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We consider reactive mixtures of dilute polyatomic gases in full vibrational non-equilibrium. The governing
equations are derived from the kinetic theory and possesses an entropy. We recast this system of
conservation laws into a symmetric conservative form by using entropic variables. Following a formalism
developed by the authors in a previous paper, the system is then rewritten into a normal form, that is, in the
form of a quasilinear symmetric hyperbolic—parabolic system. Using a result of Vol’pert and Hudjaev, we
prove local existence and uniqueness of a bounded smooth solution to the Cauchy problem. ! 1998 B. G.
Teubner Stuttgart—John Wiley & Sons, Ltd.

1. Introduction

In this paper, we investigate the system of equations modelling multicomponent
reactive gases in which polyatomic molecules are in full vibrational non-equilibrium.
We prove the well-posedness of the Cauchy problem locally in time with smooth
initial conditions.

We first present the set of governing equations for multicomponent reactive
gaseous flows in full vibrational non-equilibrium. We express the conservation equa-
tions, the transport fluxes and the thermodynamic properties. In this model, there is
a translational—rotational temperature and the species vibrational quantum state
densities are independent unknowns. We also summarize the derivation of these
relations from the kinetic theory. An important consequence of the kinetic framework
is that the transport fluxes have their natural symmetry properties [8, 3, 2, 4].

We then apply the formalism developed by the authors in Reference 4 concerning
symmetrizability. We exhibit a mathematical entropy function for this system of
multicomponent reactive flows in full vibrational non-equilibrium. It is taken to be
the opposite of the physical mixture entropy density per unit volume. The related
entropic variables lead to a symmetric conservative system. Here we make a crucial
use of the naturally symmetric form of the transport fluxes provided by the kinetic
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theory. For symmetrization problems arising when the natural symmetry of transport
fluxes has been artificially destroyed [5, 1] we refer to [2—4].

We prove that the nullspace naturally associated with dissipation matrices of the
symmetrized system satisfy an invariance property. This allows us to recast the system
into a normal form [4]. This normal form is a symmetric hyperbolic—parabolic
composite system which decouples the hyperbolic components from the parabolic
components. This form is not unique as shown in [4] where all normal forms have
been characterized for such systems.

For the resulting system of conservation laws in normal form, we next prove the
existence of a unique solution to the Cauchy problem, locally in time, in a space of
bounded smooth functions. More precisely, solutions are considered in the functional
spaces »

!
(!") constituted by the (classes of ) functions of ¸$(!") having derivatives of

orders 1 to l in ¸# (!"), for values of l such that l'd/2#3 where d is the space
dimension. Our method of proof relies on the results of Vol’pert and Hudjaev
concerning the Cauchy problem for symmetric quasilinear hyperbolic—parabolic
composite systems of partial differential equations [7].

The governing equations for multicomponent reactive flows in full vibrational
non-equilibrium are presented in section 2. Symmetrization and normal forms are
investigated in Section 3. Finally, the Cauchy problem is investigated in section 4.

2. Governing equations

2.1. Conservation equations

The system of conservation laws modelling multicomponent reactive flows in full
vibrational non-equilibrium express the conservation of vibrationally excited species
mass, momentum and energy. These equations are provided by the kinetic theory of
gases following a formalism generalized from [8] and [2] which will be sketched in
section 2.5. They can be written in the form
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where $
(")

is the density of the kth species in the Kth vibrational quantum state, n
&
the

number of species, S"[1, n
&
] the set of species indices, I

(
the number of vibrational

quantum states of the kth species, I
(
"[1, I

(
] the corresponding set of vibrational

state indices, $"!
(%&")%I(

$
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the total density, v
$
the mass averaged flow velocity in

the ith direction, &
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the Kronecker symbol, e!"! the total energy per unit mass of the
mixture, and p the thermodynamical pressure. The couple of indices (k, K) vary in the
set S#$%"'
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For convenience, the dissipative flux F
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diffusion flux F,"
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and the viscous flux F#$
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so that
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where("((
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)
$" *%%

is the viscous stress tensor, V
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diffusion velocity of the kth species in the Kth vibrational quantum state,
q"(q

!
, q

#
, q

&
)! the heat flux vector, m

(
the molar mass of the kth species, )

(")
the

molar production rate of the kth species in the Kth vibrational quantum state,
g"(g

!
, g

#
, g

&
)! the external force per unit mass acting on the species, v"(v

!
, v

#
, v
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the velocity vector and t the transposition symbol.
These equations have to be completed by the relations expressing the transport

fluxes (, V
(")

, k3S, K3I
(
, and q, the thermodynamic properties p and e!"!, the

chemical/vibrational source terms )
(")

, k3S, K3I
(
, and the specific force g.

2.2. ¹ransport fluxes

The expressions for the transport fluxes derived from the kinetic theory of dilute
polyatomic gas mixture can be written
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where D"(D&"!
(")" !"-

)
'(")(" '!"-(%&#$% is the diffusion matrix, d
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the diffusion driving force

of the kth species in the Kth vibrational quantum state, (*&"!
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'(")(%&#$%3!'+ the thermal

diffusion vector, !
.
"(!
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)! the usual differential operator, ¹ the transla-

tional—rotational absolute temperature, +&"! the volume viscosity, ,&"! the shear viscos-
ity, -.&"! the partial thermal conductivity and h

(")
the enthalpy per unit mass of the kth

species in the Kth vibrational quantum state. The vectors d
(")

, (k, K)3S#$%, take into
account the effects of various state variable gradients and are given by
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where X
(")

denotes the mole fraction of the kth species in the Kth vibrational
quantum state. Alternate expressions for the diffusion velocities and the heat flux
vector are
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where (/&"!
(")

)
'(")(%&#$%3!'+ is the thermal diffusion ratio vector and -&"! the thermal

conductivity. Both expressions (2.5) and (2.9) for the diffusion velocities and (2.7) and
(2.10) for the heat flux vector will be used in the following.

Note that we have used the superscript rot since the transport coefficients only
involve translational and rotational energy exchanges. In addition, the diffusion
matrix D&"! associated with these fluxes is symmetric as specified in Section 2.6 where
the properties of the various transport coefficients are expressed.

2.3. ¹hermodynamic properties

From the kinetic theory, the state law expressing the pressure p is

p"$r¹, (2.11)

where

$r"R
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In these expressions, $"!
'(")(%&#$%$(") is the total mass density, r the specific gas

constant of the mixture, and R
'
the universal gas constant. The specific total energy

e!"! and the specific internal energy e of the mixture are given by
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The quantity e
(")

is the internal energy per unit mass of the kth species in the
vibrational quantum state K and can be written
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where e)
(")

is the energy of formulation of the kth species in the Kth vibrational
quantum state at the positive reference temperature ¹

)
and c&"!

