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Numerics of Backward SDEs E. Gobet

Agenda

• Lecture 1: short overview of theory of BSDEs and applications

• Lecture 2: different approaches for solving BSDEs, pros and cons.

Picard iterations. Discrete time BSDE.

• Lecture 3: rates of convergence of time discretization

• Lectures 4 and 5: empirical regression methods and robust algorithms
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1 Short overview of theory of BSDEs and
applications

[Ref: Pardoux, Peng ’90 ; Ma, Yong ’99 ; El Karoui, Peng, Quenez ’97 . . . ; El

Karoui, Hamadene, Matoussi ’08 for a recent review]

1.1 The simplest case

Let (Ω,F , (Ft)t,P) be a filtered probability space supporting a q-dimensional
Brownian motion (Wt)t≥0 (with (Ft)t= the P-augmentation of (FWt )t).
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Theorem. If ξ is a scalar r.v. in L2(FT ), then Yt = E(ξ|Ft) is a L2-martingale
which can be represented as a stochastic integral w.r.t. W of the (unique) adapted
process (Zt)t (with E(

∫ T
0
|Zt|2dt) <∞):

ξ = E(ξ) +
∫ T

0

ZsdWs,

Yt = E(ξ|Ft)

= E(ξ) +
∫ t

0

ZsdWs, (forward representation)

= ξ −
∫ T

t

ZsdWs. (backward representation)
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Yt = ξ −
∫ T
t
ZsdWs (cont’d)

With the BSDE formalism, it writes

−dYt = −ZtdWt,

YT = ξ.

Stochastic target problem: the target (terminal condition) ξ is usually given,
as well the terminal time T (here assumed to be deterministic).

Constraint: Yt has to be Ft-adapted (taking Yt = ξ and Z ≡ 0 is not
admissible).

 The Z-process plays the role of a control, making Y adapted.

More general BSDEs
−dYt = f(t, Yt, Zt)dt− ZtdWt,

YT = ξ.

where (y, z) 7→ f(t, ω, y, z) is the so-called driver or generator (possibly random).
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1.2 Existence and uniquess in L2 for Lipschitz drivers

Assumptions:

• f : Ω× [0, T ]× R× Rq 7→ R is P ⊗ B(R)⊗ B(Rq)-measurable (P=set of
Ft-progressively measurable scalar processes on Ω× [0, T ]).
In practice, f(t, ω,y, z) = f(t,Xt(ω),y, z) where X solves a forward SDE and
f(t, x, y, z) is continuous.

• Lipschitz driver: |f(t, ω,y1, z1)− f(t, ω,y2, z2)| ≤ Cf (|y1 − y2|+ |z1 − z2|),
uniformly in (t, ω).

• Bound on the driver: E(
∫ T

0
f2(t, 0, 0)dt) <∞.

Notations:

1. H2
β,T = set of R (or Rq)-valued F-adapted processes U such that

E(
∫ T

0
eβt|Ut|2dt) <∞.

2. S2
β,T = set of scalar F-adapted continuous processes Y such that

E(supt∈[0,T ] e
βt|Yt|2) <∞.
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Existence and uniqueness

Theorem. Under the previous notations and for any square-integrable terminal
condition ξ, there is a unique solution (Y,Z) in S2

0,T ×H2
0,T to the BSDE:

−dYt = f(t,Yt,Zt)dt− ZtdWt,

YT = ξ,

or equivalently Yt = ξ +
∫ T

t
f(s,Ys,Zs)ds−

∫ T

t
ZsdWs.

Proof by Picard’s fixed point theorem

Used two ingredients:

1. the solution (Y,Z) is the fixed point of a contracting mapping in the Hilbert
space H2

β,T ×H2
β,T (for some β depending on Cf ),

2. a priori estimates.
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A candidate for the mapping
Consider two processes (y, z) ∈ H2

0,T ×H2
0,T and set (hs = f(s, ys, zs))s ∈ H2

0,T .

Define

Mt = E
(
ξ +

∫ T

0

hsds|Ft
)
.

One checks the following:

• M is a L2-martingale and for some Z ∈ H2
0,T

Mt = M0 +
∫ t

0

ZsdWs = ξ +
∫ T

0

hsds−
∫ T

t

ZsdWs.

• By setting Yt := Mt −
∫ t

0
hsds, one has Y ∈ H2

0,T .

• It defines a mapping Θ : (y, z) ∈ H2
0,T ×H2

0,T 7→ (Y, Z) ∈ H2
0,T ×H2

0,T .

• Backward representation:

Yt = ξ +
∫ T

t

hsds−
∫ T

t

ZsdWs.
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A priori estimates in H2
β,T for β large enough

Take (Y1, Z1) = Θ(y1, z1) and (Y2, Z2) = Θ(y2, z2). Then, Ito’s formula applied to
eβs|Y1,s − Y2,s|2 gives

0 =E(eβt|Y1,t − Y2,t|2 +
∫ T

t

βeβs|Y1,s − Y2,s|2ds+
∫ T

t

eβs|Z1,s − Z2,s|2ds)

+ E(
∫ T

t

2eβs(Y1,s − Y2,s)(f(s, y1,s, z1,s)− f(s, y2,s, z2,s))ds)︸ ︷︷ ︸
≥−E

( R T
t

eβs
[
2

C2
f
ε |Y1,s−Y2,s|2+ε|y1,s−y2,s|2+ε|z1,s−z2,s|2

]
ds
)

using the inequality 2ab ≤ a2

ε + εb2 for any ε > 0. Taking ε = 1
2 , β = 1 + 4C2

f and
t = 0 gives

E(

Z T

0

eβs[|Y1,s − Y2,s|2 + |Z1,s − Z2,s|2]ds) ≤ 1

2
E(

Z T

0

eβs
ˆ
|y1,s − y2,s|2 + |z1,s − z2,s|2

˜
ds),

that is

‖(Y1 − Y2, Z1 − Z2)‖2H2
β,T
≤ 1

2
‖(y1 − y2, z1 − z2)‖2H2

β,T
!!
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Application to effectively construct a solution

Construction of sequence of processes (Yk, Zk)k converging to (Y,Z) in H2
0,T ×H2

0,T

sequence:

1. Initialization: Y 0 ≡ 0, Z0 ≡ 0.

2. Iteration: set (Yk+1, Zk+1) = Θ(Yk, Zk), that is

Yk+1,t = ξ +
∫ T

t

f(s, Yk,s, Zk,s)ds−
∫ T

t

Zk+1,sdWs.

Due to contraction propert of Φ, the convergence is geometric.

At each step k, Yk is given by conditional expectations.

Could be computed...

Zk comes from Brownian martingale representation theorem.

How to compute it?

 Long is the road to a practical algorithm. . .
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1.3 Linear BSDE (see [EPQ97])

Consider the solution to YT = ξ ∈ L2 and

−dYt = [ϕt + Ytαt + Ztγt]dt− ZtdWt

(with bounded (α, γ) and ϕ ∈ H2
0,T ). The unique solution (Y, Z) in S2

0,T ×H2
0,T is

such that

Yt = E[ξΓt
T +

∫ T

t

Γt
sϕsds|Ft]

where (Γts)s≥t solves the linear SDE

dΓts = Γts(αsds+ γs · dWs), Γtt = 1,

or equivalently Γst = exp(
∫ s
t

(αr − 1
2 |γr|

2)dr +
∫ s
t
γr · dWr).

Proof. Existence and uniqueness: clear.

Representation: check that YtΓ0
t +

∫ t
0

Γ0
sϕsds is a uniformly integrable martingale.

Corollary: If ϕ ≥ 0 and ξ ≥ 0, then Y ≥ 0.
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Application to comparison of BSDEs

Theorem: consider (ξ1, f1) and (ξ2, f2) two standard parameters of BSDE and
denote by (Y1, Z1) and (Y2, Z2) the two solutions in S2

0,T ×H2
0,T . Assume that

1. ∆ξ = ξ1 − ξ2 ≥ 0,

2. ∆f(t) = f1(t, Y2,t, Z2,t)− f2(t, Y2,t, Z2,t) ≥ 0 (one compares drivers along the
second solution).

Then a.s for any t, we have Y1,t ≥ Y2,t.

Corollary: if ξ ≥ 0 and f(t, 0, 0) ≥ 0, then Yt ≥ 0 (generalization of the LBSDE
case).

Remark: the comparison is strict (i.e. Y1,0 = Y2,0 implies ∆ξ = 0 and ∆f(t) ≡ 0
a.s.).
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Proof of comparison theorem

The BSDE difference (∆Y,∆Z) = (Y1 − Y2, Z1 − Z2) is the unique solution of

∆Yt =∆ξ,

−d∆Yt =(f1(t, Y1,t, Z1,t)− f2(t, Y2,t, Z2,t))dt−∆ZtdWt

=(f1(t, Y1,t, Z1,t)− f1(t, Y2,t, Z1,t))dt+ (f1(t, Y2,t, Z1,t)− f1(t, Y2,t, Z2,t))dt

+ ∆f(t)dt−∆ZtdWt

=[αt∆Yt + ∆Ztγt + ∆f(t)]dt−∆ZtdWt.

 This is a LBSDE

Since ∆ξ ≥ 0 and ∆f(t) ≥ 0, we deduce ∆Yt ≥ 0. �

Remark: we have only used the Lipschitz property of the driver f1.
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1.4 Different generalizations

Non brownian filtration

Assume now that (Ft) is a right-continous complete filtration.

Look for solution (Y,Z, L) to

−dYt = f(t, Yt, Zt)dt− ZtdWt − dLt,

YT = ξ,

where Y is RCCL process, Z is predictable and L is a RCCL martingale,
orthogonal to W .

Theorem. For square integrable terminal conditions and Lipschitz drivers, there is
a unique solution (Y,Z, L) in S2

0,T ×H2
0,T ×H2

0,T .

[REF: El Karoui-Peng-Quenez ’97 , or Barles-Buckdahn-Pardoux ’97 for drivers

depending on L . . . ]
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Extension to BSDE in Lp, p > 1

[REF: Briand-Delyon-Hu-Pardoux-Stroica ’03]

One can replace

1. ξ ∈ L2 by ξ ∈ Lp.

2. E(
∫ T

0
|f(t, 0, 0)|2ds) <∞ by

∫ T
0
|f(t, 0, 0)|ds ∈ Lp.

Then, existence and uniqueness of solutions in Lp-spaces.

Summer School in Probability Theory - Disentis - 26-30 July 2010 page 15



Numerics of Backward SDEs E. Gobet

Monotonic drivers

[REF: Darling, Pardoux ’97 . . . ]

Assume that

1. (y1 − y2)[f(t, y1, z)− f(t, y2, z)
]
≤ µ|y1 − y2|2 (µ ∈ R) (f is not necessarly

Lipschitz in y).

2. y 7→ f(t, y, z) is continuous + a growth condition.

3. f is Lipschitz w.r.t. z.

Then, existence and uniqueness in L2 (and Lp in [BDH+03]).
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Continuous drivers

[REF: Lepeltier, San Martin ’97]

Assume that

1. f has a linear growth in y and z: |f(t, y, z)| ≤ αt + k|y|+ k|z| with α ∈ H2
0,T

2. (y, z) 7→ f(t, y, z) is continuous

Then, existence of a minimal solution (Y , Z) and a maximal solution (Y , Z),
i.e. for any other solution (Y,Z), one has

Y ≤ Y ≤ Y a.s.
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Sketch of proof for the minimal solution :

1. Inf-convolution approximation: for n ≥ k define

fn(t,y, z) = inf
(y′,z′)∈Qq+1

{f(t,y′, z′) + n|(y − y′, z− z′)|}.

2. fn is a standard Lipschitz driver with Lipschitz constant equal to n: denote by
(Yn, Zn) the associated solution.

3. (fn)n is increasing =⇒ Yn ≤ Yn+1 =⇒ . . . (Yn, Zn)n has a limit in H2
0,T ×H2

0,T .

Denote by (Y , Z) this limit.

4. fn(t, yn, zn)→ f(t, y, z) for any (yn, zn)→ (y, z)=⇒ . . . the previous limit
solves the BSDE.

5. Clearly fn(t, y, z) ≤ f(t, y, z) =⇒ Yn ≤ Y for any solution (Y,Z)

=⇒ (Y , Z) is the minimal solution.
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Quadratic BSDE
[REF: Kobylanski ’00, Lepeltier, San Martin ’98]

Assume that

1. f has a linear growth in y and quadratic in z: |f(t, y, z)| ≤ k(1 + |y|+ |z|2),

2. (y, z) 7→ f(t, y, z) is continuous,

3. the terminal condition ξ is bounded.

Then, existence of a maximal solution (Y , Z) with a bounded Y .

Extension to ξ with exponential growth condition, see [BH06].

Simple example of quadratic BSDE

yt = E(exp(2ξ)|Ft)) = exp(2ξ)−
∫ T

t

zsysdWs,

Yt =
1
2

log(yt) = ξ +
∫ T

t

z2
s

4
ds−

∫ T

t

zs
2
dWs.

=⇒ (Y, z2 ) solves a BSDE with driver f(t, y, z) = z2.
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1.5 Connection with PDEs: formal link

Assume that f(t, ω, x, y) = f(t,Xt, y, z) and ξ = g(XT ) where X is a forward SDE:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt.

Take a smooth (?) solution u to

∂tu(t,x) +
∑

i

bi(t,x)∂xi
u(t,x)

+
1
2

∑
i,j

[σσ∗]i,j(t,x)∂2
xi,xj

u(t,x) + f(t,x,u(t,x),∇uσ(t,x)) = 0

u(T,x) = g(x).

Then by Ito’s formula Yt = u(t,Xt) and ”Zt = ∇uσ(t,Xt)” solves the BSDE with
driver f and terminal condition ξ = g(XT ).

In general, solutions in viscosity sense and not in classical sense (unless an
ellipticity condition is fulfilled).

[Ref: [PP92], [Par98] . . . ]
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1.6 Reflected BSDEs and optimal stopping [EKP+97]

∃ solution (Y,Z,K) to
Yt = Φ +

∫ T
t
f(s, Ys, Zs)ds+ KT −Kt −

∫ T
t
ZsdWs,

Yt ≥ Ot,

K is continuous, increasing, K0 = 0 and
∫ T

0
(Yt −Ot)dKt = 0.

