
“CCH-book”
2016/4/18
page 1i

i
i

i

i
i

i
i

Inverse scattering theory and transmission

eigenvalues

Fioralba Cakoni, David Colton and Houssem Haddar

April 18, 2016



“CCH-book”
2016/4/18
page 0i

i
i

i

i
i

i
i



“CCH-book”
2016/4/18
page ii

i
i

i

i
i

i
i

Contents

Preface iii

1 Inverse Scattering Theory 1
1.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Scattering Problem for Inhomogeneous Isotropic Media . . 7

1.2.1 The Far Field Operator . . . . . . . . . . . . . . . . 12
1.2.2 The Inverse Scattering Problem . . . . . . . . . . . 17

1.3 Ill-Posed Problems . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 The Scattering Problem for Anisotropic Media . . . . . . . . . . 26

1.4.1 The Far Field Operator . . . . . . . . . . . . . . . . 31
1.4.2 The Inverse Scattering Problem . . . . . . . . . . . 33

2 The Determination of the Support of Inhomogeneous Media 37
2.1 The Linear Sampling Method (LSM) . . . . . . . . . . . . . . . 38
2.2 A Generalized Version of LSM (GLSM) . . . . . . . . . . . . . . 44

2.2.1 Theoretical Foundation of GLSM in the Noise Free
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Regularized Formulation of GLSM . . . . . . . . . . 49
2.2.3 The GLSM for Noisy Data . . . . . . . . . . . . . . 51
2.2.4 Application of GLSM to the Inverse Scattering Prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 The Inf-Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.1 The Main Theorem . . . . . . . . . . . . . . . . . . 56
2.3.2 Application to the Inverse Scattering Problem . . . 57

2.4 The Factorization Method . . . . . . . . . . . . . . . . . . . . . 58
2.4.1 The (F ∗F )1/4 Method . . . . . . . . . . . . . . . . . 58
2.4.2 Application to the Inverse Scattering Problem for

Non-Absorbing Media . . . . . . . . . . . . . . . . . 60
2.4.3 The F] Method . . . . . . . . . . . . . . . . . . . . . 61
2.4.4 Application to the Inverse Scattering Problem for

Absorbing Media . . . . . . . . . . . . . . . . . . . . 66
2.5 Link Between Sampling Methods . . . . . . . . . . . . . . . . . 67

2.5.1 LSM Versus the (F ∗F )1/4 Method . . . . . . . . . . 67
2.5.2 RGLSM Versus the Factorization Method . . . . . . 68

i



“CCH-book”
2016/4/18
page iii

i
i

i

i
i

i
i

ii Contents

2.5.3 Some Numerical Examples . . . . . . . . . . . . . . 69
2.5.4 Application to Differential Measurements . . . . . . 70

2.6 Application of Sampling Methods to Anisotropic Media . . . . . 73

3 The Interior Transmission Problem 85
3.1 Solvability of the Interior Transmission Problem for Isotropic

Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1.1 The Case of One Sign Contrast . . . . . . . . . . . . 88
3.1.2 Variational Approach for Media with Voids . . . . . 91
3.1.3 The Case of Sign Changing Contrast . . . . . . . . . 98
3.1.4 Boundary Integral Equation Method . . . . . . . . . 105

3.2 Solvability of the Interior Transmission Problem for Anisotropic
Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2.1 The Case of One Sign Contrast in A . . . . . . . . . 118
3.2.2 The Case of Sign Changing Contrast in A . . . . . . 129

4 The Existence of Transmission Eigenvalues 133
4.1 Analytical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2 Existence of Transmission Eigenvalues for Isotropic Media . . . 138

4.2.1 Media with Voids . . . . . . . . . . . . . . . . . . . 146
4.2.2 Inequalities for Transmission Eigenvalues . . . . . . 149
4.2.3 Remarks on Absorbing Media . . . . . . . . . . . . . 156

4.3 Existence of Transmission Eigenvalues for Anisotropic Media . 162
4.3.1 The Case n ≡ 1 . . . . . . . . . . . . . . . . . . . . . 162
4.3.2 The Case n 6≡ 1 . . . . . . . . . . . . . . . . . . . . . 165
4.3.3 Inequalities for Transmission Eigenvalues . . . . . . 172

4.4 The Determination of Transmission Eigenvalues from Far Field
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.4.1 An Approach Based on LSM . . . . . . . . . . . . . 176
4.4.2 An Approach Based on GLSM . . . . . . . . . . . . 179
4.4.3 An Approach Based of the Eigenvalues of the Far

Field Operator . . . . . . . . . . . . . . . . . . . . . 180

5 Inverse Spectral Problems for Transmission Eigenvalues 185
5.1 Spherically Stratified Media with Spherically Symmetric Eigen-

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.2 Spherically Stratified Media with All Eigenvalues . . . . . . . . 194

Bibliography 197

Index 205



“CCH-book”
2016/4/18
page iiii

i
i

i

i
i

i
i

Preface

In the past thirty years the field of inverse scattering theory has become a
major theme of applied mathematics with applications to such diverse areas as
medical imaging, geophysical exploration and nondestructive testing. The growth
of this field has been characterized by the realization that the inverse scattering
problem is both nonlinear and ill-posed, thus presenting particular problems in the
development of efficient inversion algorithms. Although linearized models continue
to play an important role in many applications, the increased need to focus on
problems in which multiple scattering effects can no longer be ignored has led to
the nonlinearity of the inverse scattering problem playing a central role. In addition,
the possibility of collecting large amounts of data over limited regions of space has
led to the situation where the ill-posed nature of the inverse scattering problem
becomes a problem of central importance.

Initial efforts to deal with the nonlinear and ill-posed nature of the inverse
scattering problem focused on the use of nonlinear optimization methods, in partic-
ular Newton’s method and various versions of what are now called decomposition
methods. For a discussion of this approach to the inverse scattering problem to-
gether with numerous references, we refer the reader to [42]. Although efficient in
many situations, the use of nonlinear optimization methods suffer from the need for
strong a priori information in order to implement such an approach. Hence, in order
to circumvent this difficulty, a recent trend in inverse scattering theory has focused
on the development of a qualitative approach in which the amount of a priori infor-
mation needed is drastically reduced but at the expense of obtaining only limited
information of the scatterer such as the connectivity, support and an estimate on
the values of the constitutive parameters. Examples of such an approach are the
linear sampling method, the factorization method and the theory of transmission
eigenvalues. It is these topics that are the theme of this monograph, focusing on
their use in the inverse acoustic scattering problem for inhomogeneous media.

The qualitative approach to inverse scattering theory was initiated by Colton
and Kirsch in 1996 [39]. In this paper they introduced a linear integral equation
of the first kind, called the far field equation, whose solution could be used as an
indicator function to determine the support of the scattering obstacle. This method
is called the linear sampling method. The mathematical difficulties inherent in
this approach were subsequently resolved by the factorization method of Kirsch
[78], and further clarification of the relationship between the linear sampling and
factorization methods was obtained by Arens and Lechleiter [4] and Audibert and

iii
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iv Preface

Haddar [7]. Having determined the support of the scatterer, the next step in the
qualitative approach is to determine estimates on the material properties of the
scatterer. This was accomplished by Cakoni, Gintides and Haddar [27] through the
use of transmission eigenvalues first introduced by Kirsch [73] and Colton and Monk
[46]. The development of the above themes is the subject matter of the chapters
that follow. This book is intended for mathematicians, physicists and engineers
who are either actively involved in problems arising in scattering theory or have an
interest in this field and wish to know more about recent developments in this area.
It will also be of interest to advanced graduate students wishing to become more
informed about new ideas in inverse scattering theory. On the other hand, for those
unfamiliar with classical scattering theory, Chapter 1 provides a basic introduction
to this area and also serves as an introduction to the chapters which follow.

This monograph is based on lectures given by David Colton and Fioralba
Cakoni at the CBMS–NFS sponsored summer school “Inverse Scattering Theory
and Transmission Eigenvalues” held at the University of Texas in Arlington during
the week of May 27 – May 31, 2014. Special thanks are given to the National Science
Foundation for their financial support as well as to Professor Tuncay Aktosun whose
expert skills in organizing and running the summer school made it so successful.
We would also like to thank Dr. Arje Nachman of the Air Force Office of Scientific
Research (AFOSR) for his long term support of Professors Cakoni and Colton as
well as both AFOSR and L’Institut National de Recherche en Informatique et en
Automatique (INRIA) for supporting exchange visits between Professors Cakoni
and Colton and Professor Haddar which has been indispensable for our long term
research efforts. We would also like to thank Dr. Richard Albanese, USAF retired,
for his continuous interest and encouragement of our research. Finally, we thank
the editorial office at SIAM for their expert handling of our manuscript through the
publishing process.
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Chapter 1

Inverse Scattering Theory

In this introductory chapter we provide an overview of the basic ideas of scattering
theory for inhomogeneous media of compact support and in particular the associated
inverse scattering problems which will become the major theme of this monograph.
In addition to introducing the concept of the far field operator and the basic theory
of ill-posed problems, we also establish uniqueness results for inverse scattering
problems for both isotropic and anisotropic media. The results presented here
are basic to the chapters that follow which develop in more detail the qualitative
approach to inverse scattering theory.

1.1 The Helmholtz Equation
The starting point of any discussion of classical scattering theory is the Helmholtz
equation and in particular spherical Bessel functions and spherical harmonics which
arise when separation of variables is implemented in spherical coordinates. More
specifically, we look for solutions of the Helmholtz equation in R3

∆u+ k2u = 0

for k > 0 in the form

u(x) = f(k |x|)Y mn (x̂)

where x ∈ R3, x̂ := x/ |x|, Y mn (x̂) is a spherical harmonic defined by

Y mn (θ, φ) :=

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

Pmn (cos θ)eimφ,

m = −n, . . . , n, n = 0, 1, 2, . . . , (θ, φ) are the spherical angles of x̂ and Pmn is an
associated Legendre polynomial . We note here that {Y mn } is a complete orthonormal
system in L2(S2) where

S2 := {x : |x| = 1}

1
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2 Chapter 1. Inverse Scattering Theory

and Y 0
0 = 1√

4π
. Then f is a solution of the spherical Bessel equation

t2f ′′(t) + 2tf ′(t) +
[
t2 − n(n− 1)

]
f(t) = 0 (1.1)

with two linearly independent solutions

jn(t) :=

∞∑
p=0

(−1)ptn+2p

2pp! 1 · 3 · · · (2n+ 2p+ 1)

yn(t) :=
(2n)!

2nn!

∞∑
p=0

(−1)pt2p−n−1

2pp!(−2n+ 1)(−2n+ 3) · · · (−2n+ 2p− 1)

(1.2)

called, respectively, the spherical Bessel function and the spherical Neumann func-
tion of order n. We note that

j0(t) =
sin t

t
, y0(t) = −cos t

t
. (1.3)

The functions

h(1)
n (t) := jn(t) + iyn(t)

h(2)
n (t) := jn(t)− iyn(t)

are called, respectively, the spherical Hankel functions of the first and second kind
of order n. From (1.2) and (1.3) we have that for fn = jn or fn = yn that

fn+1(t) = −tn
d

dt

{
t−nfn(t)

}
for n = 0, 1, 2, . . . and

h
(1)
0 (t) =

eit

it
, h

(2)
0 (t) = −e

−it

it
.

From this we see that the spherical Hankel functions have the asymptotic behavior

h(1)
n (t) =

1

t
ei(t−

nπ
2 −

π
2 )
{

1 + O

(
1

t

)}
h(2)
n (t) =

1

t
e−i(t−

nπ
2 −

π
2 )
{

1 + O

(
1

t

)} (1.4)

as t tends to infinity. In particular, h
(1)
n (kr) satisfies the Sommerfeld radiation

condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0,

i.e. if u(x) = h
(1)
n (kr)Y mn (x̂) then from the above asymptotic behavior of the spher-

ical Hankel functions we see that u(x)e−iωt (where ω is the frequency and t is time)
is an outgoing wave. In particular this implies that energy is radiated out to in-
finity as required by physical considerations. Solutions of the Helmholtz equation
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1.1. The Helmholtz Equation 3

satisfying the Sommerfeld radiation condition uniformly in x̂ are called radiating.
An equivalent condition for a solution of the Helmholtz equation to be radiating is
that

lim
r→∞

∫
|x|=r

∣∣∣∣∂u∂r − iku
∣∣∣∣2 ds = 0. (1.5)

The Wronskian of h
(1)
n (t) and h

(2)
n (t) is given by

W
(
h(1)
n , h(2)

n

)
:= h(1)

n (t)h(2)′
n (t)− h(2)

n (t)h(1)′
n (t)

= −2i

t2
.

(1.6)

For later use we also quote the following identity for the modulus of h
(1,2)
n that can

be found in [100]

|h(1,2)
n (t)|2 =

1

t2
+

n∑
`=1

αn`
t2(`+1)

; αn` =
(2n)!(n+ `)!

(n!2n)2(n− `)!
. (1.7)

Now let D be a bounded domain such that R3 \D is connected and assume
that ∂D is Lipschitz with unit outward normal ν directed into the exterior of D.
Let

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y (1.8)

be the radiating fundamental solution to the Helmholtz equation and let H2(D) be
the usual Sobolev space (correspondingly H2

loc(R3 \ D)). For further reference we
define

H2
0 (D) =

{
u ∈ H2(D) : u = 0 and

∂u

∂ν
= 0 on ∂D

}
. (1.9)

Then using Green’s second identity∫
D

(u∆v − v∆u) dx =

∫
∂D

(
u
∂v

∂ν
− v ∂u

∂ν

)
ds

we can deduce Green’s formula for functions u ∈ H2(D) [42]:

u(x) =

∫
∂D

{
∂u

∂ν
Φ(x, y)− u ∂

∂v(y)
Φ(x, y)

}
ds(y)

−
∫
D

{(
∆u+ k2u

)
Φ(x, y)

}
dy, x ∈ D.

(1.10)

Theorem 1.1. Let u ∈ H2(D) be a solution of the Helmholtz equation in D. Then
u is analytic in D, i.e. u can be locally expanded in a power series for each point
x ∈ D.
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4 Chapter 1. Inverse Scattering Theory

Proof. Let x ∈ D and choose a closed ball contained in D with center x. Apply
Green’s formula to the ball and note that for x 6= y we have that Φ(x, y) is real
analytic in x.

Theorem 1.2 (Holmgren’s Theorem). Let u ∈ H2(D) be a solution to the
Helmholtz equation in D such that

u =
∂u

∂ν
= 0 on Γ

for some open subset Γ ⊂ ∂D. Then u is identically zero in D.

Proof. Using (1.10) we can extend u by setting

u(x) :=

∫
∂D\Γ

{
∂u

∂ν
Φ(x, y)− u ∂

∂ν(y)
Φ(x, y)

}
ds(y)

for x ∈ (R3 \ D) ∪ Γ. By Green’s second identity applied to u and Φ(x, ·) we see
that u = 0 in R3 \D. But u is a solution of the Helmholtz equation in (R3 \∂D)∪Γ
and hence by the analyticity of u we have that u = 0 in D.

We now derive a representation formula analogous to (1.10) for radiating so-
lutions of the Helmholtz equation in R3 \D. Part of the proof of this theorem will
also be used at the end of this section in order to provide a uniqueness theorem for
radiating solutions of the Helmholtz equation.

Theorem 1.3. Let u ∈ H2
loc(R3 \ D) be a radiating solution to the Helmholtz

equation. Then we have Green’s formula

u(x) =

∫
∂D

{
u
∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
Φ(x, y)

}
ds(y), x ∈ R3 \D.

Proof. Let Sr := {x : |x| = r}. Then the Sommerfeld radiation condition implies
that ∫

Sr

{∣∣∣∣∂u∂ν
∣∣∣∣2 + k2 |u|2 + 2k=

(
u
∂u

∂ν

)}
ds

=

∫
Sr

∣∣∣∣∂u∂ν − iku
∣∣∣∣2 ds→ 0

(1.11)

as r tends to infinity. We now assume that r is large enough such that D is contained
in the ball bounded by Sr and apply Green’s first identity∫

D

(u∆v +∇u · ∇v) dx =

∫
∂D

u
∂v

∂ν
ds
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1.1. The Helmholtz Equation 5

to Dr :=
{
x ∈ R3 \D : |x| < r

}
to obtain∫

Sr

u
∂u

∂ν
ds =

∫
∂D

u
∂u

∂ν
ds− k2

∫
Dr

|u|2 dy +

∫
Dr

|∇u|2 dy. (1.12)

Taking the imaginary part of (1.12) and substituting into (1.11) gives

lim
r→∞

∫
Sr

{∣∣∣∣∂u∂ν
∣∣∣∣2 + k2 |u|2

}
ds = −2k=

 ∫
∂D

u
∂u

∂ν
ds

 (1.13)

which implies that ∫
Sr

|u|2 ds = O(1), r →∞.

Using the Cauchy–Schwarz inequality and the Sommerfeld radiation condition we
now have that∫
Sr

{
u
∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
Φ(x, y)

}
ds(y)

=

∫
Sr

u

{
∂Φ(x, y)

∂ν(y)
− ikΦ(x, y)

}
ds(y)

−
∫
Sr

Φ(x, y)

{
∂u

∂ν
− iku

}
ds(y)→ 0

as r tends to infinity. Hence, applying Green’s formula (1.10) to Dr and letting r
tend to infinity gives the theorem.

Corollary 1.4. An entire solution to the Helmholtz equation satisfying the Som-
merfeld radiation condition must vanish identically.

Proof. This follows immediately from Green’s formula and Green’s second identity.

Corollary 1.5. Every radiating solution u to the Helmholtz equation has the asymp-
totic behavior of an outgoing spherical wave

u(x) =
eik|x|

|x|
u∞(x̂) + O

(
1

|x|2

)
, |x| → ∞

uniformly in all directions x̂ = x/ |x|. The function u∞ defined on the unit sphere
S2 is called the far field pattern of u.
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6 Chapter 1. Inverse Scattering Theory

Proof. From

|x− y| =
√
|x|2 − 2x · y + |y|2 = |x| − x̂ · y + O

(
1

|x|

)
we obtain

eik|x−y|

|x− y|
=
eik|x|

|x|

{
e−ikx̂·y + O

(
1

|x|

)}
and

∂

∂ν(y)

eik|x−y|

|x− y|
=
eik|x|

|x|

{
∂

∂ν(y)
e−ikx̂·y + O

(
1

|x|

)}
as |x| → ∞ uniformly for all y ∈ ∂D. The Corollary now follows by substituting
into Green’s formula.

The next result is a cornerstone of scattering theory and will be used repeat-
edly in the sequel.

Lemma 1.6 (Rellich’s Lemma). Let u ∈ H2
loc(R3 \ D) be a solution to the

Helmholtz equation satisfying

lim
r→∞

∫
|x|=r

|u(x)|2 dx = 0.

Then u = 0 in R3 \D.

Proof. For |x| sufficiently large we have that

u(x) =

∞∑
n=0

n∑
m=−n

amn (r)Y mn (x̂)

where

amn (r) =

∫
S2

u(rx̂)Y mn (x̂) ds(x̂) (1.14)

and ∫
|x|=r

|u(x)|2 ds = r2
∞∑
n=0

n∑
m=−n

|amn (r)|2 .

The assumption of the theorem implies that

lim
r→∞

r2 |amn (r)|2 = 0. (1.15)

But from (1.14) and the fact that u is a solution of the Helmholtz equation we can
deduce that the amn (r) are solutions of the spherical Bessel equation (1.1), i.e.

amn (r) = αmn h
(1)
n (kr) + βmn h

(2)
n (kr) (1.16)
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 7

where αmn and βmn are constants. Substituting (1.16) into (1.15) and using the
asymptotic formulae (1.4) now implies that αmn = βmn = 0 for all n, m and hence
u = 0 outside a sufficiently large ball. This implies that u = 0 in R3 \ D by
analyticity (Theorem 1.1).

Corollary 1.7. Assume u ∈ H2
loc(R3 \D) is a radiating solution to the Helmholtz

equation such that

=

 ∫
∂D

u
∂u

∂ν
ds

 ≥ 0.

Then u = 0 in R3 \D.

Proof. From (1.13) and the assumption of the theorem we have that the assumption
of Rellich’s lemma is valid.

1.2 The Scattering Problem for Inhomogeneous
Isotropic Media

We will now present the simplest scattering problem that will serve as a model
for the inverse problems which will be discussed in this book. It is related to the
propagation of sound waves of small amplitude in R3 viewed as a problem in fluid
dynamics. Let v(x, t), x ∈ R3, be the velocity potential of a fluid particle in an
inviscid fluid and let p(x, t) be the pressure, ρ(x, t) the density and S(x, t) the
specific entropy. Then, if there are no external forces, we have that

∂v

∂t
+ (v · ∇)v +

1

ρ
∇ρ = 0 (Euler’s equation)

∂ρ

∂t
+∇(ρv) = 0 (equation of continuity)

p = f(ρ, s) (equation of state)

∂s

∂t
+ v · ∇s = 0 (adiabatic hypothesis)

where f is a function depending on the fluid. Assuming that v(x, t), p(x, t), ρ(x, t)
and S(x, t) are small we perturb around the static case v = 0, p = p0 = constant,
ρ = ρ0(x), S = S0(x) with p0 = f(ρ0, S0):

v(x, t) = εv1(x, t) + O(ε2)

p(x, t) = p0 + εp1(x, t) + O(ε2)

ρ(x, t) = ρ0(x) + ερ1(x, t) + O(ε2)

S(x, t) = S0(x) + εS1(x, t) + O(ε2)
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8 Chapter 1. Inverse Scattering Theory

where 0 < ε� 1. Substituting the above into the equations of motion and equating
the coefficients of ε we arrive at

∂v1

∂t
+

1

ρ0
∇p1 = 0

∂ρ1

∂t
+∇(ρ0v1) = 0

∂p1

∂t
+ c2(x)

(
∂ρ1

∂t
+ v1 · ∇ρ0

)
where the sound speed c is defined by

c2(x) =
∂

∂ρ
f (ρ0(x), S0(x)) .

Hence
∂2p1

∂t2
= c2(x)ρ0(x)∇

(
1

ρ0(x)
∇p1

)
.

If p1(x, t) = Re
{
u(x)e−iwt

}
we have that u satisfies

ρ0(x)∇
(

1

ρ0(x)
∇u
)

+
w2

c2(x)
u = 0.