/ (") is the rotational
specific heat at constant volume of the kth species in the Kth vibrational quantum
state. The mixture rotational specific heat at constant volume c&"!

/
is also defined by

$c&"!
/

" !
'(")(%&#$%

$
(")

c&"!
/ (") . (2.16)

Similarly, the specific total enthalpy h!"! and specific enthalpy h are written
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where h
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, the enthalpy per unit mass of the kth species in the Kth vibrational
quantum state, reads
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convenient to denote by e!"!
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The kinetic theory also yields the specific (physical) entropy of the kth species in the
Kth vibrational quantum state
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where s))
(")

is the standard formation entropy at the positive reference temperature
¹
)
and positive reference pressure 0

)
R

'
¹
)
where 0

)
is a reference molar concentration.

Finally, we will also need the expression of the chemical/vibrational potential 1
(")

of
the kth species in the Kth vibrational quantum state
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2.4. Source terms

The detailed description of chemical/vibrational source terms )
(")

, (k, K)3S#$%, is
beyond the scope of this paper. It would only be needed for investigating global
existence results in the neighbourhood of constant equilibrium states and the

Local Cauchy Problem for Multicomponent Reactive Flows 1419

Math. Meth. Appl. Sci., 21, 1415—1439 (1998)! 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.



asymptotic stability of these states. In the following sections, we only require that the
chemical/vibrational source terms )

(")
, (k, K)3S#$%, are functions of the natural

variables ½"($
!"!

,2, $n
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, I
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, v
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, v
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, v
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)
(")
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(")

(½ ), (2.22)

with a similar assumption for the specific force term g

g"g (½ ). (2.23)

Remark 2.1. In this paper, for sake of simplicity, we only consider a species indepen-
dent specific force, as gravity for instance. For the structure of transport fluxes arising
when the specific forces are species dependent we refer to [6] and [4].

2.5. Derivation from the kinetic theory

In this section we briefly discuss the derivation of the preceding equations from the
semi-classical kinetic theory of reactive polyatomic gas mixtures [8, 2]. This deriva-
tion requires that the chemical and vibrational characteristic times are larger than the
translational and rotational characteristic times of the mixtures [2].

More specifically, the Boltzmann equations describing reactive mixtures take the
form
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where f
(

is the distribution function of the kth species, D
(

the transport differential
operator of the kth species, T ()*!

(
is the fast collision operator and T*+",

(
the slow

collision operator. In addition, 2 is the formal expansion parameter associated with
the Enskog procedure and 3 depends on the regime under consideration. Accordingly,
the species distribution functions are expanded in the form
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is the local Maxwellian distribution related to the fast collision operators.
For polyatomic molecules, the energy can be divided into several contributions

coming from translational, rotational and vibrational modes. The electronical energy
transfers are neglected in a very wide range of temperature, efficient collisions being
very seldom because of the gap of energy between two electronic levels. In the previous
study of Ern and Giovangigli [2], the internal modes were at equilibrium such that we
had
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where C!&"&"!"#$%
(!

is the non-reactive collision operator for the species pair (k, l ) involv-
ing translational, rotational and vibrational energy exchanges and S

(
the reactive

collision operator for the kth species. These reactive and non-reactive collision
operators have complex expressions and we refer to [2] for more details.

In this paper, we assume that the characteristic times associated with the exchange
of vibrational energy are of the same order of magnitude as the chemical times but are
longer than the characteristic times associated with translational and rotational
energy exchanges. In this situation, the polyatomic molecules of the mixture are in full
vibrational non-equilibrium, and we have
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where C !&"&"!
(!

is the non-reactive collision operator for the species pair (k, l) involving
translational and rotational energy exchanges, C#$%

(!
is the non-reactive collision

operator for the species pair (k, l) translational—vibrational, rotational-vibrational
and vibrational—vibrational energy exchanges.

It is then possible to distinguish a number of different regimes for the mixture,
depending on the relative order of magnitude of the fast and slow collision terms. The
‘slow regime’ corresponds to 3"1 and produces expressions (2.5)—(2.10) for the
transport fluxes. In this situation, the chemical source terms are evaluated from the
Maxwellian collisional terms. On the other hand, the ‘tempered regime’ corresponds
to 3"0. In this situation, the pressure tensor and the Maxwellian source terms are
perturbed, because of the reactive part of the distribution functions !

(
. Such perturba-

tions only occur at these two places and are known to be small, so that we recover the
set of equations described above by neglecting them [2].

Finally, the macroscopic quantities are obtained in terms of the distribution
functions by integrating over the velocity space and summing over the rotational
quantum numbers. Similarly, the macroscopic governing equations are obtained by
multiplying the Boltzmann equations by the fast collisional invariants, integrating
with respect to the particle velocity and summing with respect to the rotational
quantum states of the particles.

Remark 2.2. In the model investigated in this paper, the vibrational non-equilibrium
is a global non-equilibrium such that each molecule in a given vibrational state can be
considered as an independent species. The modelling of vibrational transfers and of
chemical reactions is then contained in the source term. As a consequence, the
structure that we obtain for our system is formally equivalent to the one obtained with
vibrational equilibrium.

2.6. Mathematical assumptions

We introduce here the mathematical assumptions concerning the transport coeffi-
cients, the thermodynamic properties, the chemical/vibrational source terms and the
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specific force term. We assume that the natural variables
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where ¹
)

is positive and we assume the following dependence and regularity
properties.
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We point out that all these assumptions are suggested by the semi-classical kinetic
theory of dilute polyatomic reactive gas mixtures. As previously mentioned, the
diffusion coefficients considered here are symmetric and, therefore, are consistent
with Onsager reciprocal relations. The mass constraints of the diffusion matrix
and the thermal diffusion vector also imply the mass conservation relation
!

'(")(%&#$%$(")V(")
"0. In addition, the positivity properties of the transport coeffi-

cients are associated with the positivity of the entropy production quadratic form as it
was shown in the case of vibrational equilibrium [3, 2].

Further note that the gas species specific heats—and therefore the energies and
enthalpies—obtained from the kinetic theory, could also be extended—from a math-
ematical point of view—up to zero temperature, but not the gas entropy which
explodes like log ¹. However, since the basic assumptions of the kinetic theory of
dilute gas mixtures are not valid at low temperatures, where the gases are ultimately
transformed into liquids and then into solids, we have chosen to restrict the temper-
ature domain to [¹

)
, R), where ¹

)
is positive, for modelling gas mixtures.