Assumptions:

• standard Lipschitz driver f + augmented Brownian filtration

• Φ ∈ L2(FT )

• The obstacle O is a continuous adapted process, satisfying Φ ≥ OT and
E sup
t≤T

O2
t <∞.

Theorem. There is a unique triplet solution (Y,Z,K).
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Applications to optimal stopping problems

Lower bound. For any stopping time τ ∈ Tt,T , one has

Yt = E(Yτ +
∫ τ

t

f(s, Ys, Zs)ds+Kτ −Kt −
∫ τ

t

ZsdWs|Ft)

≥ E(Oτ1τ<T + Φ1τ=T +
∫ τ

t

f(s, Ys, Zs)ds|Ft),

which implies Yt ≥ ess sup
τ∈Tt,T

E(Oτ1τ<T + Φ1τ=T +
∫ τ

t

f(s,Ys,Zs)ds|Ft).

Equality. The equality holds for τ∗ = inf{u ∈ [t, T ] : Yu = Ou} ∧ T .
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Methods of construction of a solution

1. Picard iteration + Snell envelops.

So far, does not lead to a practical numerical method.

2. Penalized BSDEs. Consider the sequence of standard BSDEs (Y n, Zn)n≥0

defined by

Y nt = Φ +
∫ T

t

f(s, Y ns , Z
n
s )ds+ n

∫ T

t

(Yn
s −Os)−ds−

∫ T

t

Zns dWs.

• By comparison theorem, Y n ≤ Y n+1, hence it converges to a process Y  

lower approximation.

• We can prove that Yt ≥ Ot.
• By setting Kn

t = n
∫ t

0
(Y ns −Os)−ds, one can prove that (Zn,Kn) is a

Cauchy sequence that the limit-triplet (Y n, Zn,Kn) converges to the
RBSDE.

The penalization approach can be turned into a numerical method.
The driver and its Lipschitz constant increases like n!!
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Methods of construction of a solution (Cont’d)

3. Specific representation of the local time K. [Bally, Caballero, Fernandez,

El Karoui ’02]

Assume that the obstacle O has the Ito decomposition:

dOt = Utdt+ VtdWt + dA+
t

with A+ is a continuous increasing process, with dA+
t singular w.r.t. dt.

Examples in finance: call, put, convex payoffs...

Then, one has

• smooth-fit condition:
Zt = Vt on the set {Yt = Ot}.

• absolute continuity of K:
dKt = αt1Yt=Ot(f(t, Ot, Vt) + Ut)−dt for some αt ∈ [0, 1].

Proof. The Ito decompositions of d(Yt −Ot) and d(Yt −Ot)+ coincide!!
Proceed by identification.
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An alternative representation of reflected BSDE [BCFK02]

∃ solution (Y,Z, α) to Yt = Φ +
∫ T
t
f(s, Ys, Zs)ds+

∫ T

t
αs1Ys=Os(f(s,Os,Vs) + Us)−ds−

∫ T
t
ZsdWs,

Yt ≥ Ot.

Theorem. There is a unique solution (Y,Z, α) and 0 ≤ α ≤ 1.

α is uniquely determined only on {(s, ω) : 1Ys=Os(f(s,Os, Vs) + Us)− > 0}.

By setting Kt =
∫ t

0
αs1Ys=Os(f(s,Os, Vs) + Us)−ds, this proves that (Y,Z,K) is

solution to the standard RBSDE.
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Solving
Yt = Φ+

∫ T
t
f(s, Ys, Zs)ds+

∫ T
t
αs1Ys=Os(f(s,Os, Vs)+Us)−ds−

∫ T
t
ZsdWs

The solution is obtained as follows:

• define a smooth function ϕn such that 1[0,2−n] ≤ ϕn ≤ 1[0,2−(n−1)].

• consider the solution (Y n, Zn) of the standard BSDE with driver
fn(s, ω,y, z) = f(s, ω,y, z) + ϕn(y −Ot)(f(s,Os,Vs) + Us)−.

• show that (Y n, Zn) converges to (Y,Z) and that αn converges to α1Y=O.

Then, Y n is a decreasing sequence converging to Y .

=⇒ Very interesting for numerical methods since

it gives an upper approximation (the penalization app. gives a lower bound).

the bounds on the approximated driver depends less on n than for the
penalization scheme.

No available estimates on the rate of convergence w.r.t. n.
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1.7 An application of BSDE: Pricing/Hedging of European
style contingent claims

[Ref: El Karoui, Peng, Quenez ’97 ; El Karoui, Quenez ’97 ; Peng ’03; El

Karoui-Hamadène-Matoussi ’08]

Standard filtered probability space (Ω,F , (Ft)0 ≤ t ≤ T ,P), supporting a standard
BM W ∈ Rq modeling the randomness of the financial markets.
Usual assumptions:

1. d risky assets: dSi
t = Si

t(b
i
tdt +

q∑
j=1

σi,j
t dWj

t), 1 ≤ i ≤ d.

The appreciation rates bi and volatilities σi,j are predictable and bounded.

2. A non risky asset (money market instrument): dS0
t = S0

t rtdt, where rt is the
short rate (predictable and bounded).

3. Existence of risk premium θt: predictable and bounded process such that
bt − rt1 = σtθt (1 is the vector with all components equal to 1).
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1.7.1 Self-financing strategy

φt: the row vector of amounts invested in each risky asset.

Here, we do not assume any constraints on the strategy.

The wealth process Yt satisfies the self-financing condition:

dYt =
d∑
i=1

φit
dSit
Sit

+ (Yt −
d∑
i=1

φi(t))rtdt

= φt(σtdWt + btdt) + (Yt − φt1)rtdt

= rtYtdt+ φtσtθtdt+ φtσtdWt.

If we set Zt = φtσt, the self-financing condition writes

−dYt = −rtYtdt− Ztθtdt− ZtdWt.

Up to the specification of the terminal value of YT , (Y,Z) solves a Linear BSDE,
with a driver defined by f(t, ω,y, z) = −rty − zθt.
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The driver f(t, ω, y, z) = −rty − zθt is globally Lipschitz in (y, z) (recall that r and
θ are bounded).

Note that to safely come back to the hedging strategy, one has to invert the
relation φt 7→ Zt = φtσt

 usually, the volatility matrix σ has to be invertible ↔ complete
market.

1.7.2 Complete market without portfolio constraints

Replication of an option

Assume additionnally that

1. the volatility matrix σ has a full rank (d = q) and its inverse is bounded.

Consider a option maturing at T and payoff ξ(St : 0 ≤ t ≤ T) = ξ (a
path-dependent functional of S).
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Possible to replicate of the option: YT = ξ?

Link with the risk-neutral valuation rule?

Positive answer with BSDE

Theorem. If ξ(St : 0 ≤ t ≤ T ) ∈ L2(P), then there is a solution (Y,Z) ∈ H2
2 to the

LBSDE and thus to the hedging problem.

In addition, the Y -component has a explicit representation as a conditional
expectation.

Proof.

• Apply standard BSDE results for existence and uniqueness.

• The hedging strategy is given by φt = Ztσ
−1
t .
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Finally, this is a LBSDE, which has an explicit representation

Yt = EP
[

exp(
∫ T

t

(−rs −
1
2
|θs|2)ds−

∫ T

t

θ∗sdWs)ξ|Ft
]

= EQ
[

exp(
∫ T

t

−rsds)ξ|Ft
]

where Q|Ft = exp(− 1
2

∫ t
0
|θs|2)ds−

∫ t
0
θ∗sdWs)P|Ft defines the usual (unique)

risk-neutral measure.

Solving this BSDE is done under the historical measure (with non risk-neutral
simulations) and estimates under P!

Summer School in Probability Theory - Disentis - 26-30 July 2010 page 31



Numerics of Backward SDEs E. Gobet

1.7.3 Complete market with portfolio constraints

Bid-ask spread for interest rates [Bergman ’95, Korn ’95, Cvitanic

Karatzas ’93]

The investor borrows money at interest rate Rt and lends at rate rt < Rt.
 Modification of the self-financing strategy:

dYt =
d∑
i=1

φit
dSit
Sit

+ (Yt −
d∑
i=1

φi(t))+rtdt− (Yt −
d∑
i=1

φi(t))−Rtdt

= φt(σtdWt + btdt) + (Yt − φt1)rtdt− (Rt − rt)(Yt − φt1)−dt

= rtYtdt+ φtσtθ
r
tdt+ φtσtdWt −(Rt − rt)(Yt − φt1)−︸ ︷︷ ︸

additional cost when borrowing

dt

where bt − rt1 = σtθ
r
t .

Similarly, with bt −Rt1 = σtθ
R
t , we have

dYt = RtYtdt+ φtσtθ
R
t dt+ φtσtdWt −(Rt − rt)(Yt − φt1)+︸ ︷︷ ︸

smaller portfolio appreciation when lending

dt.
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Set Zt = φtσt. Then, (Y,Z) solves a non-linear BSDE with the globally Lipschitz
driver

fr,R(t,y, z) = −rty − zθrt + (Rt − rt)(y − zσ−1
t 1)−

= −Rty − zθRt + (Rt − rt)(y − zσ−1
t 1)+.

We focus on the dependence on (r,R) by denoting (Yr,R,Zr,R) the solution to the
BSDE with a given terminal condition and driver fr,R.

Comparison of prices with/without different interest rates?

Lower bounds. The price with different interest rates is still larger than the price
with fixed interest rates:

Yr,R
t ≥ max(Yr,r

t ,YR,R
t )

for any t ∈ [0, T ].

Proof. Apply the comparison theorem within its strong version:

fr,R(t, y, z) ≥ max(−rty − zθrt ,−Rty − zθRt ) = max(fr,r(t, y, z), fR,R(t, y, z)).
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Upper bounds and equalities: examples in the Black-Scholes setting.

• Call option: Φ(S) = (ST −K)+.
From the Black-Scholes formula with a single interest rate, one knows that
the amount in cash is always negative (money borrowing)  

fr,R(t,YR,R
t ,ZR,R

t ) = −RtY R,Rt − ZR,Rt θRt + (Rt − rt) (Y R,Rt − ZR,Rt σ−1
t 1)+︸ ︷︷ ︸

=0

= fR,R(t,YR,R
t ,ZR,R

t ).

Hence, (Y R,R, ZR,R) also solves the BSDE with the driver fr,R. By uniqueness:

(Yr,R,Zr,R) = (YR,R,ZR,R).

The price is obtained using the higher interest rate.
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• Put option: Φ(S) = (K − ST )+.
Similarly, with a single interest rate, one always lends money  

(Yr,R,Zr,R) = (Yr,r,Zr,r).

The price is obtained with the lower interest rate.

• Call Spread: Φ(S) = (ST −K1)+ − 2(ST −K2)+ (K1 < K2).
With probability 1, we have

Yr,R
t > max(Yr,r

t ,YR,R
t ) ∀t < T.

Proof by contradiction. Assume the equality on a set A ∈ Ft. The
comparison theorem implies the equality of drivers along (Y r,rs , Zr,rs )t≤s≤T and
(Y R,Rs , ZR,Rs )t≤s≤T almost surely on A  P(A) = 0.

• General payoff with deterministic coefficients (rt)t, (Rt)t, (σt)t, (bt)t :
sufficient conditions in [EPQ97]. If

DtΦ(S)σ−1
t 1 ≥ Φ(S) dt⊗ dP − a.e.,

then (Yr,R,Zr,R) = (YR,R,ZR,R).
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Short sales constraints [Jouiny, Kallal ’95...]

Difference of returns blt and bst when long and short positions in the risky assets.

Aim at modeling the existence of reposit rate for instance.

Similar story as before.

Leads to

• two risk premias θl
t and θs

t.

• a BSDE with non-linear driver f(t,y, z) = −rty − zθl
t + [zσ−1

t ]−σt(θl
t − θs

t).
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1.7.4 Incomplete markets

Suppose that d < q: number of tradable assets d smaller than the number of
sources of risk q.

Examples:

• trading restriction on the assets.

• stochastic volatilities model like Heston model:

dSt = St(rtdt+
√
VtdWt),

dVt = κ(V̄ − Vt)dt+ ξ
√
VtdBt,

d〈W,B〉t = ρtdt.

Here d = 1 (one can not trade the volatility) and q = 2.
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Market incompleteness

Denote the associated amount φ1
t in the traded assets and the associated volatility

σ1
t ∈ Rd ⊗ Rq w.r.t. the q-dimensional BM W .

The self-financing equation writes: dYt = rtYtdt + φ1
tσ

1
t θtdt + φ1

tσ
1
t dWt.

In general, there does not exist a strategy φ1
t such that YT = Φ(S).

Possible approaches:

1. mean-variance hedging

2. super-replication

3. ...

4. local-risk minimization: mean self-financing strategy + orthogonality of the
cost process to the tradable martingale part

 Find a martingale M orthogonal to (
∫ t

0
σ1
sdWs)t such that

YT + MT = Φ(S) ([Föllmer-Schweizer decomposition ’90]).
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A BSDE-solution to the FS decomposition

Assumption: rank(σ1
t ) = d (non redundant tradable assets).

The FS strategy is obtained by solving a linear BSDE

dYt = rtYtdt + Ztθ
1
t dt + ZtdWt, YT = Φ(S),

where

• σt =

 σ1
t

σ2
t

 ∈ Rq ⊗Rq has a full rank q (we complete the market by fictitious

assets with volatilities σ2
t ).

• θ1
t = Proj⊥Range([σ1

t ]∗)(θt) is the minimal risk premium.

(the solution of this LBSDE is the risk-neutral evaluation under the minimal
martingale measure).
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Proof by verification. (Y, Z) solves dYt = rtYtdt+ Ztθ
1
t dt+ ZtdWt where

θ1
t = [σ1

t ]∗[σ1
t σ

1,∗
t ]−1σ1

t θt.

Define [Z1
t ]∗ := Proj⊥Range([σ1

t ]∗)(Z
∗
t) = [σ1

t ]∗[φ1
t ]∗ and Z2

t := Zt − Z1
t .