Making the further assumption that ∇ρ0 can be ignored, we arrive at

∆u+
w2

c2(x)
u = 0. (1.17)

We now assume that the slowly varying inhomogeneous medium is of compact
support and is embedded in R3 where the sound speed is c(x) = c0 = constant. If
the wave motion is caused by an incident field ui satisfying (1.17) with c(x) = c0,
we arrive at the scattering problem of determining u such that

∆u+ k2n(x)u = 0 in R3 (1.18)

u = ui + us (1.19)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (1.20)

where n(x) = 1 outside the inhomogeneous medium,

n(x) =
c20

c2(x)

inside the inhomogeneous medium, r = |x|, the radiation condition (1.20) is valid
uniformly with respect to x̂ = x/ |x|, k = w/c0 > 0 is the wave number , ui is an
entire solution of the Helmholtz equation ∆u+k2u = 0, us is the scattered field and
we refer to the function n(x) as the refractive index (In the engineering and physics
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 9

literature c0/c(x) is the refractive index). The scattering problem (1.18)-(1.20) is
the simplest model in which to introduce the basic ideas of inverse scattering theory.
However, we shall later consider more physically realistic models in which we no
longer ignore ∇ρ0 and allow u to have jump discontinuities across the boundary of
the inhomogeneous media (c.f. Section 1.4). Moreover, in order to take into account
possible attenuation in the media we consider complex valued refractive index.

We now assume that n ∈ L∞(R3) with non-negative imaginary part, set m :=
1−n and let D be a bounded domain with Lipschitz boundary ∂D such that R3 \D
is connected and m(x) = 0 in R3 \D. We again let

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y.

A proof of the following theorem can be found in [42].

Theorem 1.8. Given two bounded domains D and G, the volume potential

(V ϕ)(x) :=

∫
D

Φ(x, y)ϕ(y) dy, x ∈ R3

defines a bounded operator V : L2(D) → H2(G) where H2(G) denotes a Sobolev
space.

A classical approach to solve the scattering problem is based on reformulating
the problem as a volume integral equation known as the Lippmann–Schwinger in-
tegral equation. An alternative variational approach will also be discussed later in
this chapter. We now show that the scattering problem (1.18)-(1.20) is equivalent
to solving

u(x) = ui(x)− k2

∫
R3

Φ(x, y)m(y)u(y) dy, x ∈ R3. (1.21)

Due to the fact that supp(m) = D, (1.21) can be viewed as an integral equation
over D for u ∈ L2(D).

Theorem 1.9. If u ∈ H2
loc(R3) is a solution of (1.18)-(1.20) then u is a solution of

(1.21) in L2(D). Conversely, if u ∈ L2(D) is a solution of (1.21) then u ∈ H2
loc(R3)

and u is a solution of (1.18)-(1.20).

Proof. Let u ∈ H2
loc(R3) be a solution of (1.18)-(1.20). Let x ∈ R3 and B a ball

containing x and D. Then Green’s formula implies that

u(x) =

∫
∂B

{
∂u

∂ν
Φ(x, y)− u ∂

∂ν(y)
Φ(x, y)

}
ds(y)

− k2

∫
B

Φ(x, y)m(y)u(y) dy
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10 Chapter 1. Inverse Scattering Theory

and

ui(x) =

∫
∂B

{
∂ui

∂ν
Φ(x, y)− ui ∂

∂ν(y)
Φ(x, y)

}
ds(y).

Furthermore, Green’s second identity and the Sommerfeld radiation condition im-
plies that ∫

∂B

{
∂us

∂ν
Φ(x, y)− us ∂

∂ν(y)
Φ(x, y)

}
ds(y) = 0.

Adding these equations together gives the Lippmann–Schwinger integral equation
(1.21), noting that since m has compact support the integral over B can be replace
by an integral over R3.

Conversely, let u ∈ L2(D) be a solution of (1.21) and define

us(x) := −k2

∫
R3

Φ(x, y)m(y)u(y) dy, x ∈ R3.

Then us satisfies the Sommerfeld radiation condition and us ∈ H2
loc(R3) satisfies

∆us + k2us = k2mu. Since ∆ui + k2ui = 0 we have that u = ui + us satisfies
∆u+ k2nu = 0 in R3.

The existence of a unique solution to the scattering problem (1.18)-(1.20) is
now equivalent to showing the existence of a unique solution to the Lippmann–
Schwinger integral equation. For the wave number k sufficiently small, this can be
done by the method of successive approximations.

Theorem 1.10. Suppose that m(x) = 0 for |x| ≥ a and k2 < 2/Ma2 where M :=
max|x|≤a |m(x)|. Then there exists a unique solution to the Lippmann–Schwinger
integral equation.

Proof. It suffices to solve (1.21) in C(B) with B :=
{
x ∈ R3 : |x| < a

}
. On C(B)

define

(Tm)(x) :=

∫
B

Φ(x, y)m(y)u(y) dy, x ∈ B.

By the method of successive approximations, the theorem will be proved if ‖Tm‖∞ ≤
Ma2/2. To this end, we have

|(Tm)(x)| ≤
M ‖u‖∞

4π

∫
B

dy

|x− y|
, x ∈ B.

Now note that

h(x) :=

∫
B

dy

|x− y|
, x ∈ B
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 11

satisfies ∆h = −4π and is a function only of r = |x|. Hence

1

r2

d

dr

(
r2 dh

dr

)
= −4π

and thus h(r) = − 2
3πr

2+ c1
r +c2 where c1 and c2 are constants. Since h is continuous

at the origin, c1 = 0 and letting r tend to zero shows that

c2 = h(0) =

∫
B

dy

|y|
= 4π

a∫
0

ρ dρ = 2πa2.

Hence h(r) = 2π(a2 − r2/3) and thus ‖h‖∞ = 2πa2. We now have that

|(Tmu)(x)| ≤ Ma2

2
‖u‖∞ , x ∈ B

and the theorem follows.

From (1.21) we see that

us(x) = −k2

∫
R3

Φ(x, y)m(y)u(y) dy, x ∈ R3

and hence

us(x) =
eik|x|

|x|
u∞(x̂) + O

(
1

|x|2

)
, |x| → ∞

where the far field pattern u∞ is given by

u∞(x̂) = − k
2

4π

∫
R3

e−ikx̂·ym(y)u(y) dy, x̂ =
x

|x|
. (1.22)

Assuming that k is sufficiently small and replacing u by the first term in solving
(1.21) by iteration (the weak scattering assumption) gives the Born approximation
to the far field pattern

u∞(x̂) ≈ − k
2

4π

∫
R3

e−ikx̂·ym(y)ui(y) dy.

The Born approximation has been used extensively in inverse scattering where the
weak scattering assumption is valid and for details of such an approach see [54].

The proof of the existence of a unique solution to the Lippmann–Schwinger
integral equation for arbitrary k > 0 is more delicate than for k > 0 sufficiently
small and is based on the unique continuation principle. This principle is a basic
result in the theory of linear elliptic partial differential equations and in the case of
elliptic equations in R3 dates back to Müller [96], [97].
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12 Chapter 1. Inverse Scattering Theory

Unique Continuation Principle. Let G be a domain in R3 and suppose u ∈
H2(G) is a solution of ∆u+ k2n(x)u = 0 in G for n ∈ L2(G). Then if u vanishes
in a neighborhood of some point in G, u is identically zero in G.

For a proof of the above unique continuation principle see [42]. We can now use
this principle to show that for each k > 0 there exists a unique solution u ∈ H2

loc(R3)
to the scattering problem (1.18)-(1.20) (or equivalently the Lippmann–Schwinger
integral equation).

Theorem 1.11. For each k > 0 there exists a unique solution u ∈ H2
loc(R3) to the

scattering problem (1.18)-(1.20).

Proof. The integral operator appearing in the Lippmann–Schwinger integral equa-
tion has a weakly singular kernel and hence this operator is compact on L2(D)
where D is the support of m. Hence by the Riesz–Fredholm theory it suffices to
show the uniqueness of a solution to (1.21), i.e. that the only solution of

∆u+ k2n(x)u = 0 in R3 (1.23)

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 (1.24)

is u = 0. To this end, Green’s first identity and (1.23) imply that∫
∂D

u
∂u

∂ν
ds =

∫
D

{
|∇u|2 − k2n̄ |u|2

}
dx

and hence

=

 ∫
∂D

u
∂u

∂ν

 =

∫
D

k2=(n) |u|2 dx ≥ 0.

By Corollary 1.7 u(x) = 0 for x ∈ R3 \ D and hence by the unique continuation
principle u(x) = 0 for all x ∈ R3.

1.2.1 The Far Field Operator

The far field operator plays a central role in inverse scattering theory and will appear
in many of the remaining chapters of this monograph. Hence in this section we will
introduce this operator and derive its most important analytic properties. In the
course of our analysis we will also encounter the transmission eigenvalue problem
which will be seen to play an important role in all of our subsequent investigations.

In order to proceed we will need to be more specific on the nature of the
incident field ui. In particular, from now on we will assume that ui(x) = eikx·d

where |d| = 1. Then the solution of the scattering problem

∆u+ k2n(x)u = 0 (1.25)
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 13

u(x) = eikx·d + us(x) (1.26)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (1.27)

will depend on d and in particular the far field pattern u∞(x̂) = u∞(x̂, d) defined
by

us(x) =
eik|x|

|x|
u∞(x̂, d) + O

(
1

|x|2

)
now depends on d. The following reciprocity principle is basic to our investigations.

Theorem 1.12 (Reciprocity Principle). Let u∞(x̂, d) be the far field pattern
corresponding to (1.25)-(1.27). Then u∞(x̂, d) = u∞(−d,−x̂).

Proof. Let D ⊂ {x : |x| < a} where again D := {x : m(x) 6= 0}. Then Green’s
second identity implies that∫

|y|=a

{
ui(y, d)

∂

∂ν
ui(y,−x̂)− ui(y,−x̂)

∂

∂ν
ui(y, d)

}
ds(y) = 0

∫
|y|=a

{
us(y, d)

∂

∂ν
us(y,−x̂)− us(y,−x̂)

∂

∂ν
us(y, d)

}
ds(y) = 0

where ui(x̂, d) = eikx·d. Corollary 1.5 shows that∫
|y|=a

{
us(y, d)

∂

∂ν
ui(y,−x̂)− ui(y,−x̂)

∂

∂ν
us(y, d)

}
ds(y) = 4πu∞(x̂, d)

∫
|y|=a

{
us(−y,−x̂)

∂

∂ν
ui(y, d)− ui(y, d)

∂

∂ν
us(y,−x̂)

}
ds(y) = 4πu∞(−d,−x̂).

Subtracting the last of these equations from the sum of the first three gives

4π [u∞(x̂, d)− u∞(−d,−x̂)] =

∫
|y|=a

{
u(y, d)

∂

∂ν
u(y,−x̂)− u(y,−x̂)

∂

∂ν
u(y, d)

}
ds(y)

= 0

by Green’s second identity.

We now define the far field operatorF : L2(S 2)→ L2(S 2) by

(Fg)(x̂) :=

∫
S2

u∞(x̂, d)g(d) ds(d).
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14 Chapter 1. Inverse Scattering Theory

Since u∞(x̂, d) is infinitely differentiable with respect to each of its variables, F
is clearly compact. The corresponding scattering operator S : L2(S 2) → L2(S 2) is
defined by

S := I +
ik

4π
F . (1.28)

We now want to prove some properties of these operators. To this end we define a
Herglotz wave function to be a function of the form

vg(x) =

∫
S2

eikx·dg(d) ds(d), x ∈ R3 (1.29)

where g ∈ L2(S 2). The function g is called the Herglotz kernel of vg. Herglotz wave
functions are clearly entire solutions of the Helmholtz equation. We note that for a
given g ∈ L2(S 2) the function∫

S2

e−ikx·dg(d) ds(d), x ∈ R3

is also a Herglotz wave function. Furthermore, if a Herglotz wave function vanishes
in some open subset of R3 then its kernel must be identically zero [42]. In what
follows (·, ·) is the inner product in L2(S 2).

Theorem 1.13. Let g, h ∈ L2(S 2) and let vg and vh be the Herglotz wave functions
with kernels g and h respectively. Then if wg and wh are the solutions of the scat-
tering problem (1.25)-(1.27) corresponding to the incident field eikx·d being replaced
by the incident fields vg and vh respectively we have that

k2

∫
D

=(n)wg wh dx = 2π(Fg, h)− 2π(g,Fh)− ik(Fg,Fh).

Proof. ([41],[42]) Let wsg = wg − vg and wsh = wh − vh denote the scattered fields
with far field patterns w∞g and w∞h respectively. Then by linearity w∞g = Fg and
w∞h = Fh and Green’s second identity implies that, for a sufficiently large such that
D ⊂ {x ∈ R3; |x| ≤ a}∫

|x|=a

{
wg
∂wh
∂ν
− wh

∂wg
∂ν

}
ds = 2k2

∫
D

=(n)wg wh dx (1.30)

and ∫
|x|=a

{
vg
∂vh
∂ν
− vh

∂vg
∂ν

}
ds = 0.
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 15

Furthermore, for R > a we have that

∫
|x|=a

{
wsg
∂wsh
∂ν
− wsh

∂wsg
∂ν

}
ds =

∫
|x|=R

{
wsg
∂wsh
∂ν
− wsh

∂wsg
∂ν

}
ds

→ −2ik

∫
S2

w∞g w
∞
h ds = −2ik(Fg,Fh)

as R tends to infinity. Finally, we have that∫
|x|=a

{
vg
∂wsh
∂ν
− wsh

∂vg
∂ν

}
ds

=

∫
S2

g(d)

∫
|x|=a

{
eikx·d

∂wsh
∂ν
− wsh

∂

∂ν
eikx·d

}
ds(x)ds(d)

= −4π

∫
S2

g(d)w∞h (d) ds(d) = −4π(g,Fh)

and similarly ∫
|x|=a

{
wsg
∂vh
∂ν
− vh

∂wsg
∂ν

}
ds = 4π(Fg, h).

Substituting the above identities into (1.30) now implies the theorem.

Theorem 1.14. Assume that =(n) = 0. Then the far field operator is normal, i.e.
F ∗F = FF ∗, and the scattering operator S is unitary, i.e. SS∗ = S∗S = I.

Proof. Theorem 1.13 implies that

ik(Fg,Fh) = 2π [(Fg, h)− (g,Fh)] (1.31)

for g, h ∈ L2(S 2). By reciprocity we have that

(F ∗g)(x̂) =

∫
S2

u∞(d, x̂)g(d) ds(d)

=

∫
S2

u∞(−x̂,−d)g(d) ds(d)

=

∫
S2

u∞(−x̂, d)g(d) ds(d),
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16 Chapter 1. Inverse Scattering Theory

i.e. F ∗g = RFRg where (Rh)(x̂) := h(−x̂). Since (Rg,Rh) = (g, h) = (g, h), we
have from (1.31) that

ik(F ∗h,F ∗g) = ik(RFRg,RFRh)

= ik(FRg,FRh)

= 2π(FRg,Rh)− 2π(Rg,FRh)

= 2π(RFRg, h)− 2π(g,RFRh)

= 2π(h,F ∗g)− 2π(F ∗h, g)

= 2π(Fh, g)− 2π(h,Fg)

= ik(Fh,Fg)

and hence F ∗F = FF ∗. Finally, (1.31) implies that

−(g, ikF ∗Fh) = 2π (g, (F ∗ − F )h) ,

i.e. ikF ∗F = 2π(F − F ∗). This, together with F ∗F = FF ∗, implies that S∗S =
SS∗ = I by direct substitution.

We now introduce the transmission eigenvalue problem: Determine k > 0 and
v, w ∈ L2(D), v − w ∈ H2

0 (D), such that v 6= 0, w 6= 0 and

∆w + k2n(x)w = 0 in D

∆v + k2v = 0 in D

v = w on ∂D
∂v

∂ν
=
∂w

∂ν
on ∂D.

Such values of k are called transmission eigenvalues. Recall thatD := {x : n(x) 6= 0}
and it is assumed that D is bounded with Lipschitz boundary ∂D such that R3 \D
is connected. If the solution of the transmission eigenvalue problem is a Herglotz
wave function, we then call the transmission eigenvalue k a non-scattering wave
number. Obviously the concept of non-scattering wave numbers is much more re-
strictive than the concept of transmission eigenvalues. The transmission eigenvalues
along with the non-homogeneous interior transmission problem are more precisely
introduced in Chapter 2 and are extensively investigated in Chapter 3 and Chapter
4.

Theorem 1.15. Let F be the far field operator corresponding to the scattering
problem (1.25)-(1.27). Then F is injective if and only if k is not a non-scattering
wave number.

Proof. ([46],[73]) Suppose Fg = 0. Then the far field pattern w∞g of the scattered
field wsg corresponding to the incident field

vg(x) :=

∫
S2

eikx·dg(d) ds(d)
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 17

vanishes. By Rellich’s lemma wsg = wg− vg vanishes outside D. Then wg = vg +wsg
satisfies ∆wg + k2nwg = 0 in R3 and wg − vg = 0 on ∂D and ∂

∂ν (wg − vg) = 0 on
∂D. If k is not a transmission eigenvalue then vg = wg = 0 and hence g = 0, i.e. F
is injective.

Corollary 1.16. Let F be the far field operator corresponding to the scattering
problem (1.25)-(1.27). Then F has dense range if and only if k is not a non-
scattering wave number.

Proof. ([46],[73]) From a well known theorem in functional analysis, the orthogonal
complement of the range of F is equal to the null space of its adjoint F ∗. Hence we
must show that if F ∗h = 0 then h = 0. To this end, we have that if F ∗h = 0 i.e.∫

S2

u∞(d, x̂)h(d) ds(d) = 0

then ∫
S2

u∞(−x̂, d)h(d) ds(d) = 0

and hence, using reciprocity,∫
S2

u∞(x̂, d)h(−d) ds(d) = 0.

Since F is injective by Theorem 1.15, we can now conclude that h = 0 as desired.

1.2.2 The Inverse Scattering Problem

We again consider the scattering problem (1.25)-(1.27). It has previously been
shown that

us(x, d) =
eik|x|

|x|
u∞(x̂, d) + O

(
1

|x|2

)
as |x| → ∞ where

u∞(x̂, d) = − k
2

4π

∫
R3

e−ikx̂·ym(y)u(y) dy

and m := 1 − n. The inverse scattering problem is to determine n(x) (or some
properties of n(x)) from u∞(x̂, d). We begin our discussion with the uniqueness.
As motivation we first prove a simple result for harmonic functions.
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18 Chapter 1. Inverse Scattering Theory

Theorem 1.17. The set of products h1h2 of entire harmonic functions h1 and h2

is complete in L2(D) for any bounded domain D ⊂ R3.

Proof. [34] Given y ∈ R3 choose a vector b ∈ R3 with b · y = 0 and |b| = |y|. Then
for z := y = ib ∈ C3 we have z · z = 0 which implies that hz := eiz·x, x ∈ R3, is
harmonic. Now assume ϕ ∈ L2(D) is such that∫

D

ϕh1h2 dx = 0

for all pairs of entire harmonic function h1 and h2. Our theorem will be proved if
we can show that ϕ = 0. But for h1 = hz, h2 = hz we have that∫

D

ϕ(x)e2iy·x dx = 0

for y ∈ R3 which implies that ϕ = 0 almost everywhere by the Fourier integral
theorem.

To prove uniqueness for the inverse scattering problem of determining n(x)
from u∞(x̂, d) we need a property corresponding to the above theorem for products
v1v2 of solutions to ∆v1 + k2n1v1 = 0 and ∆v2 + k2n2v2 = 0 for two different
refractive indices n1 and n2. Such a result was first established by Sylvester and
Uhlmann [115]. The proofs of the following two theorems can be found in [42] and
[76].

Theorem 1.18. Let B be and open ball centered at the origin and containing the
support of m := 1 − n. Then there exists a constant C > 0 such that for each
z ∈ C3 with z · z = 0 and |Rez| > 2k2 ‖n‖∞ there exists a solution v ∈ H2(D) of
∆v + k2nv = 0 in B of the form

v(x) = eiz·x [1− w(x)]

where

‖w‖L2(D) ≤
C

|Rez|
.

Theorem 1.19. Let B and B0 be two open balls centered at the origin and con-
taining the support of m := 1 − n such that B ⊂ B0. Then the set of total fields{
u(·, d) : d ∈ S 2

}
satisfying (1.25)-(1.27) is complete in the closure of{

v ∈ H2(D) : ∆v + k2nv = 0 in B0

}
with respect to the L2(B) norm.

We are now ready to prove the following uniqueness result for the inverse
scattering problem due to Nachman [98], Novikov [101] and Ramm [106].
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1.2. The Scattering Problem for Inhomogeneous Isotropic Media 19

Theorem 1.20. The index of refraction n is uniquely determined by a knowledge
of the far field pattern u∞(x̂, d) for x, d ∈ S 2 and a fixed wave number k.

Proof. Assume that n1 and n2 are two refractive indices such that

u1,∞(·, d) = u2,∞(·, d), d ∈ S 2

and let B and B0 be two open balls centered at the origin and containing the
support of 1− n1 and 1− n2 such that B ⊂ B0. By Rellich’s lemma we have that
u1(·, d) = u2(·, d) in R3 \B for all d ∈ S 2. Hence u := u1 − u2 satisfies

u =
∂u

∂ν
= 0 on ∂B (1.32)

and
∆u+ k2n1u = k2(n2 − n2)u2 in B.

From this and the partial differential equation for ũ1 := u1(·, d̃) we have that

k2ũ1u2(n2 − n1) = ũ1(∆u+ k2n1u) = ũ1∆u− u∆ũ1.

Green’s second identity and (1.32) now imply that∫
B

u1(·, d̃)u2(·, d)(n1 − n1) dx = 0

for all d, d̃ ∈ S 2. Hence, from Theorem 1.15, it follows that∫
B

v1v2(n1 − n2) dx = 0 (1.33)

for all solutions v1, v2 ∈ H2(D) of ∆v1 + k2n1v1 = 0, ∆v2 + k2n2v2 = 0 in B0.
Given y ∈ R3\{0} and ρ > 0 we now choose vectors a, b ∈ R3 such that {y, a, b}

is an orthogonal basis in R3 and |a| = 1, |b|2 = |y|2 +ρ2. Then for z1 := y+ρa+ ib,
z2 := y − ρa− ib we have that

zj · zj = |Rezj |2 − |=zj |2 + 2iRezj · =zj
= |y|2 + ρ2 − |b|2 = 0

and
|Rezj |2 = |y|2 + ρ2 ≥ ρ2.