2.7. ¹he quasilinear form

By expressing the natural variables ½ in terms of the conservative variables º, we
now rewrite the system of conservation equations (2.1) in a quasilinear form. For this
purpose, we first investigate the map ½Pº and its range.
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The proof is almost straightforward using hypothesis (H
#
), expression (2.2) and the

triangular structure of !
0
º on O

0
.

From (2.5) to (2.8) and Proposition 2.3, the dissipation fluxes can then be written as
linear combinations of the conservative variables gradients

F
$
"!!

*%%

G
$*
(º)!

*
º, (2.27)

where the proportionality coefficients are the dissipation matrices, G
$*
(º), i, j3C,

which are functions of the conservative variable º. These matrices are square matrices
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of dimension n
+
#4, and, from (2.3), they admit the following decomposition:

G
$*
"G#$

$*
#G,"

$*
, (2.28)

where F#$
$

"!!
*%%

G#$
$*

(º)!
*
º and F,"

$
"!!

*%%
G,"

$*
(º)!

*
º. We may further

introduce the Jacobian matrices A
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, i3C, of the advection fluxes F
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and finally rewrite the system into the quasi-linear form
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where the matrix coefficients are defined on the open convex set O
1
. The detailed form

of the coefficient matrices A
$
, i3C, and G

$*
(º), i, j3C, will only be needed for some

explicit calculations that are not described in the following, and, therefore, will not be
given. We refer to [6] for more details in the case of vibrational equilibrium.

3. Symmetrization and normal forms

In this section, the results of Giovangigli and Massot [4] about symmetrizability
are restated and applied to the multicomponent flows in full vibrational non-equilib-
rium governing equations. A conservative symmetric form of the system is given.

We show that the symmetrized equations are such that the nullspace naturally
associated with dissipation matrices is a fixed subspace. We then know that this
symmetrized system admits a set of normal form characterized by Theorem 3.8 of [4].
These normal forms are symmetric hyperbolic—parabolic composite systems. We here
choose to present the one that decouples as much as possible the parabolic compo-
nents even if it also perturbs the structure of the chemical/vibrational source term.
Any normal form could be used for the local existence theorem obtained in the last
part of the paper.

3.1. A conservative symmetric form for multicomponent flows

We now consider the system (2.30) and apply the general results obtained in a
previous paper [4]. We first note that the smoothness of the matrix coefficients is
a direct consequence of assumptions (H

!
) and (H

#
). We next define the mathematical

entropy function H as the opposite of the physical mixture entropy density per unit
volume

H"! !
'(")(%&#$%

$
(")

s
(")

. (3.1)

We then consider the associated entropic variables

»"(!
1
H)!, (3.2)
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for which a straightforward calculation yields

»"1
¹ (1

!"!
!!

#
v ) v,2, 1n

&
, I

'&
!!

#
v ) v, v

!
, v

#
, v

&
,!1), (3.3)

where 1
(")

is the chemical/vibrational potential of the kth species in the Kth vibra-
tional quantum state [4, 6].

Proposition 2.3, expressions (2.15), (2.20), (2.21), the smoothness assumption (H
#
),

the triangular structure of !
0
» over O

0
and finally the fact that !s

(")
is an increasing

function of $
(")

at fixed ¹ lead to the following proposition.

Proposition 3.1. ¹he change of variable º > » from the open convex set O
1

onto the
open set O

3
"!'+2&!(!1/¹

)
, 0) is a C$ diffeomorphism.

Before enouncing Theorem 3.2 where we investigate the conservative symmetric
form, let us introduce the explicit form of the matrix coefficients we are going to work
with. For the sake of clarity, we here adopt a compact notation. In the following, a and
b denote the couples (k, K) and (l, ¸) varying in the set S#$%.

The matrix AI
)

is defined by

AI
)
"! !

$a
r
4

&
45"

4"5%&#$%

Sym

!$br
5

v
$"

$%%"5%&#$%

(5&v$v*#$¹&
$*
)
$"*%%

!$br
5

e!"!
5 "

5%&#$%

(5
6
v
*
#$¹v

*
)
*%%

¶
6
" , (3.4)

where

r
4
"r

(
for a"(k, K)

and

5&" !
4%&#$%

$
4

r
4

" !
(%&")%I(

$
(")
r
(

.

Similarly,

5
6
" !

'(")(%&#$%

$
(")
r
(

e!"!
(")

, ¶
6
" !

'(")(%&#$%

$
(")
r
(

e#
(")

#$¹(v ) v#c&"!
/

¹ ).

Since this matrix is symmetric, we only give its block lower triangular part and write
‘Sym’ in the upper triangular part. On the other hand, denoting by 4"(4

!
, 4

#
, 4

&
)! an

Local Cauchy Problem for Multicomponent Reactive Flows 1425

Math. Meth. Appl. Sci., 21, 1415—1439 (1998)! 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.



arbitrary vector of !&, the matrices AI
$
, i3C, are defined by

!
$%%

AI
$
4
$

"!
! &45 $5r

5

v ) 4"
4"5%&#$%

Sym

!$5¹4$#$
5

r
5

v
$
v ) 4"

$%%"5%&#$%

(5&v$v*v ) 4#$¹(v
$
4
*
#v

*
4
$
#v ) 4&

$*
) )
$"*%%

! h!"!
5

$
5

r
5

v ) 4"
5%&#$%

(5
7
v
*
v ) 4#$¹v

*
v ) 4#$¹h!"!4

*
)
*%%

¶
7
v ) 4"

(3.5)
where

5
7
" !

'(")(%&#$%

$
(")
r
(

h!"!
(")

, ¶
7
" !

'(")(%&#$%

$
(")
r
(

h#
(")

#$¹ (v ) v#(c&"!
/

#r)¹ ).

Furthermore, concerning the dissipation matrices, we have the usual decomposition

GI
$*
"GI #$

$*
#GI ,"

$*
. (3.6)

The viscous matrices GI #$
$*

, i, j3C, are defined by

GI #$
$*

"! 0
'+-'+

0
*-'+

0
'+-*

KI
$*
" , (3.7)

so that we only need the expressions of KI
$*
, i, j3C. For sake of brevity, we only define

KI
!!

and KI
!#

:

KI
!!

"¹ !
(+&"!#*

&
,&"!) 0 0 (+&"!#*

&
,&"!)v

!
0 ,&"! 0 ,&"!v

#
0 0 ,&"! ,&"!v

&
(+&"!#*

&
,&"! )v

!
,&"!v

#
,&"!v

&
(+&"!#!

&
,&"!)v#

!
#,&"!v ) v " ,

KI
!#

"¹ !
0 (+&"!!#

&
,&"!) 0 (+&"!!#

&
,&"!)v

#
,&"! 0 0 ,&"!v

!
0 0 0 0

,&"!v
#

(+&"!!#
&
,&"! )v

!
0 (+&"!#!

