
kE8 

(2.15) 

is satisfied independently of the diffusion velocities vk. The quadratic 
f0I-m c + &/ES &,63;, in RN8 is also nonnegative and positive definite 
on the physical hyperplane { 5, C IES Y,& = 0 > = Y I, where r = ( cl, , 
<&and Y = (Y,, . . . . Y,, ) ‘. Note also that Akk = O(&) whereas Akj 
= 0(X,X,) for k # 1. 

The relation between the matrices D and A can be clarified by using the 
theory of generalized inverses [ 191. Indeed, D and A are generalized inverses 
with prescribed range and null space. More specifically, A is the unique matrix 
with range U’ and nullspace lRlJ such that DAD = D and ADA = A and D 
is the unique matrix with range Y’ and nullspace [R Y such that ADA = A 
and DAD = D. From the theory of generalized inverses [ 191, one can show 
that AD and DA are projector matrices with range U’- and Y’ and nullspace 
[R Y and R U, respectively, which can be written 

AD = Z - ( YU’)/( UTY), (2.16) 

and 

DA = I- (UYT)/(YrU). (2.17) 

Only the former relation is well known and is usually written for one-term 
Sonine polynomial approximations and without the Y TU = ckE8 Yk term, 
although it is generally valid [l-3, 15, 161. Finally note that A is not the 
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Moore-Penrose pseudo-inverse [ 19, 201 D+ of D unless Y and U are pro- 
portional in which case DA and AD are orthogonal projectors. 

A motivation for introducing the dual relations is that evaluating the mul- 
ticomponent diffusion coefficients Dkl requires solving large linear systems, 
namely of size jlv, *ilv, when j terms are retained in the Sonine polynomial 
expansion of the species perturbed density probability functions [ 1, 21. This 
is not the case for the dual coefficients Ak, when j = 1, i.e., when only one 
term is retained in the latter expansion. Indeed, in this situation, the dual 
formulation reduces to the Stefan-Maxwell equations 

xk& dk + BkV log T = 2 a, V,- vk, kE 8, (2.18) 
IE~ kl 
i#k Ifk 

where a)k, denotes the usual binary diffusion coefficient for the species pair 
(k, 1). These relations, which must be completed by the mass constraint 
Eke8 Yk vk = 0 in order to define uniquely the diffusion velocities, may now 
be inverted to yield the diffusion velocities vk [ 1-4, 10, 14, 161. 

Finally note that some care must be taken when applying the Onsager 
reciprocal relations to the entropy quadratic form C&G vk * dk since the fluxes 
vk, or the affinities dk, are constrained. One must indeed use the reciprocal 
relations for N8 - 1 fluxes or affinities and build the symmetric N6 * N8 dif- 
fusion matrices D and A from the corresponding ( N8 - 1) * ( NS - 1) sym- 
metric positive definite matrices [ 3, 2 11. This procedure, of course, leads to 
matrices D and A which are nonnegative and positive definite on the proper 
hyperplanes. 

2.2.3. Approximate D@ision Coejicients Dfl 

Comparisons between different mathematical approximations of the mul- 
ticomponent transport properties have shown that simplified transport 
expressions often provide a good trade-off between precision and computa- 
tional costs [ 9, I2- 141. Hirschfelder and Curtiss [ 22 ] have first suggested the 
following expression for the diffusion velocity due to species gradients 

0: = (1 - yk)/ 2 (x,/akl), 
IE8 
I#k 

(2.19) 

where 0: is the diffusion coefficient of the kth species in the mixture. Note 
that this expression can be recovered from ( 2.16 ) and ( 2.18 ) by approximating 
A and D by their diagonal. However, the expressions (2.19) do not satisfy 
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the mass constraints (2.1 1 ). As a consequence, approximate diffusion velocities 
are usually taken in the form 

V, = - 2 D;l-,VX,, (2.20) 
/EA 

where the approximate diffusion matrices D” = (D;I-1) are such that 

(2.21) 

where Diag(DT /Xl, . . , DE, /XAl.,> ) is the matrix whose nonzero entries are 
the diagonal elements (DT /XI, . . , D& /X,,), ) and C is a correction matrix. 
This matrix C must be chosen such that (2.11) holds, i.e., such that Y TD” 
= 0, or equivalently such that D”Y = 0 provided D” is symmetric. The choice 
of the correction matrix is not unique. A commonly used correction matrix 
C is 

UZT 
C=---- 

YTU’ 

where 

, (2.23) 