In (1.33) we now insert the solutions v1 and v2 constructed in Theorem 1.14 for
the indices of refraction n1 and n2 and the vectors z1 and z2 respectively. Since
z1 + z2 = 2y this yields∫

B

e2iy·x [1 + w1(x)] [1 + w2(x)] [n1(x)− n2(x)] dx = 0
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and passing to the limit as ρ tends to infinity gives∫
B

e2iy·x [n1(x)− n2(x)] dx = 0.

By the Fourier integral theorem we now have that n1 = n2.

Although non-linear optimization methods are not the focus of this mono-
graph, we will briefly show how, in principle, n(x) can be constructed from u∞(x̂, d)
through the use of Newton type methods. To this end, we define the operator
F : m 7→ u∞ for u∞ = u∞(x̂, d) which we just showed is injective but is obviously
non linear. Letting B be a ball containing the (unknown) support of m, we interpret
F as an operator from L2(B) into L2(S 2 × S 2). From The Lippmann–Schwinger
integral equation we can write

(Fm)(x̂, d) = − k
2

4π

∫
B

e−ikx̂·ym(y)u(y) dy (1.34)

where u(·, d) is the unique solution of

u(x, d) + k2

∫
B

Φ(x, y)m(y)u(y, d) dy = eikx·d (1.35)

where again

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y.

Note that F is a nonlinear operator.
Recall now that a mapping T : X → Y of a normal space X into a normal

space Y is called Fréchet differentiable if there exists a bounded linear operator
A : X → Y such that

lim
h→0

1

‖h‖
‖T (x+ h)− T (x)−Ah‖ = 0

and we write T ′(x) = A. In particular, from (1.35) it can be seen that the Fréchet
derivative v := u′mh of u with respect to m (in the “direction” h) satisfies the
Lippmann–Schwinger integral equation

v(x, d) + k2

∫
B

Φ(x, y) [m(y)v(y, d) + h(y)u(y, d)] dy = 0, x ∈ B (1.36)

and from (1.34) we have that

(F ′mh)(x̂) = − k
2

4π

∫
B

e−ikx̂·y [m(y)v(y, d) + h(y)u(y, d)] dy
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for x̂, d ∈ S 2. Hence (F ′mh)(x̂) coincides with the far field pattern of the solution
v(·, d) ∈ H2

loc(R3) of (1.36). Note also that F ′m : L2(B)→ L2(S 2 × S 2) is compact.
We have proven the following theorem [42]:

Theorem 1.21. The operator F : m 7→ u∞ is Fréchet differentiable. The derivative
is given by F ′mh = v∞ where v∞ is the far field pattern of the radiating solution
v ∈ H2

loc(R3) to ∆v + k2nv = −k2uh in R3.

Theorem 1.22. The operator F ′m : L2(B)→ L2(S 2 × S 2) is injective.

Proof. [42] Assume that h ∈ L2(B) satisfies F ′mh = 0. We want to show that
h = 0. Since F ′mh = 0 we have that for each d ∈ S 2 the far field pattern of the
solution v of (1.36) vanishes and Rellich’s lemma implies that v(·, d) = ∂

∂ν v(·, d) = 0
on ∂B. Hence Green’s second identity implies that

k2

∫
B

hu(·, d)w dx = 0

for all d ∈ S 2 and any solution w ∈ H2(B) of ∆w + k2nw = 0 in B0. By Theorem
1.15 we can now conclude that ∫

B

hnw̃ dx = 0

for all w, w̃ satisfying ∆w + k2nw = 0 and ∆w̃ + k2nw̃ = 0 in B0 ⊃ B. The proof
can now be completed as in the proof of Theorem 1.20.

We can now apply Newton’s method to the nonlinear equation F(m) = u∞.
However to implement this procedure we must solve a direct scattering problem at
each step of the iteration procedure. We furthermore have the possible problem
of local minima and need to solve an “ill-posed” compact operator equation of the
first kind at each step. How to solve this last problem will be dealt with in the next
section.

1.3 Ill-Posed Problems
In the previous sections we have introduced two different methods for solving the
inverse scattering problem: the Born approximation and Newton’s method applied
to the nonlinear equation F(m) = u∞. Both methods involve the solution of an
integral equation of the first kind over a bounded region with a smooth kernel. In
particular, in both cases the integral operator is compact. As we shall see shortly,
the problem of inversion of such an operator is ill-posed in the sense that the solution
does not depend continuously on the given (measured) data. The same problem
will also arise later when we use the factorization method or the linear sampling
method to determine the support of the scattering object. In short, all the available
methods for solving the inverse scattering problem involve the solution of ill-posed
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integral equations of the first kind. Hence in this section we shall give a brief survey
of how to solve such equations. For a more comprehensive study we refer the reader
to [56], [74] and [82].

Definition 1.23. Let A : X → V ⊂ Y be an operator from a normal space X
into a subset V of a normal space Y . The equation Aϕ = f is called well-posed
if A : X → V is bijective and the inverse operator A−1 : V → X is continuous.
Otherwise the equation is called ill-posed.

Theorem 1.24. Let A : X → V ⊂ Y be a linear compact operator. Then Aϕ = f
is ill-posed if X is not finite dimensional.

Proof. If A−1 : V → X exists and is continuous then I = A−1A is compact which
implies that X is finite dimensional.

We now assume that A is a linear compact operator and wish to approximate
the solution ϕ to Aϕ = f from a knowledge of a perturbed right hand side fδ with a
known error level

∥∥fδ − f∥∥ ≤ δ. We will always assume that A : X → Y is injective
and want the approximate solution ϕδ to depend continuously on fδ.

Definition 1.25. Let A : X → Y be an injective compact linear operator. Then a
family of bounded linear operators Rα : Y → X with the property that

Rαf → A−1f, α→ 0 (1.37)

for all f ∈ A(X) is called a regularization scheme for A. The parameter α is called
the regularization parameter.

It is easily verified that if X is infinite dimensional then the operator Rα
cannot be uniformly bounded with respect to α and the operators RαA cannot be
norm convergent as α→ 0 [42]. A regularization scheme approximates the solution
ϕ of Aϕ = f by the regularized solution ϕδα := Rαf

δ. Hence

ϕδα − ϕ = Rαf
δ −Rαf +RαAϕ − ϕ

which implies that ∥∥ϕδα − ϕ∥∥ ≤ δ ‖Rα‖+ ‖RαAϕ − ϕ‖ .
The error consists of two parts. The first term reflects the error in the data and
the second term the error between Rα and A−1. From the above discussion we see
that the first term will be increasing as α → 0 due to the ill-posed nature of the
problem whereas the second term will be decreasing as ϕ→ 0 according to (1.37).

Definition 1.26. A strategy for a regularization scheme Rα, α > 0, i.e. the choice
of the regularization parameter α = α(δ, fδ), is called regular if for all f ∈ A(X)
and fδ ∈ Y with

∥∥fδ − f∥∥ ≤ δ we have that

Rα(δ,fδ)f
δ → A−1f, δ > 0.
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A natural strategy is the Morozov discrepancy principle which is based on the
idea that the residual should not be smaller than the accuracy of the measurements,
i.e.

∥∥ARαfδ − fδ∥∥ ≤ γδ for some parameter γ ≤ 1.
From now on let X and Y be Hilbert spaces and A : X → Y be a compact

linear operator with adjoint A∗ : Y → X. The non-negativesquare roots of the
eigenvalues of A∗A : X → X are called the singular values of A. We always assume
that A 6= 0. For a proof of the following theorem see [15] or [42].

Theorem 1.27. Let (µn), µ1 ≥ µ2 ≥ · · · be the singular values of A. Then there
exists orthonormal sequences (ϕn) in X and (gn) in Y such that

Aϕn = µngn, A∗gn = µnϕn

and for all ϕ ∈ X

ϕ =

∞∑
n=1

(ϕ,ϕn)ϕn +Qϕ

Aϕ =

∞∑
n=1

µn(ϕ,ϕn)gn

where Q : X → N(A) is the orthogonal projection operator. The system (µn, ϕn, gn)
is called a singular system of A.

Theorem 1.28 (Picard’s Theorem). Let A : X → Y be a compact linear
operator with singular system (µn, ϕn, gn). Then Aϕ = f is solvable if and only if
f ∈ N(A∗)⊥ and satisfies

∞∑
n=1

1

µ2
n

|(f, gn)|2 <∞. (1.38)

In this case a solution is given by

ϕ =

∞∑
n=1

1

µn
(f, gn)ϕn. (1.39)

Proof. The necessity of f ∈ N(A∗)⊥ follows from N(A∗)⊥ = A(X). If Aϕ = f
then

µn(ϕ,ϕn) = (ϕ,A∗gn) = (Aϕ, gn) = (f, gn)

and hence
∞∑
n=1

1

µ2
n

|(f, gn)|2 =

∞∑
n=1

|(ϕ,ϕn)|2 ≤ ‖ϕ‖2

and the necessity of (1.38) follows.
Conversely, if f ∈ N(A∗)⊥ and (1.38) is satisfied then (1.39) converges in X.

Applying A to (1.39) gives

Aϕ =

∞∑
n=1

(f, gn)gn = f
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since f ∈ N(A∗)⊥.

Picard’s theorem shows that the ill-posedness of Aϕ = f comes from the fact
that µn → 0. This suggests filtering out the influence of 1/µn in the solution of
(1.39). To this end we have the following theorem.

Theorem 1.29. Let A : X → Y be an injective compact linear operator with
singular system (µn, ϕn, gn) and let q : (0,∞)× (0, ‖A‖)→ R be a bounded function
such that for each ϕ > 0 there exists a positive constant c(α) with

|q(α, µ)| ≤ c(α)µ, 0 < µ ≤ ‖A‖ (1.40)

and
lim
α→0

q(α, µ) = 1, 0 < µ ≤ ‖A‖ . (1.41)

Then the bounded operators Rα : Y → X, α > 0, defined by

Rαf :

∞∑
n=1

1

µn
q(α, µn)(f, gn)ϕn, f ∈ Y

describes a regularization scheme with ‖Rα‖ ≤ c(α).

Proof. Since for all f ∈ Y we have that

‖f‖2 =

∞∑
n=1

|(f, gn)|2 + ‖Qf‖2

we have from (1.40) that

‖Rαf‖2 =

∞∑
n=1

1

µ2
n

|q(α, µn)|2 |(f, gn)|2

≤ |c(α)|2
∞∑
n=1

|(f, gn)|2

≤ |c(α)|2 ‖f‖2

form all f ∈ Y and hence ‖Rα‖ ≤ c(α). With the aid of

(RαAϕ,ϕn) =
1

µn
q(α, µn)(Aϕ, gn)

= q(α, µn)(ϕ,ϕn)

and the singular value decomposition for RαAϕ− ϕ we obtain

‖RαAϕ− ϕ‖2 =

∞∑
n=1

|(RαAϕ− ϕ,ϕn)|2

=

∞∑
n=1

[q(α, µn)− 1]
2 |(ϕ,ϕn)|2

(1.42)
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where we have used the fact that A is injective.
Now let ϕ ∈ X with ϕ 6= 0 and let ε > 0 be given. Let |q(α, µ)| ≤ M . Then

there exists N = N(ε) such that

∞∑
n=N+1

|(ϕ,ϕn)|2 < ε

2(M + 1)2
·

By (1.41) there exists α0 = α0(ε) > 0 such that

[q(α, µn)− 1]
2
<

ε

2 ‖ϕ‖2

for all n = 1, 2, · · · , N and 0 < α < α0. Splitting the series (1.42) into two parts
now yields

‖RαAϕ− ϕ‖2 <
ε

2 ‖ϕ‖2
N∑
n=1

|(ϕ,ϕn)|2 +
ε

2
≤ ε

for 0 < α ≤ α0. Hence RαAϕ → ϕ as α → 0 for all ϕ ∈ X and the proof is
complete.

The special choice

q(α, µ) =
µ2

α+ µ2

leads to Tikhonov regularization with is arguably the most popular method for
solving ill-posed operator equations of the first kind.

Theorem 1.30. Let A : X → Y be a compact linear operator. Then for each α > 0
the operator αI+A∗A : X → X is bijective and has a bounded inverse. Furthermore,
if A is injective then Rα := (αI+A∗A)−1A∗ describes a regularization scheme with
‖Rα‖ ≤ 1

2
√
α

.

Proof. From α ‖ϕ‖2 ≤ (αϕ +A∗Aϕ,ϕ) for all ϕ ∈ X we conclude that for α > 0
the operator αI + A∗A is injective. Let (µn, ϕn, gn) be a singular system for A
and Q : X → N(A) denote the orthogonal projection operator. Then T : X → X
defined by

Tϕ :=

∞∑
n=1

1

α+ µ2
n

(ϕ,ϕn)ϕn +
1

α
Q(ϕ)

is bounded and (αI +A∗A)T = T (αI +A∗A) = I, i.e. T = (αI +A∗A)−1.
If A is injective then for the unique solution ϕα of

αϕα +A∗Aϕα = A∗f

we deduce from the above expression for (αI+A∗A)−1 and the identity (A∗f, ϕn) =
µn(f, gn) that

ϕα =

∞∑
n=1

µn
α+ µ2

n

(f, gn)ϕn.
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Hence

Rαf =

∞∑
n=1

1

µn
q(α, µn)(f, gn)ϕn, f ∈ Y

with q(α, µ) = µ2

α+µ2 . The function q satisfies the conditions of Theorem 1.29 with

c(α) = 1/2
√
α due to the fact that

√
αµ ≤ α+ µ2

2
.

The proof of the theorem is now complete.

It can be shown that the Morozov discrepancy principle is a regular strategy
for choosing α [42], [82]. Regularization methods can also be developed for the case
when the operator A is perturbed with a known error level [42].

1.4 The Scattering Problem for Anisotropic Media
We now consider a more general scattering problem where the scattering media can
exhibit anisotropic behavior when interrogated by incident waves. The correspond-
ing direct problem can be formulated as finding u and the scattered field us such
that

∇ ·A∇u+ k2nu = 0 in D (1.43)

∆us + k2us = 0 in R3 \D (1.44)

u− us = ui on ∂D (1.45)

∂u

∂νA
− ∂us

∂ν
=
∂ui

∂ν
on ∂D (1.46)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (1.47)

where ui is the incident field (to become precise later on), D is the support of the
inhomogeneity which is assumed to be a bounded Lipschitz domain such that R3\D
is connected, and A is a 3× 3 symmetric matrix with L∞(D)-entries such that

ξ · <(A)ξ ≥ γ |ξ|2 and ξ · =(A)ξ ≤ 0

for all ξ ∈ C3 a.e. x ∈ D and some constant γ > 0. The assumptions on n are the
same as in Section 1.2. Here ∂u/∂νA denotes the co-normal derivative, i.e.

∂u

∂νA
:= ν ·A∇u.

Assuming that ui is an entire solution to the Helmholtz equation, one can easily see
that the function w defined as

w(x) = u(x)− ui(x) x ∈ D and w(x) = us(x) x ∈ R3 \D
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satisfies
∇ ·A∇w + k2nw = ∇ · (I −A)∇ui + k2(1− n)ui in R3 (1.48)

together with the Sommerfeld radiation condition where the matrix A and the index
n have been respectively extended by the identity matrix and 1 in the whole R3.
Note that (1.48) also holds for ui := Φ(·, z), z /∈ D, where Φ(·, z) is the fundamental
solution of the Helmholtz equation given by (1.8).

Our aim in this section is to establish the existence of a unique solution w ∈
H1
loc(R3) to (1.48). To this end we will rely on a variational approach, hence in the

following we lay out the analytical framework for such approach.

Definition 1.31. Let X be a Hilbert space. A mapping a(·, ·) : X ·X → C is called
a sesquilinear form if

a(λ1u1 + λ2u2, v) = λ1a(u1, v) + λ2a(u2, v)

for all λ1, λ2 ∈ C, u1, u2 ∈ X and

a(u, µ1v1 + µ2v2) = µ1a(u, v1) + µ2a(u, v2)

for all µ1, µ2 ∈ C, v1, v2 ∈ X.

Definition 1.32. A mapping F : X → C is called a conjugate linear functional if

F (µ1, v1 + µ2, v2) = µ1F (v1) + µ2F (v2), µ1, µ2 ∈ C, v1, v2 ∈ X.

Lemma 1.33 (Lax–Milgram Lemma). Assume that a : X × X → C is a
sesquilinear form (not necessarily symmetric) for which there exist constants α, β >
0 such that

|a(u, v)| ≤ α ‖u‖ ‖v‖ for all u, v ∈ X
and

|a(u, u)| ≥ β ‖u‖2 for all u ∈ X. (1.49)

Then for every bounded conjugate linear functional F : X → C there exists a unique
element u ∈ X such that

a(u, v) = F (v) for all v ∈ X.

Furthermore ‖u‖ ≤ C ‖F‖ where C > 0 is a constant independent of F .

Remark 1.34. Note that the Lax–Milgram Lemma is a generalization of the Riesz
Representation Theorem.

Remark 1.35. A sesquilinear form satisfying (1.49) is said to be strictly coercive.

Definition 1.36. The Dirichlet-to-Neumann map T is defined by

T : v → ∂v

∂ν
on SR
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where v is a radiating solution to the Helmholtz equation ∆v + k2v = 0, SR is the
boundary of some ball BR :=: {x : |x| < R} and ν is the outward unit normal to
SR.

From the definition, we see that T maps

v =

∞∑
n=0

n∑
m=−n

amn Y
m
n

with coefficients amn onto

Tv =

∞∑
n=0

γn

n∑
m=−n

amn Y
m
n

where

γn :=
kh

(1)′
n (kR)

h
(1)
n (kR)

, n = 0, 1, · · · .

Noting that spherical Hankel functions and their derivatives do not have real zeros

since otherwise the Wronskian of h
(1)
n and h

(2)
n would vanish, we see that T is

bijective. Furthermore, using the results of Section 1.1, it can easily be shown that

c1(n+ 1) ≤ |γn| ≤ c2(n+ 1)

for all n ≥ 0 and some constants 0 < c1 < c2. From this if follows that T : H1/2(SR)→
H−1/2(SR) is bounded. We remark that

<(γn) =
1

2

k(|h(1)
n |2)′(kR)

|h(1)
n |2(kR)

≤ 0

since the modulus of h
(1)
n (r) is decreasing with respect to r (see (1.7)) while

=(γn) = − k
2i

W
(
h

(1)
n , h

(2)
n

)
(kR)

|h(1)
n |2(kR)

≤ 0

according to (1.6). These properties show in particular that

= 〈Tv, v〉 ≥ 0 and < 〈Tv, v〉 ≤ 0 ∀ v ∈ H1/2(SR) (1.50)

where 〈·, ·〉 denotes the duality pairing between H−1/2(SR) and H1/2(SR) with
respect to the L2(SR) scalar product for regular functions.

Remark 1.37. If we define T0 : H1/2(SR)→ H−1/2(SR) by

T0v := − 1

R

∞∑
n=0

(n+ 1)

n∑
m=−n

amn Y
m
n ,
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we clearly have that

−
∫
SR

T0vv ds =
1

R

∞∑
n=0

(n+ 1)

n∑
m=−n

|amn |
2

with the integral to be understood as the duality paring between H1/2(SR) and
H−1/2(SR). Hence

−
∫
SR

T0vv ds ≥ c ‖v‖2H1/2(SR)

for some constant c > 0, i.e. −T0 is strictly coercive. From the series expansion for

h
(1)
n we have that

γn = −n+ 1

R

{
1 + O

(
1

n

)}
, n→∞

which implies that T − T0 : H1/2(SR)→ H−1/2(SR) is compact since it is bounded
from H1/2(SR) into H1/2(SR) and the embedding from H1/2(SR) into H−1/2(SR)
is compact.

Setting ϕ = ∇ui|D and ψ = ui|D, we can now replace the scattering problem
(1.43)-(1.47) or (1.48) by an equivalent problem for a bounded domain: Find w ∈
H1(BR) such that

∇ ·A∇w + k2nw = ∇ · (I −A)ϕ+ k2(1− n)ψ in BR (1.51)

∂w

∂ν
= Tw on SR. (1.52)

Multiplying (1.51) by a test function v ∈ H1(BR) and use Green’s first identity to
arrive at the following equivalent variational formulation of problem (1.51)-(1.52):
Find w ∈ H1(BR) such that

a1(w, v) + a2(w, v) = F (v) for all v ∈ H1(BR) (1.53)

where

a1(φ, v) :=

∫
BR

∇v ·A∇φdx+

∫
BR

vφ dx− 〈Tφ, v〉

a2(φ, v) := −
∫
BR

(
nk2 + 1

)
vφ dx

F (v) := −
∫
D

∇v · (I −A)ϕ+

∫
D

(1− n)vψdx.

Theorem 1.38. Assume that ϕ ∈ L2(D)3 and ψ ∈ L2(D) and in addition that A
is continuously differentiable in D. Then there exists a unique solution to (1.53).

Proof.



“CCH-book”
2016/4/18
page 30i

i
i

i

i
i

i
i

30 Chapter 1. Inverse Scattering Theory

1. From the assumption ξ · <(A)ξ ≥ γ |ξ|2 and the fact that −T is non-negative
we can conclude that a1(·, ·) is strictly coercive.

2. Using the Riesz representation theorem we can now define the operator

A : H1(BR) → H1(BR) by a1(w, v) = (Aw, v)H1(BR) and from 1. and the

Lax–Milgram lemma we have that A−1 exists and is bounded.

3. Similarly, we can define a bounded linear operator B : H1(BR)→ H1(BR) by
a2(w, v) = (Bw, v)H1(BR) and due to the compact embedding of H1(BR) into

L2(BR) we have that B is compact.

4. The theorem now follows if we can show that A+ B is boundedly invertible.
But this follows from 2. and 3. by the Fredholm alternative provided we
have uniqueness of a solution to (1.43)-(1.47). Under the assumption that
A is continuously differentiable, this follows from Rellich’s Lemma and the
unique continuation principle for solutions to (1.51) in a similar way as in the
isotropic case discussed in Section 1.2 (c.f. [65]).

Since (1.53) is equivalent to the scattering problem (1.43)-(1.47), the above
theorem establishes the well-posedness of the direct scattering problem for anisotropic
media.