&
,&"! )v

!
v
# " ,

the other matrices being obtained by circular permutation and using the relations

KI
!#

"KI !
#!

, KI
!&

"KI !
&!

, KI
#&

"KI !
&#

.
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On the other hand, the heat and mass diffusion matrices GI ,"
$*

, i, j3C, satisfy

GI ,"
!!

"GI ,"
##

"GI ,"
&&

"GI ,", GI ,"
$*

"0, iOj,

where GI ," is defined by

GI ,"

"!
(D&"!

4"5
)
4"5%&#$% Sym

0
&-'+

0
&-&

! !
4%&#$%

D&"!
4"5

h
4
#$

5
*&"!
5

¹"
5%&#$%

0
!-&

-.&"!¹ ##2 !
4%&#$%

$
4
*&"!
4

h
4
¹# !

4"5%&#$%

D&"!
4"5

h
4
h
5
"

(3.8)

and the symmetric matrix D has been defined from the multicomponent diffusion
matrix D by

D&"!
(")" !"-

"$
(")
$
!"-

D&"!
(")"!"-

/r$. (3.9)

Finally, the source term !6 is defined by

!6 "!. (3.10)

Theorem 3.2. ¹he system associated with the entropic variables »3O
3

can then be
written

AI
)
!
#
»#!

$%%

AI
$
!
$
»" !

$"*%%

!
$
(GI

$*
!
*
»)#!6 , (3.11)

and is of the symmetric form in the sense that Properties (S
!
)—(S

*
) are satisfied [4]:

(S
!
) ¹he matrix AI

)
(» ) is symmetric and positive definite for »3O

3
.

(S
#
) ¹he matrices AI

$
(» ), i3C, are symmetric for »3O

3
.

(S
&
) ¼e have GI

$*
(» )!"GI

*$
(» ) for i, j3C and »3O

3
.

(S
*
) ¹he matrix BI (», w)"!

$"*%%
GI

$*
(» )w

$
w
*
is symmetric and positive semi-definite,

for »3O
3

and w3S#, where S# is the unit sphere in 3 dimensions.

¹he function H is an entropy for system (2.30), that is, H satisfies Properties
(E

!
)—(E

*
) [4]:

(E
!
) ¹he function H is a strictly convex function on O

1
in the sense that the Hessian

matrix is positive definite on O
1
.

(E
#
) ¹here exists real-valued smooth functions 7

$
"7

$
(º) such that

(!
1
H)A

$
"!

1
7
$
, i3C, º3O

1
. (3.12)

Local Cauchy Problem for Multicomponent Reactive Flows 1427

Math. Meth. Appl. Sci., 21, 1415—1439 (1998)! 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.



(E
&
) ¼e have the property

(!#
1
H(º) )0!(G

$*
)!"G

*$
(!#

1
H(º))0!, i, j3C, º3O

1
. (3.13)

(E
*
) ¹he matrix BI (», w)"!

$" *%%
G

$*
(º) (!#

1
H (º))0! w

$
w
*

is symmetric positive
semi-definite for º3O

1
and w3S#.

Proof. The calculation of the matrices AI
)
, AI

$
, i3C, and GI

$*
, i, j3C, is lengthy but

straightforward and, therefore, is omitted. This calculation is easily conducted by
using the natural variable ½ as an intermediate variable. The symmetry properties of
AI

)
, AI

$
, i3C, and GI

$*
, i, j3C, required in (S

!
)—(S

*
), are then obtained. We also have

the identity !6 "!, since (3.11) is derived by a change of variable.
Consider then a vector x3!'+2*, with components (x

!"!
,2, xn

&
, I

'&
, x

'+2!
,2,

x
'+2*

). After a little algebra, we obtain that

x#AI
)
x"$¹ ((x

'+2!
#v

!
x
'+2*

)##(x
'+2#

#v
!
x
'+2*

)##(x
'+2&

#v
!
x
'+2*

)#

# !
4%&#$%

$
4

r
4

(x
4
#v

!
x
'+2!

#v
#
x
'+2#

#v
&
x
'+2&

#e!"!
4

x
'+2*

)#

#$c!"!
/

¹ #x#
'+2*

,

so that from (H
#
) and the positivity of $

4
, a3S#$%, and ¹, we deduce that AI

)
is positive

definite.
On the other hand, by using (H

,
)—(H

.
), one can establish that

x#GI ,"x" !
4"5%&#$%

D&"!
4"5!x

4
#!h4

#p/&"!
4
$
4
"x

'+2*"
!!x

5
#!h5#p/&"!

5
$
5
"x

'+2*"#-&"!¹#x#
'+2*

, (3.14)

which shows that GI ," is positive semi-definite, thanks to (H
,
).

Furthermore, a straightforward calculation leads to the following expression for the
quadratic form associated with BI (», w):

x!BI (», w)x"¹(+&"!#!
&
,&"!) (o

!
w
!
#o

#
w

#
#o

&
w
&
)#

#¹,&"!(o#
!
#o#

#
#o#

&
)#x!GI ,"x, (3.15)

where o
$
"x

'+2$
#v

$
x
'+2*

, i"1, 2, 3, and where w#
!
#w#

#
#w#

&
"1. We thus obtain

that the matrix BI is symmetric, because it is the sum of symmetric matrices, and is
positive semi-definite for »3O

3
and w3S#, thanks to the positivity assumptions (H

+
)

and (H
,
). Finally, H also satisfies (E

!
)—(E

*
) of [4] as is easily checked and is strictly

convex since AI
)

is positive definite over the open convex set O
1
. '
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3.2. Normal forms for multicomponent flows

In this section we first establish that the symmetric system (3.11) satisfies an
invariance property. More precisely, we show that the nullspace naturally associated
with the dissipation matrices stays in a fixed subspace. This property allows us to take
a first step to decouple the hyperbolic part of the system from the parabolic one. We
make use of the auxiliary variables introduced in [4] which lead to a new symmetric
conservative form of the system. At this point, following the authors in [4], we know
the whole set of normal forms, that is, of symmetric hyperbolic—parabolic composite
forms of the system. We finally chose to present the one which decouples the parabolic
variables as much as possible.

Proposition 3.3. ¹he nullspace of the matrix BI associated with system (3.11) is one
dimensional and is given by

N(BI )"span(1,2, 1, 0, 0, 0, 0)!. (3.16)

Proof. According to equations (3.14) and (3.15), the matrix BI is positive semi-definite,
so that its nullspace is constituted by the vectors x of !'+2* such that x!BI x"0. On the
other hand, we have

x!BI (», w)x"(+&"!#!
&
,&"!)¹(o

!
w
!
#o

#
w

#
#o

&
w
&
)#

#,&"!¹(o#
!
#o#

#
#o#

&
)# !