(2.22) 

which corresponds to the usual relations [ 5, 9, 141 

c Yk( ̂ / ‘k + V,.) = 0, 
kGEP 

(2.24) 

where V, is a species independent correction velocity. The resulting approx- 
imate diffusion matrix D” is then given by Df, = (D?/X,)(& - Y,/ Cm,8 
Y,), where 6 denotes the Kronecker symbol. The matrix D” is therefore 
nonsymmetric so that the expressions (2.24) are not clearly consistent with 
Onsager reciprocal relations [ 181. However, although the quadratic form 
2: + 2 k,ES D$C;,.& associated with D”, i.e., with its symmetric part, is non- 
definite, i.e., has a negative eigenvalue, it still is positive definite on the physical 
hyperplane U’. Nevertheless, part of the diffusion process becomes nondis- 
sipative since Da is nonsymmetric. 
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2.3. Chemical Production Rates Wk and & 

We consider NB elementary reversible reactions involving Na chemical 
species, which may be represented in the general form 

2 VkiXk 5 2 U&xk, iE9?, (2.25) 
ke.8 ke8 

whereB={l,... , NB } denotes the set of reaction indices and xk the symbol 
of the kth species and where the stoichiometric coefficients vii and u& are 
integers. Since no mass is created in chemical reactions, the stoichiometric 
coefficients are such that [ 41 

c ukiwk = c viiwky iEYl. (2.26) 
kE8 kc3 

The production rate of the kth species may now be written as [ 4, 8 ] 

wk = 2 (v,& - v?ci)qi, 
iEi? 

(2.27) 

and where qi is the rate of progress variable of the ith reaction. We then easily 
get from (2.26), (2.27) that the constraint 

(2.28) 

is automatically satisfied, independently from the dependent variables. Sim- 
ilarly, the surface production rates i& are such that 

c w,;j, = 0, 
ke8 

(2.29) 

provided there are no mass losses due to surface vapor deposition. 

3. SINGULARITIESINTHEGOVERNING EQUATIONS 

The singularities which may appear in the conservation equations or 
boundary conditions are related to the governing equations for C&8 Yk. 
These governing equations are obtained by summing up the Nd species gov- 
erning equations. The resulting equations may indeed degenerate, especially 
when written in discrete form. 
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3.1. The Origin cf Singulurities 

To investigate the singular behavior due to the mass constraints, we assume 
that a set of discrete equations modeling a multicomponent reacting mixture 
has been derived and we consider its Jacobian matrix formally written 

n = 

i 

d(G”, G’, . . .) G‘v’b’, e*‘cy) 

d(H, Y,, . . .1 y;,-I, Y,,) 1 ’ 
(3.1) 

where H = (p, V, T) denotes the dependent variables aside from the species 
mass fraction, &H the corresponding discrete equations, and 6’ k the kth species 
discrete equations. The different dependent unknowns p, u, T, etc., are for- 
mally grouped into a single variable H and the dependence of discrete equa- 
tions & on computational cells does not appear explicitly in (3.1) in order to 
avoid notational complexity. Furthermore, in this Jacobian matrix, the partial 
derivatives with respect to the mass fractions are assumed to be independent. 

By adding now the lines corresponding to the equations G ‘, . . . , & N7-’ to 
the lines of 6 N*, at each computational cell, and substracting the columns 
corresponding to the derivation with respect to YNTV to the columns of Y,, 
. . . ) Yv#-r, at each computational cell, we get the following expression for 
the Jacobian d 

d = det(lT) = det 
c3(GH, G’, . . . ) GN*-‘, &“) 

d(H, Y,, . . . , Y,,-, , a) ’ 
(3.2) 

where C = &&a Y, and G” = &,=S Gk. Note that in this new expression, the 
partial derivatives with respect to Yr , . . . , Y,,-, are taken with u = C&G Yk 
fixed. By regrouping then the lines corresponding to G” at the bottom of the 
later matrix in (3.2) and the columns corresponding to the partial derivatives 
with respect to (r on the right of this matrix, we obtain the block decomposition 

d = det 
d(H, YI, . . . , y,,-I) 

a(&“) 
\ d(H, YI, . . . , yN,-1) 

On the other hand, for any physical solution, we have numerically CJ 
= c&S Yk = 1, and in this situation one may check from Eqs. (2.1)-( 2.29) 
that the lower left block in (3.3) is zero. We thus deduce that for any solution 
for which .&B Yk = 1 nUmeh.Xdly, we have the relation 

d = l-T, (3.4) 
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where 

r = det 
d(&H, &‘, . . . ) cN”-‘) 
auf, yl) . . . , yN8-d ’ 

(3.5) 

The determinant I? in ( 3.5) is the determinant that would be obtained by 
using YN8 = 1 - Ck+&. Y, in the governing equations. On the other hand, 
the determinant ‘I in ( 3.5 ) is simply that of the Jacobian matrix of the discrete 
system whose continuous equations and boundary conditions are obtained 
by summing all the corresponding species governing equations, and in which 
the unknown function is u = CkEB Yk. The singularities in the equations due 
to the mass constraints arise now when the later determinant r is zero. 