Since Rq = Range([σ1
t ]∗)⊕Ker(σ1

t ), one has [Z2
t ]∗ ∈ Ker(σ1

t ): σ1
t [Z2

t ]∗ = 0.

It follows

• Ztθ1
t = Z1

t θ
1
t + Z2

t θ
1
t = φ1

tσ
1
t θ

1
t + Z2

t [σ1
t ]∗[σ1

t σ
1,∗
t ]−1σ1

t θt︸ ︷︷ ︸
=0

= φ1
tσ

1
t θ

1
t ,

• ZtdWt = φ1
tσ

1
t dWt + Z2

t dWt︸ ︷︷ ︸
=:dMt

.

Thus, dYt = rtYtdt + φ1
tσ

1
t θ

1
t dt + φ1

tσ
1
t dWt + dMt.

In addition, <
∫ .

0

σ1
s dWs,M >t=

∫ t

0

σ1
s [Z2

s ]∗ds = 0

=⇒ M is strongly orthogonal to (
∫ t

0
σ1
t dWt)t.

Uniqueness is proved similarly.
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1.8 An application of BSDE: dynamically consistent
evaluation [(Peng ’03)]

An operator Es,t : L2(Ft) 7→ L2(Fs) is a dynamically consistent non linear
evaluation if it satisfies:

A1) Monotonicity: X ≥ Y=⇒ Es,t(X) ≥ Es,t(Y ).

A2) Constant-preserving: Et,t(X) = X for X ∈ L2(Ft).

A3) Time-consistency: Er,s(Es,t(X)) = Er,t(X) for all r ≤ s ≤ t.

A4) 0-1 law: ∀A ∈ Fs and X ∈ L2(Ft) with s ≤ t, one has
1AEs,t(X) = 1AEs,t(1AX).

Consider a Lipschitz driver g and for X ∈ L2(Ft), denote by (Y gs,t(X))s≤t the

solution to Ys = X +
∫ t

s

g(r,Yr,Zr)dr−
∫ t

s

ZrdWr. Then Y
g
s,t(X) = Es,t(X)

defines a dynamically consistent non linear evaluation.

Proof. Follows from standard comparison and flow properties of BSDEs.
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Converse property for dominated non linear evaluation

Consider a Brownian filtration and a dynamically consistent non linear evaluation
operator Es,t(.).

Define gµ(y, z) = µ|y|+ µ|z|.

In addition, assume that for some (kt)t and µ > 0, one has

• Y −gµ+k
s,t (X) ≤ Es,t(X) ≤ Y gµ+k

s,t (X) for all X ∈ L2(Ft),

• Es,t(X)− Es,t(X ′) ≤ Y
gµ
s,t (X −X ′) for all X,X ′ ∈ L2(Ft).

Then, there exits a standard driver with g(t, 0, 0) = kt such that

Es,t(X) = Yg
s,t(X).

Extension to a domination by quadratic BSDEs [Hu, Ma, Peng, Yao ’08...]

Qualitative properties on g tranfer to the Y gs,t(X): sub-additivity, positive
homogeneity, convexity... Interesting applications for risk measures.

See [Artzner, Delbaen, Eber, Heath’99; Barrieu, El Karoui ’09...]
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Other connections and applications

• Superhedging via increasing sequence of non linear BSDEs (via penalization on
the non tradable risks) [Cvitanic, Karatzas ’93; El Karoui, Quenez ’95; El

Karoui, Peng, Quenez ’97]

• Non linear pricing theory [El Karoui, Quenez ’97]

• Large investor (fully coupled FBSDE) [Cvitanic, Ma ’96...].

• Recursive utility: driver quadratic in z [Duffie, Epstein ’92 ...].

• Exponential hedging and quadratic BSDE [El Karoui, Rouge ’01; Sekine ’06 ...]

: V (x) = supφ∈AE(U(Xx,φ
T − F )) with U exponential utility.

• American options [El Karoui, Kapoudjian, Pardoux, Peng, Quenez ’97 ]

• Switching problems [Hamadene, Jeanblanc ’07...].

• 2BSDE [Cheridito, Soner, Touzi and Victoir ’07 ...]

• . . .
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2 Numerical methods

Our aim:

• to simulate Y and Z

• to estimate the error, in order to tune finely the convergence parameters.

Quite intricate and demanding since

• it is a non-linear problem (the current process dynamics depend on the future
evolution of the solution).

• it involves various deterministic and probabilistic tools (also from statistics).

• the estimation of the convergence rate is not easy because of the non-linearity,
of the loss of independence (mixing of independent simulations)...
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2.1 Quick overview of different probabilistic numerical
approaches

1. Picard iteration. The non-linear problem is approximated by a sequence of
linar problems: Yk+1,t = ξ +

∫ T
t
f(s, Yk,s, Zk,s)ds−

∫ T
t
Zk+1,sdWs.

List of issues:

• how to compute conditional expectations?

• how to compute the predictable process in the Predictable Representation
Theorem (like a gradient)?

• impact of the approximated forward component simulation on the BSDE
approximation?

• convergence of the processes versus convergence of the value functions?

• choice of the norms, to handle Picard iterations and value function
approximation, in a closed form?

• . . .

Related works: [Labart PhD thesis ’07, Bender-Denk’07 , G.-Labart ’10 ]
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2. Dynamic programming equation.

• Split the interval [0, T ] into N sub-intervals of same size (why so?)

• On each small interval, the time variable can be made constant, the process
(Yt, Zt)0≤t≤T becomes approximatively piecewise constant.
 Discrete time BSDE (Y Ntk , Z

N
tk

)0≤k≤N .

Error analysis of the time discretization? [Bally ’97, Chevance ’97 ,

Zhang ’04. . . ]

• Leads to solve a system of N iterated conditional expectations.
– What method?
∗ binomial tree method or random walks techniques [BDM01] . . .
∗ quantization methods [Che97, BP03] . . .
∗ Malliavin calculus [BT04] . . .
∗ non parametric regression [GLW05]. . .
∗ cubature formulas [CM10].

– Which accuracy? error propagations along the N iterated steps (in
a more important way compared to Picard iterations).
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2.2 Intricate mixing of weak and strong approximations

REMINDERS

Strong approximation. (XN
t )0≤t≤T is a strong approximation of (Xt)0≤t≤T if

supt≤T ‖XN
t −Xt‖Lp → 0 ( or ‖ supt≤T |XN

t −Xt|‖Lp → 0) as N goes to ∞.

Weak approximation. For any test function Φ (smooth or non smooth), one has

E(Φ(XN
T ))− E(Φ(XT ))→ 0 as N goes to ∞.

Examples. Approximation of SDE: Xt = x+
∫ t

0

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dWs.

Euler scheme: the simplest scheme to use. Define tk = k TN = kh.

XN
0 = x, XN

tk+1
= XN

tk
+ b(tk, XN

tk
)h+ σ(tk, XN

tk
)(Wtk+1 −Wtk).

Converges at rate 1
2 for strong approximation and 1 for weak approximation.

Milshtein scheme (under restriction on σ): rate 1 for both strong and weak appr.
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The BSDE case

We focus mainly on Markovian BSDE:

Yt = Φ(XT ) +
∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

Zs dWs

where X is Brownian SDE (later, jumps could be included in X).

We know that Yt = u(t,Xt) and Zt = ∇xu(t,Xt)σ(t,Xt) where u solves a
semi-linear PDE=⇒ to approximate Y, Z, we need to approximate the function u(.)
and the process X

• Y N,M,K
t = uN,M,K(t,XN

t );

• in practice, XN is always random;

• although u is deterministic, uN,M,K may be random (e.g. Monte Carlo
approximations): the randomness may come from two different objects.

Summer School in Probability Theory - Disentis - 26-30 July 2010 page 48



Numerics of Backward SDEs E. Gobet

Formal error analysis
E|Y N,M,K

t − Yt| ≤ E|uN,M,K(t,XN
t )− u(t,XN

t )|+ E|u(t,XN
t )− u(t,Xt)|

≤ |uN,M,K(t, .)− u(t, .)|L∞ + ‖∇u‖L∞E|XN
t −Xt|.

 two sources of error:

• strong error related to E|XN
t −Xt|.

For the Euler scheme E|XN
t −Xt| = O(N−1/2).

• weak error related to |uN,M,K(t, .)− u(t, .)|L∞ .
Indeed, to see that this is a weak-type error, take f ≡ 0 and neglect all the
errors except that of time discretization (Euler scheme to approximate the
conditional law of XT ): then u(t, x) = E(Φ(XT )|Xt = x)) and from [BT96], one
knows that

|uN,M,K(t, .)− u(t, .)| = |E(Φ(XT )|Xt = x)− E(Φ(XN
T )|XN

t = x)| = O(N−1)

=⇒ it seems that simulating accurately the underlying SDE in the strong
approximation sense is necessary (stated later).
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2.3 Resolution by Picard iteration [G’ and Labart ’10]

Applied to Markovian BSDEs:

1. Forward component: dXt = b(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T.

2. Backward component: −dYt = f(t,Xt, Yt, Zt)dt− ZtdWt and YT = Φ(XT ).

Assumptions:

• f is bounded Lipschitz

• Φ ∈ C2+α
b

• b, σ ∈ C1,3

• uniform ellipticity

This numerical approach combines two ingredients:

1. Picard iterations: approximation of BSDEs by a sequence of linear BSDEs

2. Iterative control variates to efficiently solve linear PDEs/BSDEs [G’ and

Maire ’05]
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First ingredient: Picard iteration

BSDE = limit of a sequence of linear BSDE
We start with Ŷ 0 = 0, Ẑ0 = 0.

We iteratively define (Ŷ k+1, Ẑk+1) from (Ŷ k, Ẑk) by −dŶ k+1
t = f(t,Xt, Ŷ

k
t , Ẑ

k
t )dt− Ẑk+1

t dWt,

Ŷ k+1
T = Φ(XT ).

Representations as expectations:

Ŷk
t = uk(t,Xt) = E

(
Φ(XT) +

∫ T

t

f(s,Xs, Ŷk−1
s , Ẑk−1

s )ds|Xt

)
,

Ẑk
t = ∇uk(t,Xt)σ(t,Xt).

Then, the sequence (Ŷ k, Ẑk)k converges to (Y,Z)

• at a geometric rate

• in a suitable L2 norm.
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Equivalently: by writing Ŷ kt = uk(t,Xt) and Ẑkt = ∇uk(t,Xt)σ(t,Xt), one has

∂tuk + Luk + f(., .,uk−1,∇uk−1σ) = 0 and uk(T, .) = Φ(.).

It means that the sequence of solutions of linear PDEs (uk,∇uk)k converges (in a
L2 norm) to (u,∇u), solution of the semi-linear PDE

∂tu + Lu + f(., .,u,∇uσ) = 0 and u(T, .) = Φ(.).

Remarks.

Symmetric role of the variables (t, x) (6= from the dynamic programming
equation)

Geometric convergences. Which norms?

Norms on the processes versus norms on the value functions?
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Second ingredient: adaptative control variates [G’ and Maire ’05]

Purpose: Monte Carlo resolution of linear PDEs of type

∂tu+ Lu+ f = 0 and u(T, .) = Φ(.),

using an efficient scheme which computes a global solution.

Probabilistic solution: u(t, x) = Et,x[Φ(XT ) +
∫ T
t
f(Xs)ds] = E(Ψ(Φ, f ,Xt,x)).

Principle: compute a sequence of solution (uk)k by writing

uk+1 = uk + Monte-Carlo evaluations of the error (u− uk).

Probabilistic representation of the correction term ck = u− uk:

ck(t, x) = u(t, x)− uk(t, x) = E(Ψ(Φ− uk, f + ∂tuk + Luk, Xt,x)).

This approach is different from the usual martingale control variates.
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Numerical algorithm:

I take n points (ti, xi)1≤i≤n ⊂ <d: simulated stochastic processes (Euler scheme
with N time steps) will start from these points.

I Evaluate ck(ti, xi) using M independent simulations

cMk (ti, xi) =
1
M

M∑
m=1

Ψ(Φ− uk, f + ∂tuk + LNuk, Xti,xi,N,m).

I To construct the global solution cMk (•) based on the values [cMk (ti, xi)]1≤i≤n, we

use a linear approximation operator: PcMk (•) =
∑n
i=1 c

M
k (ti, xi)ωi(•) for some

weight functions ωi. Examples: interpolation, projection, Kernel-based
estimator...

To sum up, we get uk+1 = P(uk + cM
k ).

Main estimate: for some ρ < 1 (depending on M and N),

‖u− uk+1‖22 ≤ ρ‖u− uk‖22 + C‖u− Pu‖22(
1
N

+
1
M

).

Convergence at a geometric rate. No need to take N and M large.
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Remarks

Quick convergence up the approximation error given by the operator P.

Provides a smooth solution in t and x.

Ready for massive parallel computing.

Requires that P transforms pointwise evaluations into global C2 functions (to
compute Luk).

In practice, the computations of Luk may be quite time demanding, especially
if P is non local operator.
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Application to BSDEs

Iteration k. Suppose that a function uk of class C2 is built.

Correction term ck = u− uk:

ck(t, x) = Et,x
[
Φ(XT )− uk(T,XN

T )

+
∫ T

t

[f(s,Xs, u(s,Xs),∇uσ(s,Xs)) + (∂t + LN )uk(s,XN
s )]ds

]
At the points (ti, xi), it is pratically computed as

1
M

M∑
m=1

[
Φ(Xm,N

T )− uk(T,Xm,N
T )

+
∫ T

t

[f(s,Xm,N
s , uk(s,Xm,N

s ),∇ukσ(s,Xm,N
s )) + (∂t + LN )uk(s,XN

s )]ds
]

with independent simulated Euler schemes starting from (ti, xi).

Then, we take uk+1 = Pk(uk + cMk ).
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Two issues to handle for the mathematical analysis

1. Choice of the grid (ti, xi)1≤i≤n? different from one iteration to another?

2. Choice of operator P? assumptions on P?

3. Choice of the norm to measure errors?

Needs for a non asymptotic analysis.
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Choice of the norm

Take µ > 0 and β > 0. Define:

‖u‖2Hµβ,X =
∫ T

0

eβs
∫

Rd
e−µ|x|E|u(s,Xx

s )|2dxds.