4"5%&#$%

D&"!
4"5!x4

#!h4#p/&"!
4
$
4
"x

'+2*"
!!x5

#!h5#p/&"!
5
$
5
"x

'+2*"#-&"!¹ #x#
'+2*

,

where o
$
"x

'+2$
#v

$
x
'+2*

, i"1, 2, 3. As a consequence, x!BI x"0 implies that
x
'+2*

"0 and that x
'+2$

"0, i"1, 2, 3, thanks to (H
+
). Therefore, x is in the nul-

lspace of BI (», w) if and only if we have

!
'(")(" '!"-(%&#$%

D&"!
(")" !"-

x
(")

x
!"-

"0. (3.17)

Using (H
,
) and (3.9) we then obtain that the nullspace of BI (», w) is one-dimensional

and spanned by the vector (1,2, 1, 0, 0, 0, 0)! and is thus independent of »3O
3

and
w3S#. '

Since the system of equations governing multicomponent reacting flows satisfies the
previous invariance property, we can now obtain from Lemma 3.7 of [4] the auxiliary
variables º. and » . which lead to a new symmetric conservative form equivalent to
the first one obtained, but where the dissipation matrices only act on the parabolic
part of the new entropic variables » .. From Lemma 3.7 of [4] and Proposition 3.3 we
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introduce the matrix P

P"!
1 0 2 2 0 0 0 0 0

1 1 ! % % % % %
% 0 ! ! % % % % %
% % ! ! 0 % % % %
1 0 2 0 1 0 0 0 0

0 2 2 2 0 1 0 0 0

0 2 2 2 0 0 1 0 0

0 2 2 2 0 0 0 1 0

0 2 2 2 0 0 0 0 1

" (3.18)

in such a way that the new conservative variables º. are given by

º."P!º,

and read

º ."($, $
!"#

, $n
&
, I

'&
, $v

!
, $v

#
, $v

&
, $e!"!)!. (3.19)

The associated entropic variables are then » ."P0!» where » is given by (3.3), and
the corresponding symmetric system is easily obtained from (3.11) in the following
proposition.

Proposition 3.4. ¹he system in the new dependent variables » .,

» ."1
¹ (1

!"!
!!

#
v ) v, 1

!"#
!1

!"!
,2, 1n

&
, I

'&
!1

!"!
, v

!
, v

#
, v

&
!1)!, (3.20)

can be written

AI .
)
!
#
» .#!

$%%

AI .
$
!
$
» ." !

$"*%%

!
$
(GI .

$*
!
*
V . )#!6 ., (3.21)

where » .3O
31

"!'+2&!(!1/¹
)
, 0), AI .

)
"P!AI

)
P, AI .

$
"P!AI

$
P, i"1, 2, 3, GI .

$*
"

P!GI
$*
P, i, j"1, 2, 3, and where !6 ."P! (!)"(0, !

88
)!.

In particular, properties (S
!
)— (S

*
) which express the fact that the system is symmetric,

are satisfied and the dissipation matrices are given by

GI .
$*
"! 0

0
''+2&(-!

0
!-''+2&(
GI 88"88

$*
" , (3.22)

where GI 88"88
$*

is the lower right block of size n
+
#3 of GI .
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We now investigate normal forms for the system (3.11), or, equivalently, for the
system (3.21). We have a comprehensive description of this set of normal forms as was
shown in [4]. We use the possibility of mixing parabolic components—the » .

88
com-

ponents—established in Theorem 3.8 of [4], in order to simplify, as much as possible,
the analytic expression of the normal variables, and, consequently, of the matrix
coefficients appearing in the normal form. More specifically, we consider the variables

¼"($, log($9!
!"#

/$9!
!"!

),2, log($9'&
'&"8'&

/$9!
!"!

), v
!
, v

#
, v

&
, ¹ )!,

easily obtained by combining the » .
88

components, and derive the corresponding
normal form of the governing equations. We could also obtain the normal form
associated with the ‘natural’ normal variables ¼K "(º.

8
, ».

88
)! which guarantees

a conservative form for the dissipative terms of the system, leaves invariant the source
term !

88
, but has a more complex expression.

Let us first define the matrix coefficients of the normal form for the variable ¼,
before we enounce Theorem 3.5. The matrix AM

)
is defined by

AM
)
"!

1
5&

0

X
$
¹ I

&

0
$c&"!

/
¹ # " ,

where X is a square matrix of dimension n
+
!1 given by

X
(")"!"-

"&
(" !
&
)"-

$
(")
r
(

!$
(")
$
!"-

r
(
r
!

1
5&

, (k, K), (l, ¸)3S#$%" , (3.23)

where S#$%" "S#$%8"1, 1#. Denoting by 4"(4
!
, 4

#
, 4

&
)! an arbitrary vector of !&, the

matrices AM
$
, i"1, 2, 3, are defined by

!
$%%

AM
$:
4
$
"!

v ) 4
5&

Sym

0
''+0!(-!

Xv ) 4
$
5&
4 4!Z

$
¹ v ) 4I

&

0 0
!-''+0!(

$r
¹ 4#

$c&"!
/

¹ #
v ) 4 " ,

where Z is a vector of dimension n
+
!1 given by

Z
5
"$

5
!$

5
$

r
5
5&

, b3S#$%" .
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For the heat and mass diffusion matrices, GM ,"
$*

, i, j"1, 2, 3, we have

GM ,"
!!

"GM ,"
##

"GM ,"
&&

"GM ,"

"!
0 Sym

0
''+0!(-!

(D&"!
4"5

)
4"5%&

#$%"

0
&-!

0
&-''+0!(

0
&-&

0
1

¹! !
4%&#$%

D&"!
4"5

r
4
#$

5
*&"!
5 "

5%&
#$%"

0
!-&

-.&"!
¹ #

#2 !
4%&#$%

$
4
*&"!
4

r
4

¹#
# !

4"5%&#$%

D&"!
4"5

r
4
r
5

¹ #
"

whereas the non-diagonal terms vanish GM ,"
$*

"0, iOj. The dissipation matrices due to
the viscous effects GM #$

$*
, i, j"1, 2, 3, still have the structure (3.7) and the corresponding

matrices KM
$*
, i, j"1, 2, 3, are defined by

KM
!!

"1
¹ !

+&"!#*
&
,&"! 0 0 0

0 ,&"! 0 0

0 0 ,&"! 0

0 0 0 0 " ,

KM
!#

"1
¹ !