These singularities may appear with any intermediate solution considered 
during iterative processes devoted to solve the discrete governing equations, 
like NeW.on’s method, for instance. These singularities may lead to conver- 
gence difficulties, or decrease the domain of convergence of various numerical 
methods or poor sensitivity information. Linear algebra solvers may also en- 
counter difficulties, especially those based on iterative techniques. They may 
also lead to artificial mass creation in such a way that u = 2~8 Yk is not 
uniformly unity so that the lower left block in (3.3) is no more zero. Different 
types of flow configurations may also lead to ‘I = 0 as detailed in the following 
where we investigate the governing equations for u = CLQ Yk. 

3.2. Singularities for Steady Flows 

By summing up the N8 equations (2.1) we get that 

kE8 

which specializes to 

L’v*v( 2 yk) = 0, 
kE8 

(3.6) 

(3.7) 

for steady flows. A direct consequence is that at a stagnation point where v 
= 0, Eq. (3.7) degenerates. In this situation, the Ns species equations, and 
thus the governing equations, are numerically linearly dependent, although 
the species are considered independent unknowns. Of course, this is still true 
when the Ns species equations are written in conservative form since then 
the sum of the species equations is proportional to the total mass equation 
at stagnation points. For similar reasons, it still holds if mole fractions or 
molar concentrations or number densities are used to describe the species. 
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From a discrete point of view, the Jacobian matrix II is then singular at grid 
points which exactly coincide with stagnation points. However, if u is small 
but nonzero, the Jacobian matrix II will still be ill conditioned. A typical 
example of steady flow involving a stagnation point is provided, for instance, 
by the flow obtained with two counterflowing jets [ 61. Any flow with recir- 
culation zones also involves stagnation points and thus leads to singular be- 
havior. 

Note also that when the simplified expressions (2.24) are used, the correction 
velocity V, must be evaluated from F’, = -( CkES Y@-k)/( CkEd, Yk). If V, 
is evaluated with the simplified expression V,. = -EkEa Ykv, [ 9, 11, 14]- 
which corresponds to the correction matrix C = UZ T instead of (2.22)- 
then CkEs Y, Vk does not sum up algebraically to 0 but to ( CkE8 Yk - 1 ) V, 
so that (3.7) is modified such that 

(3.8) 

which fortuitously may suppress the singularity at stagnation points. Nev- 
ertheless, if V. (pV,) = 0 and u + V, = 0 we still have singular behavior. 
Similarly, when V. V, and IJ + V, are small, the discrete equations are still 
ill conditioned. Our numerical experience indeed confirms that the term 
( CkEB Yk - 1) ?‘, does not SatiSfaCtOdy stabilize the governing eqUatiOnS. 

3.3. Singularities in Boundary Conditions 

First, Dirichlet boundary conditions do not introduce any difficulty and 
provide that CkES Yk = 1 at that boundary. By summing up the NS species 
Neumann boundary conditions (2.3) we then get that 

v( c Yk- 1)-n=& 
k&Y 

(3.9) 

which usually does not lead to singular discrete equations. However, a classical 
finite difference technique used to obtain centered second-order accurate, 
discrete boundary conditions consists in introducing ghost points, writing the 
centered discrete boundary conditions and governing equations at the bound- 
ary point and eliminating the ghost point values from the resulting set of 
equations. In one dimension, for instance, and for steady flows, the discrete 
Neumann boundary conditions for a nonreactive adiabatic wall lead to T,, 
= T-h and (Yk)h = (Yk)-h, where the subscripts h and -h refer to the first 
interior and ghost grid points respectively. Denoting Vk the nonzero compo- 
nent of the diffusion velocity vk = (vk, 0, 0), we deduce that (PYkVk)h/2 
= - (p Y, Vk))h,~ where the mass diffusion fluxes are estimated with centered 
finite differences and where h/2 and -h/2 refer to the corresponding mid- 
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points. Using then the discrete equation (( pYkVk)h12 - (~YkVk)&)/h 
+ (IV,&,, = 0, where we have used v = 0 and where the subscript 0 refers 
to the boundary point, we obtain the following species centered second-order 
accurate, Neumann discrete boundary condition and for one-dimensional 
steady flows 