Equivalent to
∫ T

0
eβsE|u(s,Xµ

s )|2ds where (Xµ
s )s stands for (Xs)s with a random

initial value with a density proportional to e−µ|x|.

Motivations: norm equivalence results

1. ‖u‖2
Hµβ,X

∼
∫ T

0
eβs
∫

Rd e
−µ|x|E|u(s, x)|2dxds (similar to [Bally and Matoussi ’01]).

2. ‖u‖2
Hµ
β,XN

≤c ‖u‖2Hµβ,X ;

In the following, we simply write ‖u‖2µ,β .

3. [Bensoussan-Lions ’84]: if u solves ∂tu+ Lu+ f = 0 with u(T, .) = 0, then

‖u‖2µ,β + ‖∇u‖2µ,β + ‖D2u‖2µ,β + ‖∂tu‖2µ,β ≤ c‖f‖2µ,β .
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Main assumptions of the operator P

1. P approximates well a function and its spatial derivatives: for any smooth
function H (with c(H) = ‖H‖∞ + ‖∇H‖∞ + ‖∇H‖1/2,t <∞):

‖H − PH‖2µ,β+‖∇H −∇(PH)‖2µ,β ≤ ε2(P) c2(H)

+ ε1(P) (‖H‖2µ,β + ‖∇H‖2µ,β + ‖D2H‖2µ,β + ‖∂tH‖2µ,β)

with ε1(P), ε2(P)→ 0.

2. For any random function (t, x) 7→ H(t, x) with E(H(t, x)) = 0, one has

E‖PH‖2µ,β + E‖∇(PH)‖2µ,β ≤ c3(P)E‖H‖2µ,β .
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General theorem: global error estimates

To simplify the exposure, we neglect the Euler scheme error (N = +∞).

Set Y kt = uk(t,Xt) and Zt = ∇uk(t,Xt)σ(t,Xt).

Theorem. Define the quadratic error Ek = ‖Y − Y k‖2µ,β + ‖Z − Zk‖2µ,β . Then

Ek ≤ ρEk−1 + η

where

ρ =
4(1 + T )L2

f

β︸ ︷︷ ︸
Picard

+C
(

L2
f ε1(P)︸ ︷︷ ︸

operator P

+
c3(P)
M︸ ︷︷ ︸

M.C.

)
, η = C

(
ε1(P) + ε2(P)

)
c21,2(u).

Corollary. For β, M and for P-parameters large enough, we have ρ < 1 and

lim sup
k→∞

Ek ≤ C
(
ε1(P) + ε2(P)

)
c21,2(u)

1− ρ
.

Remark. The lim sup result holds also for β = 0.
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Example of grids and operator P: kernel estimator

Grid: at each iteration k, take a new grid of n points (T ki , X
k
i )1≤i≤n, that are i.i.d.

and uniformly distributed on [0, T ]× [−a, a]d (for a large enough).

Operator: defined by

Pkv(t, x) =
n∑
i=1

ωi(t, x)v(T ki , X
k
i )

where

• the local weight ωi(t, x) is proportional to Kt(
t− T ki
ht

)Kx(
x−Xk

i

hx
)

• Kt(.) and Kx(.) are two C2- kernel functions, with compact support

• bandwith hx and ht.

Kernel estimators are known to be not the most efficient in practice for high
dimensional problems.

But it satisfies the assumptions on the operator P.
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Derivations of the global error estimates

Theorem.
Ek ≤ ρEk−1 + η

where

ρ =
4(1 + T )L2

f

β︸ ︷︷ ︸
Picard

+C

h2
x + h2

t︸ ︷︷ ︸
bias2

+
T (2a)d

nhthdx︸ ︷︷ ︸
var.

(1 +M−1h−2
x︸ ︷︷ ︸

M.C.

)

 ,

η = C

h2
x + ht︸ ︷︷ ︸
bias2

+
T (2a)d

nhth
d+2
x︸ ︷︷ ︸

var.

+h−1
x e−µaad−1 + h−1

x e
− µ√

d
a︸ ︷︷ ︸

bounded grid

 .

These non asymptotic estimates enable to balance optimally the parameters hx, ht,
n.
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Few numerical experiments

Call option in Black-Scholes model

One-dimensional SDE:

dXt =
(
b0 −

σ2

2

)
dt+ σdWt, X0 = x.

Driver: f(t, x, y, z) = −ry − θz with θ = µ0−r
σ .

Terminal condition: Φ(x) = (ex −K)+.

Parameters:

b0 σ r T K

0.1 0.2 0.02 1 100

n N M hx ht 2a β µ

2500 100 100 0.1 0.1 1.2 0 1
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Err(Y k − Y )2 and Err(Zk − Z)2 w.r.t. k =⇒
E(Y k − Y ) E(Zk − Z)

k=1 0.0743476 0.0265350

k=2 0.0014802 0.0104687

k=3 0.0010029 0.0082452

k=4 0.0008865 0.0076881

k=5 0.0008373 0.0075321

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4.54

4.58

4.62

4.66

4.70

4.74

4.78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4.54

4.58

4.62

4.66

4.70

4.74

4.78

1.03

1.03

0.54

0.54

0.54

0.54

0.54

0.06

0.06

0.06

0.06

0.06

0.43

0.43

0.43

0.43
0.43

0.911.401.882.37
2.3

time

sp
ac
e

⇐= Level sets for the price error
at iteration 10
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Three-dimensional example: basket call

Terminal condition: Φ(x) = ( 1
3 (x1 + x2 + x3)−K)+.

Algorithm parameters: ht = n−1/3, hx = 2an−1/3, N = M = 100, ...

Numerical price at time 0
w.r.t. iteration:

ref price
app price n=250
app price n=500

app. price n=1000
app price n=2000

ref price
app price n=250×

app price n=500

app. price n=1000
app price n=2000

1 2 3 4 5 6 7 8 9 10
5.5

6.0

6.5

7.0

7.5
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Similar Basket Call but in dimension 5

Numerical price w.r.t. itera-
tion:

ref price
app price n=200000
price n=100000

ref price
app price n=200000×

price n=100000

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0
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Pros and cons of the algorithm

Solution provided:

Provides a global solution using Monte Carlo simulations (no system to invert)
and without the inaccuracy of Monte Carlo methods.

Provides a solution smooth w.r.t. space variables AND time variables.

Final accuracy depends heavily on P.

Computational cost:

Parallel computing

Geometric convergence: not many iterations are needed.

Non local operators P may lead to larger computational costs.
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Pros and cons of the algorithm (Cont’d)

Convergence:

Convergence in weighted Sobolev norms (even if the solution is assumed to be
C1,2). So far, no pointwise convergence.

Norms handle both the errors on the processes and the value functions.

No confidence intervals.

As usual, the kernel estimator perfomance depends on the dimension and the
right bandwith is delicate to choose.

Better choice of P? Work In Progress (Wang’s PhD thesis).
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2.4 Resolution by dynamic programming equation

Time grid: π = {0 = t0 < · · · < ti < · · · < tN = T} with non uniform time step:
|π| = maxi(ti+1 − ti).

We write ∆ti = ti+1 − ti and ∆Wti = Wti+1 −Wti .

Heuristic derivation
From Yti = Yti+1 +

∫ ti+1

ti
f(s,Xs, Ys, Zs)ds−

∫ ti+1

ti
ZsdWs, we derive

Yti = E(Yti+1 +
∫ ti+1

ti

f(s,Xs, Ys, Zs)ds|Fti),

E(
∫ ti+1

ti

Zsds|Fti) = E([Yti+1 +
∫ ti+1

ti

f(s,Xs, Ys, Zs)ds]∆W ∗ti |Fti)

=⇒


ZN

ti
=

1
∆ti

E(YN
ti+1

∆W∗
ti
|Fti),

YN
ti

= E(YN
ti+1

+ ∆tif(ti,XN
ti
,YN

ti+1
,ZN

ti
)|Fti) and YN

T = Φ(XN
T ).

This is a discrete backward iteration. The scheme is of explicit type.
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Implicit scheme

More closely related to the idea of discrete BSDE.

(YN
ti
,ZN

ti
) = arg min

(Y,Z)∈L2(Fti
)
E(YN

ti+1
+ ∆tif(ti,XN

ti
,Y,Z)−Y − Z∆Wti)

2

with Y NtN = Φ(XN
tN ).

 


ZNti =

1
∆ti

E(Y Nti+1
∆W ∗ti |Fti),

YN
ti

= E(YN
ti+1
|Fti) + ∆tif(ti,XN

ti
,YN

ti
,ZN

ti
).

Needs a Picard iteration procedure to compute Y Nti .

Well defined for |π| small enough (f Lipschitz).

Rates of convergence of explicit and implicit schemes coincide for Lipschitz driver.

The explicit scheme is the simplest one, and presumably sufficient for Lipschitz
driver.
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2.4.1 Time discretization error

Define the measure of the quadratic error
E(Y N − Y,ZN − Z) = max0≤i≤N E|Y Nti − Yti |

2 +
∑N−1
i=0

∫ ti+1

ti
E|ZNti − Zt|

2dt.

Theorem. For a Lipschitz driver w.r.t. (x, y, z) and 1
2 -Holder w.r.t. t, one has

E(YN −Y,ZN − Z) ≤ C(E|Φ(XN
T )−Φ(XT)|2 + sup

i≤N
E|XN

ti
−Xti |2

+|π|+
N−1∑
i=0

∫ ti+1

ti

E|Zt − Z̄ti |2dt)

where Z̄ti = 1
∆ti

E(
∫ ti+1

ti
Zsds|Fti)  Different error contributions:

• Strong approximation of the forward SDE (depends on the forward
scheme and not on the BSDE-problem)

• Strong approximation of the terminal conditions (depends on the
forward scheme and on the BSDE-data Φ)

• L2-regularity of Z (intrinsic to the BSDE-problem).
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Remarks on generalized BSDEs

Forward jump SDE:

Xt = x+
∫ t

0

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dWs +
∫ t

0

∫
E

β(s,Xs− , e)µ̃(ds, de),

Generalized BSDE (with Lipschitz driver):

−dYt =f(t,Xt, Yt, Zt)dt− ZtdWt − dLt, YT = Φ(XT ),

where L is càdlàg martingale orthogonal to W [Barles, Buckdhan, Pardoux ’97; El

Karoui, Huang ’97].

Then,

• the same dynamic programming equation holds to compute (Y,Z).

• error estimates are unchanged [G’, Lemor ’05].
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Proof for the Y -component
Yti − Y Nti = Eti(Yti+1 − Y Nti+1

) + Eti
∫ ti+1

ti
{f(s,Xs, Ys, Zs)− f(ti, XN

ti , Y
N
ti+1

, ZNti )}ds.
Then, use Young inequality (a + b)2 ≤ (1 + γ∆ti)a2 + (1 + 1

γ∆ti
)b2 to get

E|Yti − Y
N
ti |

2 ≤ (1 + γ∆ti)E|Eti(Yti+1 − Y
N
ti+1)|2 + (1 +

1

γ∆ti
)4L2

f∆tiE
Z ti+1

ti

|Zs − ZNti |
2ds

+ (1 +
1

γ∆ti
)4L2

f∆ti(∆ti
2 +

Z ti+1

ti

E|Xs −XN
ti |

2ds+

Z ti+1

ti

E|Ys − Y Nti+1 |
2ds).

Gronwall’s lemma? γ =?

• E
∫ ti+1

ti
|Zs − ZNti |

2ds = E
∫ ti+1

ti
|Zs − Zti |2ds+ ∆tiE|Zti − ZNti |

2.

• ∆tiE|Zti − ZNti |
2 ≤

C{E|Yti+1 − Y Nti+1
|2 − E|Eti(Yti+1 − Y Nti+1

)|2}+ C∆tiE
∫ ti+1

ti
f(s,Xs, Ys, Zs)2ds.

• E|Xs −XN
ti |

2 ≤ 2E|Xti −XN
ti |

2 + 2E|Xs −Xti |2 ≤ 2E|Xti −XN
ti |

2 + C∆ti.

• E|Ys − Y Nti+1
|2 ≤

3E|Yti+1 − Y Nti+1
|2 + 3E

∫ ti+1

ti
|Zs|2ds+ 3∆tiE

∫ ti+1

ti
f(s,Xs, Ys, Zs)2ds.
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After simplifications, we obtain:

E|Yti − Y Nti |
2 ≤(1 + C∆ti)E|Yti+1 − Y Nti+1

|2 + C∆ti2 + C∆ti max
0≤i≤N

E|Xti −XN
ti |

2

+ CE
∫ ti+1

ti

|Zs − Zti |2ds+ C∆tiE
∫ ti+1

ti

(f(s,Xs, Ys, Zs)2 + |Zs|2)ds.

Discrete Gronwall’s lemma yields

max
0≤k≤N

E|Y Nti − Yti |
2 ≤C|π|+ C max

0≤i≤N
E|Xti −XN

ti |
2

+ C
N−1∑
i=0

E
∫ ti+1

ti

|Zs − Zti |2ds+ C E|Y NT − YT |2︸ ︷︷ ︸
=E|Φ(XNT )−Φ(XT )|2

.
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2.4.2 Strong approximation supi≤N E|XN
ti −Xti |2

The easy part: using the Euler scheme

• supi≤N |XN
ti −Xti |L2 = O(N−1/2)

• if σ does not depend on x, rate O(N−1).

• Otherwise, Milshtein scheme to get N−1-rate.
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2.4.3 Strong approximation of the terminal condition

• If Φ Lipschitz, then E|Φ(XN
T )− Φ(XT )|2 ≤ L2

ΦE|XN
T −XT |2.

• If Φ is irregular

Some results of [Avikainen ’09] for discontinuous function (Φ(x) = 1x≤a).

Also useful for the Multi-Level Monte Carlo methods of Giles [Gil08].