0 +&"!!#
&
,&"! 0 0

,&"! 0 0 0

0 0 0 0

0 0 0 0 " ,

with the other ones deduced by circular permutation and from the relations

KM
!#

"KM !
#!

, KM
!&

"KM !
&!

, KM
#&

"KM !
&#

.

Finally, we have HM "(0, HM
88

)!, where HM
88

is defined by

HM
88

"! !
$" *%%

!
$
(!

;88
V .

88
)#GI 88"88

$*
(!

;88
».

88
)!

*
¼

88
,

whereas the corresponding source term !9 reads !9 "(!
;

»)!!"(0, !9
88

)!, where !9
88

is
defined by

!9
88

"!m!
)

!"#
,2, m

'&
)

'& "8'&
, 0, 0, 0,! 1

¹ #
!

'(")(%&#$%

e
(")

m
(
)

(")"!.
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Note that the exponents for the matrix coefficients and the indices for the variables are
related to the bloc decomposition associated with the partitioning of the variable
¼"(¼

8
, ¼

88
)!.

Theorem 3.5. ¹he system in the variables ¼"(¼
8
, ¼

88
)!, on the open convex set

O
;

"(0, R)!!'+0!!!&!(¹
)
, R), with hyperbolic variable ¼

8
"($) and parabolic

variables ¼
88

"(log($9!
!"#

/$9!
!"!

), 2, log($9'&
'& "8'&

/$9!
!"!

), v
!
, v

#
, v

&
, ¹ )!, can be written

AM 8"8
)

!
#
¼

8
#!

$%%

AM 8"8
$

!
$
¼

8
#!

$%%

AM 8"88
$

!
$
¼

88
"0, (3.24)

AM 88"88
)

!
#
¼

88
#!

$%%

AM 88"8
$

!
$
¼

8
#!

$%%

AM 88"88
$

!
$
¼

88

" !
$" *%%

!
$
(GM 88"88

$*
!
*
¼

88
)#HM

88
#!9

88
, (3.25)

and is of the normal form.

Proof. The calculations are lengthy but straightforward and make use of Theorem 3.2,
Proposition 3.4 and assumptions (H

!
)—(H

/
). '

Remark 3.6. Note that when the source term ! remains in a fixed subspace of
!'+!0!* , the source term !9 is no longer in a fixed subspace of !'+2* of the same
dimension because of the coefficients e

(")
/¹ # in the term !

'(")(%&#$%e(")m
(
)

(")
/¹ #

which introduce an explicit dependence on the state variables.

4. The Cauchy problem

In this section we first restate an existence theorem of Vol’pert and Hudjaev
concerning symmetric hyperbolic—parabolic composite systems. We only present
a simplified quasilinear version of their existence result [7]. We then apply this
existence result to the equations governing multicomponent reactive flows in full
vibrational non-equilibrium, using the normal form obtained in the previous section.

4.1. ¹he mathematical framework

We consider the Cauchy problem for an abstract system of partial differential
equations in the form

AM *8"8
)

!
#
¼*

8
"! !

$%%*

AM *8"8
$

!
$
¼*

8
#:9 *

8
,

AM *88"88
)

!
#
¼*

88
"! !

$%%*

AM *88"8
$

!
$
¼*

8
# !

$" *%%*

!
$
(GM *88"88

$*
!
*
¼*

88
)#:9 *

88

(4.1)

where I""1,2, n
)
# and II""n

)
#1,2, n# form a partition of "1,2, n#,

¼*"(¼*
8
, ¼*

88
) is the corresponding decomposition of the unknown vector ¼*,
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and where C*""1,2, d# is the indexing set of spatial coordinates. Note that the
superscript * is used in order to distinguish between the abstract second order system
(4.1) of size n and !" and the particular multicomponent reactive flows system (3.24),
(3.25) of size n

+
#4 in !&. These equations are considered in the strip QM ( where ; is

positive and Q
#
"(0, t)!!" for t'0. The matrix and vector coefficients are assumed

to be in the form

AM *8"8
)

"AM *8"8
)

(¼*
8
, ¼*

88
),

AM *88"88
)

"AM *88"88
)

(¼*
8
, ¼*

88
),

AM *8"8
$

"AM *"8"8
$

(¼*
8
, ¼*

88
, !

.
¼*

88
), i3C*,

AM *88"8
$

"AM *88"8
$

(¼*
8
, ¼*

88
, !

.
¼*

88
), i3C*, (4.2)

GM *88"88
$*

"GM *88"88
$*

(¼*
8
, ¼*

88
), i, j3C*,

:9 *
8
":9 *

8
(¼*

8
, ¼*

88
, !

.
¼*

88
),

:9 *
88

":9 *
88

(¼*
8
, ¼*

88
, !

.
¼*

88
).

We assume that the matrices AM *8"8
)

(z), AM *88"88
)

(z), and GM *88"88
$*

(z), i, j3C*, are smooth
functions of z3O

;* , where O
;* is a convex open set of !'. Similarly, we assume that

the matrices AM *8"8
$

(z, <), i3C*, the matrices AM *88"8
$

(z, <), i3C*, and the vectors :9
8
(z, <)

and :9
88

(z, <) are smooth functions of z3O
;*, and <3!"-''0')(.

We will use the classical functional spaces ¸< (!") with norm

=!=
)"<

">!>
)"<

"!#!"

>! (x) >< dx"!2<, p*1,

the Sobolev spaces ¼!
<
(!" ), 1)p)R, with norm

=!=
!"<

" !
(%3)" !4

>! >
("<

, >! >
("<

" !
.).5(

=!)!=
)"<

,

and the functional spaces »
!
(!") with norm [7]

=!=
!
">!>

)"$
# !

(%3!" !4

>!>
("#

.

We extend these definition to vector functions by using the Euclidian norm of !".
According to the Sobolev inequalities, there is an imbedding of ¼!

#
(!" ) into ¼(

$
(!")

for l'd/2#k, and an imbedding of ¼ !
#
(!") into »

!
(!" ) for l'd/2. In the following,

L denotes an arbitrary fixed positive continuous convex function, on the open convex
set O

;* , which grows without bound as any finite point of the boundary of O
;* is

approached.

4.2. An existence theorem in »
!
(!")

We consider the Cauchy problem for the system (4.1), (4.2), with smooth initial
conditions

¼* (0, x)"¼*)(x). (4.3)
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The following theorem of Vol’pert and Hudjaev shows that, in a certain strip, there
exists a solution which preserves the smoothness of the initial condition [7].

Theorem 4.1. Suppose that the system (4.1)— (4.3) satisfies the following assumptions
where l denotes an integer such that l'd/2#3.