- ; (PYkvk/k)h,Z + (wkwk)O = 0, kE 8. (3.10) 

These equations again lead to a singularity since generally the discrete flux 
velocities ( pYkVk),,, at h/2 algebraically sum up to zero. Here again, if the 
simplified expressions (2.24) are used with the incorrect formulation V, 
= -CkE8 Ykvk for V,, as in Eq. (3.8), then summing up the Ns species 
equations (3.10) leads to the boundary condition (( C.&B Yk - 1 )I’,),,, = 0, 
where V, = (I’,, 0, 0). In this situation, the nonsingular behavior relies on 
the poorly known term I’,, and our numerical experience confirms that this 
term does not satisfactorily stabilize the centered boundary conditions ( 3.10). 

Finally, by summing up the Ns species mixed boundary conditions (2.4) 
we get that 

p,,-,t( 2 Yk- 1) = 0, 
kE8 

(3.11) 

so that when u * n = 0 the equation degenerates for both steady and unsteady 
flows. Note that a typical situation where u * n = 0 and pYk vk. n = w&k is, 
for instance, that of a solid-gas interface with no surface vapor deposition. 
On the other hand, for a plane laminar flame, we have m = pu = pv * n # 0, 
where m is the laminar flame eigenvalue which is positive [ 1 l] and there is 
no singularity. 

We also note here that besides considering p, Y, , . . . , Y,, , v, and T as the 
dependent variables, as in our analysis, or p, Y, , . . . , Y,,-, , v, and T, when- 
ever there is an excess species, it is sometimes proposed to consider pi, . . . , 
pNs, V, and T, where the Pk = pYk are the species densities. In this situation, 
the mixture density is evaluated from p = C&G Pk and the total mass con- 
servation equation is discarded. However, this formulation does not suppress 
the singularities arising from boundary conditions. Moreover, it is usually 
desirable to distinguish between the total mass conservation equation and the 
species mass conservation equations since the former is first order whereas 
the later are second order and may, for instance, be discretized differently. 

4. MODIFIEDDIFFWONALGORITHMS 

In this section we modify the various diffusion algorithms in order to elim- 
inate the singularities exhibited in the previous section. These singularities 
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are indeed due to the absence of suitable diffusion terms in the various gov- 
erning equations for CkES Yk. Diffusion terms are indeed missing because 
diffusion matrices are not invertible due to the mass conservation constraints. 
In order to locate the origin of the problems, it is very instructive to assume 
for a while that dk + 0kV log T = VXk. In this situation the numerical 
difficulties are due to the singular diffusion matrix A4 such that pYk P”A 
= -CIEs MkrVYJ, which may be written M = pDiag(Y,, . . . Y,v, ) DE. 
where Diag(Y,, . . . , Y,vX) is the matrix whose nonzero entries are the 
diagonal elements (Y, , . . . , YvZ ), D the diffusion matrix of Eq. (2.5 ), and 
E = (Elm) = ((W/W)(61, - ~W/W,)) is such that 

VX, = c E,,,,VY,. (4.1) 
rnE8 

But the matrix M is not invertible since, first, D is not invertible and, second, 
i5’fs yt invertible, because CkES & = 1 implies that CkEs V& = 0 and 

kEB Ek, = 0. Therefore we deduce from this simple analysis that part 
of the difficulties are due to the matrix E, i.e., to the relations between mole 
and mass fractions, and part are due to the matrix D, i.e., to the diffusion 
algorithms. 

4.1. Mole and Mass Fractions 

The matrix E, which relates the gradients of the mole fractions to those of 
the mass fractions, is singular because Eq. (2.8) imposes the relation Cktd 
& = 1 independently of the mass fractions. Similarly, the dual relations be- 
tween X, and Y, [ 4, 81, usually expressed with (2.7) and 

w= c xkwk, 
kES 

(4.2) 

lead to the relation C&S Yk = 1 independently of the mole fractions so that 
the matrix F, which relates the gradients of the mass fractions to these of the 
mole fractions. 

VYI = C F,mV-Kn, (4.3) 
rnE8 

is also singular. In both cases, the singularity of E and F is due to the fact 
that the corresponding constraints C&S & = 1 and C&S Yk = 1 are imposed 
a priori. 