Theorem. If XT has a bounded density fXT (.), then for any p ≥ 1

sup
a∈R

E|1XN
T<a − 1XT<a| ≤ 3

(
|fXT
|L∞ ‖XN

T −XT‖Lp

) p
p+1 .

Optimal inequalities:

• if E|1X̂<a − 1X<a| ≤ C(X, a, p, r)‖X̂ −X‖rLp for any r.v. X with bounded
density, then r ≤ p

p+1 .

• if E|1X̂<a − 1X<a| ≤ C(X, p0)‖X̂ −X‖
p
p+1
Lp for any p ≥ p0, any a and any X̂,

then X has a bounded density.
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=⇒

E|Φ(XN
T )− Φ(XT )|2 = E|1XNT ≤a − 1XT≤a|2

≤ Cp(‖XN
T −XT ‖Lp)p/(p+1)

≤ C ′pN
− 1

2
p
p+1 .

Hence, the convergence rate decreases from N−1 to N−
1
2 +ε for any ε > 0.

(under a non degeneracy assumptions on the SDE).

Possible generalization to functions with bounded variation [Avikainen ’09].
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2.4.4 The L2-regularity of Z

L2-regularity of Z-component

Define EZ(π) =
N−1∑
i=0

∫ ti+1

ti

E|Zt − Z̄ti |2dt.

Theorem. [Convergence to 0] Since the Z̄ is the a L2-projection of Z, in full
generality one has

lim
|π|→0

EZ(π) = 0.

Theorem. [Ma, Zhang ’02 ’04] Assume a Lipschitz driver f and a Lipschitz
terminal condition Φ.

Then Z is a continuous process and EZ(π) = O(|π|) for any time-grid π.

No ellipticity assumption.
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Sketch of proof
Key fact: Z can be represented via a linear BSDE!! It is proved using the
Malliavin calculus representation of Z component.

The basics of Malliavin calculus:
sensitivity of Wiener functionals w.r.t. the BM

For ξ = ξ(Wt : t ≥ 0), its Malliavin derivative (Dtξ)t≥0 ∈ L2(R+ × Ω, dt⊗ dP) is
defined as

′′ Dtξ = ∂dWtξ(Wt : t ≥ 0). “

Basic rules.

• if ξ =
∫ T

0
htdWt with h ∈ L2(R+), Dtξ = ht1t≤T .

• for smooth random variables X = g(
∫ T

0
h1
tdWt, · · · ,

∫ T
0
hnt dWt),

DtX =
n∑
i=1

∂ig(· · · )hit1t≤T .

• chain rule for ξ = g(X) with smooth g: Dtξ = g′(X)DtX.
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• duality relation with adjoint operator D∗: E(
∫

R+
ut.Dtξ dt) = E(D∗(u)ξ)

(known as integration by parts formula).

If u is adapted and in L2, then D∗(u) =
∫ T

0
utdWt (usual stochastic

Ito-integral).

• Clark-Ocone’s formula: if ξ ∈ L2(FT ) and in D1,2:

ξ = E(ξ) +
∫ T

0

E(Dtξ|Ft)dWt.

Provides a representation of the Z when the driver is null.

• if Xt = x+
∫ t

0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dWs, then for r ≤ t

DrXt =
∫ t

r

b′(s,Xs)DrXsds+
∫ t

r

σ′(s,Xs)DrXsdWs + σ(r,Xr)

= ∇Xt[∇Xr]−1σ(r,Xr).

• DtXt = σ(t,Xt).
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Malliavin derivatives of (Y, Z) for smooth data

Theorem. If Yt = Φ(XT ) +
∫ T
t
f(s,Xs, Ys, Zs)ds−

∫ T
t
ZsdWs, then for θ ≤ t ≤ T

DθYt = Φ′(XT )DθXT +
∫ T

t

[f ′x(s,Xs, Ys, Zs)DθXs + f ′y(s,Xs, Ys, Zs)DθYs

+ f ′z(s,Xs, Ys, Zs)DθZs]ds−
∫ T

t

DθZsdWs

=⇒ (DθYt,DθZt)t∈[θ,T ] solves a linear BSDE (for fixed θ).
In addition:

• Viewing the BSDE as FSDE, one has Zt = DtYt.

• Due to DθXt = ∇Xt[∇Xθ]−1σ(θ,Xθ), we get
(DθYt,DθZt) = (∇Yt[∇Xθ]−1σ(θ,Xθ),∇Zt[∇Xθ]−1σ(θ,Xθ)) where

∇Yt = Φ′(XT )∇XT +
∫ T

t

[f ′x(s,Xs, Ys, Zs)∇Xs + f ′y(s,Xs, Ys, Zs)∇Ys

+ f ′z(s,Xs, Ys, Zs)∇Zs]ds−
∫ T

t

∇ZsdWs.

Summer School in Probability Theory - Disentis - 26-30 July 2010 page 81



Numerics of Backward SDEs E. Gobet

The explicit representation of the LBSDE yields [Ma, Zhang ’02]

Zt = ∇Yt[∇Xt]−1σ(t,Xt)

= E
(

Φ′(XT )∇XTΓtT +
∫ T

t

f ′x(s,Xs, Ys, Zs)∇XsΓsT ds|Ft
)

[∇Xt]−1σ(t,Xt).

Application to the study of the L2-regularity of Z:∑N−1
i=0

∫ ti+1

ti
E|Zt − Z̄ti |2dt

Following from this representation, the Ito-decomposition of Z contains:

• an absolutely continuous part (in dt)  easy to handle.

• a martingale part M (in dWt):
N−1∑
i=0

∫ ti+1

ti

E|Mt − M̄ti |2dt ≤ |π|E(M2
T −M2

0 )!!

Possible extensions to L∞-functionals [Zhang ’04], to jumps [Bouchard, Elie ’08],
to RBSDE [Bouchard, Chassagneux ’06], to BSDE with random terminal
time [Bouchard, Menozzi ’09].
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2.5 The case of irregular terminal function Φ(XT ) [G., Makhlouf

’10, Geiss-Geiss-G. ’10]

 New ideas about fractional smoothness

In the following, we assume strict ellipticity.

If not, Z can be discontinuous at some points [Zha05] ...

Sketch of proof.

1. We study the case with f ≡ 0. It gives the significative contribution.

2. We study the BSDE-difference (Y f 6=0 − Y f=0, Zf 6=0 −Zf=0). The L2-regularity
of Zf 6=0 − Zf=0 is still nicer, since it has zero terminal condition.
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The BSDE with null driver

We first approximate Φ(XT ) ∈ L2 by a sequence of bounded terminal conditions
ΦM (ST ) = M ∧ Φ(XT ) ∨ −M L2−→ Φ(XT ) and then deduce by stability results.

u(t, x) := E [Φ(XT )|Xt = x] solves

∂tu(t, x) +
d∑
i=1

bi(t, x)∂xiu(t, x) +
1
2

d∑
i,j=1

[σσ∗]i,j(t, x)∂2
xi,xju(t, x) = 0 for t < T,

u(T, x) = Φ(x)

From Itô’s formula, we can identify the solution (y, z) to the BSDE

yt = Φ(XT )−
∫ T

t

zsdWs.

 yt = u(t,Xt) and zt = ∇xu(t,Xt)σ(t,Xt)
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2.5.1 The index α to measure the regularity

For α ∈ (0, 1], set

Kα(Φ) := E|Φ(XT )|2 + sup
t∈[0,T )

E(Φ(XT )− E(Φ(XT )|Ft))2

(T − t)α

and define
L2,α = {Φ(XT ) s.t. Kα(Φ) < +∞}.

It measures the rate of decreasing of the integrated conditional variance of Φ(XT ).

The index α is also called fractional regularity (notion introduced by
[Geiss-Geiss ’04] ...).

Some examples:

1. Lipschitz=⇒ Φ ∈ L2,α=1;

2. α-Holder =⇒ Φ ∈ L2,α;

3. indicator function =⇒ Φ ∈ L2,α= 1
2
.
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Fractional regularity for indicator functions

Proof. Let Φ(x) = 1[0,∞)(x) and (Xt) ≡ (Wt). One has

E[Φ(XT )− E(Φ(XT )|Ft)]2 = E
∫ T

t

|u
′

x(s,Ws)|2ds.

Then

u(t, x) = P(x+WT −Wt ≥ 0),

u′x(t, x) =
1√

2π(T − t)
exp− x2

2(T − t)
,

E|u′x(t,Wt)|2 =
1

2π
√
T + t

√
T − t

=⇒ α = 1
2 .
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L2,α "=" interpolation space between L2 and D1,2

[Geiss, Geiss ’04; Geiss, Hujo ’07]

Interpolations between two Banach spaces E0 and E1 ( E1 ⊂ E0) [Bergh,
Löfström ’76].

• Define the K-functional by

K(Φ, λ;E0, E1) = inf{‖Φ0‖E0 + λ‖Φ1‖E1 such that Φ = Φ0 + Φ1}

for Φ ∈ E0.

• For α ∈ (0, 1) and p ∈ [1,∞], the interpolation space (E0, E1)α,p is the set of
elements Φ ∈ E0 such that

|Φ|(E0,E1)α,p := ‖λ−αK(Φ, λ;E0, E1)‖Lp((0,+∞), dλλ ) <∞.

In the following, we mainly consider the case p =∞ for which

|Φ|(E0,E1)α,∞ := sup
λ∈]0,1]

λ−αK(Φ, λ;E0, E1) <∞.
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Specification in the case of scalar BM [Nualart ’06]

Write γ1(dx) = e−x
2/2

√
2π

dx for the one-dimensional Gaussian measure.

A function Φ : R 7→ R s.t. Φ ∈ L2(γ1) can be decomposed through its
Hermite/chaos decomposition:

Φ =
∑
k≥0

akHk with Hk(x) =
(−1)k√
k!

e
x2
2
dk

dxk
(e−

x2
2 ).

Define E0 = L2(γ1) = {Φ : s.t. ‖Φ‖2E0
:= ‖Φ‖2L2(γ1) =

∑
k≥0

a2
k <∞},

E1 = D1,2(γ1) = {Φ : ‖Φ‖2E1
:= ‖Φ‖2L2(γ1) + ‖Φ′‖2L2(γ1) =

∑
k≥0

(1 + k)a2
k <∞}.
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Computations of the K-functional

We decompose Φ =
∑
k akHk into Φ0 + Φ1 =

∑
k

bkHk +
∑
k

(ak − bk)Hk. Then

‖Φ0‖L2 + λ‖Φ1‖D1,2 =
(∑

k

b2k
)1/2 + λ

(∑
k

(1 + k)(ak − bk)2
)1/2

∼√2

(∑
k

(b2k + λ2(1 + k)(ak − bk)2)
)1/2

,

inf
Φ=Φ0+Φ1

‖Φ0‖L2 + λ‖Φ1‖D1,2 ∼√2

(∑
k

a2
k

λ2(1 + k)
1 + λ2(1 + k)

)1/2

.

Thus, Φ ∈ (L2,D1,2)α,∞ iif sup
λ∈]0,1]

λ−2α
∑
k

a2
k

λ2(1 + k)
1 + λ2(1 + k)

<∞.
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Characterisation of Φ(W1) ∈ L2,α in terms of the (ak)k

Using that the time-space Hermite polynomial (tk/2Hk

(
Wt√

t

)
)t defines a

martingale, we get that

Mt := E(Φ(W1)|Ft) = E
(∑

k

akHk(W1)|Ft
)

=
∑
k

akt
k/2Hk

(Wt√
t

)
.

Thus,

E(Φ(W1)− E(Φ(W1)|Ft))2 = E(M1 −Mt)2

= E(M2
1 )− E(M2

t )

=
∑
k

a2
k −

∑
k

a2
kt
k.

Then

Φ(W1) ∈ L2,α iif sup
t∈[0,1[

∑
k a2

k(1− tk)
(1− t)α

<∞.

Corollary. There exist functions Φ such that Φ(W1) /∈
⋃
α∈]0,1] L2,α.
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Equivalent characterisations

Theorem (see [GH07]). For any α ∈ (0, 1), one has

Φ(W1) ∈ L2,α ⇐⇒ Φ ∈ (L2,D1,2)α,∞.

Remark. However, the L2,α-characterisation leads to more tractable computations
on practical examples.

Proof of ⇐=. One has to prove Φ(W1) ∈ L2,α, i.e.
sup
t∈[0,1[

(1− t)−α
∑
k

a2
k(1− tk) <∞, or equivalently to

sup
t∈[0,1[

(1− t)1−α
∑
k

a2
kkt

k−1 <∞.

Define nt such that 1− 1
nt
≤ t ≤ 1− 1

nt+1 : then, one can check that ktk−1 ≤ c
1−t

for k ≥ nt. It implies
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sup
t∈[0,1[

(1− t)1−α
∑
k

a2
kkt

k−1 = sup
t∈[0,1[

(1− t)1−α( nt∑
k=0

a2
kkt

k−1 +
∑
k>nt

a2
kkt

k−1
)

≤ sup
t∈[0,1[

(1− t)1−α( nt∑
k=0

a2
kk +

∑
k>nt

a2
k

c

(1− t)
)

≤c sup
t∈[0,1[

(1− t)−α
(∑
k≥0

a2
k min((1 + k)(1− t), 1)

)
1−t=λ2

∼c sup
λ∈]0,1]

λ−2α
(∑
k≥0

a2
k

λ2(k + 1)
1 + λ2(k + 1)

)
<∞

since Φ ∈ (L2,D1,2)α,∞. �

Proof of =⇒. See [GH07].
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2.5.2 Equivalent estimates on u and its derivatives [GM10]

Now assume X is a general SDE, under uniform ellipticity.

Theorem. Let α ∈ (0, 1]. Then the three following assertions are equivalent:

i) Φ ∈ L2,α.

ii) For some constant C > 0, ∀t ∈ [0, T ),
∫ t

0
E
∣∣D2u(s,Xs)

∣∣2 ds ≤ C
(T−t)1−α .

iii) For some constant C > 0, ∀t ∈ [0, T ), E |∇xu(t,Xt)|2 ≤ C
(T−t)1−α .

And, if Φ ∈ L2,α, one can take C in i) and ii) proportional to Kα(Φ).