For further use in Chapter 2, we will need the following formulas:

w∞(x̂) = − 1

4π

∫
D

(ikx̂ · (I −A)(ϕ(y) +∇w(y)

+ k2(1− n)(y)(ψ(y) + w(y))
)
e−ikx̂·y dy, (1.54)

u∞(x̂) = − 1

4π

∫
D

(
ikx̂ · (I −A)∇u(y) + k2(1− n)(y)u(y)

)
e−ikx̂·y dy. (1.55)

Since (1.55) follows immediately from (1.54), it suffices to prove (1.54). To this end,
we note that

∆w + k2w = ∇ · (I −A)∇w + k2(1− n)w + (∇ ·A∇w + k2nw)

= ∇ · (I −A)(∇w +ϕ) + k2(1− n)(w + ψ). (1.56)

From Green’s formula we immediately have that

w(x) = −
∫
D

Φ(x, y)(∆w + k2w)dy, (1.57)
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where the integral is understood as the convolution of the fundamental solution
with the compactly supported distribution ∆w+k2w. Then from (1.56) and (1.57)
we have that

w(x) = −
∫
D

(I −A)(∇w +ϕ) · ∇xΦ(x, y) + k2(1− n)(w + ψ)Φ(x, y) dy.

Finally letting x tend to infinity, now yields (1.54).

1.4.1 The Far Field Operator

If we consider plane wave incident fields, i.e. ui(x) := eikx·d where |d| = 1, similarly
to the isotropic case we have that the scattered field corresponding to (1.43)-(1.47)
satisfies.

us(x) =
eik|x|

|x|

{
u∞(x̂, d) + O

(
1

|x|

)}
.

The following reciprocity relation can be proven exactly in the same way as Theorem
1.12 where using the symmetry of A and with help of Green’s theorem the integral
over ∂D is moved to the integral over |y| = a.

Theorem 1.39. Let u∞(x̂, d) be the far field pattern corresponding to (1.43)-(1.47).
Then u∞(x̂, d) = u∞(−d,−x̂).

The reciprocity relation states that the far field pattern is unchanged if the
direction of the incident field and observation directions are interchanged. It can
be generalized to a relationship between the scattering of point sources and plane
waves, which is refereed to as mixed reciprocity relation. The following theorem can
be proven in a similar way as Theorem 1.12 (see for details Theorem 3.16 in [42]).

Theorem 1.40. Let u∞(x̂, z) be the far field pattern of the scattered field us(x, z)
for the scattering of a point source ui := Φ(x, z) located at z ∈ R3 \D, and us(x, d)
be the scattered field due to a plane wave ui := eikx·d. Then

4πu∞(−d, z) = u(z, d), z ∈ R3 \D, d ∈ S.

We can define the far field operator F : L2(S2) → L2(S2) corresponding to
(1.43)-(1.47) by

(Fg)(x̂) :=

∫
S2

u∞(x̂, d)g(d) ds(d),

with the corresponding scattering operator given by (1.28).

Theorem 1.41. Let g, h ∈ L2(S 2) and let vg and vh be the Herglotz wave functions
with kernels g and h respectively. Then if (ug, u

s
g) and (uh, u

s
h) are the solutions of
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the scattering problem (1.43)-(1.47) corresponding to the incident field ui := vg and
ui := vh respectively, we have that

−
∫
D

=(A)∇ug · ∇uh dx+ k2

∫
D

=(n)uguh dx = 2π(Fg, h)− 2π(g,Fh)− ik(Fg,Fh).

Proof. Let ug = usg + vg and uh = ush + vh be the total fields in R3 \ D. Then
using transmission conditions, the divergence theorem along with the symmetry of
A and the equations in D we have∫

|x|=a

(
ug
∂uh
∂ν
− uh

∂ug
∂ν

)
ds =

∫
∂D

(
ug
∂uh
∂ν
− uh

∂ug
∂ν

)
ds

=

∫
∂D

(
ug A∇uh · ν − uhA∇ug · ν

)
ds =

∫
D

(
∇ · (ugA∇uh)−∇ · (uhA∇ug)

)
dx

=

∫
D

(
∇ug ·A∇uh −∇uh ·A∇ug

)
dx+

∫
D

(
ug∇ ·A∇uh − uh · ∇A∇ug

)
dx

=

∫
D

(
∇ug ·A∇uh −∇uh ·A∇ug

)
dx+ k2

∫
D

(uhnug − ugnuh) dx

Hence we have that∫
|x|=a

(
ug
∂uh
∂ν
− uh

∂ug
∂ν

)
ds (1.58)

= −2i

∫
D

=(A)∇ug · ∇uh dx+ 2ik2

∫
D

=(n)uguh dx.

Proceeding exactly as in the proof of Theorem 1.13 where wg and wh are
replaced by the fields outside D ug and uh, we obtain that∫

|x|=a

(
ug
∂uh
∂ν
− uh

∂ug
∂ν

)
ds (1.59)

= 4π(Fg, h)− 4π(g,Fh)− 2ik(Fg,Fh).

Combining (1.58) and (1.59) yield the result

Now Theorem 1.41 implies the following property of the far field operator.

Theorem 1.42. Assume that both =(A) = 0 and =(n) = 0. Then the far field
operator corresponding to the scattering problem (1.43)-(1.47) is normal.

Proof. The proof is exactly the same as the proof of Theorem 1.14
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Finally, the proof of Theorem 1.15 and Corollary 1.16 carry through for the
far field operator corresponding to the scattering problem for anisotropic media.
More precisely, the following theorem holds (see also Theorem 6.2 in [15])

Theorem 1.43. Let F : L2(S 2) → L2(S 2) be the far field operator corresponding
to the scattering problem (1.25)-(1.27). Then F is injective and has dense range
if and only if there does not exist a Herglotz wave function vg such that the pair
u, v := vg is a solution to the transmission eigenvalue problem

∇ ·A∇u+ k2nu = 0 in D (1.60)

∆v + k2v = 0 in D (1.61)

v = u on ∂D (1.62)

∂v

∂ν
=

∂u

∂νA
on ∂D. (1.63)

Values of k > 0 for which (1.60)-(1.63) has non-trivial solutions such that
v := vg, i.e. v is a Herglotz wave function are called non-scattering wave numbers.
In particular F is injective and has dense range if and only k is not a non-scattering
wave numbers. We also mention that values of k for which (1.60)-(1.63) has non-
trivial solutions are referred to as transmission eigenvalues.

1.4.2 The Inverse Scattering Problem

Similarly to the inverse medium problem for isotropic inhomogeneities (Section
1.2.2), the inverse problem is to determine A(x) and n(x) (or some properties of
A(x) and n(x)) from a knowledge of the far field u∞(x̂, d) corresponding to the
scattering problem (1.25)-(1.27). Unfortunately, in the general case of matrix valued
functions A(x), the far field patterns u∞(·, d) do not uniquely determine A and n
even if they are known for all d ∈ S2 and all wave numbers k [60]. Hence in general
for anisotropic media, only the uniqueness of the support D of the inhomogeneity
can be expected . The idea of the uniqueness proof for the inverse medium scattering
problem originates from [67], [68] in which it is shown that the shape of a penetrable,
inhomogeneous, isotropic medium is uniquely determined by its far field pattern for
all incident plane waves. The case of an anisotropic medium is due to Hähner [61]
(see also [24]), the proof of which is based on the existence of a solution to the
modified interior transmission problem. To proceed further let us define the (non-
homogeneous) interior transmission problem corresponding to (1.60)-(1.63): Given
f ∈ H1/2(∂D) and h ∈ H−1/2(∂D), find u ∈ H1(D) and v ∈ H1(D) satisfying

∇ ·A∇u+ k2nu = 0 in D (1.64)

∆v + k2v = 0 in D (1.65)

u− v = f on ∂D (1.66)

∂w

∂νA
− ∂v

∂ν
= h on ∂D. (1.67)
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This problem will be analyzed in Chapter 3 in this book. The uniqueness result is
based on the following assumption on the interior transmission problem.

Assumption 1. A, n are such that the modified interior transmission problem:
Given f ∈ H1/2(∂D), h ∈ H−1/2(∂D), `1 ∈ L2(D) and `2 ∈ L2(D), find w ∈
H1(D) and v ∈ H1(D) satisfying

∇ ·A∇u+ γ1nu = `1 in D (1.68)

∆v + γ2v = `2 in D (1.69)

u− v = f on ∂D (1.70)

∂u

∂νA
− ∂v

∂ν
= h on ∂D, (1.71)

for some constants γ1 and γ2 has a unique solution has a unique solution which
satisfies

‖u‖H1(D) + ‖v‖H1(D) ≤ C
(
‖f‖H1/2(∂D) + ‖h‖H−1/2(∂D) + ‖`1‖L2(D) + ‖`2‖L2(D)

)
.

Note that the interior transmission problem (1.64)-(1.67) is a compact pertur-
bation of (1.68)-(1.71). This implies the following lemma which will be used in the
proof of uniqueness, in order to obtain the result without assuming that k is not a
transmission eigenvalue.

Lemma 1.44. Assume that Assumption 1 holds, and let {vn, un} ∈ H1(D) ×
H1(D), j ∈ N, be a sequence of solutions to the interior transmission problem

(1.64)-(1.67) with boundary data fn ∈ H
1
2 (∂D), hn ∈ H−

1
2 (∂D). If the sequences

{fn} and {hn} converge in H
1
2 (∂D) and H−

1
2 (∂D) respectively, and if the sequences

{vn} and {un} are bounded in H1(D), then there exists a subsequence {vnk} which
converges in H1(D).

Proof. Thanks to the compact imbedding of H1(D) into L2(D) we can select
L2-convergent subsequences {vnk} and {unk}, which satisfy

∇ ·A∇unk + γ1unk = (γ − k2n)unk in D

∆vnk + γ2 vnk = (γ2 − k2)vnk in D

unk − vnk = fnk on ∂D

∂unk
∂νA

− ∂vnk
∂ν

= hnk on ∂D.

Then the result follows from Assumption 1.

We are now ready to prove the uniqueness theorem.

Theorem 1.45. Let the domains D1 and D2, the matrix-valued functions A1 and
A2, and the functions n1 and n2 are such that Assumption 1 holds. If the far
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field patterns u∞1 (x̂, d) and u∞2 (x̂, d) corresponding to D1, A1, n1 and D2, A2, n2,
respectively, coincide for all x̂ ∈ S2 and d ∈ S2, then D1 = D2.

Proof. Denote by G the unbounded connected component of R3 \ (D̄1 ∪ D̄2)
and define De

1 := R3 \ D̄1, De
2 := R3 \ D̄2. By the analyticity of the far field

patters and Rellich’s lemma we conclude that the scattered fields us1(·, d) and us2(·, d)
which are solutions of (1.43)-(1.47) with D1, A1, n1 and D2, A2, n2, respectively, and
ui = eikx·d, coincide in G for all d ∈ S2. For the incident field ui := Φ(x, z) we
denote by us1(·, z) and us2(·, z) the corresponding scattered solutions. The mixed
reciprocity relation in Theorem 1.40 with another application of Rellich’s lemma
implies that us1(·, z) and us2(·, z) also coincide for all z ∈ G. In terms of notations
(1.48), this means that w1(·, z) = w2(·, z) for all z ∈ G.

Let us now assume that D̄1 is not included in D̄2. Since De
2 is connected,

we can find a point z ∈ ∂D1 and ε > 0 with the following properties, where Ωδ(z)
denotes the ball of radius δ centered at z:

1. Ω8ε(z) ∩ D̄2 = ∅,

2. The intersection D̄1 ∩ Ω8ε(z) is contained in the connected component of D̄1

to which z belongs,

3. There are points from this connected component of D̄1 to which z belongs
which are not contained in D̄1 ∩ Ω̄8ε(z),

4. The points zn := z +
ε

n
ν(z) lie in G for all n ∈ N, where ν(z) is the unit

normal to ∂D1 at z.

Due to the singular behavior of Φ(·, zn), it is easy to show that ‖Φ(·, zn)‖H1(D1) →
∞ as n→∞. We now define

vn(x) :=
1

‖Φ(·, zn)‖H1(D1)
Φ(x, zn), x ∈ D̄1 ∪ D̄2

and let wn1 and wn2 be the scattered fields solving the scattering problem (1.48)
with ui := vn corresponding to D1, A1, n1 and D2, A2, n2, respectively. Note that
for each n, vn is a solution of the Helmholtz equation in D1 and D2. Our aim is
to prove that if D̄1 6⊂ D̄2 then the equality w1(·, z) = w2(·, z) for z ∈ G allows the
selection of a subsequence {vnk} from {vn} that converges to zero with respect to
H1(D1). This certainly contradicts the definition of {vn} as a sequence of functions
with H1(D1)-norm equal to one. Note that w1(·, z) = w2(·, z) obviously implies
that wn1 = wn2 in G.

We begin by noting that, since the functions Φ(·, zn) together with their
derivatives are uniformly bounded in every compact subset of R3 \ Ω2ε(z), and
since ‖Φ(·, zn)‖H1(D1) → ∞ as n → ∞, then ‖vn‖H1(D2) → 0 as n → ∞. Hence,
if ΩR is a large ball containing D̄1 ∪ D̄2, then ‖wn2 ‖H1(ΩR∩G) → 0 also as n → ∞
from the well-posedness of the direct scattering problem . Since wn1 = wn2 in G
then ‖wn1 ‖H1(ΩR∩G) → 0 as n→∞ as well. Now, with the help of a cutoff function
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χ ∈ C∞0 (Ω8ε(z)) satisfying χ(x) = 1 in Ω7ε(z) we see that ‖wn1 ‖H1(ΩR∩G) → 0
implies that

(χwn1 )→ 0,
∂(χwn1 )

∂ν
→ 0, as n→∞ (1.72)

on ∂D1, with respect to the H
1
2 (∂D1)-norm and H−

1
2 (∂D1)-norm, respectively.

Indeed, for the first convergence we simply apply the trace theorem while for the
convergence of ∂(χwn1 )/∂ν, we first deduce the convergence of ∆(χwn1 ) in L2(ΩR ∩
De

1), which follows from ∆(χwn1 ) = χ∆wn1 + 2∇χ · ∇wn1 + wn1 ∆χ, and then apply
Green’s Theorem. Note here that we need conditions 2 and 4 on z to ensure Ω8ε(z)∩
De

1 = Ω8ε(z) ∩G.
We next note that in the exterior of Ω2ε(z) the H2(ΩR \ Ω2ε(z))-norms of

vn remain uniformly bounded. Then thanks to the smoothness of A and n, reg-
ularity results for (1.48) [58] imply that wn1 is uniformly bounded with respect
to the H2((ΩR ∩ De

1) \ Ω4ε(z))-norm. Therefore, using the compact imbedding
of H2(ΩR ∩ De

1) into H1(ΩR ∩ De
1), we can select a H1(ΩR ∩ De

1) convergent
subsequence {(1 − χ)wnk1 } from {(1 − χ)wn1 }. Hence, {(1 − χ)wnk1 } is a conver-

gent sequence in H
1
2 (∂D1), and similarly to the above reasoning we also have that

{∂((1 − χ)wnk1 )/∂ν} converges in H−
1
2 (∂D1). This, together with (1.72), implies

that the sequences

{wnk1 } and

{
∂wnk1

∂ν

}
converge in H

1
2 (∂D1) and H−

1
2 (∂D1), respectively.

Finally, since the functions wnk1 + vnk and vnk are solutions to the interior
transmission problem (1.64)-(1.67) for the domain D1 with boundary data f = wnk1

and h = ∂wnk1 /∂ν, and since the H1(D1)-norms of wnk1 + vnk and vnk remain
uniformly bounded, according to Lemma 1.44 we can select a subsequence of {vnk},
denoted again by {vnk}, which converges in H1(D1) to a function v ∈ H1(D1). As
a limit of weak solutions to the Helmholtz equation, v ∈ H1(D1) is a weak solution
to the Helmholtz equation. We also have that v|D1\Ω2ε(z) = 0 because the functions
vnk converge uniformly to zero in the exterior of Ω2ε(z). Hence, v must be zero
in all of D1 (here we make use of condition 3, namely the fact that the connected
component of D1 containing z has points which do not lie in the exterior of Ω̄2ε(z)).
This contradicts the fact that ‖vnk‖H1(D1) = 1. Hence the assumption D̄1 6⊂ D̄2 is
false.
Since we can derive the analogous contradiction for the assumption D̄2 6⊂ D̄1, we
have proved that D1 = D2.
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Chapter 2

The Determination of the
Support of
Inhomogeneous Media

We now introduce and analyze a class of inversion methods, often referred to as
qualitative methods, that solve the inverse problem of finding D from the measured
far field data u∞(x̂, d) for (x̂, d) ∈ S2 × S2 without reconstructing the index of
refraction n or other medium physical parameters. These methods are based on a
careful analysis of the range of the far field operator F : L2(S2) → L2(S2) defined
by

(Fg)(x̂) :=

∫
S2

u∞(x̂, d)g(d) ds(d). (2.1)

The analysis of these methods do not require weak scattering approximations. In
addition, the associated algorithms do not require a forward solver of the scattering
problem, and hence they are faster to implement.

We start in Section 2.1 with the Linear Sampling Method (LSM) that has been
introduced in [39] to solve the aforementioned inverse problem and that was further
analyzed in a number of subsequent works [13], [38] and [49]. We refer to [15] for an
extensive presentation of this method and its various applications. This method has
the simplest formulation and can be easily adapted to different settings of the data
(near field data, data available on a limited aperture) and the scattering problem
(inhomogeneous background). However, the theoretical foundation of the method
does not fully justify why it numerically works. For instance the theory does not
provide a regularization scheme that construct the predicted indicator function of
the domain D. We provide in Section 2.1 a complete analysis of this method in the
simple isotropic case.

A new formulation of LSM, referred to as Generalized Linear Sampling Method
(GLSM), has been proposed in [7] in order to circumvent the above mentioned weak
point. It gives an exact characterization of the domain D in terms of the range of F .
Moreover, it yields a numerically tractable indicator function, but at the expense
of additional numerical cost. A detailed presentation of this method is given in
Section 2.2 and follows the one given in [6] and [7]. We provide in Section 2.2.1
the theoretical foundation of the GLSM in an abstract framework that can then

37
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38 Chapter 2. The Determination of the Support of Inhomogeneous Media

be applied to various inverse scattering problems. We confine ourselves with the
theory adapted to data available on a full aperture and refer to [5] for more elaborate
formulations that can apply to near field data, data available on a limited aperture
and inhomogeneous backgrounds. Sections 2.2.2 and 2.2.3 address the issue of noisy
operators. Although important from the practical point of view, these sections can
be skipped in a first reading. The application of the abstract theory to the isotropic
inverse problem is then presented in Section 2.2.4.

Another exact characterization of D in terms of the far field operator can be
obtained using the so-called inf-criterion. This method is presented in Section 2.3.
The main drawback of this characterization is that it is numerically less attractive
than other sampling methods. However, this criterion can be used to justify other
methods like the factorization method presented in Section 2.4. The latter was first
introduced by Kirsch in [74] and we refer the reader to [78] for a detailed analysis
of this method. We give here a self-contained and slightly different presentation of
the abstract theory related to this method for both versions, the (F ∗F )1/4 and F]
methods. We also discuss for each version the application to the isotropic inverse
problem. The factorization method requires (in principle) stronger assumptions
than the other sampling methods. For instance, the generalization to the case of
limited aperture is an open problem as well as for inhomogeneous backgrounds that
contain absorption.

Section 2.5 complement the picture on sampling methods by addressing some
link between them. We explain for instance how the (F ∗F )1/4 method can be used
to provide precise information on the behavior of the Tikhonov regularized solution
of the LSM equation. We also explain how the factorization method can comple-
ment the GLSM to solve the imaging problem where one would like to identify a
change in the background using differential measurements. Some simple compara-
tive numerical illustrations of these methods are given in Section 2.5.3. Application
to the case of differential measurements is discussed in Section 2.5.4 in a simpli-
fied configuration. This section does not intend to give a full presentation of this
important problem but rather a glimpse on potential new applications of sampling
methods.

We close this chapter with Section 2.6 where the application of all previously
introduced sampling methods is discussed in the case of anisotropic media. This
provides a unified presentation of the analysis of these methods for a particular
problem.

2.1 The Linear Sampling Method (LSM)
We consider here the first class of qualitative methods that has been introduced in
[39] and that was further analyzed in a number of subsequent works [13], [38] and
[49]. Roughly speaking, the idea of the method is to consider approximate solutions
to (2.1) (in a sense that will be made precise later), i.e. gz ∈ L2(S2) satisfying

Fgz ' Φ∞(·, z)

with Φ∞(x̂, z) := 1
4π e
−ikx̂·z being the far field pattern associated with the funda-

mental solution Φ(·, z) and then use z 7→ 1/‖gz‖L2(S2) as an indicator function
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for the domain D. We shall first give a presentation of the method in the spe-
cial case where u∞(·, d) is the far field pattern associated with the scattered field
us(·, d) ∈ H1

loc(R3) solution to (1.25)-(1.27). The index of refraction n ∈ L∞(R3)
is such that <(n) > 0, =(n) ≥ 0, n = 1 outside the support D of m := 1 − n,
and assume that D contains the origin, has Lipschitz boundary ∂D and connected
complement in R3. According to Theorem 1.38, let us define for u0 ∈ L2(D) the
unique function w ∈ H1

loc(R3) satisfying
∆w + k2nw = k2(1− n)u0 in R3,

lim
R→∞

∫
|x|=R

|∂w/∂|x| − ik w|2 ds = 0. (2.2)

Obviously, if u0(x) = eikd·x then w = us(·, d), and therefore the far field pattern w∞
of w coincides with u∞(·, d). Let us consider the (compact) operator H : L2(S2)→
L2(D) defined by

Hg := vg|D, (2.3)

where the Herglotz wave function vg is defined by (1.29), namely,

vg(x) :=

∫
S2

eikd·xg(d)ds(d), x ∈ R3.

Let us denote by Hinc(D) the closure of the range of H in L2(D). We then consider
the (compact) operator G : Hinc(D)→ L2(S2) defined by

G(u0) := w∞, (2.4)

where w∞ is the far field pattern of w ∈ H1
loc(R3) satisfying (2.2). One therefore

easily observes that F can be factorized as

F = GH. (2.5)

The justification of the Linear Sampling Method (LSM) is mainly based on the
characterization of D in terms of the range of the operator G. This characterization
uses the solvability of the interior transmission problem: Find (u, u0) ∈ L2(D) ×
L2(D) such that u− u0 ∈ H2(D) and

∆u+ k2nu = 0 in D,

∆u0 + k2u0 = 0 in D,

u− u0 = f on ∂D,

∂(u− u0)/∂ν = h on ∂D,

(2.6)

for given (f, h) ∈ H3/2(∂D)×H1/2(∂D) where ν denotes the outward normal on ∂D.
Values of k for which this problem is not well posed are referred to as transmission
eigenvalues. We consider in this chapter only real transmission eigenvalues.
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The analysis of the interior transmission problem and of transmission eigen-
values will be conducted in the next two chapters. We only need in this chapter the
well posedness of this problem (as well as the well posedness of the direct problem
(2.2)) for data u0 ∈ L2(D). At this point we formulate this statement in the fol-
lowing assumption (the solvability of the interior transmission problem is subject
of Chapter 3).