The correct formulation for W is indeed 

( 2 yk)/w = 2 yk/ wk, 
kE8 kE6 

(4.4) 
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since it leads to invertible relations between & and Y, and provides the identity 

c xk = 2 yk. 
kE8 kE8 

(4.5) 

The dual formulation, which now can be deduced from (2.7) and (4.4), is 
then 

( c xk)w= c xkwk. (4.6) 
kES kES 

With these new relations the matrices E and F become invertible and are 
inverse of each other and one may easily check that det( E) = n&S (W/ 
wk) . Finally, from the relations (2.6), (2. lo), and (4.5 ) we get the important 
relation 

c (dk + ekv log T) = c vxk = v( 2 xk) = v( 2 Yk), (4.7) 
kES kE6 kE8 X-ES 

since the thermal diffusion, pressure, and external force terms algebraically 
sum up to zero. 

4.2. Difusion Velocities 

As for the matrices E and F, the singularity of the matrices D and A is due 
to the fact that the corresponding mass constraints (2.11) and (2.15) are 
imposed a priori. Now any modification of the diffusion matrix D should 
take into account the symmetry of D, leave unchanged the physical hyperplane 
{E, Cm b=O) = U’, and promote the positivity of D. We must thus modify 
D in the form 

B=DD&JUT, (4.8) 

where d denotes the modified matrix, U the vector U = ( 1, . . . , 1)) and CY a 
positive function. Note that the resulting matrix d is positive definite since 
D is positive on U”- and (Y UU T is positive on IR U. The corresponding diffusion 
velocities satisfy now 

c Yk vk = -a 2 (dk i- &v log T), 
kE8 kE8 

(4.9) 

where 2 = cr( CkE8 Yk) is positive, which combined with (4.7) yields the 
important relation 

x Ykv, = -a)v( 2 Yk). 
kES kE8 

(4.10) 
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Further note that the matrix pDiag( Y, , . . Y,v”, )d relating the mass fluxes 
pYk Vk to the mole fraction gradients VX,, which is not symmetric, has 
bounded coefficients and has positive eigenvalues as product of two positive 
definite symmetric matrices [ 20, 231. 

The dual relations must also be modified into 

A=A++YY’. (4.11) 

where 6 denotes the modified matrix, Y the vector Y = ( Y, , . . , YNq ), and 
,6 a positive function. The resulting matrix 6 is positive definite since A is 
positive on Y’ and PYY r is positive on tR Y. One may easily check that 
when (Y and /3 are related through the relation 

4% c yk)* = 1, 
k E 8 

(4.12) 

where UTY = Y ‘ZJ = C 
b w  

ktS Y,, we then have AD = I, where Z is the identity 
matrix. The modified matrices 6 and d are thus inverses of each other whereas 
A and D are only generalized inverses of each other. Note that the relation 
Ad = Z may be a convenient way to evaluate D from A, using either direct 
or iterative techniques. 

A consequence of (4.11) is that the following modified Stefan-Maxwell 
equations, 

dk + 0kV log T = C 
xkxl 
- - 

/ES akl 
I+k 

kE cc?, (4.13) 

IZk 

define uniquely the diffusion velocities vk and automatically handle mass 
conservation constraints in the sense that 

-o( z yk) 2 ykvk = 2 (6 + ekv 1% n. 
kE8 kES kES 

(4.14) 

To our knowledge, the modified expressions (4.8 ), (4. lo), (4.11)) and 
(4.13 ) have not previously been written although related ideas may be found 
in the literature. For instance, ( NS + 1) * ( NS + 1) regular diffusion matrices 
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are considered in Chapman and Cowling [ 11. These matrices, however, un- 
necessarily increase the size of the linear systems. Linearly independent dif- 
fusion driving forces dk are also considered in Ferziger and Kaper for different 
purposes [ 2 1. 

Similarly, the simplified expressions (2.24) must now be completed with 

c Yk(Vk + Vc) = -3V( c Yk), 
kc8 kES 

(4.15) 

which corresponds to the modified approximated diffusion matrix da = D” 
+ aUUT. The associated quadratic form can be shown to be positive definite 
for a> = a( C&,.$ Yk) large enough. Moreover, since D” is not symmetric, one 
may also introduce nonsymmetric modifications such that da = Da + RUT, 
where R is a somewhat arbitrary vector. Jones and Boris have indeed intro- 
duced an 0( Ni ) iterative algorithm [ 10, 17 ] to invert the Stefan-Maxwell 
equations (2.16) based on the simplified expressions (2.24) and these authors 
pointed out that using modified matrices like da = D” + RUT, where R is 
arbitrary, was feasible. However, they have found it convenient to use 
R = 0 [lo]. 