If α < 1 (resp. α = 1), the previous three assertions are also equivalent to (resp.
lead to) the following one:

iv) For some constant C > 0, ∀t ∈ [0, T ), E
∣∣D2u(t,Xt)

∣∣2 ≤ C
(T−t)2−α .
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Extra equivalence results

Theorem. Let α ∈ (0, 1]. Consider a function Φ bounded (or expontentially
bounded).

Then the three following assertions are equivalent:

i)
∫ T

0
(T − t)−1−αE |Φ(XT )− E(Φ(XT )|Ft)|2 dt <∞.

ii)
∫ T

0
(T − t)−αE |∇xu(t,Xt)|2 dt <∞.

iii)
∫ T

0
(T − t)1−αE

∣∣D2u(t,Xt)
∣∣2 dt <∞.
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2.5.3 Application to the L2-regularity of Z-components

A general upper bound in L2,α

For Φ in some L2,α (α ∈ (0, 1]), one has

N−1∑
i=0

∫ ti+1

ti

E|zt − z̄ti |2dt ≤ C(|π|Kα(Φ)Tα +
N−1∑
k=0

∫ tk+1

tk

(tk+1 − r)E|D2u(r,Xr)|2dr)

Corollary. Assume Φ ∈ L2,α (α ∈ (0, 1]). Then, for the uniform time grid,

N−1∑
i=0

∫ ti+1

ti

E|zt − z̄ti |2dt = O(N−α).

The rate is optimal: for each α ∈ (0, 1], one can exhibit a Φ achieving exactly
this rate [GT01].
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Theorem. Assume that Φ ∈ L2,α, for some α ∈ (0, 1].
Now, take β = 1, if α = 1, and β < α otherwise. Then, ∃C > 0 such that, for any
time net π = {tk, k = 0...N},

N−1∑
i=0

∫ ti+1

ti

E|zt− z̄ti |2dt ≤ CKα(Φ)Tα|π|+CKα(Φ)Tα−β sup
k=0...N−1

(
tk+1 − tk

(T − tk)1−β

)
.

Corollary. For α < 1, the non-uniform grid

π(β) :=
{
t
(N,β)
k := T − T

(
1− k

N

) 1
β , 0 ≤ k ≤ N

}
.

with β < α yields an error as N−1 for the L2-regularity of Z.

By adapting the grid to the payoff regularity, we can maintain
the rate 1

N
for the L2-regularity of Z.
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Back to the initial BSDE

We define the BSDE-difference

Y 0
t := Yt − yt, Z0

t := Zt − zt.

solution in L2 of the BSDE with null terminal condition and singular
generator

f0(t, x, y, z) := f (t, x, y + u(t, x), z +∇xu(t, x)σ(t, x)) ,

i.e.

Y 0
t =

∫ T

t

f0(s,Xs, Y
0
s , Z

0
s )ds−

∫ T

t

Z0
sdWs.

Theorem. We have Zt − zt = Utσ(t,Xt) where (U, V ) the solution of the following
linear BSDE
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Ut =

Z T

t

˘
a0
r + Ur

`
b0rId +∇xb(r,Xr) +

qX
j=1

c0j,r∇xσj(r,Xr)
´

+

qX
j=1

V jr
`
c0j,rId + σ

′
j,r

´¯
dr

−
qX
j=1

Z T

t

V jr dW
j
r ,

where we have set f0(t, x, y, z) = f
(
t, x, y + u(t, x), z +∇xu(t, x)σ(t, x)

)
and

a0
r := ∇xf0(r,Xr, Y

0
r , Z

0
r );

b0r := ∇yf0(r,Xr, Y
0
r , Z

0
r );

c0r := ∇zf0(r,Xr, Y
0
r , Z

0
r ).

Proof. We establish that the usual representation of Z0 using Malliavin derivatives

holds. But the situation is not so standard because in general
∫ T

0

E|a0
r|2dr =∞ for

Φ(XT ) ∈ L2,α.

However we can prove
∫ T

0
|a0

r |L2dr <∞, which allows the use of results on BSDEs
in Lp, from [Briand, Delyon, Hu, Pardoux, Stoica ’03].
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Corollary. Assume that g ∈ L2,α (α ∈ (0, 1]). Then

|Zt − zt| ≤ C
∫ T

t

√
E
[
(Φ(XT )− E[Φ(XT )|Fs])2 |Ft

]
T − s

ds+ C(T − t).

=⇒

1. L2-bounds:
E |Zt − zt|2 ≤ CKα(Φ)(T − t)α + C(T − t)2.

2. Pointwise bounds: when Φ is α-Hölder continuous, it yields

|Zt − zt| ≤ C(T − t)α2 + C(T − t).

Corollary for numerical computations. Regarding the problem of
approximating accurately the Z component, it is better to solve first the BSDE
(y, z) (simple problem) and then solve the BSDE difference (Y − y, Z − z).
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The L2-regularity of z (without driver) controls the
L2-regularity of Z (with driver)

Corollary. Assume that Φ ∈ L2,α (α ∈ (0, 1]). Then

1
2

N−1∑
i=0

∫ ti+1

ti

E|zt − z̄ti |2dt+O(|π|) ≤
N−1∑
i=0

∫ ti+1

ti

E|Zt − Z̄ti |2dt

≤ 2
N−1∑
i=0

∫ ti+1

ti

E|zt − z̄ti |2dt+O(|π|).

To achieve the rate N−1 with N -points grid, one should choose,

• if α = 1, uniform grids

• if α < 1, the non-uniform grid

π(β) :=
{
t
(N,β)
k := T − T

(
1− k

N

) 1
β , 0 ≤ k ≤ N

}
.

with an index β < α.
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2.6 Extra asymptotic results for smooth data

Error expansion w.r.t. the number of time steps [G., Labart ’07a]

Consider uniform time grids. Instead of upper bounds on Y − Y N and Z − ZN in
L2 norm, we expand the error.

Dynamic programming equation on the value function

Due to the Markov property of the Euler scheme (XN
ti )i, one has Y Nti = uN (ti, XN

ti )
and ZNti = vN (ti, XN

ti ) where
vN (ti, x) =

1
∆ti

E(uN (ti+1, X
N
ti+1

)∆W ∗ti |X
N
ti = x),

uN (ti, x) = E(uN (ti+1, X
N
ti+1

) + ∆tif(ti, x, uN (ti+1, X
N
ti+1

), vN (ti+1, x)|XN
ti = x))

uN (T, x) = Φ(x).
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Approximation result of weak type

Theorem. Assuming smooth data b, σ, f,Φ, one has

|uN (ti, x)− u(ti, x)| ≤ C(1 + |x|k)
N

and

|vN (ti, x)−∇xu(ti, x)σ(ti, x)| ≤ C(1 + |x|k)
N

.

Proof. Inspired by the Malliavin calculus approach of [Kohatsu-Higa ’01] .
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Global expansion

Corollary.

Y Nti − Yti = ∇xu(ti, Xti)(Xti −XN
ti ) +O(|Xti −XN

ti |
2) +O(N−1)

and

ZNti − Zti = [∇x[∇xuσ]∗(ti, Xti)(Xti −XN
ti )]∗ +O(|Xti −XN

ti |
2) +O(N−1).

Proof of corollary.

Y Nti − Yti = uN (ti, XN
ti )− u(ti, Xti)

= uN (ti, XN
ti )− u(ti, XN

ti ) + u(ti, XN
ti )− u(ti, Xti)

= O(N−1) +∇u(ti, Xti)(Xti −XN
ti ) +O(|Xti −XN

ti |
2). �

=⇒ Strong approximation of the forward SDE is crucial.

=⇒ At time 0, YN
0 −Y0 = O(N−1)!!

First proved by [Chevance ’97] when f does not depend on z.
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3 Computations of the conditional expectations

Our objective: to implement the dynamic programmin equation = to compute the
conditional expectations  the crucial step!!

Different points of view:

• the conditional expectation is a projection operator: if Y ∈ L2, then

E(Y |X)=Arg min
m∈L2(PX)

E (Y −m(X))2
.

 this is a least-squares problem.

To compute the full regression function m? finding a function of
dimension= dim(X)  curse of dimensionality.
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• Markovian setting: E(g(Xti+1)|Xti) with (Xti)i Markov chain.

– Compute explicitely the transition operator from Xti to Xti+1 and then
compute the integral of g w.r.t. PXti+1 |Xti (dx)?

– Simulate the transition?

• How many regression functions to compute?
Answer. For the DPE of BSDEs, N regression functions and N →∞.

vN (ti, x) =
1

∆ti
E(uN (ti+1, X

N
ti+1

)∆W ∗ti |X
N
ti = x),

uN (ti, x) = E(uN (ti+1, X
N
ti+1

) + ∆tif(ti, x, uN (ti+1, X
N
ti+1

), vN (ti+1, x)|XN
ti = x))

uN (T, x) = Φ(x).

• In which points X ∈ Rd? Potentially, many...

All is a question of global efficiency
= balance between accuracy and computational cost
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Markovian setting

Based on E(g(Xti+1)|Xti) =
∫
g(x)PXti+1 |Xti (dx) = m(Xti).

If m(.) are required at only few values of Xti = x1, ..., xn:

• one can simulate M independant paths of Xti+1 starting from Xti = x1, · · · , xn
and average them out (usual Monte Carlo procedures).

• but if needed for many i, exponentially growing tree!!

How to put constraints on the complexity?

• One possibility for one-dimensional BM (or Geometric BM): replace the true
dynamics by that of a Bernoulli random walk (binomial tree).

The size of the tree grows linearly with N since it recombines.

In practice, feasible in dimension 1. Convergence: see [Ma, Protter, San Martin,

Torres ’02].

Available for Ornstein-Uhlenbeck process (trinomial tree).
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3.1 For more general dynamics: quantization [Graf, Luschgy ’00]

Step 1. To discretize optimally the law of Xtj for each j  quantization.

Step 2. To use this quantized level to implement the dynamic programming
equation.

Step 1. Computation of the grids. Fix the number of points Mj (→∞).

Min. of the L2-distorsion: X j = {xj
m : 1 ≤m ≤Mj} = argmin E(min

l
|Xtj − xj

l|
2).

Existence of stochastic algorithm to compute these points (Kohonen algorithm).

Quite slow. Better to compute them off-line.

Grid already known in the case of Gaussian r.v. for various dimensions and
various number of points. [see Gilles Pages website].

Suitable for L2-approximations (and Lipschitz functions).

Rate of convergence available on the distorsion (Zador theorem: M1/d
j ) of the

optimal grid.
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Define Voronoi tesselations: Ck(X j) = {z ∈ Rd : |z − xjk| = min
l
|z − xjl |}.

Step 2. Computation of conditional expectations.

E(g(Xtj+1)|Xtj = xjk) =
Mj+1∑
l=1

αk,lg(xj+1
l ).

Weights αjk,l =?  αjk,l ≈
P(Xtj ∈ Ck(X j), Xtj+1 ∈ Cl(X j+1))

P(Xtj ∈ Ck(X j))
.

Computed by Monte Carlo simulations of X (also done off-line).

To sum up:

deterministic approximations, at the end.

many (stochastic) computations are made off-line.

require the pre-computations of quantified grids of weights.

First applied to BSDEs by [Chevance ’97]. For RBSDEs (with f independent of z),
see [Bally, Pages ’03] . Rates of convergence avalaible.
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3.2 Representation of conditional expectations using
Malliavin calculus

[Fournié, Lasry, Lebuchoux, Lions ’01; Bouchard, Touzi ’04; Bally, Caramellino,

Zanette ’05 ...]

Requires the extra knowledge about the joint distribution of (Signal, Response).

Theorem. [integration by parts formula] Suppose that for any smooth f , one has

E(fk(F )G) = E(f(F )Hk(F,G))

for some r.v. Hk(F,G), depending on F , G, on the multi-index k but not on f .

Then, one has E(G|F = x) =
E(1F1≤x1,··· ,Fd≤xd

H1,··· ,1(F,G))
E(1F1≤x1,··· ,Fd≤xd

H1,··· ,1(F,1))
.

Formal proof (d=1): E(G|F = x) = E(Gδx(X))
E(δx(X)) = E(G(1F≤x)′)

E((1F≤x)′) = E(1F≤xH1(F,G)))

E(1F≤xH1(F,1)) .

Corollary. E(G|F = x) can be empirically evaluated using the sample (Fi)i far
from x!!
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• Actually, we look for H(F, g(G)) = g(G)H̃(F,G).
Representation with factorization not so immediate to obtain (possible for
SDE).

The H are obtained using Malliavin calculus, or a direct integration by parts
when densities are known.

For instance, if F = Wtk and G = Wtk+1 in dimension 1, then one can take

H̃(F,G) =
Wtk

tk
−
Wtk+1 −Wtk

tk+1 − tk
.

In practice, large variances (because supk(tk+1 − tk)→ 0)  needs for
variance reduction techniques (see [Bouchard, Ekeland, Touzi ’04]).

For non trivial dynamics (general SDE), the computational time needed to
simulate H may be very large (Skorohod integrals to evaluate).
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Using the Riesz tranform [Malliavin, Thalmaier ’06], we only need one
integration by parts, but the weights do not belong to L2!

Localization techniques developed by [Kohatsu-Higa and Yasuda ’09].

In any case, this approach requires a non degeneracy condition (ellipticity).

For BSDEs, available rates of convergence w.r.t. N and M [Bouchard, Touzi

’04] using N independent set of simulated paths.

What happens if we use one set of paths?

Efficiency compared to Quantization approach?
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3.3 The approach using projections and regressions

Statistical regression model: Y = m(X) + ε with E(ε|X) = 0.

X is called the (random) design (or signal). Y is the response.

Large literature on statistical tools to approximate E(Y |X).

References [Hardle ’92; Bosq, Lecoutre ’87; Gyorfi, Kohler, Krzyzak, Walk ’02; . . . ]

Problem: compute m(.) using M independent (?) samples (Yi, Xi)1≤i≤M .

Usually, estimation errors in the literature are not sufficient for our purpose:

• the law X may not have a density w.r.t. Lebesgue measure.

• the support of the law of the X is never bounded!

• ...