Assumption 1. We assume that the refractive index n and the real wave number
k are such that (2.6) defines a well posed problem.

We recall from Theorem 1.38 that (2.2) is well posed if n ∈ L∞(R3), <(n) > 0,
=(n) ≥ 0 and n = 1 in R3 \D. The well posedness of (2.6) requires at least that
n 6= 1 in a neighborhood of ∂D and that k is outside a countable set without finite
accumulation points (see Chapter 3).

A first step towards the justification of LSM is the characterization of the
closure of the range of H.

Lemma 2.1. The operator H is compact and injective. Let Hinc(D) be the closure
of the range of H in L2(D). Then

Hinc(D) = {v ∈ L2(D) : ∆v + k2v = 0 in D}.

Proof. For the first part, assume that Hg = 0 in D. Since,

∆Hg + k2Hg = 0 in R3,

by the unique continuation principle, Hg = 0 in R3. This implies (using the Jacobi-
Anger expansion [42]) that g = 0.

For the second part of the lemma, we give a slightly different proof than the
original one in [110]. Set H̃inc(D) := {v ∈ L2(D) : ∆v + k2v = 0 in D}. Then

obviously Hinc(D) ⊂ H̃inc(D). To prove the theorem it is then sufficient to prove
that H∗ : L2(D)→ L2(S2), the adjoint of the operator H given by

H∗ϕ(x̂) :=

∫
D

e−ikx̂·yϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ S2, (2.7)

is injective on H̃inc(D). Let u0 ∈ H̃inc(D) and set

u(x) :=

∫
D

Φ(x, y)u0(y) dy, x ∈ R3.

From the regularity properties of volume potentials (Theorem 1.8), we infer that
u ∈ H2

loc(R3) and satisfies{
(i) ∆u+ k2u = −u0 in D,

(ii) ∆u+ k2u = 0 in R3 \D.
(2.8)
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Since by construction 4πu∞ = H∗(u0), then H∗(u0) = 0 implies that u∞ = 0 and
therefore u = 0 in R3 \ D by Rellich’s lemma. The regularity u ∈ H2

loc(R3) then
implies u ∈ H2

0 (D). Now take the L2(D) scalar product of (2.8-i) with u0 to obtain∫
D

(
∆u+ k2u

)
u0 dx = ‖u0‖2L2(D) .

The left hand side of this equality is zero since ∆u0 +k2u0 = 0 in the distributional
sense and u ∈ H2

0 (D).

The following reciprocity lemma will also be useful.

Lemma 2.2. Let u0, u1 ∈ L2(D) and let w0 and w1 ∈ H1
loc(R3) be the corresponding

solutions satisfying (2.2). Then∫
D

(1− n)w0 · u1dx =

∫
D

(1− n)w1 · u0dx. (2.9)

Proof. We have {
(i) ∆w0 + k2 nw0 = k2(1− n)u0 in R3,

(ii) ∆w1 + k2 nw1 = k2(1− n)u1 in R3.
(2.10)

Let BR be an open ball with radius R that contains D. Multiplying (2.10-i) by w1

and (2.10-ii) by w0 yields, after integrating over BR and taking the difference,∫
BR

∆w0 w1 −∆w1 w0 dx = k2

∫
D

(1− n)u0 w1 − (1− n)u1 w0 dx.

Integrating by parts, we obtain∫
∂BR

(∂w0/∂r)w1 − (∂w1/∂r)w0 ds(x)

= k2

∫
D

(1− n)u0 · w1 − (1− n)u1 · w0 dx. (2.11)

Since w0 and w1 satisfy the Sommerfeld radiation condition

lim
R→∞

∫
∂BR

|∂w`/∂r − i kw`|2 ds(x̂) = 0

and

lim
R→∞

∫
∂BR

|w`|2 ds(x) =

∫
S2

∣∣w`∞∣∣2 ds(x̂)
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for ` = 1, 2. Therefore,

lim
R→∞

∫
∂BR

(∂w0/∂r)w1 − (∂w1/∂r)w0 ds(x) = 0.

The lemma follows by letting R→∞ in (2.11).

We now prove the main ingredient for the justification of the Linear Sampling
Method.

Theorem 2.3. Assume that Assumption 1 holds. Then the operator G : Hinc(D)→
L2(S2) defined by (2.4) is injective with dense range. Moreover,

Φ∞(·, z) ∈ R(G) if and only if z ∈ D.

Proof. We start by proving that G : Hinc(D) → L2(S2) is injective with dense
range. Let u0 and w satisfy (2.2). From (1.22), we get

w∞(x̂) = − k
2

4π

∫
D

e−ikx̂·y(1− n)(u0(y) + w(y))dy.

Therefore, for g ∈ L2(S2),

(G(u0), g)L2(S2) = − k
2

4π

∫
D

(1− n)(u0 + w)Hg dx. (2.12)

Assume that u0 = Hϕ for some ϕ ∈ L2(S2) and set w(ϕ) ≡ w. Then the previous
equality can be written as

(G(Hϕ), g)L2(S2) = k2

∫
D

(1− n)(Hϕ+ w(ϕ))Hg dx. (2.13)

From Lemma 2.2 we get∫
D

(1− n)(Hϕ+ w(ϕ))Hg dx =

∫
D

(1− n)(Hg + w(g))Hϕ dx.

Therefore, the identity (2.13) implies the reciprocity relation

(G(Hϕ), g)L2(S2) = (G(Hg), ϕ)L2(S2) ∀ g, ϕ ∈ L2(S2). (2.14)

Now assume that (G(Hϕ), g)L2(S2) = 0 for all ϕ ∈ L2(S2). We deduce from (2.14)

that G(Hg) = 0. Using Rellich’s Lemma and unique continuation principle we
deduce that w(g) = 0 in R3 \ D. Consequently, if we set u := w(g) + Hg, then
the pair (u,Hg) is a solution to (2.6) with zero data. Our hypothesis ensures that
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Hg = 0 in D and consequently g = 0 (by Lemma 2.1). This proves the denseness
of the range of G.

We now prove the injectivity of G. Let u0 ∈ Hinc(D) and let w ∈ H1
loc(R3)

be the associated scattered field via (2.2). As observed earlier, w ∈ H2(BR) for all
balls BR centered at the origin of radius R. Assume that G(u0) = 0. From Rellich’s
Lemma we deduce that

w = 0 in R3 \D.

Consequently, if we set, u := w+u0, then the pair (u, u0) is a solution to (2.6) with
zero data. Assumption 1 then ensures that u0 = 0, which proves the injectivity of
G.

We now prove the last part of the theorem. We first observe that Φ∞(·, z)
is the far field pattern of ue = Φ(·, z) satisfying ∆ue + k2ue = −δz in R3 and the
Sommerfeld radiation condition. Let z ∈ D. We consider (u, u0) ∈ L2(D)× L2(D)
as being the solution to (2.6) with

f(x) = ue(x; z) and h(x) = ∂ue(x; z)/∂ν(x) for x ∈ ∂D. (2.15)

We then define w by

w(x) = u(x)− u0(x) in D,

w(x) = ue(x; z) in R3 \D.

Due to (2.15), we have that w ∈ H2
loc(R3) and satisfies (2.2). Hence Gu0 = Φ∞(·, z).

Now let z ∈ R3 \D. Assume that there exists u0 ∈ Hinc(D) such that Gu0 =
Φ∞(·, z). By the Rellich’s Lemma we deduce that w = ue(·; z) in R3 \D where w
is the solution to (2.2). This gives a contradiction since w ∈ H1

loc(R3 \ D) while
ue(·; z) /∈ H1

loc(R3 \D).

Since the operator H is compact, the characterization of D in terms of the
range of G in Theorem 2.3 does not imply a similar characterization in terms of the
range of F . However one can deduce the following.

Theorem 2.4. Assume that Assumption (1) holds, then the operator F is injective
with dense range. Moreover:

• If z ∈ D then there exists a sequence gαz ∈ L2(S2) such that lim
α→0
‖Fgαz −

Φ∞(·, z)‖L2(S2) = 0 and lim
α→0
‖Hgαz ‖L2(D) <∞.

• If z /∈ D then for all gαz ∈ L2(S2) such that lim
α→0
‖Fgαz −Φ∞(·, z)‖L2(S2) → 0,

lim
α→0
‖Hgαz ‖L2(D) =∞.

Proof. The injectivity and the denseness of the range of F directly follow from
the same properties satisfied by H (Lemma 2.1) and G (Theorem 2.3). See also
Theorem 1.15 and Corollary 1.16 for a direct proof of these properties.
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If z ∈ D, let u0 ∈ Hinc(D) be such that Gu0 = Φ∞(·, z) which exists by
Theorem 2.3. From Lemma 2.1 there exists a sequence gαz ∈ L2(S2) such that
Hgαz → u0 as α→ 0, and the first statement follows from the fact that F = GH.

Let z /∈ D and gαz ∈ L2(S2) be such that lim
α→0
‖Fgαz − Φ∞(·, z)‖L2(S2) → 0.

Assume that ‖Hgαz ‖L2(D) is bounded as α → 0. Without loss of generality we can
assume that Hgαz weakly converges to some u0 ∈ Hinc(D). Since GH = F , we get
the limit Gu0 = Φ∞(·, z) which contradicts the last part of Theorem 2.3.

The main weak point in this theorem is that it does not indicate how to
construct the sequence gαz when z ∈ D. In practice one relies on the use of Tikhonov
regularization and considers g̃αz ∈ L2(S2) satisfying

(α+ F ∗F ) g̃αz = F ∗ (Φ∞(·, z)) . (2.16)

Since F has dense range, lim
α→0
‖F g̃αz − Φ∞(·, z)‖L2(S2) = 0. However, one cannot

guarantee in general that lim
α→0
‖Hg̃αz ‖L2(D) < ∞ if z ∈ D. In the case =(n) = 0,

the latter has been proved in [3, 4], based on the so called (F ∗F )1/4 method (see
Section 2.5.1). A second weak point of Theorem 2.4 is that one cannot compute
‖Hgα(·; z)‖L2(D) since D is not known. In practice one uses ‖gα(·; z)‖L2(S2) as
an indicator function for D. We refer to [38, 37] for numerical examples of the
performance of this method on synthetic data.

Remark 2.5. A possible method to fix the Tikhonov regularization parameter α
in (2.16) is to use the Morozov discrepancy principle. Assume that F δ is the noisy
operator corresponding to noisy measurements uδ∞ such that

‖uδ∞ − u∞‖L2(S2)×L2(S2) ≤ δ.

Then for each sampling point z, the parameter α is chosen such that

‖F δgα(·; z)− Φ∞(·, z)‖L2(S2) = δ‖gα(·; z)‖L2(S2).

This leads to a non linear equation that determines α in terms of the noise level δ [49].

2.2 A Generalized Version of LSM (GLSM)
In order to overcome the weak points mentioned above, a new formulation of LSM
has been proposed in [7]. It gives an exact characterization of the domain D in
terms of the range of F . Moreover, it provides a numerically tractable indicator
function, but at the expense of additional numerical cost. The key idea behind
the new formulation is to replace the penalty term in the Tikhonov formulation
(2.16) by a term that controls ‖Hgα(·; z)‖L2(D). This is possible due to the second
factorization of the far field operator F that has been used in [78] to design a
different family of sampling methods, namely Factorization Methods (see Section
2.4). More precisely, since H∗ : L2(D)→ L2(S2), the adjoint of the operator H, is
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given by (2.7) and since, from (1.22),

w∞(x̂) = − k
2

4π

∫
D

e−ikx̂·y(1− n)(u0(y) + w(y))dy,

we get that G = H∗T where T : L2(D)→ L2(D) is defined by

Tu0 := − k
2

4π
(1− n)(u0 + w) (2.17)

with w being the solution of (2.2). We then end up with

F = H∗TH. (2.18)

We observe in particular that if T is coercive on the range of the operator H then
|(Fg, g)L2(S2)| is equivalent to ‖Hg‖2L2(D). One can therefore use |(Fg, g)L2(S2)| as
a penalty term in the Tikhonov functional. However, this cannot be treated as a
regular penalty term since it does not define a norm for g which is equivalent to
the L2(S2) norm (the operator F is compact). This term is also non convex in
general, which induces difficulties in the analysis and from the numerical point of
view. Other alternatives would be, at the expense of possibly more restrictions on
the index of refraction n, to replace this term with |(Bg, g)| where the operator
B : L2(S2)→ L2(S2) is a self-adjoint and non negative operator expressed in terms
of F . For instance B = =(F ) := 1

2i (F − F
∗) if the imaginary part of n is positive

definite in D or B = F] := |<(F )| + |=(F )| where <(F ) := 1
2 (F + F ∗) in a more

general case. We shall investigate all these possibilities in an abstract form in the
following section.

2.2.1 Theoretical Foundation of GLSM in the Noise Free Case

We follow here the presentation given in [6] and [7]. Let X and Y be two (com-
plex) reflexive Banach spaces with duals X∗ and Y ∗ respectively and denote by
〈, 〉 a duality product that refers to 〈X∗, X〉 or 〈Y ∗, Y 〉 duality. We consider two
linear bounded operators F : X → X∗ and B : X → X∗ for which the following
factorizations hold

F = GH and B = H∗TH (2.19)

where the operators H : X → Y , T : Y → Y ∗ and G : Hinc := R(H) ⊂ Y → X∗

are bounded and where R(H) is the closure of the range of H in Y . Let α > 0
be a given parameter and φ ∈ X∗. The GLSM is based on considering minimizing
sequences of the functional Jα(φ; ·) : X → R where

Jα(φ; g) := α| 〈Bg, g〉 |+ ‖Fg − φ‖2 ∀g ∈ X. (2.20)

This functional does not have a minimizer in general since the operator B is typically
chosen be compact. However, since Jα(φ; ·) ≥ 0 one can define

jα(φ) := inf
g∈X

Jα(φ; g). (2.21)
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A first simple observation is the following.

Lemma 2.6. Assume that F has dense range. Then for all φ ∈ X∗, jα(φ)→ 0 as
α→ 0.

Proof. Let ε > 0. The denseness of the range of F implies the existence of gε
such that ‖Fgε − φ‖ < ε

2 . One can choose a sufficiently small α0(ε) such that for
all α ≤ α0(ε), α| 〈Bgε, gε〉 | < ε

2 . Consequently jα(φ) ≤ Jα(φ; gε) < ε, which proves
the claim.

The central theorem for noisy free GLSM is the following characterization of
the range of G in terms of F and B.

Theorem 2.7. We assume in addition to (2.19) that

• G is compact and F = GH has dense range.

• T satisfies the coercivity property

| 〈Tϕ, ϕ〉 | > µ ‖ϕ‖2 ∀ϕ ∈ R(H), (2.22)

where µ > 0 is a constant independent of ϕ. Let C > 0 be a given constant
(independent of α) and consider for α > 0 and φ ∈ X∗, an element gα ∈ X
such that

Jα(φ; gα) ≤ jα(φ) + C α. (2.23)

Then the following holds.

• If φ ∈ R(G) then lim sup
α→0

| 〈Bgα, gα〉 | <∞.

• If φ /∈ R(G) then lim inf
α→0

| 〈Bgα, gα〉 | =∞.

Proof. Assume that φ ∈ R(G). Then by definition one can find ϕ ∈ R(H) such

that Gϕ = φ. For α > 0, there exists g0 ∈ X such that ‖Hg0 − ϕ‖2 < α. Then

by continuity of G, ‖Fg0 − φ‖2 < ‖G‖2α. On the other hand, the continuity of T
implies

| 〈Bg0, g0〉 | = | 〈THg0, Hg0〉 | ≤ ‖T‖ ‖Hg0‖2 < 2 ‖T‖ (α+ ‖ϕ‖2).

From the definitions of jα(φ) and gα we have

α| 〈Bg0, g0〉 |+ ‖Fg0 − φ‖2 > jα(φ) > Jα(φ, gα)− Cα.

We then deduce from the definition of Jα and previous inequalities that

α| 〈Bgα, gα〉 | ≤ Jα(φ, gα) ≤ Cα+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2.

Therefore lim sup
α→0

| 〈Bgα, gα〉 | <∞ which proves the first claim.
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Now assume that φ /∈ R(G) and, contrary to the theorem, that lim inf
α→0

| 〈Bgα, gα〉 | <
∞. Then, (for some extracted subsequence gα) | 〈Bgα, gα〉 | < A where A is a con-
stant independent of α→ 0. The coercivity of T implies that ‖Hgα‖ is also bounded.
Since Y is reflexive and R(H) is closed, one can assume that, up to an extracted
subsequence, Hgα weakly converges to some ϕ in R(H). Compactness of G implies
that GHgα strongly converges to Gϕ as α→ 0. On the other hand, Lemma 2.6 and
the definition of Jα(φ, gα) show that ‖Fgα − φ‖2 ≤ Jα(φ, gα) ≤ jα(φ) +Cα→ 0 as
α→ 0. Since Fgα = GHgα we get Gϕ = φ which is a contradiction.

As indicated in the previous section, the range of the operator G characterizes
the inhomogeneity D. Therefore this theorem leads to a characterization of D in
terms of the operators F and B (and therefore a uniqueness result for the recon-
struction of D in terms of F and B). It also stipulates that an indicator function is
given by | 〈Bgα, gα〉 | for small values of α. Let us note that the parameter α does
not play the role of a regularization parameter, since in applications the operator
B is in general compact. However, constructing a sequence (gα) satisfying (2.23)
for fixed α > 0 may be viewed as a regularization of the minimization of Jα(φ; ·)
that can be used for numerics. A different regularization procedure that would be
more suited for noisy operators is introduced in the following subsection. For this
version and particular choices of the operator B one can construct a minimizer by
solving a simple linear system (see Remark 2.16).

For the natural choice choice B = F one can state the following straightfor-
ward corollary.

Corollary 2.8. Assume that G(ϕ) = H∗T (ϕ) for all ϕ ∈ R(H) and assume in
addition that H is compact, F has dense range and T satisfies the coercivity property
(2.22). Let C > 0 be a given constant (independent of α) and consider for α > 0
and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + C α.

Then φ ∈ R(G) if and only if lim sup
α→0

| 〈Fgα, gα〉 | <∞ and we also have φ ∈ R(G)

if and only if lim inf
α→0

| 〈Fgα, gα〉 | <∞.

Remark 2.9. We remark that according to Lemma 2.6 the sequence (gα) provides
a nearby solution to Fg ' φ satisfying

‖Fgα − φ‖ ≤ jα(φ) + C α.

The reader then easily observes from the proof that one obtains the same conclusion
in Corollary 2.8 if we replace the indicator function | 〈Fgα, gα〉 | by | 〈φ, gα〉 |. The
latter criterion coincides with the one proposed in [3] and has been analyzed in [3]

and [4] based on the (F ∗F )
1
4 method.

In Theorem 2.7 and the case φ ∈ R(G) one only knows that the quantity
| 〈Bgα, gα〉 | is bounded as α→ 0 and nothing is said on the (strong) convergence of
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the sequence Hgα. In order to ensure the strong convergence of this sequence one
possibility would be to add a convexity property for | 〈Bgα, gα〉 | as in the following
theorem.

Theorem 2.10. We assume, in addition to the hypothesis of Theorem 2.7, that
F is injective and that h 7→

√
| 〈Th, h〉 | is a uniformly convex function on Hinc.

Consider for α > 0 and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) (2.24)

where p(α)
α → 0 as α→ 0.

Then φ ∈ R(G) if and only if lim
α→0
| 〈Bgα, gα〉 | < ∞. Moreover, in the case

φ = Gϕ, the sequence Hgα strongly converges to ϕ in Y .

Proof. According to Theorem 2.7 we only need to prove the convergence of Hgα
to ϕ when φ = Gϕ for ϕ ∈ Y . The coercivity of T combined with the first part of
the proof of Theorem 2.7 imply that ‖Hgα‖2 is bounded. Second, from Lemma 2.6,
equation (2.24) and the injectivity of G we infer that the only possible weak limit
of (any subsequence of) Hgα is ϕ. Thus the whole sequence Hgα weakly converges
to ϕ. Since ϕ ∈ R(H) we have

jα(φ) = inf
g∈X)

Jα(g, φ) = inf
h∈R(H)

(
α| 〈Th, h〉 |+ ‖Gh− φ‖2

)
≤ α| 〈Tϕ, ϕ〉 |.

Thus

| 〈Bgα, gα〉 | ≤ | 〈Tϕ, ϕ〉 |+
p(α)

α
,

which implies (as p(α)
α → 0)

lim sup
α→0

| 〈THgα, Hgα〉 | ≤ | 〈Tϕ, ϕ〉 |. (2.25)

The uniform convexity of h 7→
√
| 〈Th, h〉 | and the continuity and coercivity

properties of T ensure that R(H) equipped with
√
| 〈Th, h〉 | is a uniformly convex

Banach space. We deduce from (2.25) and the weak convergence of the sequence
Hgα that Hgα strongly converges to ϕ (see for instance [14, Chap. 3, Prop. 3.32]).

We remark that the additional hypothesis of Theorem 2.10 is automatically
satisfied as soon as the operator B or equivalently the operator T is self-adjoint.
We refer to Section 2.5.2 for possible choices of such an operator. Let us notice that
one can avoid this assumption by adding an extra term in the cost functional as
indicated in the following remark.

Remark 2.11. In the case B = F , one can avoid the extra assumption on the
operator T in Theorem 2.10 by replacing the cost functional Jα with

Jα(φ; g) := α| 〈Fg, g〉 |+ α1−η| 〈Fg − φ, g〉 |+ ‖Fg − φ‖2 ∀g ∈ X, (2.26)
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with η ∈]0, 1] being a fixed parameter. We refer the reader to [5, Chapter 4] for the
analysis of this type of function that is also more suited for limited aperture data.

An important application of Theorem 2.10 is the design of a method capable
of imaging defects in an unknown multiply connected background from so-called
differential measurements (i.e. measurements for the cases with and without defects)
as sketched in Section 2.5.2.