4.3. Nonsingular Behavior 

We must now investigate the properties of the governing equations when 
the modified relations (4.8)) (4.11)) and (4.15 ) are used. Summing up the 
N8 species equations (2.1) for a steady flow, we first get from (4.10) that 

Pvev( c yk) = -v(av( c yk))> (4.16) 
kE8 kES 

and the new artificial diffusion term suppresses the singular behavior at stag- 
nation points. Heuristically, C&B Yk behaves now like a new species which 
tends to diffuse until the equilibrium state CkES Yk = 1, normally imposed 
by the boundary conditions, is reached. But once the equilibrium state is 
reached, we then have C&S & = 1 from (4.5) and C&S Yk vk = 0 from 
( 4.10) so that ultimately the mass constraints are numerically satisfied. Note 
that the origins of small deviations of C kE$ Yk from Unity are the iterative 
processes devoted to solve the discrete governing equations like, for instance, 
Newton’s method [ 1 I]. Note also that the extra diffusion term V * (XIV 
( CkEB Yk)) stabilizes the equations more satisfactorily than the term involved 
in Eq. (3.8). 

By summing up the Ns species centered second-order accurate, Neumann 
discrete boundary condition ( 3.10) for one-dimensional steady flows, we also 
get 
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(PV( c Yk))h,7 = 0. 
XEI 

(4.17) 

which suppresses the singular behavior observed with (3. IO). 
Similarly, for the boundary conditions (2.4) when us n = 0, we now get. 

by summing up the NS species equations, that 

V( c Y,). n = 0, 
k E S 

(4.18) 

which again suppresses the artificial singular behavior. The species C&S YL 
of course appears as nonreactive in (4.18 ) . 

More generally, the boundary value problem in 0 = C&S Yk obtained by 
summing up all the species equations and boundary conditions-whose Ja- 
cobian matrix has determinant r-is a linear convection-diffusion problem 
which is generally well posed. Of course, by modifying the mole/mass fractions 
relations and the diffusion matrices, we have only suppressed the artificial 
singularities due to the mass constraints which arise through the r term in 
(3.4). Other types of singularities, like those which appear at extinction limits. 
i.e., simple turning points, may still occur [ 61 and arise through the r term 
in (3.4). Furthermore, suppressing the artificial singularities due to the mass 
conservation constraints does not eliminate other numerical problems which 
may arise in (2.5), (2.18), or (2.24) like, for instance, those of vanishing 
small concentrations [ 7, 91. 

5. NUMERICALEXPERIMENTS 

5 _ 1. Singular Value Decompositions 

Our first numerical investigations are concerned with the matrices A from 
the Stefan-Maxwell equations (2.18 ) 

Akk = c z > 
IES 
I#k 

xkxl 
&, = - - 

akl ’ 
k# 1. (5.1) 

We have performed singular value decompositions of the matrix A for various 
mixtures, including a 9 species mixture used for hydrogen-air flames [ 61 and 
a 16 species mixture used for methane-air flames [ 6 1, under various tem- 
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perature and pressure conditions. The binary coefficients a)k, have been taken 
in the form 

(5.2) 

where &l is the reduced mass of the species pair (k, 1)) dk[ is the collision 
diameter of the species pair (k, I) and tl(‘,‘)* is a reduced collision integral. 
The reduced collision integral Q (L’)* depends on the reduced temperature 
Tz, = k,T/tkl, where tk/ is the Lennard-Jones potential well depth of the 
species pair (k, I) and on various other molecular parameters. The species 
pair mOleCUlar parameters tk[, (Tk[, etc., have been evaluated according to the 
Usual IktUre rule fOrmUlas, e.g., Ukl = ( (Tk + al)/2 and tkl = I&. We refer 
to [ 71 for more details. In our numerical tests, we have always found only 
one zero eigenvalue and N8 - 1 positive eigenvalues, in agreement with the 
kinetic theory of gases and Onsager relations. Note also that from ( 5.1) and 
the Gerschgorine theorem [ 23,241, all the eigenvalues of A are nonnegative. 

We have then performed singular value decompositions for the corre- 
sponding modified diffusion matrices A = A + p Y Y r with a value of p = 1. 
We have obtained only positive eigenvalues for the modified matrices 6. A 
typical result is presented in Table I for an equimolar mixture, i.e., & = 1 / 
N8, consisting of the N8 = 9 species HZ, 02, H20, NZ, OH, HO*, H202, H, 
and 0 at temperature T = 1000 IS and p = 1 atm. Note that the eigenvalue 
of A and 6 are nested, according to a classical result of linear algebra 
[20, 231. 