In addition, the samples are not independant (since one has N -times iteration
in the discrete BSDE).
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Discussions of non parametric regression tools from
theoretical/practical points of view

3.3.1 Kernel estimators

E(Y |W = x) ≈
1
hd

∑M
i=1K(x−Xih )Yi

1
hd

∑M
i=1K(x−Xih )

= mM,h(x)

where

• the kernel function is defined on the compact support [−1, 1], bounded, even,
non-negative, C2

p and
∫

Rd K(u)du = 1;

• h > 0 is the bandwith.

Non-integrated L2-error estimates available.

Remaining problems with the non-compact support of X (partially solved recently
in [G., Labart ’10] using weighted Sobolev space estimates).

Computational efficiency: to compute mM,h at one point, M evaluations needed.
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3.3.2 Projection on a set of functions

Set of functions: (φk)0≤k≤K .

E(Y |X) = Arg min
g

E (Y − g(X))2

≈ ArgminPK
k=1 αkφk(.)

E(Y −
K∑
k=1

αkφk(X))2.

Computations of the optimal coefficients (αk)k: it solves the normal equation

Aα = E(Y φ) where Ai,j = E(φi(X)φj(X)), [E(Y φ)]i = E(Y φi(X)).

• For simplicity, one should have a system of orthonormal functions (w.r.t. the
law of X).

In practice, impossible except in few cases (Gaussian case using Hermitte
polynomials, ...).

In many situations, the law of X is not explicitely known (one can only
simulate X).
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If the system is not orthonormal, one should compute A and invert it.

Its dimension is expected to be very large: K →∞ to ensure convergent
approximations.
Presumably large instabilities (ill-conditioned matrix) to solve this
least-squares problem [Golub, Van Loan ’96]. Recommended to use SVD.

• In practice, A is computed using simulations, as well E(Y φ).
Equivalent to solve the empirical least-squares problem:

(αMk )k = Arg min
α

1
M

M∑
m=1

(Y m −
K∑
k=1

αkφk(Xm))2.

[CLT] At fixed K, if A is invertible, one has lim
M→∞

√
M(αM − α) d= N (0, ...).

Which set of functions leads to quick/efficient computations of (αMk )?

How to prove convergence rates of α.φ(.)−m(.) as M →∞ and K →∞ (for
general laws for (X,Y ))?  Non asymptotic results. . .
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3.3.3 The case of polynomial functions

• Popular choice.

• Smooth approximation.

Global approximation: within few polynomials, a smooth m(.) can be very well
approximated.

But slow convergence for non smooth functions (non-linear BSDEs may lead to
non-smooth functions).

Do projections on polynomials converge to m(.)?

⊕k≥0Pk(X) = L2(X)?

This is implicitely assumed in Longstaff-Schwartz algorithm for American
options [LS01].

But this is false in general.
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Counter-exemple (see Feller’s book)

Take X = exp(W1). Then sin(2π log(X)) is in L2 but is orthogonal to any
polynomials!!

Proj⊥Pk(X)[sin(2π log(X))] = 0, ∀k ≥ 0.

I In fact, the expected property is related to the moment problem:

is a r.v. characterized by its polynomial moments?

A sufficient condion: if for some a > 0 one has E(ea|X|) <∞, the polynomials
are dense in L2-functions.

In the good cases, convergence rates? some results by [Guo], in the context of
spectral methods for PDEs. But available for very smooth m(.) (too smooth for
BSDEs frameworks).
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3.3.4 The case of local approximation

Piecewise constant approximations. φk = 1Ck where the subsets (Ck)k forms a
tesselation of a part of Rd : Ck ∩ Cl = ∅ for l 6= k.

arg inf
g=

P
k αk1Ck

E(Y − g(X))2 or arg inf
g=

P
k αk1Ck

EM (Y − g(X))2?

The “matrix” A = (E(φi(X)φj(X))i,j is diagonal: A = Diag(P(X ∈ Ci)i).

=⇒

αk =


E(Y 1X∈Ck )

P(X∈Ck) = E(Y |X ∈ Ck) if P(X ∈ Ck) > 0,

0 if P(X ∈ Ck) = 0,

αMk =

 1
#{m:Xm∈Ck}

∑
m:Xm∈Ck Y

m if #{m : Xm ∈ Ck} > 0,

0 if #{m : Xm ∈ Ck} = 0.

Possible easy extensions to piecewise affine functions (or polynomials).
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Rate of approximations of a Lipschitz regression function m(.)

Size of the tesselation: |C| ≤ supl sup(x,y)∈Cl |x− y|.
Given a probability measure µ: µ = PX or µ = 1

M

∑M
m=1 δXm(.).

inf
g=

P
k αk1Ck

∫
Rd
|g(x)−m(x)|2µ(dx)

≤
∑
k

∫
Ck
|m(xk)−m(x)|2µ(dx) +

∫
[∪kCk]c

m2(x)µ(dx)

≤
∑
k

|C|2µ(Ck) + |m|2∞µ([∪kCk]c)

≤ |C|2 + |m|2∞µ([∪kCk]c).

• We expect the tesselation size to be small.

The complementary µ([∪kCk]c) has to be small (tail estimates).

Model-free error-estimates.

Optimal estimates for Lipschitz functions.
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Efficient choice of tesselations?

Given x ∈ Rd, how to locate efficiently the Ck such that x ∈ Ck?

• Voronoi tesselations associated to a sample (Xk)1≤k≤K of the underlying
r.v. X: Ck = {z ∈ Rd : |z −Xk| = minl |z −X l|}. Closed to quantization ideas.

Theoretically, there exists searching algorithms with a cost O(log(K)).

• Regular grid (hypercubes).
k = (k1, ..., kd) ∈ {0, ..,K1 − 1} × ...× {0, ..,Kd − 1} define
Ck = [−x1,min+∆x1k1,−x1,min+∆x1(k1+1)[× · · ·×[−xd,min+∆xdkd,−xd,min+∆xd(kd+1)[.

Tesselation size=O(maxi ∆xi).

Quick search formula:

x ∈ Ck with k = (k1, ..., kd) if xi,min ≤ xi < xi,max and ki = bxi − xi,min

∆xi
c.
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3.4 Model-free estimation of the regression error [GKKW02]

In the BSDEs framework, see [Lemor, G., Warin ’06] .
Working assumptions:

• Y = m(X) + ε with E(ε|X) = 0.

• Data: sample of independant copies (X1, Y1), · · · , (XM , YM ).

• σ2 = supx Var(Y|X = x) <∞

• FM = Span(f1, ...fKM ) a linear vector space of dimension KM , which may
depend on the data!

Notations: |f |2M = 1
M

∑M
i=1 f

2(Xi). Write µM for the empirical measure
associated to (X1, · · · , XM ).

m̃M (.) = arg min
f∈FM

1
M

M∑
i=1

|f(Xi)− Yi|2.

Theorem. L2(µM )-error: E(|m̃M−m|2M|X1, · · · ,XM) ≤ σ2 KM

M
+ min

f∈FM

|f −m|2M.
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Proof
W.l.o.g., we can assume that

• (f1, ...fKM ) is orthonormal family in L2(µM ): 1
M

∑
i fk(Xi)fl(Xi) = δk,l.

=⇒ The solution of arg minf∈FM
1
M

∑M
i=1 |f(Xi)− Yi|2 is given by

m̃M(.) =
∑

j

αjfj(.) with αj =
1
M

∑
i

fj(Xi)Yi.

Lemma. Denote E∗(.) = E(.|X1, · · · , XM ). Then E∗(m̃M (.)) is the least-squares
solution of arg minf∈FM

1
M

∑M
i=1 |f(Xi)−m(Xi)|2 = arg minf∈FM |f −m|2M .

Proof.

• The above least-squares solution is given by
∑
j α
∗
jfj(.) with

α∗j = 1
M

∑
i fj(Xi)m(Xi).

• As a conditional expectation, E∗(m̃M (.)) =
∑
j E∗(αj)fj(.).

Then, E∗(αj) =
1

M

X
i

fj(Xi)E∗(Yi) =
1

M

X
i

fj(Xi)E(m(Xi) + εi|X1, · · · , XM ) = α∗j .
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Pythagore theorem: |m̃M −m|2M = |m̃M − E∗(m̃M )|2M + |E∗(m̃M )−m|2M .

Then, E∗|m̃M −m|2M = E∗|m̃M − E∗(m̃M )|2M + |E∗(m̃M )−m|2M
= E∗|m̃M − E∗(m̃M )|2M + min

f∈FM
|f −m|2M .

Since (fj)j is orthonormal in L2(µM ), we have

|m̃M − E∗(m̃M )|2M =
∑
j

|αj − E∗(αj)|2.

Thus, using αj − E∗(αj) = 1
M

∑
i fj(Xi)(Yi −m(Xi)), we have

E∗|m̃M − E∗(m̃M )|2M =
∑
j

1
M2

E∗
∑
i,l

fj(Xi)fj(Xl)(Yi −m(Xi))(Yl −m(Xl)

=
∑
j

1
M2

∑
i

f2
j (Xi)Var(Yi|Xi)

since the (εi)i conditionnaly on (X1, · · ·XM ) are centered.

=⇒ E∗|m̃M − E∗(m̃M )|2M ≤ σ2
∑
j

1
M2

∑
i

f2
j (Xi) = σ2KM

M
.
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Corollary. If in addition the linear space FM = Span(f1, ...fKM ) does not depend
on the data (Xi)1≤i≤M , then

E(|m̃M −m|2M ) ≤ σ2KM

M︸ ︷︷ ︸
variance term

+ min
f∈FM

|f −m|2L2(µ)︸ ︷︷ ︸
bias term

.

Proof. Follows from E
(

min
f∈FM

|f −m|2M ) ≤ min
f∈FM

E(|f −m|2M ) = min
f∈FM

|f −m|2L2(µ).

Next step: estimates on L2(µ) instead of L2(µM)

i.e. replace an empirical mean by its true mean, to get estimates under the true law.

How far is the empirical mean 1
M

∑M
i=1 f(Xi) from its true

mean E(f(X)), whatever the function f(.) = |m̃M(.)−m(.)|2 is?

 Related to techniques from uniform law of large numbers. [Van Der Vaart,

Wellner ’96; Gyorfi, Kohler, Krzyzak, Walk ’02; . . . ].
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Uniform law of large numbers
Consider (Z1, · · · , ZM ) a i.i.d. sample of size M .

For F ⊂ {f : Rd 7→ [0, B]}, one would need to quantifty

P
(
∃f ∈ F : | 1

M

M∑
i=1

f(Zi)− Ef(Z)| > ε
)

as a function of ε and M?

Application: it enables to replace an empirical mean by its expectation,
uniformly in the class of functions F , up to error ε with high probability
(explicitely quantified).

Other application: by Borel-Cantelli lemma, may lead to uniform laws of large
numbers:

sup
f∈F
| 1
M

M∑
i=1

f(Zi)− Ef(Z)| → 0 a.s.

as M →∞.
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Basic computations
I If the cardinality of F is finite. Then

P(∃f ∈ F : | 1
M

M∑
i=1

f(Zi)− Ef(Z)| > ε) ≤ |F| sup
f∈F

P
(
| 1
M

M∑
i=1

f(Zi)− Ef(Z)| > ε

)
≤ 2|F| exp

(
− 2Mε2

B2

)
by Hoeffding inequality (remind that f(.) ∈ [0, B]).

I If the cardinality of F is infinite. Suppose that F can be finitely ε-covered
w.r.t. ‖.‖L∞ : there exists a finite set Fε,∞ = {fj : 1 ≤ j ≤ N∞(ε,F)} ⊂ F such that

for any f ∈ F , there is fj ∈ Fε,∞ s.t. |f − fj |L∞ ≤ ε.

Simple example: F := {f =
∑K
k=1 αk1Ck with αk ∈ [0, B]}.

Then

P(∃f ∈ F : | 1
M

M∑
i=1

f(Zi)− Ef(Z)| > ε) ≤ 2|F ε
3 ,∞| exp

(
− 2M(ε/3)2

B2

)
.
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ε-cover of F w.r.t. Lp-norms
Definition. For a class of functions F and a given empirical measure µM

associated to M points Z1:M = (Z1, · · · , ZM ), we define a ε-cover of F w.r.t.
L1(µM ) by a collection (f1, · · · , fM ) in F such that for any f ∈ F , there is a
j ∈ {1, · · · , N} s.t. |f − fj |L1(µM ) < ε.

Set N1(ε,F ,Z1:M)=the smallest size N of ε-cover of F w.r.t. L1(µM ).

Theorem. For F ⊂ {f : Rd 7→ [−B,B]}. For any n and any ε > 0, one has

P(∃f ∈ F : | 1
M

M∑
i=1

f(Zi)− Ef(Z)| > ε) ≤ 8E(N1(ε/8,F ,Z1:M)) exp(− Mε2

512B2
).

Theorem. If G = {−B ∨
∑
k αkφk(.) ∧B : (α1, · · · , αK) ∈ RK}, then

N1(ε,G,Z1:M) ≤ 3
(

4eB
ε

log(
4eB
ε

)
)K+1

.

Remark. These estimates are distribution-free.
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Applications to the L2(µ)-estimates of the regression errors
Theorem. Assume σ2 = sup

x∈Rd
Var(Y |X = x) <∞ and m(.) = E(Y |X = .) ∈ L∞.

For a KM -dimensional linear vector space FM , define

m̃M (.) = arg min
f∈FM

1
M

M∑
i=1

|f(Xi)− Yi|2,

mM (.) = −‖m‖L∞ ∨ m̃M (.) ∧ ‖m‖L∞ .

Then, for any δ > 0, one has

E
„
|mM(.)−m(.)|2L2(µ)

«
≤ cδ max(σ2, ‖m‖2L∞)

(1 + log(M))

M
KM + (1 + δ) min

f∈FM

|f −m|2L2(µ),

where cδ is an (explicit) universal constant such that cδ →∞ as δ → 0.

Remarks.

These estimates are distribution-free (provided an uniform bound on the
conditional variance).

The regression function m(.) has to be bounded.
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3.5 Extensions to dynamic programmation equations

Extensions ?