2.2.2 Regularized Formulation of GLSM

As it will be clearer later, the above formulation of GLSM has to be adapted to
the case of noisy operators since in general a noisy operator B does not satisfy
a factorization of the form (2.19) (with a middle operator satisfying a coercivity
property similar to (2.22)). In order to cope with this issue we introduce a regu-
larized version of Jα which allows a similar range characterization and where one
controls both the noisy criteria and the noisy misfit term. Following [7] consider for
α > 0 and ε > 0 (that will later be linked with the noise level) and for φ ∈ X∗, the
functional Jεα(φ; ·) : X → R defined by

Jεα(φ; g) = α(| 〈Bg, g〉 |+ ε ‖g‖2) + ‖Fg − φ‖2 . (2.27)

Lemma 2.12. Assume that B is compact. Then for all α > 0, ε > 0 and φ ∈ X∗
the functional Jεα(φ; ·) has a minimizer gεα ∈ X. If we assume in addition that F
has dense range, then

lim
α→0

lim
ε→0

Jεα(φ; gεα) = lim
ε→0

lim sup
α→0

Jεα(φ; gεα) = 0.

Proof. The existence of a minimizer is clear: for fixed α > 0, ε > 0 and φ ∈ X∗,
any minimizing sequence (gn) of Jεα(φ; ·) is bounded and therefore one can assume
that it is weakly convergent in X to some gεα ∈ X. The lower semi-continuity of the
norm with respect to weak convergence and the compactness property of B then
imply

Jεα(φ; gεα) ≤ lim inf
n→∞

Jεα(φ; gn) ≤ inf
g∈X

Jεα(φ; g),

which proves that gεα is a minimizer of Jεα(φ; ·) on X.
Now assume in addition that F has dense range. By Lemma 2.6, jα(φ)→ 0 as α→
0. Showing that lim

ε→0
Jεα(φ; gεα) = jα(φ) will then prove that lim

α→0
lim
ε→0

Jεα(φ; gεα) = 0.

We observe that
Jεα(φ; g) = Jα(φ; g) + αε‖g‖2 (2.28)

and therefore |Jεα(φ; g) − Jα(φ; g)| → 0 as ε → 0. For η > 0 one can choose g
such that |Jα(φ; g) − jα(φ)| ≤ η/2. For this g one then has for ε sufficiently small
that |Jεα(φ; g) − Jα(φ; g)| < η/2. We obtain by the triangle inequality that for ε
sufficiently small Jεα(φ; g) ≤ jα(φ) + η. We now observe from the definitions of gεα
and jα and from (2.28) that

jα(φ) ≤ Jα(φ; gεα) ≤ Jεα(φ; gεα) ≤ Jεα(φ; g),
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which proves the claim.
We now prove lim

ε→0
lim sup
α→0

Jεα(φ; gεα) = 0. First let gε be a minimizer on X of the

Tikhonov functional ε2 ‖g‖2 + ‖Fg − φ‖2 and set jε = ε2 ‖gε‖2 + ‖Fgε − φ‖2 which
goes to zero as ε goes to zero (see Lemma 2.6 which is valid for any bounded operator

B). We have that, for α ≤ ε, Jεα(g) ≤ ε2 ‖g‖2 + ‖Fg − Φ‖2 +α(|(Bg, g)|. By taking
the upper limit

lim sup
α→0

Jεα(gεα) ≤ lim sup
α→0

Jεα(gε) = jε,

which concludes the proof.

Theorem 2.13. Under the assumptions of Theorem 2.7 and the additional as-
sumption that B is compact the following holds. If gεα denotes the minimizer of
Jεα(φ; ·) (defined by (2.27)) for α > 0, ε > 0 and φ ∈ X∗, then

• φ ∈ R(G) =⇒ lim sup
α→0

lim sup
ε→0

| 〈Bgεα, gεα〉 | <∞

• φ /∈ R(G) =⇒ lim inf
α→0

lim inf
ε→0

| 〈Bgεα, gεα〉 | <∞.

Proof. The proof is similar to the proof of Theorem 2.7. Assume that φ = G(ϕ)
for some ϕ ∈ R(H). We consider the same g0 as in the first part of the proof of
Theorem 2.7 (that depends on α but is independent from ε). Then we choose ε
such that ε‖g0‖2 ≤ 1. Then

Jεα(φ; gεα) ≤ Jεα(φ; g0) ≤ Jα(φ; g0) + α. (2.29)

Consequently

α| 〈Bgεα, gεα〉 | ≤ Jεα(φ; gεα) ≤ α+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2

which proves lim sup
α→0

lim sup
ε→0

| 〈Bgεα, gεα〉 | =∞.

Now assume φ /∈ R(G) and assume that lim inf
α→0

lim inf
ε→0

| 〈Bgεα, gεα〉 | is finite.

The coercivity of T implies that lim inf
α→0

lim inf
ε→0

‖Hgεα‖
2

is also finite. This means the

existence of a subsequence (α′, ε(α′)) such that α′ → 0 and ε(α′)→ 0 as α′ → 0 and∥∥∥Hgε(α′)α′

∥∥∥2

is bounded independently from α′. On the other hand, the second part of

Lemma 2.12 (namely the first limit), indicates that one can choose this subsequence

such that J
ε(α′)
α′ (g

ε(α′)
α′ )→ 0 as α′ → 0 and therefore

∥∥∥Fgε(α′)α′ − φ
∥∥∥→ 0 as α′ → 0.

The compactness of G implies that a subsequence of GHg
ε(α′)
α′ converges for some

Gϕ in X∗. The uniqueness of the limit implies that Gϕ = φ which is a contradiction.

In this theorem ε should be viewed as the regularization parameter (and not
α which is rather used to construct an indicator function with a limiting process).
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As indicated by (2.29), this regularization parameter serves in the construction of
the minimizing sequence of Theorem 2.7.

This theorem with regularization stipulates that a criterion to localize the
target is given by | 〈Bgεα, gεα〉 | for small values of ε and α. The reader can easily
see from the first part of the proof that the result holds true if we replace this by
(| 〈Bgεα, gεα〉 | + ε‖gεα‖2). This latter criterion is more suited to the case of noisy
measurements as indicated in the section below.

2.2.3 The GLSM for Noisy Data

We consider in this section the case where there may be noise in the data. More
precisely, we shall assume that one has access to two noisy operators Bδ and F δ

such that ∥∥F δ − F∥∥ ≤ δ‖F δ‖ and
∥∥Bδ −B∥∥ ≤ δ‖Bδ‖

for some δ > 0. We also assume in this section that the operators B, Bδ F δ

and F are compact. We then consider for α > 0 and φ ∈ X∗ the functional
Jδα(φ; ·) : X → R defined by

Jδα(φ; g) := α(|
〈
Bδg, g

〉
|+ δ‖Bδ‖ ‖g‖2) +

∥∥F δg − φ∥∥2 ∀ g ∈ X, (2.30)

which coincides with a regularized noisy functional Jεα with a regularization param-
eter ε = δ‖Bδ‖. According to Lemma 2.12 one can consider gδα to be a minimizer
of Jδα(φ; g). We first observe (similarly to the second part of the proof of Lemma
2.12) the following Lemma:

Lemma 2.14. Assume in addition to our previous assumptions that F has dense
range. Then for all φ ∈ X∗,

lim
α→0

lim sup
δ→0

Jδα(φ; gδα) = 0.

Proof. We observe that for all g ∈ X,

Jδα(φ; g) ≤ Jα(φ; g) + (2αδ‖Bδ‖+ δ2‖F δ‖2) ‖g‖2 . (2.31)

Since (2αδ‖Bδ‖+ δ2‖F δ‖2)→ 0 as δ → 0, then as in the proof of Lemma 2.12, for
any η > 0 (α fixed), one can choose g ∈ X such that for sufficiently small δ,

Jδα(φ; g) ≤ jα(φ) + η

Consequently, from the definition of gδα,

Jδα(gδα;φ) ≤ jα(φ) + η

This proves the claim, since jα(φ)→ 0 as α→ 0 (by Lemma 2.6).

Theorem 2.15. Assume that the assumptions of Theorem 2.7 and the additional
assumptions of this subsection hold true. Let gδα be the minimizer of Jδα(φ; ·) (defined
by (2.30)) for α > 0, δ > 0 and φ ∈ X∗. Then:
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• φ ∈ R(G) =⇒ lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, gδα〉∣∣+ δ‖Bδ‖
∥∥gδα∥∥2

)
<∞

• φ ∈ R(G) =⇒ lim inf
α→0

lim inf
δ→0

(∣∣〈Bδgδα, gδα〉∣∣+ δ‖Bδ‖
∥∥gδα∥∥2

)
=∞.

Proof. The proof of this theorem follows the lines of the proof of Theorem 2.13.
First consider the case where φ = G(ϕ) for some ϕ ∈ R(H) and introduce the

same g0 as in the first part of the proof of Theorem 2.7 (that depends on α but is
independent from δ). Choosing δ sufficiently small such that

(2αδ‖Bδ‖+ δ2‖F δ‖2) ‖g0‖2 ≤ α

we get
Jδα(φ; gδα) ≤ Jδα(φ; g0) ≤ Jα(φ; g0) + α. (2.32)

Consequently

α
(
|
〈
Bgδα, g

δ
α

〉
|+ δ‖Bδ‖

∥∥gδα∥∥2
)
≤ Jδα(φ; gδα) ≤ α+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2,

which proves lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, gδα〉∣∣+ δ‖Bδ‖
∥∥gδα∥∥2

)
< ∞. This proves the

first part of the theorem.

Now let φ /∈ R(G) and assume that lim inf
α→0

lim inf
ε→0

(∣∣〈Bδgδα, gδα〉∣∣+ δ‖Bδ‖
∥∥gδα∥∥2

)
is finite. The coercivity of T implies that

µ
∥∥∥Hgδα(δ)

∥∥∥2

≤ |
〈
Bgδα, g

δ
α

〉
| ≤ |

〈
Bδgδα, g

δ
α

〉
|+ δ‖Bδ‖

∥∥gδα∥∥2
.

Therefore lim inf
α→0

lim inf
δ→0

∥∥Hgδα∥∥2
is also finite. This means the existence of a subse-

quence (α′, δ(α′)) such that α′ → 0, δ(α′)→ 0 as α′ → 0 and
∥∥∥Hgδ(α′)α′

∥∥∥2

is bounded

independently from α′. One can also choose δ(α′) such that δ(α′) ≤ α′.
On the other hand, Lemma 2.14 indicates that one can choose this subsequence

such that J
δ(α′)
α′ (g

δ(α′)
α′ )→ 0 as α′ → 0 and therefore

∥∥∥F δgδ(α′)α′ − φ
∥∥∥→ 0 as α′ → 0

and α′δ(α′)‖gδ(α
′)

α′ ‖2 → 0 as α′ → 0. By the triangle inequality and δ(α′) ≤ α′ we

then deduce that
∥∥∥Fgδ(α′)α′ − φ

∥∥∥→ 0 as α′ → 0. The compactness of G implies that

a subsequence of GHg
δ(α′)
α′ converges for some Gϕ in X∗. The uniqueness of the

limit implies that Gϕ = φ which is a contradiction.

It is clear from the proof of the previous theorem that any strategy of regu-
larization ε(δ) satisfying ε(δ) ≥ δ‖Bδ‖ and ε(δ)→ 0 as δ → 0 would be convenient
to obtain a similar result. From the numerical perspective this theorem indicates
that a criterion to localize the object would be the magnitude of

|
〈
Bδgδα, g

δ
α

〉
|+ δ‖Bδ‖

∥∥gδα∥∥2
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for small values of α. Indeed the theorem only says that this criterion would be
efficient for sufficiently small noise. Building an explicit link between the value
of α and the noise level δ (in the fashion of a posteriori regularization strategies)
would be of valuable theoretical interest but this seems to be challenging (due to the
compactness of the operator B). One can see from the proof that adding the term

δ‖Bδ‖
∥∥gδα∥∥2

is important to conclude when φ is not in the range of G. This means
that this term is important for correcting the behavior of the indicator function
outside the inclusion, which is corroborated by the numerical experiments in [7] for
the scalar case.

Remark 2.16. If Bδ is a positive selfadjoint operator (see Section 2.5.2) one can
directly compute the minimizer gδα of Jδα(φ; ·) (defined by (2.30)) for α > 0, δ > 0
and φ ∈ X∗ as the solution of

(αBδ + αδ‖Bδ‖I + (F δ)∗F δ)gδα = (F δ)∗φ. (2.33)

2.2.4 Application of GLSM to the Inverse Scattering Problem

We return to our model problem and consider the notation and assumptions of
Section 2.1. We shall apply GLSM with B = F . The central additional theorem
needed for this case is the following coercivity property of the operator T .

Assumption 2. We assume that n ∈ L∞(R3), supp(1 − n) ⊂ D and =(n) ≥
0. Furthermore, we assume either that <(1− n) + α=(n) or <(n− 1) + α=(n) is
positive definite on D for some constant α ≥ 0.

We remark that if =(n) is positive definite on D then the last part of Assump-
tion 2 is automatically verified.

Theorem 2.17. Assume that Assumptions 1 and 2 hold. Then the operator T
defined by (2.17) satisfies the coercivity property (2.22) with Y = Y ∗ = L2(D) and
the operator H = H defined by (2.3).

Proof. We start by proving a useful identity related to the imaginary part of T .
With ( , ) denoting L2(D) scalar product, for ψ ∈ L2(D) and w ∈ H2

loc(R3) the
solution of (2.2) we have that

(Tψ, ψ) = − k
2

4π

∫
D

(1− n)(ψ + w)ψ dx. (2.34)

Multiplying (2.2) by w and integrating by parts over BR, a ball of radius R with
center at the origin containing D, we have that

k2

∫
D

(1− n)(ψ + w)w dx = −
∫
BR

|∇w|2 − k2|w|2dx+

∫
|x|=R

∂w

∂r
w ds.
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The Sommerfeld radiation condition indicates that

lim
R→∞

=

 ∫
|x|=R

∂w

∂r
w ds

 = k

∫
S2

|w∞|2ds.

Therefore, taking the imaginary part and then letting R→∞ yields

k2=

∫
D

(1− n)(ψ + w)w dx

 = k

∫
S2

|w∞|2ds.

Consequently, decomposing (ψ+w)ψ = |ψ+w|2−(ψ+w)w, we obtain the important
identity,

4π=(Tψ, ψ) =

∫
D

k2=(n)|ψ + w|2dx+ k

∫
S2

|w∞|2ds. (2.35)

We are now in position to prove the coercivity property using a contradiction ar-
gument. Assume for instance the existence of a sequence ψ` ∈ R(H)) such that

‖ψ`‖L2(D) = 1 and |(Tψ`, ψ`)| → 0 as `→∞.

We denote by w` ∈ H2
loc(R3) the solution of (2.2) with ψ = ψ`. Elliptic regularity

implies that ‖w`‖H2(D) is bounded uniformly with respect to `. Then up to changing
the initial sequence, one can assume that ψ` weakly converges to some ψ in L2(D)
and w` converges weakly in H2

loc(R3) and strongly in L2(D) to some w ∈ H2
loc(R3).

It is then easily seen (using the distributional limit) that w and ψ satisfy (2.2), and
since ψ` ∈ R(H)

∆ψ + k2ψ = 0 in D. (2.36)

Identity (2.35) and |(Tψ`, ψ`)| → 0 implies that w`∞ → 0 in L2(S2) and therefore
w∞ = 0. Rellich’s Lemma implies w = 0 outside D and consequently w ∈ H2

0 (D).
With the help of equation (2.36) we get u = w+ψ ∈ L2(D) and v = ψ ∈ L2(D) are
such that u − v ∈ H2(D) and satisfy the interior transmission problem (2.6) with
f = g = 0. We then infer that w = ψ = 0. Identity (2.34) applied to ψ` and w`
implies

|(Tψ`, ψ`)| ≥
k2

4π

∣∣∣∣∣∣
∫
D

(1− n)|ψ`|2dx

∣∣∣∣∣∣− k2

∣∣∣∣∣∣
∫
D

(1− n)w`ψ` dx

∣∣∣∣∣∣ .
Therefore, since

∫
D

(1−n)w`ψ`dx→
∫
D

(1−n)wψdx = 0, and using the assumptions
on n,

lim
`→0
|(Tψ`, ψ`)| ≥ θ‖ψ`‖2L2(D) = θ

for some positive constant θ, which is a contradiction.
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Remark 2.18. A different proof of this Theorem can be obtained as a combination
of Lemma 2.24 and Lemma 2.32 below. The proof given here can be adapted to
prove the same results under the hypothesis that Assumption 2 holds only in a
neighborhood of the boundary ∂D (see [5, Chapter 4]).

Set φz := Φ∞(·, z) and denote by ( , ) the L2(S2) scalar product and by ‖.‖ the
associated norm. Let C > 0 be a given constant (independent of α) and consider
for α > 0 and z ∈ R3, gzα ∈ L2(S2) such that

α|(Fgzα, gzα)|+ ‖Fgzα − φz‖2 ≤ jα(φz) + C α, (2.37)

where
jα(φz) = inf

g∈L2(S2)

(
α|(Fg, g)|+ ‖Fg − φz‖2

)
.

Combining the results of Theorems 2.17 and 2.3 and the first claim of Theorem 2.4,
we obtain the following as a straightforward application of Corollary 2.8.

Theorem 2.19. Assume that Assumptions 1 and 2 hold. Then z ∈ D if and only if
lim sup
α→0

|(Fgzα, gzα)| <∞ and we also have z ∈ D if and only if lim inf
α→0

|(Fgzα, gzα)| <
∞.

This theorem gives for instance a uniqueness result for the reconstruction of
D from the far field operator.

Let us remark that in the case where =(n) is positive definite on D one can
use B = =(F ). This is justified by the fact that =(T ) is coercive and positive, as
indicated by identity (2.35). In that case one can replace the term |(Fgzα, gzα)| with
(=(F )gzα, g

z
α) in the definition of gzα and in Theorem 2.19.

For practical applications, it is important to use the criterion provided in
Theorem 2.15. Consider F δ : L2(S2)→ L2(S2) a compact operator such that∥∥F δ − F∥∥ ≤ δ,
and consider for α > 0 and φ ∈ L2(S2) the functional Jδα(φ; ·) : L2(S2)→ R defined
by

Jδα(φ; g) := α(|(F δg, g)|+ δ ‖g‖2) +
∥∥F δg − φ∥∥2 ∀ g ∈ L2(S2). (2.38)

Then as a direct consequence of Theorem 2.15, we have the following characteriza-
tion of D.

Theorem 2.20. Assume that Assumptions 1 and 2 hold. For z ∈ R3 denote by
gzα,δ the minimizer of Jδα(φz; ·) over L2(S2). Then,

z ∈ D if and only if lim sup
α→0

lim sup
δ→0

(∣∣(F δgzα,δ, gzα,δ)∣∣+ δ
∥∥gzα,δ∥∥2

)
<∞

and we also have

z ∈ D if and only if lim inf
α→0

lim inf
δ→0

(∣∣(F δgzα,δ, gzα,δ)∣∣+ δ
∥∥gzα,δ∥∥2

)
<∞.
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2.3 The Inf-Criterion
Another exact characterization of D in terms of the far field operator can be ob-
tained using the so-called inf-criterion [78, 99]. For this characterization one basi-
cally need the same coercivity property as in Theorem 2.7.

2.3.1 The Main Theorem

Let X and Y be two (complex) reflexive Banach spaces with duals X∗ and Y ∗

respectively and denote by 〈, 〉 a duality product that refers to 〈X∗, X〉 or 〈Y ∗, Y 〉
duality. We consider three bounded operators F : X → X∗, H : X → Y and
T : Y → Y ∗ such that

F = H∗TH.

We then have the following theorem.

Theorem 2.21. Assume that there exists a constant α > 0 such that

|〈Tϕ, ϕ〉| ≥ α‖ϕ‖2Y ∀ϕ ∈ R(H). (2.39)

Then one has the following characterization of the range of H∗:

{ψ∗ ∈ R(H∗) and ψ∗ 6= 0} iff inf{|〈Fψ,ψ〉| , ψ ∈ X, 〈ψ∗, ψ〉 = 1} > 0

Proof. We first observe that

|〈Fψ,ψ〉| = |〈H∗THψ,ψ〉| = |〈THψ,Hψ〉| .

Hence,
α‖Hψ‖2Y ≤ |〈Fψ,ψ〉| ≤ ‖T‖‖Hψ‖2Y ∀ψ ∈ X. (2.40)

Let ψ∗ ∈ R(H∗) and ψ∗ 6= 0. Then ψ∗ = H∗(ϕ∗) for some ϕ∗ ∈ Y ∗ and ϕ∗ 6= 0.
Let ψ ∈ X such that 〈ψ∗, ψ〉 = 1. Then

‖Hψ‖Y =
1

‖ϕ∗‖Y ∗
‖Hψ‖Y ‖ϕ∗‖Y ∗

≥ 1

‖ϕ∗‖Y ∗
〈ϕ∗, Hψ〉 = 1

‖ϕ∗‖Y ∗
> 0.

We then deduce, using the first inequality in (2.40), that

inf{|〈Fψ,ψ〉| , ψ ∈ X, 〈ψ∗, ψ〉 = 1} ≥ α

‖ϕ∗‖2Y ∗
> 0.

Now assume that ψ∗ /∈ R(H∗) and let us show that

inf{|〈Fψ,ψ〉| , ψ ∈ X, 〈ψ∗, ψ〉 = 1} = 0.
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From the second inequality in (2.40) it is sufficient to prove the existence of a
sequence ψn ∈ X such that 〈ψ∗, ψn〉 = 1 and ‖Hψn‖Y → 0 as n → ∞. Since

ψ∗ 6= 0 and X is reflexive, there exists ψ̂ ∈ X such that
〈
ψ∗, ψ̂

〉
= 1. Setting

ψ̂n = ψ̂−ψn, we see that it is sufficient to show the existence of a sequence ψ̂n ∈ X
such that 〈

ψ∗, ψ̂n

〉
= 0 and Hψ̂n → Hψ̂ in Y. (2.41)

Set V = {ψ ∈ X;
〈
ψ∗, ψ̂

〉
= 0} = {ψ∗}⊥ (where the orthogonality is to be

understood in the sense of the X∗, X duality product). Since Hψ̂ ∈ R(H), in order
to prove (2.41) it is sufficient to prove that H(V ) is dense in R(H) and for the
latter it is sufficient to prove (since Y is reflexive) that H(V )⊥ = R(H)⊥ (where
the orthogonality is to be understood in the sense of the Y ∗, Y duality product).
But this equality follows from

ϕ∗ ∈ H(V )⊥ iff H∗ϕ∗ ∈ V ⊥ = Vect{ψ∗}

and the latter is equivalent to H∗ϕ∗ = 0 (since ψ∗ /∈ R(H∗)) which means ϕ∗ ∈
Ker(H∗) = R(H)⊥.