5.2. Determinant Evaluations 

In order to inve,stigate numerically the nonsingular behavior of the modified 
equations in a practical situation, we have computed premixed symmetric 
hydrogen-air flame structures. For such flames, the governing equations can 
be written in the form [ 61 

TABLE I 
EIGENVALUES (* 100) OF A AND 6 FOR AN EQUIMOLAR MIXTURE OF THE 

Ns = 9 SPECIES Hz, 02, H20, NZ, OH, HOz, Hz02, H, AND 0 

1 2 3 4 5 6 I 8 9 

A 0.00 0.916 1.52 3.20 3.45 4.04 4.88 4.91 4.92 
6 0.809 1.35 3.19 3.31 3.81 4.88 4.90 4.91 15.70 
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- t( pj - pz.2’) = 0, (5.4) 

dYk d 
pu - + - (PYkVk) - w,w, = 0, 

dy dy 
k = 1, . . . ) N$, (5.5) 

+(; pYkVkcpk)$+ ;: hkWkwk=O, (5.6) 
k=l k=l 

where y denotes the spatial coordinate normal to the stagnation plane; p, the 
mass density; u, the velocity in the normal direction (y); t, the strain rate; 6, 
a similarity function related to the velocity u in the transverse direction (x) 
so that u = (txu”, V, 0); TJ, the mixture viscosity; ,of, the mass density in the 
fresh reactant stream; Yk, the mass fraction of the kth species; Ns, the number 
of species; V,, the diffusion velocity of the kth species in the normal direction, 
so that vk = (0, vk, 0); W,, the molecular weight of the kth species; wk, the 
molar rate of production ofthe kth species; T, the temperature; X, the thermal 
conductivity of the mixture; c,, the constant pressure heat capacity of the 
mixture; cpk, the constant pressure heat capacity of the kth species; and hk, 
the specific enthalpy of the kth species. Complete specification of the problem 
requires that boundary conditions be imposed at each end of the computational 
domain. As y --* +co we have 

lz= 1, yk = ykf, 

and for y = 0 we have 

2, = 0, du LIZ 0, 
dyk 

dv 

-  zz 0, 

&  

k= 1,. 

k= I . , Ns 

T= Tf, (5.7) 

dT 
- = 0, (5.8) 
dv 

where T/is the specified temperature in the fresh reactant stream and Ykfthe 
specified mass fractions in the fresh reactant stream. These equations have 
also to be completed by formulas expressing the transport coefficients h and 
7, the diffusion velocities vk, the thermodynamic properties c,, c&, and hk, 
and the chemical production rates wk. More details on the modeling can be 
found in [4-6, 8, 91. 



SINGULAR MULTICOMPONENT DIFFUSION 93 

The steady equations ( 5.3)-( 5.8 ) have been discretized with finite differ- 
ences and solved using Newton’s method and adaptive gridding techniques 
[ 6, 111. A reference solution corresponding to a fresh mixture of 8.5% of 
hydrogen in mole and a strain rate of e = 50 s-’ has been obtained. From 
Eqs. ( 5.5 ) we note that, for our test problem, it is the normal velocity II which 
determines the singular behavior in the species mass conservation equations. 
But in this flow configuration the velocity v is negative on (0, + cc ) , so that 
there are no singularities with Eqs. ( 5.5). Moreover the Neumann boundary 
conditions (5.8) at y = 0 have been discretized with first-order schemes, thus 
avoiding the singularities introduced with (3.10). 

We then have perturbed the reference solution in order to introduce sin- 
gularities and we have computed the corresponding Jacobians. The calcula- 
tions have been performed with the one-dimensional simplified transport 
expressions (2.24) using either the exact correction velocity V,, obtained from 
(2.24) 

vc, = -( c yk-trk)/( 2 yk), 
kES kES 

where 

v= D:dxk 
k 

xk dy ’ 

or the often used simplified expression VcI 

vc2 = - c ykvk, 
kES 

(5.9) 

(5.10) 

(5.11) 

or the modified expression Vc3 obtained from (4.15 ) 

vc3=- c y,y.,+akzS$ (2 yk), (5.12) 
kES keS 

with a value of CY = 1. Calculations have been done in double precision, i.e., 
with 64-bit words, and Jacobian matrices have been evaluated numerically 
by finite differences so that their accuracy is only simple precision. Denoting 
X the discrete reference solution, obtained on a mesh 0 = y. < y1 < * - - , 
and V, the normal velocity at node yj, we have considered the perturbed 
discrete vectors Xj, j > 1, obtained by setting vl = * - - = Vj = 0 in x, 
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TABLE II 
DECIMAL L~CARITHMSOFREDUCEDJACOBIAN SINGULARITIES 