1. increasing number N of regression problems,

2. dependent regression problems,

3. unboundedness of the Z-process,

4. . . .

References:

1. Bouchaud, Potters, Sestovic: Hedged Monte Carlo: low variance derivative
pricing with objective probabilities, Physica A, 2001.

2. Egloff: Monte Carlo algorithms for optimal stopping and statistical learning,
AAP, 2005.
Discrete time optimal stopping for general Markov chains.
Non asymptotic estimates w.r.t. K and the number of simulations M .
But the number of discretization times N is fixed.
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3. G., Lemor, Warin:

(a) A regression-based Monte Carlo method to solve backward stochastic
differential equations, AAP 2005.
Brownian BSDEs.
Non asymptotic estimates w.r.t. K and the number of time steps N , but
with M =∞.
CLT w.r.t. M , for fixed K and N .

(b) Rate of convergence of an empirical regression method for solving
generalized backward stochastic differential equations, Bernoulli 2006.
Generalized BSDEs.
Non asymptotic estimates w.r.t. all the parameters .
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Numerical solution of BSDEs using empirical simulations
[G’,Lemor,Warin ’06]

Regular time grid with time step h = T
N + Lipschitz f , Φ, b and σ.

Towards an approximation of the regression operators
Truncation of the tails using a threshold R = (R0, · · · , Rd):

[∆Wl,k]w =
(
−R0

√
h
)
∨∆Wl,k ∧

(
R0

√
h
)
,

fR(t, x, y, z) = f(t,−R1 ∨ x1 ∧R1, · · · ,−Rd ∨ xd ∧Rd, y, z),

ΦR(x) = Φ(−R1 ∨ x1 ∧R1, · · · ,−Rd ∨ xd ∧Rd).

 Localized BSDEs
Define Y N,RT (XN

tN ) = ΦR(XN
tN ) and

ZN,Rl,tk
=

1
h

E(Y N,Rtk+1
[∆Wl,k]w|Ftk),

Y N,Rtk
= E(Y N,Rtk+1

+ hfR(tk, XN
tk
, Y N,Rtk+1

, ZN,Rtk
)|Ftk).
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Proposition. For some Lipschitz functions yN,Rk (•) and zN,Rk (•), one has:
ZN,Rl,tk

=
1
h

E(Y N,Rtk+1
[∆Wl,k]w|Ftk) = zN,Rl,k (XN

tk
),

Y N,Rtk
= E(Y N,Rtk+1

+ hfR(tk, XN
tk
, Y N,Rtk+1

, ZN,Rtk
)|Ftk) = yN,Rk (XN

tk
).

a) The Lipschitz constants of yN,Rk (•) and N−1/2zN,Rk (•) are uniform in N and R.

b) Bounded functions: sup
N

(
‖yN,Rk (•)‖∞ +N−1/2‖zN,Rk (•)‖∞

)
= C? <∞.

Proposition. (Convergence as |R| ↑ ∞). For h small enough, one has

max
0≤k≤N

E|Y N,Rtk
− Y Ntk |

2 + hE
N−1∑
k=0

|ZN,Rtk
− ZNtk |

2

≤ CE|Φ(XN
tN )− ΦR(XN

tN )|2 + C
1 +R2

h

N−1∑
k=0

E
(
|∆Wk|21|∆Wk|≥R0

√
h

)
+ ChE

N−1∑
k=0

|f(tk, XN
tk
, Y Ntk+1

, ZNtk )− fR(tk, XN
tk
, Y Ntk+1

, ZNtk )|2.

 Small impact of the threshold R. And gives extra numerical stability.
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Approximation of yN,Rk (•) and zN,Rk (•)
Projection on a finite dimensional space:

yN,R
k (•) ≈ α0,k.p0,k(•), zN,R

l,k (•) ≈ αl,k.pl,k(•).

(for instance, hypercubes as presented before).

Coefficients will be computed by extra M independent simulations of (XN
tk

)k and
(∆Wk)k  {(XN,m

tk
)k}m and {(∆Wm

k )k}m (only one set of simulated paths).

In addition, we impose boundedness properties:

yN,R,M
k (•) = [αM

0,k.p0,k(•)]y, zN,R,M
l,k ≈ [αM

l,k.pl,k(•)]z,

where [ψ]y = −C? ∨ ψ ∧ C?, [ψ]z = −C?N1/2 ∨ ψ ∧ C?N1/2.

 Ytk ≈ y
N,R,M
k (XN

tk
), Zl,tk ≈ z

N,R,M
l,k (XN

tk
).
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The final algorithm

→→→ Initialization : for k = N take yN,RN (·) = ΦR(·).

→→→ Iteration : for k = N − 1, · · · , 0, solve the q least-squares problems :

αMl,k = arg inf
α

1
M

M∑
m=1

|yN,R,Mk+1 (XN,m
tk+1

)
[∆Wm

l,k]w
h

− α · pl,k(XN,m
tk

)|2.

Then compute αM0,k as the minimizer of

M∑
m=1

|yN,R,Mk+1 (XN,m
tk+1

)+hfR(tk, X
N,m
tk

, yN,R,Mk+1 (XN,m
tk+1

), [αMl,k·pl,k(XN,m
tk

)]z)−α·p0,k(XN,m
tk

)|2.

Then define yN,R,Mk (•) = [αM0,k · p0,k(•)]y, zN,R,Ml,k (•) = [αMl,k · pl,k(•)]z.

Error analysis
1. M =∞: quite easy to analyse.

2. For fixed N and fixed set of functions, Central Limit Theorem on α as M →∞.

3. Non asymptotic estimates? difficult because dependent regression operators.
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Robust error bounds

Theorem. Under Lipschitz conditions (only!), one has

max
0≤k≤N

E|Y N,Rtk
− yN,R,Mk (XN

tk
)|2 + h

N−1∑
k=0

E|ZN,Rtk
− zN,R,Mk (XN

tk
)|2

≤C C2
? log(M)
M

N−1∑
k=0

q∑
l=0

E(KM
l,k)︸ ︷︷ ︸

Monte Carlo error

+Ch

+C
N−1∑
k=0

{
inf
α

E|yN,Rk (XN
tk

)− α · p0,k(XN
tk

)|2︸ ︷︷ ︸
quadratic approximation error on Y N,Rtk

+
q∑
l=1

inf
α

E|
√
hzN,Rl,k (XN

tk
)− α · pl,k(XN

tk
)|2︸ ︷︷ ︸

quadratic approximation error on ZN,Rl,tk

}

+ exponentially small term.
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The exponentially small term is equal

C
C2
?

h

N−1∑
k=0

{
E
(
KM

0,k exp(− Mh3

72C2
?K

M
0,k

) exp(CK0,k+1 log
C C?(KM

0,k)
1
2

h
3
2

)
)

+ hE
(
KM
l,k exp(− Mh2

72C2
?R

2
0K

M
l,k

) exp(CK0,k+1 log
C C?R0(KM

l,k)
1
2

h
)
)

+ exp(CK0,k log
C C?

h
3
2

) exp(−Mh3

72C2
?

)
}
.

Due to dependent regression problems.
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Convergence of the parameters
in the case of HC functions

For a global squared error of order ε = 1
N , choose:

1. Edge of the hypercube: δ ∼ C
N .

2. Number of simulations: M ∼ N3+2d.

Available for a large class of models on X, which depend essentially on L2 bounds
on the solution (no ellipticity condition, with or without jump...).

Complexity/accuracy

Global complexity: C ∼ ε−
1

4+2d .

Techniques of local duplicating of paths: removes the two first contributions in
the exponentially small term  Improved choice of parameters: C ∼ ε−

1
4+d .
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3.6 Numerical results

Ex.1: bid-ask spread for interest rates

• Black-Scholes model and Φ(S) = (ST −K1)+ − 2(ST −K2)+.

• f(t, x, y, z) = −{yr + zθ − (y − z
σ )−(R− r)}, θ = µ−r

σ .

• Parameters: µ σ r R T S0 K1 K2

0.05 0.2 0.01 0.06 0.25 100 95 105

N = 5, δ = 5 N = 20, δ = 1 N = 50, δ = 0.5

M D = [60, 140] D = [60, 200] D = [40, 200]

128 3.05(0.27) 3.71(0.95) 3.69(4.15)

512 2.93(0.11) 3.14(0.16) 3.48(0.54)

2048 2.92(0.05) 3.00(0.03) 3.08(0.12)

8192 2.91(0.03) 2.96(0.02) 2.99(0.02)

32768 2.90(0.01) 2.95(0.01) 2.96(0.01)

Table 1: Results for the combination of Calls using HC.
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Global polynomials (GP)

Polynomials of d variables with a maximal degree.

N = 5 N = 20 N = 50 N = 50

M dy = 1 , dz = 0 dy = 2, dz = 1 dy = 4, dz = 2 dy = 9, dz = 9

128 2.87(0.39) 3.01(0.24) 3.02(0.22) 3.49(1.57)

512 2.82(0.20) 2.94(0.12) 2.97(0.09) 3.02(0.1)

2048 2.78(0.07) 2.92(0.07) 2.92(0.04) 2.97(0.03)

8192 2.78(0.05) 2.92(0.04) 2.92(0.02) 2.96(0.01)

32768 2.79(0.03) 2.91(0.02) 2.91(0.01) 2.95(0.01)

Table 2: Results for the calls combination using GP.

Large standard error  GP not appropriate
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Error convergence N = ρj, δ = h
0.2+1

2 (β = 0.2)
M ∼ h−α (α∗ = 3.4)

j

Pr
ic

e

1 3 5 7 9

2.5

2.7

2.9

3.1

1        
2        
3        
4        
5        
Ref Price
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Error convergence N = ρj, δ = h
1+1
2 (β = 1)

M ∼ h−α (α∗ = 5)

j

Pr
ic

e

1 2 3 4 5 6

2.7

2.8

2.9

3

3.1

3.2 3        
4        
5        
6        
7        
Ref Price
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Optimal estimates?

Error convergence N = ρj, δ = h
0.6+1

2 (β = 0.6), HC(1,0)
M ∼ h−α (α∗ = 5.8)

j

Pr
ic

e

1 3 5 7 9
2.7

2.8

2.9

3

3.1

1        
2        
3        
4        
5        
Ref Price
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Ex.2 : Asian option

• Black Scholes model and Φ(S) = ( 1
T

∫ T
0
Stdt−K)+.

• Approximation of the integral: SNtk −→
(
SNtk ,

1
k

∑k−1
i=0 S

N
ti (1 + µh2 + σ

2 ∆Wti)
)∗

[Lapeyre and Temam ’01].

• Problem in dimension 2.

• Parameters:
µ σ r T S0 K

0.06 0.2 0.1 1 100 100

• Reference price: 7.04.

• HC with δ = 1, D = [60, 200]2.

M 2 8 32 128 512 2048 8192 32768

Y
N,I,M

t0 2.26 0.90 4.49 6.68 6.15 6.88 6.99 7.02

σN,I,Mt0 4.08 7.80 11.27 4.64 1.11 0.21 0.07 0.02
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Ex.2: locally-risk minimizing strategies (FS decomposition)
Heston stochastic volatility models [Heath, Platen, Schweizer ’02]:

dSt
St

= γY 2
t dt+ YtdWt, dYt = (

c0
Yt
− c1Yt)dt+ c2dBt.

Functions HC,
parameters (N, δ).

M

Pr
ic

e

0 41. 10
7

8

7.5

8.5
(5,10)     
(20,5)     
(40,2.5)   
(80,1.25)  
(160,0.625)
Ref Price  
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American options via RBSDEs: several approaches

1. Taking the max with obstacle  Bermuda options (lower approximation)

Y ntk = max(Φ(tk, SNtk ),E(Y Ntk+1
|Ftk) + hf(tk, SNtk , Y

N
tk
, ZNtk )),

ZNl,tk =
1
h

E(Y Ntk+1
∆Wl,k|Ftk).

2. Penalization. Obtained as the limit of standard BSDEs with driver
f(s, Ss, Ys, Zs) + λ(Ys − Φ(s, Ss))− with λ ↑ +∞.
Lower approximation.

3. Regularization of the increasing process: when

dΦ(t, St) = Utdt+ VtdWt + dA+
t ,

then dKt = αt1Yt=Φ(t,St)(f(t, St,Φ(t, St), Vt) + Ut)−dt with αt ∈ [0, 1].

Obtained as a limit of standard BSDEs with driver
f(s, Ss, Ys, Zs) + ρλ(Ys − Φ(s, Ss))(f(s, Ss,Φ(s, Ss), Vs) + Us)− etc...
Upper approximation.
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Ex.3 : American option on three assets

• Payoff g(x) =
(
K − (

∏3
i=1 xi)

1
3
)+.

• Black-Scholes parameters:
T r σ K Si0 d

1 0.05 0.4 Id 100 100 1

• Reference price 8.93 (PDE method).
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M

0 51. 1045. 10

9

10

9.5

Regularization 
Penalization   
Max            
Reference price

FunctionsHC(1,0) with lo-
cal polynomials of degree 1
for Y and 0 for Z.

Regularization: N = 32,
δ = 9, λ = 2.

Max: N = 44, δ = 7.

Penalization: N = 60,
δ = 2, λ = 2.
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Ex.4 : American option on ten assets

• d = 10 = 2p. Multidimensional Black-Scholes model: dSlt
Slt

= (r − µl)dt+ σldW
l
t .

• Payoff : max(x1 · · ·xp − xp+1 · · ·x2p, 0).

• r = 0 , dividend rate µ1 = −0.05 , µl = 0 for l ≥ 2. σl = 0.2√
d
. T = 0.5.

Si0 = 40
2
d , 1 ≤ i ≤ p. Si0 = 36

2
d , p+ 1 ≤ i ≤ 2p.

• Reference price 4.896, obtained with a PDE method [Villeneuve, Zanette 2002].

• Price with quantization algorithm: 4.9945 [Bally-Pages-Printemps 2005].
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number of simulations

0 51. 1045. 10

5

6

7

8

5.5

6.5

7.5

Max Price      
Reference Price Functions HC(1,0).

Max: N = 60, δ = 0.6.

Computational time:
15 seconds.
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