(Ex
!
) ¹he initial condition ¼*) satisfies sup

.%!"L(¼*)(x))(#R and ¼*) is in the
space »

!
(!").

(Ex
#
) ¹he matrix coefficients AM *8"8

)
(z), AM *88"88

)
(z), and GM *88"88

$*
(z), i, j3C*, have continu-

ous derivative of order l'd/2#3 with respect to z3O
;*.

(Ex
&
) ¹he matrix coefficients AM *8"8

$
(z, <) and AM *88"8

$
(z, <), i3C*, and the vectors :9 *

8
(z, <)

and :9 *
88

(z, <), have continuous derivative of order l'd/2#3 with respect to
z3O

;* and <3!"-''0')(.
(Ex

*
) ¹he matrix coefficients AM *8"8

)
and AM *88"88

)
are symmetric and positive definite for

z3O
;* .

(Ex
+
) ¹he matrix coefficients AM *8"8

$
(z, <), i3C*, are symmetric for z3O

;* and
<3!"-''0') (.

(Ex
,
) ¹he matrices AM *8"8

)
and AM *"88"88

)
and the vectors :9 *

8
(z, 0) and :9 *

88
(z, 0) have

continuous derivatives to order l#3 in z.
(Ex

-
) For any compact subset K of O

;*, there exists 3"3 (K) such that for any smooth
function z from !" to !' with values in K we have

#!"

!
$" *%%*

(!
$
!
88

)#GM *88"88
$*

(z (x))(!
*
!
88

) dx

*3 #!"

!
$%%*

(!
$
!
88

)# (!
$
!

88
) dx, (4.4)

where !
88

is any function in ¼!
#
(!") with n!n

)
components.

¹hen there exists t
)
, 0(t

)
);, such that the Cauchy problem (4.1), (4.2), admits

a unique solution ¼*"(¼*
8
, ¼*

88
)! defined on [0, t

)
]!!", which is continuous with its

derivatives of first order in t and second order in x, and for which the following
quantities are finite:

sup
)/#/#)

=¼* (t)=
!
, sup

=M #)

L(¼* ), (4.5)

sup
)/#/#)

=!
#
¼*

8
(t)=

!0!
, # #)

)
(=!

#
¼*

88
(?)=#

!0!
#=¼*

88
(?)=#

!2!
) d?. (4.6)

Moreover, either t
)
";, or there exists t

!
such that the theorem is true for any t

)
(t

!
and such that for t

)
Pt0

!
, at least one of the quantities

=¼*
8
(t
)
)=

!"$
#=¼*

88
(t
)
)=

#"$
, sup

=M #)

L(¼* ), (4.7)

grows without bound, that is to say, the solution can be extended as long as quantities
(4.7) remain finite.
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Remark 4.2. Theorem 4.1 is a simplified quasilinear version of the results obtained by
Vol’pert and Hudjaev [7]. The dependence on (t, x) of the various coefficients can also
be included as detailed in [7] and [6]. In this situation, the assumptions (Ex

#
), (Ex

&
)

and (Ex
,
) become

(Ex.
#
) The matrix coefficients AM *8"8

)
(t, x, z), AM *88"88

)
(t, x, z), and GM *88"88

$*
(t, x, z),

i, j3C*, have continuous and bounded derivatives until order l'd/2#3
with respect to (t, x)3QM ( and z3O

;* .
(Ex.

&
) The matrix coefficients AM *8"8

$
(t, x, z, <) and AM *88"8

$
(t, x, z, <), i3C*, and the

vectors :9 *
8
(t, x, z, <) and :9 *

88
(t, x, z, <), have continuous and bounded deriva-

tives until order l'd/2#3 with respect to (t, x)3QM ( , z3O
;* and

<3!"-''0')(.
(Ex.

,
) The matrices AM *8"8

)
(t, x, z) and AM *88"88

)
(t, x, z) and the vectors:9 *

8
(t, x, z, 0) and

:9 *
88

(t, x, z, 0), have continuous and bounded derivatives to order l#3 in
(t, x, z).

In addition, the following equi-integrability assumption is also needed and was
overlooked in [7]:

(Ex.
.
) For any compact set K of O

;
, the functions (!*

.
(AM *0!

)
) ) (t, ) , z(t, )), 0) and

(!*
.
:9 *) (t, ) , z (t, ) ), 0), where z is any smooth function on Q( taking its values

in K, are uniformly bounded in ¸# for 1)>@>)l#2.

Note that this property is automatically satisfied with the assumptions of Theorem
4.1 since these functional are independent of (t, x).

Remark 4.3. We have kept the second-order terms in divergence form for convenience.

4.3. Application to multicomponent flows

We now apply Theorem 4.1 to the system modelling multicomponent reactive flows
in !" with d3"1, 2, 3#.

Theorem 4.4. Consider the Cauchy problem for the system (3.24), (3.25) in !" with
d3"1, 2, 3#

AM
)
!
#
¼#!

$%%

AM
$
!
$
¼" !

$" *%%

!
$
(GM

$*
!
*
¼ )#HM #!9 , (4.8)

with initial conditions

¼ (0, x)"¼)(x), (4.9)

where

¼)3»
!
(!"), inf

!"

$)(x)'0, inf
!"

¹ )(x)'¹
)
. (4.10)
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¹hen there exists t
)
, 0(t

)
(R such that (4.8), (4.9) admit a unique solution

¼"(¼
8
, ¼

88
)! with ¼ (t, x)3O

;
in the strip QM

#)
"[0, t

)
]!!", continuous in QM

#)
with

its derivatives of first order in t and second order in x, and for which the following
inequalities hold;

sup
)/#/#)

!=$(t)=
!
# !

'(")(%&#$%"

=log($9(
(")

/$9!
!"!

) (t)=
!
#!

$%%

=v
$
(t)=

!
#=¹(t)=

!"(#R,

inf
=M #)

$(t, x)'0, inf
=M #)

¹(t, x)'¹
)
,

sup
)/#/#)

=!
#
$ (t)=

!0!
(#R,

# #)

)
! !

'(")(%&
#$%"

(!
#
log($9(

(")
/$9!

!"!
) (?)=#

!0!
#!

$%%

=!
#
v
$
(?)=#

!0!
#=!

#
¹ (?)=#

!0!

# !
'(")(%&

#$%"

=log($9(
(")

/$9!
!"!

) (?)=#
!2!

#!
$%%

=v
$
(?)=#

!2!
#=¹(?)=#

!2!"d?(#R.

Moreover, either t
)
"#R, or there exists t

!
such that the theorem is true for any

t
)
(t

!
and such that for t

)
Pt0

!
, either the following quantity,

=$ (t
)
)=

!"$
# !