2.3.2 Application to the Inverse Scattering Problem

We turn back to our model problem and consider the notation and assumptions
of Section 2.1. We first have the following characterization of D in terms of the
operator H∗ where once again φz := Φ∞(·, z).

Lemma 2.22. For z ∈ R3 we have that z ∈ D if and only if φz is in the range of
H∗.

Proof. For z ∈ D choose a cut-off function ρ ∈ C∞(R3) which vanishes near z and
equals one in R3 \D. Then v(x) = ρ(x)Φ(x, z) has φz as its far field pattern. Note
that f := (∆v + k2v) has compact support in D and f ∈ L2(D). Since v satisfies
the Sommerfeld radiation condition,

v(x) = −
∫
D

Φ(x, y)f(y)dy. (2.42)

Hence

φz = v∞ = − 1

4π
H∗f.

Now assume that z /∈ D and φz = H∗f for some f ∈ L2(D). By Rellich’s
lemma Φ(·, z) = −4πv in the exterior of D ∪ {z} where v is defined by (2.42). This
gives a contradiction since v is smooth near z but Φ(·, z) is singular at z.

Applying Theorem 2.21 to the operator F given by (2.1) and in view of The-
orem 2.17 and Lemma 2.22, one can state the following corollary.
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Corollary 2.23. Assume that Assumptions 1 and 2 hold. Then for z ∈ R3 we
have that z ∈ D if and only if

inf{
∣∣(Fg, g)L2(S2)

∣∣ ; g ∈ L2(S2), (g, φz)L2(S2) = 1} > 0.

The main drawback of this characterization is that it is numerically less at-
tractive than other sampling methods. From the analysis of GLSM one also expects
that this procedure would be very sensitive to noise in the operator F . Another
typical difference with GLSM is that in this characterization one looses the link
with the interior transmission problem. For the application and implementation
of this method in the case of weakly non linear materials we refer to [90]. A nice
feature of this criterion is that it can be used to justify other sampling methods like
the factorization method presented below.

2.4 The Factorization Method
In this section we present two versions of the factorization method for solving the
inverse scattering problem for inhomogeneous media. The factorization method was
first introduced by Kirsch in [74]. We refer the reader to [78] for a detailed analysis
of both of these versions.

2.4.1 The (F ∗F )1/4 Method

We start with the first version of the factorization method, which relies on the
factorization

F = H∗TH (2.43)

where now F : X → X, H : X → Y and T : Y → Y ∗ are bounded operators with
X being an infinite dimensional separable Hilbert space (we identify X∗ with X)
and Y a reflexive Banach space. We shall assume the following properties for the
operator T . We denote by 〈, 〉 the Y ∗, Y duality product.

Assumption 3. We assume that T : Y → Y ∗ satisfies

= 〈Tϕ, ϕ〉 6= 0

for all ϕ ∈ R(H) with ϕ 6= 0 and T = T0 + C where C is compact on R(H) and

〈T0ϕ, ϕ〉 ∈ R and 〈T0ϕ, ϕ〉 ≥ α ‖ϕ‖2X

for all ϕ ∈ R(H) and some α > 0.

These assumptions are stronger than the coercivity property (2.39) as indi-
cated in the following lemma.

Lemma 2.24. Assume that T : Y → Y ∗ satisfies Assumption 3. Then it also
satisfies the coercivity property (2.39).
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Proof. Assume by contradiction that (2.39) is not satisfied. Then one can find a
sequence ϕj ∈ R(H) such that ‖ϕj‖X = 1 and is weakly convergent to ϕ in R(H)
and also |〈Tϕj , ϕj〉| → 0 as j →∞. By our assumptions,

= 〈Tϕj , ϕj〉 = = 〈Cϕj , ϕj〉 → = 〈Tϕ, ϕ〉

as j → 0 since C is compact. This implies that = 〈Tϕ, ϕ〉 = 0 and therefore ϕ = 0.
Consequently, by the triangle inequality,

0 < α ≤ 〈T0ϕj , ϕj〉 ≤ | 〈Tϕj , ϕj〉 |+ | 〈Cϕj , ϕj〉 |

where | 〈Tϕj , ϕj〉 | → 0 by assumption and | 〈Cϕj , ϕj〉 | → | 〈Cϕ, ϕ〉 | = 0 by the
compactness of C. This gives a contradiction and proves the lemma.

We now state and prove the main theorem of this section.

Theorem 2.25. Assume that F : X → X is compact, injective and that I + iγF is
unitary for some γ > 0. In addition, assume that T satisfies Assumption 3. Then
the ranges R(H∗) and R((F ∗F )1/4) coincide.

Proof. The proof follows the one given in [78]. Since I + iγF is unitary for some
γ > 0 this implies that F is normal. Since it is compact and injective, we deduce the
existence of an orthonormal complete basis (gj)j=1,+∞ of X such that Fgj = λjgj
where λj 6= 0 forms a sequence of complex numbers that goes to 0 as j → ∞. We
remark that by assumption, λj lies in the circle or radius 1/γ and center i/γ which

means in particular that =(λj) ≥ 0. The operator H̃ := (F ∗F )1/4 : X → X is

defined by H̃gj =
√
|λj |gj and we introduce the operator T̃ : X → X defined by

T̃ gj = λ̂jgj , λ̂j = λj/|λj |.

We then easily observe that H̃∗ = H̃ and

F = H̃∗T̃ H̃. (2.44)

Consequently, in view of the the inf-criterion (Theorem 2.21), the original factor-
ization (2.43) and Lemma (2.24), it is sufficient to prove that T̃ is coercive on X to
obtain that the ranges of H̃∗ and H∗ coincide. Let g ∈ X such that ‖g‖ = 1. We
need to prove the existence of a positive constant β independent from g such that

0 < β ≤ |(T̃ g, g)X | = |
∑∞
j=1 λ̂j |(g, gj)X |2|. (2.45)

Since
∑∞
j=1 |(g, gj)X |2 = 1, the complex number

∑∞
j=1 λ̂j |(g, gj)X |2 lies in C: the

closure of the convex-hull of the sequence (λ̂j). Giving that =(λ̂j) ≥ 0, in order to
prove the coercivity property, one only needs to prove that 0 /∈ C. Observe that,
since λj (for all j) lies in the circle or radius 1/γ and center i/γ and λj → 0 as

j →∞, the only possible accumulation points of the sequence (λ̂j) are −1 and +1.
We shall prove that −1 is not an accumulation point which is sufficient to get 0 /∈ C.
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Assume the existence of a subsequence, that we denote by λ̂j for convenience, such

that λ̂j → −1 and set

ϕj :=
1√
|λj |

Hgj .

Then using (2.43), clearly

〈Tϕj , ϕj〉 = λ̂j(gj , gj)X = λ̂j → −1. (2.46)

From Lemma (2.24) we deduce that the sequence ϕj is bounded in Y and then can
assume, up to the extraction of a subsequence, that ϕj weakly converges to some ϕ

in R(H). Taking the imaginary part of (2.46) implies

= 〈Tϕj , ϕj〉 = = 〈Cϕj , ϕj〉 → =(−1) = 0

which implies that = 〈Tϕ, ϕ〉 = 0 and therefore ϕ = 0. By definition of T0 and the
corresponding coercivity property we get

0 ≤ 〈T0ϕj , ϕj〉 ≤ 〈Tϕj , ϕj〉 − 〈Cϕj , ϕj〉 → −1

since 〈Cϕj , ϕj〉 → 〈Cϕ, ϕ〉 = 0 by compactness of C. This gives a contradiction
and finishes the proof.

2.4.2 Application to the Inverse Scattering Problem for
Non-Absorbing Media

We turn back to our model problem and consider the notation and assumptions of
Section 2.1. According to Theorem 1.14, the normality of the operator F holds if
(and only if) =(n) = 0. Given the characterization of D in terms of the range of
H∗ (see Lemma 2.22), we only need to check when Assumption 3 for the operator
T defined by (2.17) is satisfied.

Lemma 2.26. Assume that =(n) = 0 and <(n−1) ≥ α > 0 (respectively <(1−n) ≥
α > 0) in D for some constant α and that Assumption 1 holds (i.e. k is not a
transmission eigenvalue). Then the operator T : L2(D)→ L2(D) (respectively −T )
defined by (2.17) satisfies Assumption 3 with Y = Y ∗ = L2(D).

Proof. Recall that

T (ψ) = − k
2

4π
(1− n)(ψ + w)

where w ∈ H2
loc(R3) is a solution of (2.2). Consider the case n − 1 ≥ α > 0 (the

case 1− n ≥ α > 0 is similar). Let T0 : L2(D)→ L2(D) be defined by

T0ψ =
k2

4π
(n− 1)ψ.

Then obviously T0 is real and coercive as in Assumption 3. Moreover T − T0 :
L2(D)→ L2(D) is compact by the compact embedding of H2(D) into L2(D).
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Let ψ ∈ R(H). From the identity (2.35), =(Tψ, ψ) = 0 implies w∞ = 0 and
by Rellich’s lemma w = 0 in R3 \ D. Consequently u = w + ψ ∈ L2(D) and
v = ψ ∈ L2(D) are such that u − v ∈ H2(D) and are solutions of the interior
transmission problem (2.6) with f = g = 0. We then infer that w = ψ = 0.

In view of Theorem 1.15, Theorem 1.14, Lemma 2.22 and Lemma 2.26 one
can apply Theorem 2.25 to the factorization (2.18) and derive the following char-
acterization of D in terms of the range of the operator (F ∗F )1/4.

Theorem 2.27. Assume the assumptions of Lemma 2.26 hold. Then z ∈ D if and
only if Φ∞(·, z) is in the range of (F ∗F )1/4.

A method to determine the support D of m = 1− n using Theorem 2.27 is to
use Tikhonov regularization to find a regularized solution of

(αI + (F ∗F )1/2)gαz = (F ∗F )1/4Φ∞(·, z) (2.47)

and note that the regularized solution gαz of (2.47) converges in L2(S 2) as α→ 0 if
and only if z ∈ D (see Theorem 1.30). An alternative method to construct D is to
let λn and ψn be the eigenvalues and eigenfunctions of F and note that (F ∗F )1/4

has the singular system (
√
|λn|, ψn, ψn). Then by Picard’s theorem (Theorem 1.28)

and Theorem 2.27, z ∈ D if and only if

∞∑
n=1

|(ψn,Φ∞(·, z))|2

|λn|
<∞. (2.48)

For details of the numerical implementation of the factorization method we refer
the reader to [78].
Let us now define the operator

F] := |<F |+ |=(F )|, (2.49)

where <(F ) := 1
2 (F + F ∗) and =(F ) := 1

2i (F − F
∗). Let σn = |<(λn)| + |=(λn)|.

Obviously F] is a positive self-adjoint compact operator with (σn, ψn, ψn) as singular
system. Since

|λn| ≤ σn ≤
√

2|λn|

we get, from Picard’s theorem, that the range of F
1/2
] and the range of (F ∗F )1/4

coincide. One therefore can replace (F ∗F )1/4 by F
1/2
] in Theorem 2.27 and |λn| by

σn in (2.48). The main advantage of the use of F
1/2
] is that it can be extended to

cases where F is no longer normal (for instance when =(n) 6= 0) as indicated in the
following section.

2.4.3 The F] Method

This method was originally proposed in [74] as a generalization of the (F ∗F )1/4

method. It also relies on the factorization (2.43) of the far field operator namely

F = H∗TH (2.50)
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where F : X → X, H : X → Y and T : Y → Y ∗ are bounded operators with
X being an infinite dimensional separable Hilbert space and Y a reflexive Banach
space. We assume in addition that there exists a pivot separable Hilbert space
U such that Y ⊂ U ⊂ Y ∗ with dense inclusions (the triple (Y,U, Y ∗) is then
called a Gelfand triple). The analysis given here follows mainly the one given in
[78] but with slight modifications in the presentation and the hypothesis. We also
include the improvement proposed in [89] where the hypothesis on the injectivity
of the imaginary part of the operator T is relaxed (see the last part of the proof of
Theorem 2.31). We denote by 〈, 〉 the Y ∗, Y duality product and by ‖ · ‖ the norm
in Y .

The conditions on T are summarized in the following assumption.

Assumption 4. We assume that T : Y → Y ∗ satisfies

= 〈Tϕ, ϕ〉 ≥ 0 or = 〈Tϕ, ϕ〉 ≤ 0 (2.51)

for all ϕ ∈ R(H) and <T = T0 + C where C is compact on R(H) and

〈T0ϕ, ϕ〉 ≥ α ‖ϕ‖2 (2.52)

for all ϕ ∈ R(H) and some α > 0. Moreover, we assume that one of the following
assumptions holds:

(i) T is injective on R(H);

(ii) =(T ) is injective on R(H) ∩ ker<T .

It is worth noticing that the latter assumptions do not imply in general the co-
ercivity property (2.39). As will be shown later, they allow one to avoid restrictions
on the wave number not being a transmission eigenvalue. However, proving prop-
erty (2.52) usually requires more restrictive assumptions on the coefficients than
those needed for the coercivity property (2.39).

Remark 2.28. We remark that Assumption 3 combined with (2.51) and =T being
compact on R(H) are the ones that have been considered in [78]. They obviously
imply Assumption (4) and also the coercivity property (2.39) (by Lemma (2.24)).

We now state and prove an intermediate result that will allow us to prove the
main theorem.

Theorem 2.29. Let F = H∗TH : X → X where H : X → U is compact, injective
and has dense range, T : U → U is self-adjoint, T = T0 + C where C is compact
and T0 is self-adjoint and satisfies (2.52). Then there exists a finite rank operator
P : U → U such that I + P : U → U is an isomorphism and

|F | = H∗T (I + P )H.

Moreover, the operator T (I + P ) : U → U is self-adjoint and non-negative.
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Proof. Since there is no risk of confusion, the scalar product in X or in U is
indicated by using the same symbol ( , ). The operator F is compact and self-
adjoint. Let λn ∈ R and ψn ∈ X be the eigenvalues and eigenfunctions of F such
that {ψn, n ≥ 1} form an orthonormal basis of X. Then |F | is the operator having
(|λn|, ψn) as singular system. Let us decompose

X = X+ ⊕X−

with X+ := span{ψn;λn > 0} and X− := span{ψn;λn ≤ 0}. Obviously HX+ +
HX− is dense in U . However, there is no guarantee in general that this sum is
closed. We shall prove that it is the case by proving that HX− is finite dimensional.
Consider (σn, φn) an eigenvalue decomposition of T (a self-adjoint and Fredholm
operator of index 0). We decompose U = U+ ⊕ U− with U+ := span{φn;σn >
0} and U− := span{φn;σn ≤ 0}. Since T0 is positive, the space U− is finite
dimensional. Denote by Q± the orthogonal projection on U±. Let φ ∈ HX−, i.e.
φ ∈ Hψ for some ψ ∈ X−. Then

0 ≥ (Fψ,ψ) = (THψ,Hψ) ≥ c1‖Q+Hψ‖2 − c2‖Q−Hψ‖2

with c1 = min{σn, σn > 0} > 0 and c2 = max{|σn|, σn ≤ 0}. Consequently

‖φ‖2 ≤ 2(1 + c2/c1)‖Q−φ‖2 ∀φ ∈ HX−.

This proves that Q− is a bijection from HX− into U− and therefore HX− is finite
dimensional and V − := HX− = HX−. We then obtain that HX+ +V − is a closed
dense subspace of U and therefore U = HX+ + V −. Let us set

V 0 := HX+ ∩ V − and V + := (V 0)⊥ ∩HX+.

Then V + is closed and V + ⊕ V 0 = HX+ (since V 0 is closed). We then deduce the
(non orthogonal) direct sum decomposition

U = V + + V −.

Since V + and V − are closed and V + ∩ V − = {0}, then the projectors P+ and P−

associated with this sum are continuous operators. We now can conclude the proof
by proving that V 0 ⊂ kerT . Let φ ∈ V 0. Then (Tφ, φ) ≥ 0 since φ ∈ HX+ and
(Tφ, φ) ≤ 0 since φ ∈ V −. Hence (Tφ, φ) = 0. Let ψ ∈ HX+ and t ∈ R∪ iR. Then

0 ≤ (T (tφ+ ψ), (tφ+ ψ)) = 2<(tTφ, ψ) + (Tψ, ψ).

The latter holds for all t ∈ R ∪ iR if and only if (Tφ, ψ) = 0. Similar reasoning
implies that (Tφ, ψ) = 0 for all ψ ∈ V −. We then obtain (Tφ, ψ) = 0 for all ψ ∈ U
which gives Tφ = 0.
We are now in position to prove the desired factorization for |F |. For ψ ∈ X,
ψ = ψ+ + ψ− with ψ± ∈ X± and

THψ+ = TP+Hψ+ + TP−Hψ+ = TP+Hψ+ = TP+Hψ (2.53)
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since P−Hψ+ ∈ V 0 and P+Hψ− ∈ V 0. Similarly

THψ− = TP+Hψ− + TP−Hψ− = TP−Hψ− = TP−Hψ. (2.54)

Consequently

|F |(ψ) = F (ψ+)− F (ψ−) = H∗THψ+ −H∗Tψ− = H∗T (P+ − P−)Hψ

which is the desired factorization with P = −2P−. Indeed I + P = P+ − P− is an
isomorphism (I + P is in fact an involution, (I + P )2 = I + P ) and T̃ := T (I + P )
is self-adjoint since

(|F |ψ,ϕ) = (T̃Hψ,Hϕ) = (ψ, |F |ϕ) = (Hψ, T̃Hϕ)

and H has dense range in U .

The following Lemma will be useful.

Lemma 2.30. Assume that T : U → U is a self-adjoint non-negative operator.
Then

‖T (φ)‖2 ≤ ‖T‖(Tφ, φ) (2.55)

Proof. Let φ and ψ ∈ U and t ∈ R. Then

0 ≤ (T (φ+ tψ), (φ+ tψ)) = (Tφ, φ) + 2t<(Tφ, ψ) + t2(Tψ, ψ).

The latter holds for all t ∈ R if and only if

<(Tφ, ψ)2 ≤ (Tφ, φ)(Tψ, ψ).

Taking ψ = Tφ implies

‖T (φ)‖4 ≤ (Tφ, φ)(TTφ, Tφ) ≤ (Tφ, φ)‖T‖‖T (φ)‖2,

which proves the lemma.

Theorem 2.31. Let F be given by (2.50) and assume that there exists an iso-
morphism J : Y → U . Assume that H : X → Y is compact, injective and that T
satisfies Assumption 4. Then

F] = H∗T]H (2.56)

where T] : Y → Y ∗ is self-adjoint and satisfies the coercivity property (2.39) on

R(H). Moreover, the ranges R(H∗) and R((F])
1/2) coincide.

Proof. We shall first transform the problem so that it fits the assumptions of
Theorem 2.29. The factorization (2.50) can also be written as

F = H∗1T1H1
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with H1 = JH : X → U and T1 = (J∗)−1TJ−1 : U → U , which gives a factorization
that involves only Hilbert spaces X and U . Let us denote by Ũ = R(H1) and Q
the projection operator from U onto Ũ . Then using that QH = H we get

F = H̃∗T̃ H̃

with H̃ := QH1 : X → Ũ , T̃ := QT1Q
∗ : Ũ → Ũ . From the assumptions of

the theorem it is clear that H̃ is injective with dense range and that if T satisfies
Assumption 4 then <T̃ : Ũ → Ũ is self-adjoint and is the sum of a self-adjoint
coercive operator and a compact operator. From Theorem 2.29 we get the existence
of an isomorphism I + P : Ũ → Ũ such that P is a finite rank operator and

|<F | = H̃∗(<T̃ )(I + P )H̃

where (<T̃ )(I+P ) : Ũ → Ũ is a self-adjoint and non-negative operator. Assumption
4 implies in addition that

|=(F )| = H̃∗|=(T̃ )|H̃

where |=(T̃ )| : Ũ → Ũ is a self-adjoint non-negative operator and |=(T̃ )| = ±=(T̃ )
depending on the sign of =(T̃ ). We therefore end up with the factorization

F] = H̃∗T̃]H̃

with T̃] = (<(T̃ ))(I + P ) + |=(T̃ )|. We shall now prove that T̃] is coercive. Since

|=(T̃ )| is a non negative operator then <(T̃0) + |=(T̃ )| is a coercive operator on Ũ
and therefore T̃] is a Fredholm operator of index 0.

Using Assumption 4 (i) or (ii) we now prove that T̃] is injective. T̃]φ = 0 implies

(<(T̃ )(I + P )φ, φ) = 0 and (=(T̃ )φ, φ) = 0.

From Lemma 2.30, we deduce that <(T̃ )(I+P )φ = 0 and =(T̃ ) = 0. Since <(T̃ )(I+
P ) is self-adjoint, and (I+P ) is an isomorphism, <(T̃ )(I+P )φ = 0 implies <(T̃ )φ =
0. If condition (ii) of Assumption 4 holds then we immediately get that φ = 0. If
condition (i) holds then we also have φ = 0 since T̃ φ = <T̃ φ+ i=(T̃ )φ = 0. .
The injectivity of T̃] proves that T̃] is invertible. Applying Lemma 2.30 to T̃−1

] and

choosing φ = T̃]ψ in (2.55) implies that

‖ψ‖2 ≤ ‖T̃−1
] ‖(T̃]ψ,ψ)

which gives the coercivity of T̃] on Ũ . The factorization of the theorem follows by
setting

T] = J∗Q∗T̃]QJ.

Using the definition of J and Q we easily get that T] is coercive on the closure of
the range of H. We now can apply Theorem 2.21 to the factorizations (2.56) and
F] = (F])

1/2((F])
1/2)∗ to get that the ranges R(H∗) and R((F])

1/2) coincide.
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2.4.4 Application to the Inverse Scattering Problem for
Absorbing Media

We turn back to our model problem and consider the notation and assumptions of
Section 2.1. Consider F satisfying the factorization (2.18) and set, for θ ∈ [0, 2π[,

F θ := <(eiθF ) + i=(F )

and
F θ] := |<(eiθF )|+ |=(F )|. (2.57)

Obviously
F θ = H∗T θH with T θ := <(eiθT ) + i=(T )

where T : L2(D)→ L2(D) is defined by (2.17). We then have the following Lemma:

Lemma 2.32. Let θ ∈ [0, π]. Assume that =(n) ≥ 0 and <(eiθ(n− 1)) ≥ α > 0 in
D for some constant α and that Assumption 1 holds (i.e. k is not a transmission
eigenvalue). Then the operator T θ : L2(D) → L2(D) satisfies Assumption 4 with
Y = Y ∗ = L2(D).