INTHESPECIESCONSERVATION EQUATIONS 

Vd -I 1.84 -21.43 -33.66 

Vf v : -3.72 -0.01 m-7.43 -0.03 -11.12 PO.07 

respectively. Note that o. = 0 in X so that X, is very close to X when j is 
small. We have then evaluated the Jacobians (3.1) d and ~9, at X and X,, 
respectively. The decimal logarithms of the ratios dj/b are presented in Table 
II forj = 1, 2, 3, in columns X,/X, j = 1, 2, 3, respectively, as a measure of 
the singularities introduced by stagnation points for the different correction 
velocities I’,, , V,, and I’,,. 

We note that with the formulation I’,, more than 10 orders of magnitude 
are lost at each new zero velocity Vj. In this situation the code was unable to 
converge back from XI to 5%. On the other hand, the corresponding Jacobians 
evaluated with the expression VCj are almost unperturbed by the zero velocities, 
and the code was able to converge back immediately from XI, X2, or X3 to 
5%. With the simplified expressions VC2, we note that only 3 orders of magnitude 
are lost at each new zero velocity. This is due to the right hand side term in 
Eq. (3.10). However, this term can be seen to lead to singularities when VC1 
vanishes in the neighborhood of the origin. As a consequence we have also 
considered the perturbed discrete vectors X,* , j = 1, 2, 3, obtained from X,) 
j = 1, 2, 3, by flattening the temperature and species profiles near the origin, 
i.e., by setting To = T, = T2 = T3 = T4 and Y, = Y,, = Y,, = Y,, = Yk4, k 
= 1 . . 9 Na. Note that with our value of the strain rate t = 50 SC’ and from 
Neumann’s boundary conditions (5.8) the perturbed discrete vectors XT, j 
= I, 2, 3, are very close to 5%. Starting now from XT, the code was not able 
to converge back to X, and the convergence from X 7 and 5%; was maintained 
only by using a very efficient damping strategy in Newton’s method [ 11, 241 
together with a very small damping parameters. On the other hand, with the 
expressions VC3, Newton’s method converges back immediately from X T 
to x. 

Finally, using the reference solution X, we have investigated the singular 
behavior in boundary conditions by using the discrete equations 

bYkVk)h/2 = 0, (5.13) 
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TABLE III 
DECIMAL LOGARITHMS OF REDUCED JACOBIAN SINGULARITIES 

IN THE BOUNDARY CONDITIONS 

X 

Vd I vc3 -9.33 
vcz I vc3 -16.32 

instead of the usual first-order Neumann boundary conditions. These equa- 
tions lead to the same type of singularities as the centered boundary conditions 
( 3.10). For the different expressions V,r , I’, , and V,, we have evaluated the 
corresponding Jacobians denoted by d,r , dc2, and dc3. The decimal logarithms 
of the ratios 6,, / dc3 and a,/ dc3 are presented in Table III as a measure of 
the singularities introduced by boundary conditions, at the lines I’,, /V,, and 
L’, / V,, , respectively. This table shows that 10 orders of magnitude are lost 
with the singularity introduced by V,, whereas 16 orders of magnitude are 
lost with I’,, . Finally, it is also interesting to note that, depending on initial 
estimates, spurious converged solutions involving artificial mass creation have 
been observed with both expressions I’,, and I’, . More specifically, denoting 
aj the sum CkEB Yk at node yj, some of the converged solutions have been 
found to be such that u. # 1 whereas ul = 62 = - . * = 1. Of course, this was 
never observed with V,, . 

6. CONCLUSION 

We have investigated mass conservation in multicomponent diffusion al- 
gorithms. Various singularities in the governing equations, due to mass con- 
servation constraints, have been exhibited when all mass fractions are con- 
sidered independent unknowns. Modifications of the usual diffusion algo- 
rithms have been introduced to eliminate these artificial singularities. 
Consistent modifications are proposed for three different diffusion algorithms, 
namely for the complex formalism of the kinetic theory of gases, for the 
Stefan-Maxwell equations, and for the Hirschfelder-Curtiss expressions with 
mass correctors. These modifications, of course, do not change the actual 
values of the diffusion velocities. Only their mathematical expressions are 
changed. Finally, we have tested the modified expressions by computing var- 
ious flame structures and we have found that they improve both the accuracy 
and the robustness of our numerical algorithms. 
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