'(")(%&
#$%"

=log($9(
(")

/$9!
!"!

)(t
)
)=

#"$
#!

$%%

=v
$
(t
)
)=

#"$
#=¹(t

)
)=

#"$
,

(4.11)

grows without bound or inf
=#)

¹P¹
)
.

Proof. Assume first that +&"! is a positive function and rewrite the system (3.24), (3.25)
of Theorem 3.5 in the form (4.1), (4.2) with

:9
8
"!!

*%%

AM 88"88
*

!
*
¼

88
,

:9
88

"HM
88

#!9
88

!!
*%%

AM 8"88
*

!
*
¼

88
.

We can then apply Theorem 4.1 to the resulting system with n"n
+
#1#d and

n
)
"1, where d3"1, 2, 3# is the particular dimension of interest.
Indeed, Properties (Ex

!
)— (Ex

,
) are easily checked from Theorem 3.5, the assump-

tions, and Properties (H
!
)—(H

/
). On the other hand, in order to establish (Ex

-
), we

consider separately the contributions of the matrices GM ,"
$*

, i, j3C, and GM #$
$*

, i, j3C.
From Theorem 3.5, we have GM ,""GM ,"

$$
, i3C, whereas GM ,"

$*
"0 for iOj. After a little

algebra, we obtain for 4
88

"(4
!"#

,2, 4
'& "8'&

, 4
'+2!

,2, 4
'+2*

)!3!'0') that

4#
88

GM ,"88"88 (¼)4
88

" !
4"5%&#$%

D&"!
4"5!44#! r

4
¹# p/&"!

4
¹ #$

4
"4'+2*"

!!45#! r
5

¹# p/&"!
5

¹ #$
5
" 4'+2*"#-&"!

¹ #
4#
'+2*

,
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where we have extended 4
88

into 4"(0, 4
88

)!. This identity shows that the matrix
GM ,"88"88 is positive definite on the subspace 4

!"!
"4

'+2!
"4

'+2#
"4

'+2&
"0 for any

¼3O
;

. As a consequence, for any function !
88

in ¼!
#
(!") with n!n

)
components,

denoted by !
88

"(!
!"#

,2, !
'& "8'&

, !
'+2!

,2, !
'+2*

), we have

!
$
!#
88

GM ,"88"88
$$

(¼)!
$
!
88

*3 (!
$
!#
!"#

#2#!
$
!#
'& "8'&

#!
$
!#
'+2*

), (4.12)

for i3C, uniformly for ¼ in a given compact of O (¼). On the other hand, after a little
algebra, we also obtain from Theorem 3.5 that

!
$"*%%

!
$
!#

88
GM #$88"88

$*
(¼)!

*
!
88

",&"!
¹ !

$"*%%
!!

$
o
*
#!

*
o
$
!2

3! !
(%%

!
(
o
("&$*"#

#+&"!
¹ ! !

(%%

!
(
o
("#, (4.13)

where o
$
"!

'+2$
, i3C. Since ,&"! and +&"! are positive, we have

!
$"*%%

!
$
!#

88
GM #$88"88

$*
(¼)!

*
!
88

*3 !
$"*%%

(!
$
o
*
#!

*
o
$
)#, (4.14)

where 3 is a positive constant, uniformly for ¼ in a compact of O
;

. Combining the
estimates (4.12) and (4.14) with the identity

#!"

!
$"*%%

(!
$
o
*
#!

*
o
$
)#dx"1

2 #!"

!
$"*%%

(!
$
o
*
)#dx#1

2 #!"!!
$%%

!
$
o
$"# dx,

valid for o
$
3¼!

#
(!"), i3C, we obtain (Ex

-
). Finally, we note that from the conserva-

tion of $

$(t, x)*inf
!"

$) (x) exp!!# #

)
=!

.
) v (s)=

)"$
ds",

and thus inf!"$ (t, x)'0 as long as (4.11) remains finite, so that only ¹ may reach the
boundary of O

;
.

On the other hand, when +&"! is only a non-negative function, we rewrite equation
(3.25) in a different form. We first note that

!
$"*%%

!
$
(GM #$88"88

$*
!
*
¼

88
)"!

.
)! ,&"!¹ (!

.
v#(!

.
v)#)#+&"!!#

&
,&"!

¹ !
.
) vI",

and we have the identity [7]

!
.
)! ,&"!¹ (!

.
v#(!

.
v)#)#+&"!!#

&
,&"!

¹ !
.
) vI""!

$%%

!
$! ,&"!¹ !

$
v"

#!
.

)!+&"!#
!
&
,&"!

¹ !
.
) vI"#!

$%%

!
$! ,&"!¹ " !

.
v
$
!(!

.
) v)!

.! ,&"!¹ ".
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We can thus rewrite equation (3.25) in the form

AM 88"88
)

!
#
¼

88
"!!

$%%

AM 88"8
$

!
$
¼

8
# !

$" *%%

!
$
(GM 88"88

$*
!
*
¼

88
)#:9

88
,

with new coefficients AM 88"8
$

, i3C, and GM 88"88
$*

, i, j3C, such that

!
$"*%%

!
$
(GM #$88"88

$*
!
*
¼

88
)"!

$%%

!
$! ,&"!¹ !

$
v "#!

.
)!+&"!#

!
&
,&"!

¹ !
.
) vI",

and with the lower order factors !
$%%

!
$
(,&"!/¹ )!

.
v
$
and !(!

.
) v)!

.
(,&"!/¹ ) dispatched

in the terms AM 88"8
$

!
$
¼

8
, i3C, and :9

88
.

More specifically, we define GM 88"88
$*

"GM ,"88"88
$*

#GM #$88"88
$*

, i, j3C, where
GM ,"88"88

$*
"GM ,"88"88

$*
, i, j3C, whereas GM #$88"88

$*
, i, j3C, are given by

GM #$88"88
$$

"GM #$88"88
$$

, i3C

and

G#$88"88
$*

"! 0
'+-'+

0
*-'+

0
'+-*

(+&"!#!
&
,&"!) (&

''+2(( ''+2$(
&
''+2!( ''+2*(

)
("!%3!"*4

"
for i, j3C, iOj.

Furthermore, we define AM 88"8
$

, i3C, and :9
88

by

AM 88"8
$

"AM 88"8
$

#(!
.
) v)!& ! ,&"!¹ "

and

:9
88

"!
$%%

!
$!,&"!¹ " !

.
v
$
!(!

.
) v) !!;88! ,&"!¹ ""!

.
¼

88
#HM

88
#!9

88

!!
*%%

AM 8"88
*

!
*
¼

88
,

and the end of the proof is similar to that of the preceding case. '
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