Proof. Recall that

T (ψ) = − k
2

4π
(1− n)(ψ + w(ψ)) (2.58)

where w(ψ) ∈ H2
loc(R3) is a solution of (2.2). Let T0 : L2(D) → L2(D) be defined

by

T0ψ = − k
2

4π
<(eiθ(1− n))ψ.

Then obviously T0 is real and coercive as in Assumption 4. Moreover <T θ − T0 :
L2(D)→ L2(D) is compact by the compact embedding of H2(D) into L2(D). From
identity (2.35), =(T θψ,ψ) = =(Tψ, ψ) ≥ 0. We now can conclude as in the proof
of Lemma 2.26 to obtain that =(T θ) is injective on the range R(H) since k is not
a transmission eigenvalue. Assumption 4-(ii) is then verified.

We remark that the choice of θ 6= 0 or π is meaningful if =(n) is positive
definite in some region inside D. In this case, if D is simply connected then the
set of transmission eigenvalues is empty. In the cases θ = 0, π one can avoid the
restriction on the wave numbers k.

Lemma 2.33. Assume that =(n) ≥ 0 and <(n−1) ≥ α > 0 (respectively <(1−n) ≥
α > 0) in D some constant α. Then the operator T : L2(D)→ L2(D) (respectively
−T ) defined by (2.58) satisfies Assumption 4 with Y = Y ∗ = L2(D).

Proof. According to the proof of Lemma 2.32, one only needs to check that either
4-(ii) or 4-(i) is verified. From (2.58), Tψ = 0 implies (ψ + w(ψ)) = 0 in D. This
then implies that w(ψ) = 0 in R3 (using the well posedness of (2.2) for n = 1) and
therefore ψ = 0 in D.
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In view of two previous Lemmas, Lemma 2.1 and Lemma 2.22, we now can
state the straightforward application of Theorem 2.31 to the operator F θ.

Theorem 2.34. Assume that =(n) ≥ 0 and that there exists θ ∈ [0, π] such that
<(eiθ(n− 1)) ≥ α > 0 in D for some constant α. If θ 6= 0 or θ 6= π then assume in
addition that Assumption 1 holds (i.e. k is not a transmission eigenvalue). Then
z ∈ D if and only if Φ∞(·, z) is in the range of (F θ] )1/2.

As for (F ∗F )1/4, the numerical implementation of Theorem 2.34 can rely on
either a Tikhonov regularization as in (2.47) or the Picard series as in (2.48).

2.5 Link Between Sampling Methods
The assumptions required by the GLSM method are weaker than the ones required
by the Factorization method but are similar to the inf-criterion. Indeed the main
advantage of GLSM with respect to the inf-criterion is that it leads to a more
tractable numerical inversion algorithm. In some special configurations there is
a direct link between GLSM and the factorization method as explained below.
Moreover, the (F ∗F )1/4 method can be used to provide precise information on the
behavior of the Tikhonov regularized solution of the LSM equation.

2.5.1 LSM Versus the (F ∗F )1/4 Method

Let us consider the case where the hypothesis of Theorem 2.25 holds (this corre-
sponds in particular to the case when =(n) = 0). We shall prove that in this case
the Tikhonov solution of (2.16) satisfies lim sup

α→0
‖Hg̃αz ‖L2(D) < ∞ if z ∈ D (see

also [3]). This is a direct consequence of the following general result together with
Theorem 2.25.

Theorem 2.35. Assume that F : X → X is as in Theorem 2.25. Let φ ∈ X and
let gα ∈ X be a solution to

(α+ F ∗F ) gα = F ∗φ.

Then φ is in the range of (F ∗F )1/4 if and only if lim sup
α→0

|(Fgα, gα)| <∞ which is

also equivalent to lim sup
α→0

‖Hgα‖ <∞.

Proof. Using the singular system (λj , ψj)j≥1 of the normal operator F , we observe
that

gα =
∑
j

λj
α+ |λj |2

(φ, ψj)ψj .

Therefore

|(Fgα, gα)| =

∣∣∣∣∣∣
∑
j

|λj |2λj
(α+ |λj |2)2

|(φ, ψj)|2
∣∣∣∣∣∣ ≤

∑
j

|λj |3

(α+ |λj |2)2
|(φ, ψj)|2.
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On the other hand, from the coercivity property (2.45), we also have

|(Fgα, gα)| ≥ β
∑
j

|λj |3

(α+ |λj |2)2
|(φ, ψj)|2.

The Picard criterion implies that φ is in the range of (F ∗F )1/4 if and only if∑
j

1

|λj |
|(φ, ψj)|2 < +∞.

Consequently, since

|λj |3

(α+ |λj |2)2
→ 1

|λj |
as α→ 0 and

|λj |3

(α+ |λj |2)2
≤ 1

|λj |
,

we get that φ is in the range of (F ∗F )1/4 if and only if

lim sup
α→0

|(Fgα, gα)| < +∞.

We conclude the proof by using the coercivity property (2.39) and the continuity
of T to obtain

β‖Hgα‖2 ≤ |(Fgα, gα)| ≤ ‖T‖‖Hgα‖2

for some β > 0.

2.5.2 RGLSM Versus the Factorization Method

We now briefly relate the generalized linear sampling method to both versions of
the factorization method.

RGLSM Versus the (F ∗F )1/4 Method

Let us again consider the case where the hypothesis of Theorem 2.25 holds (this
corresponds in particular to the case when =(n) = 0). According to the factorization

(2.44) one can apply GLSM with F = F , B = H̃∗H̃ = (F ∗F )
1
2 and G = H̃∗. In this

case, the operator B is positive self-adjoint and therefore one can say more than in
Theorem 2.10. Using the singular system (λj , ψj)j≥1 of the normal operator F , we
observe that

Jα(φ; g) = α((F ∗F )
1
2 g, g) + ‖Fg − φ‖2

= α
∑
i

|λi||(g, ψi)|2 +
∑
i

(λi(g, ψi)− (φ, ψi))
2.

Hence Jα(φ; ·) has a minimizer given by

gα =
∑
j

λj(φ, ψj)

α|λj |+ |λj |2
ψj .
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This minimizer clearly satisfies (2.23). Let us now define

gFM
α =

∑
j

|λj |
1
2

|λj |+ α
(φ, ψj)ψj ,

which is the minimizer of the Tikhonov functional α ‖g‖2 +
∥∥∥(F ∗F )

1
4 g − φ

∥∥∥2

. One

then observes that the GLSM indicator function satisfies

|((F ∗F )
1
2 gα, gα)| =

∑
j

|λj |(φ, ψj)2

(α+ |λj |)2
=
∥∥gFM
α

∥∥2
.

This means that the GLSM indicator function (in the noise free case) coincides with
the indicator function given by the (F ∗F )1/4 method when Tikhonov regularization
is used, e.g. (2.47). In principle, nothing can be deduced on the boundedness of
Hgα from the analysis of GLSM. However, this information can be obtained from
Theorem 2.35.

RGLSM Versus the F] Method

The Factorization Method allows one to use for GLSM an operator B that satisfies
the assumptions of Theorem 2.10 which is important for the some applications like
imaging in unknown backgrounds (see Section 2.5.4). Let F = H∗TH be as in
Theorem 2.31. Let us set for φ ∈ X

Jα(φ; g) := α(F]g, g) + ‖Fg − φ‖2

and
jα(φ) = inf

g∈X
Jα(φ; g).

Combining Theorem 2.10 and Theorem 2.31 we have the following theorem:

Theorem 2.36. Let F = H∗TH be as in Theorem 2.31, set G = H∗T : R(H) ⊂
Y → X and assume in addition that F is injective with dense range.
Consider for α > 0 and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) with 0 <
p(α)

α
→ 0 as α→ 0.

Then φ ∈ R(G) if and only if limα→0(F]gα, gα) <∞.
Moreover, in the case φ = Gϕ, the sequence Hgα strongly converges to ϕ in Y .

2.5.3 Some Numerical Examples

We report here some two-dimensional numerical examples from [7]. They corre-
spond to two separate inhomogeneities with different index of refractions respec-
tively equal to n = 2 + 0.5i and 2 + 0.1i (See Figure 2.1). The frequency is k = 1
and 100 equidistant incident directions and observation points have been used. The
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data has been generated synthetically by solving the forward scattering problem
using a standard finite element method. In Figure 2.1 the output of four indicator
functions are compared. Let gαz be the Tikhonov regularized solution of (2.16) where
the regularization parameter is computed using the Morozov discrepancy principle
(see Remark 2.5). We define

ILSM(z) = 1/‖gαz ‖2, (2.59)

IGLSM0(z) = 1/|(F δgαz , gαz )|, (2.60)

IGLSM(z) = 1/
(
|(F δgαz , gαz )|+ δ‖F δ‖‖gαz ‖2

)
, (2.61)

where the noise level δ is such that

‖F − F δ‖ ≤ δ‖F δ‖.

Let gαz,] be the Tikhonov regularized solution of (2.47) (with (F ∗F )1/4 replaced with
F]) where the regularization parameter is computed using the Morozov discrepancy
principle. We define

IF](z) = 1/‖gαz,]‖2. (2.62)

In the spirit of the GLSM algorithm one can improve the reconstruction pro-
vided by IGLSM by using gαz as an initial guess to compute a minimizing sequence
of (2.38). Figure (2.2) show how one can obtain better resolutions after applying
some gradient descent iterations. For these numerical results the parameter α in
(2.38) is taken as α = αM/(‖F δ‖(1 + δ)) where αM is the Morozov parameter used
in (2.16). The function IGLSMoptim has the same expression as IGLSM but with gαz
being the computed minimizing sequence.

2.5.4 Application to Differential Measurements

We here present an application of the GLSM method to the imaging problem where
one would like to identify a change in the background using differential measure-
ments. Assume for instance that a reference medium is defined by an index of
refraction n0 and let us denote by F0 the far field operator associated with this
medium. Applying any of the algorithms above would provide an approximation of
D0, the support of n0−1. Assume that a change occurred in the medium modifying
locally n0 and denote by n the new refractive index. Let F be the far field operator
associated with n and let D be the support of n−1. The inverse problem we would
like to address here is the identification of D \ D0 from the knowledge of F and
F0 (without reconstructing n and n0 or D and D0). We here present the method
proposed in [6] in the simple case where D = D0∪D1 with D0∩D1 = ∅ and n = n0

in D0. The inverse problem is then to reconstruct D1 from F0 and F . For the
analysis of more complex configurations we refer the reader to [5] and [6].
Denoting by itp(n,D) the interior transmission problem (2.6), we here assume that
itp(n,D) and itp(n0, D0) are both well posed. We shall exploit in the following
that the solutions of itp(n,D) and itp(n0, D0) coincide in D0 if the boundary data
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Figure 2.1. Output of four different imaging functions. First row:
IGLSM0, second row: ILSM, third row: IF] and fourth row IGLSM. The columns
correspond to different noise levels δ: from left to right δ = 0, 1 and 5%. Reproduced
from [7] with permission.

coincide on ∂D0. This is easily verified given the special configuration of D.
We also assume that there exists θ ∈ [0, π] such that the assumptions of the refrac-
tive index in Theorem 2.34 hold for n in D and n0 in D0. We then set

B = F θ] and B0 = F θ0,].

(See (2.57) for the definition of F θ] . The operator F θ0,] is defined similarly.) Consider

Jα(z; g) := α(Bg, g)L2(S2) + ‖Fg − Φ(·, z)‖2L2(S2)
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Figure 2.2. First row: IGLSM and second row: IGLSMoptim. The columns
correspond to different noise levels δ = 1% left and δ = 5% right. Reproduced from
[7] with permission.

and

J0,α(z; g) := α(B0g, g)L2(S2) + ‖F0g − Φ(·, z)‖2L2(S2) ,

and gzα and gz0,α in L2(S2) such that

Jα(z; gzα) ≤ inf
g∈L2(S2)

Jα(z; g) + p(α)

and

J0,α(z; gz0,α) ≤ inf
g∈L2(S2)

J0,α(z; g) + p(α)

with 0 < p(α)
α → 0 as α → 0. Application of Theorem 2.36 to F and F0 in com-

bination with the arguments at the end of the proof of Theorem 2.3 show that if
z is in D0 then vgzα and vgz0,α converge in L2(D0) to the same function v (the fact
that it is the same function comes form the considerations above on the solutions
of itp(n,D) and itp(n0, D0)). Therefore, if z is in D0 then

(B0(gzα − gz0,α), (gzα − gz0,α))L2(S2) ≤ C‖H0g
z
α −H0g

z
0,α‖2L2(D0) → 0 (2.63)

as α→ 0. Let us set

A(g) := (Bg, g)L2(S2) and D(g, g0) := (B0(g − g0), g − g0)L2(S2)

and introduce the indicator function

I(g, g0) :=
1

A(g)(1 +A(g)D(g, g0)−1)
.
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Theorem 2.37. Let z ∈ R3. Then z ∈ D1 if and only if lim
α→0
I(gzα, g

z
0,α) > 0.

Proof. If z /∈ D then from Theorem 2.36 applied to F we get that A(gzα) → +∞
as α→ 0 and therefore lim

α→0
I(gzα, g

z
0,α) = 0.

Consider now the case of z ∈ D0. Theorem 2.36 implies that A(gzα) is bounded and
converges to (Tu0, u0)L2(D) where (u, u0) is the solution of itp(n,D) with Φ(·, z)
and ∂Φ

∂ν (·, z) as boundary data. Since z ∈ D0 and D0 ∩ D1 = ∅ then u0 = Φ(·, z)
(and u = 0) in D1. Consequently (Tu0, u0)L2(D) > 0. Combining this fact with
(2.63) implies lim

α→0
I(gzα, g

z
0,α) = 0.

We now treat the case of z ∈ D1. We get from Theorem 2.36 applied to F0 that
(B0g

z
0,α, g

z
0,α)L2(S2) is unbounded as α → 0 while the same theorem applied to F

implies that (B0g
z
α, g

z
α)L2(S2) is bounded. Consequently D(gzα, g

z
0,α) is unbounded

as α → 0. On the other hand, Theorem 2.36 implies that A(gzα) is bounded. We
then get lim

α→0
I(gzα, g

z
0,α) > 0 which finishes the proof.

Indeed, as for GLSM, in the case of a noisy operator Bδ such that ‖Bδ−B‖ ≤
δ‖Bδ‖, the indicator function has to be modified by replacing A(g) with

Aδ(g) := (Bδg, g)L2(S2) + δ‖Bδ‖‖g‖2L2(S2)

while D(g) is simply replaced with

Dδ(g, g0) := (Bδ0(g − g0), g − g0)L2(S2).

For the analysis of the noisy case we refer the reader to [5] and [6].
We now give a 2D numerical example due to L. Audibert illustrating the

performance of the indicator function described above. The medium configuration
is described in Figure 2.3 where the solid line indicates the boundary of D0 while
the dashed line indicates the boundary of D1. The index of refraction in D0 is
n0 = 2 + 0.5i and the index of refraction in D1 is equal to 3. The wave number
is k = 2π. Figure 2.4 indicates the reconstructions obtained using the GLSM
algorithm with optimization as described in the pervious section for D0 and D
using respectively F0 and F . The reconstruction of D1 using directly F and F0

as suggested by Theorem 2.37 (i.e. without relying on the reconstruction of D0

and D) is shown on the right of Figure 2.4 and clearly indicates that the proposed
indicator function provides satisfactory results. We again refer to [5] for a more
extensive discussion of numerical issues related to this type of indicator function
and applications to imaging in a randomly fluctuating background.

2.6 Application of Sampling Methods to Anisotropic
Media

We now consider the inverse scattering problem associated with the model discussed
in Section 1.4 that corresponds with an anisotropic media characterized by a 3× 3
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Figure 2.3. The medium configuration: D1 dashed line, D0 solid line

Figure 2.4. Left: Reconstruction of D0 using GLSM. Middle: Reconstruc-
tion of D using GLSM. Right: reconstruction of D1 using differential measurements.
The data is corrupted with 1% random noise.

symmetric matrix with L∞(D)-entries such that

ξ · <(A)ξ ≥ γ |ξ|2 and ξ · =(A)ξ ≤ 0

for all ξ ∈ C3, a.e. x ∈ D and some constant γ > 0. Here D is the support of
the inhomogeneity which is assumed to be a bounded Lipschitz domain such that
R3 \D is connected. The assumptions on n are the same as in Section 1.2. We refer
to Section 1.4.1 for the definition of the far field operator and some basic properties
associated with this operator.

Using Theorem 1.38, let us define for ϕ ∈ L2(D)3 and ψ ∈ L2(D) the unique
function w ∈ H1

loc(R3) satisfying
∇ ·A∇w + k2nw = ∇ · (I −A)ϕ+ k2(1− n)ψ in R3,

lim
R→∞

∫
|x|=R

|∂w/∂|x| − ik w|2 ds = 0 (2.64)

so that if ψ(x) = eikd·x and ϕ = ∇ψ, then w = us(·, d) and the far field pattern w∞
of w coincides with u∞(·, d). The Herglotz operator is now defined as H : L2(S2)→
L2(D)3 × L2(D) with

Hg := (∇vg|D, vg|D) (2.65)
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where the Herglotz wave function vg is defined by (1.29). Setting Hinc(D) to be
the closure of the range of H in L2(D)3 × L2(D) we then consider the operator
G : Hinc(D)→ L2(S2) defined by

G(ϕ, ψ) := w∞, (2.66)

where w∞ is the far field pattern of w ∈ H1
loc(R3) satisfying (2.64). This ensures

the first factorization F = GH.
We now proceed with giving the main ingredients for the justification of the Linear
Sampling Method. We again rely on the solvability of the interior transmission
problem. In the present setting this problem is phrased as (u, u0) ∈ H1(D)×H1(D)
such that 

∇ · (A∇u) + k2nu = 0 in D,

∆u0 + k2u0 = 0 in D,

u− u0 = f on ∂D,

∂u/∂νA − ∂u0/∂ν = h on ∂D,

(2.67)

for given (f, h) ∈ H1/2(∂D) × H−1/2(∂D) where ν denotes the outward normal
on ∂D. Values of k for which this problem is not well posed are referred to as
transmission eigenvalues. We refer to the next two chapters for the analysis of this
problem and content ourselves here with the following assumption.

Assumption 5. We assume that the matrix A, the index n and the wave number
k are such that (2.67) defines a well posed problem.

Lemma 2.38. The operator H defined by (2.65) is compact and injective. Let
Hinc(D) be the closure of the range of H in L2(D)3 × L2(D). Then

Hinc(D) = {(ϕ, ψ) = (∇v, v); v ∈ H1(D); ∆v + k2v = 0 in D}.

Proof. The first part follows from the same arguments as in Lemma 2.1. For
the second part of the Lemma, we also proceed similarly to the proof of Lemma
2.1. Set H̃inc(D) := {(ϕ, ψ) = (∇v, v); v ∈ H1(D); ∆v + k2v = 0 in D}. Then

obviously Hinc(D) ⊂ H̃inc(D). To prove the theorem it is then sufficient to prove
that H∗ : L2(D)3 ×L2(D)→ L2(S2), the adjoint of the operator H, which is given
by

H∗(ϕ, ψ)(x̂) :=

∫
D

(−ikx̂ ·ϕ(y) + ψ(y))e−ikx̂·y dy, (2.68)

is injective on H̃inc(D). Let (ϕ, ψ) = (∇u0, u0) with u0 ∈ H1(D) satisfying ∆u0 +
k2u0 = 0 in D. We set

u(x) :=

∫
D

∇yΦ(x, y) · ∇u0(y) + Φ(x, y)u0(y) dy, x ∈ R3.
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From the regularity of volume potentials (Theorem 1.8), we infer that u ∈ H1
loc(R3)

and satisfies ∫
R3

−∇u · ∇v + k2uv dx = −
∫
D

∇u0 · ∇v + u0vdx (2.69)

for all v ∈ H1
loc(R3) with compact support (together with the Sommerfeld radiation

condition). Since by construction 4πu∞ = H∗(ϕ, ψ), then H∗(ϕ, ψ) = 0 implies
that u∞ = 0 and therefore u = 0 in R3 \ D by Rellich’s lemma. The regularity
u ∈ H1

loc(R3) then implies u ∈ H1
0 (D). Equation (2.69) then gives∫

D

−∇u · ∇v + k2uv dx = −
∫
D

∇u0 · ∇v + u0vdx

for all v ∈ H1(D). Taking v = u0 implies

‖u0‖2H1(D) = −
∫
D

−∇u · ∇u0 + k2uu0 dx = 0

where the last equality follows from ∆u0 + k2u0 = 0 in D and u ∈ H1
0 (D).

We remark that Hinc(D) can be identified with H1
inc(D) ⊂ H1(D) defined by

H1
inc(D) := {v ∈ H1(D); ∆v + k2v = 0 in D}

through the isomorphism

I : H1
inc(D)→ Hinc(D); I(v) = (∇v, v).

Setting, for g ∈ L2(S2),
H1(g) := I−1H(g) = v|D,

we also have the following lemma as an immediate corollary of Lemma 2.38.

Lemma 2.39. The operator H1 : L2(S2) → H1
inc(D) ⊂ H1(D) is compact and

injective with dense range.

Setting
G1 = GI, (2.70)

one observes that F = GH = G1H1 and the subsequent analysis can indeed be done
with either factorization. We prefer the first one since it leads to explicit expressions
for the middle operator in the second factorization introduced below. We now state
the following reciprocity lemma which can be proved exactly the same way as in
Lemma 2.2.

Lemma 2.40. Let (ϕ0, ψ0) and (ϕ1, ψ1) be in L2(D)3 × L2(D) and let w0 and
w1 ∈ H1

loc(R3) be the corresponding solutions satisfying (2.64). Then∫
D

(I −A)∇w0 ·ϕ1 − k2(1− n)w0ψ1dx =

∫
D

(I −A)∇w1 ·ϕ0 − k2(1− n)w1ψ0dx.
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The following theorem gives one of the main ingredients for the justification
of LSM and GLSM.

Theorem 2.41. Assume that Assumption 5 holds. Then the operator G : Hinc(D)→
L2(S2) defined by (2.66) is injective with dense range. Moreover, Φ∞(·, z) ∈ R(G)
if and only if z ∈ D. The same holds for G1 : H1

inc(D)→ L2(S2) defined by (2.70).

Proof. We prove the result for G1. The result for G then directly follows from
(2.70). The proof is very similar to the proof of Theorem 2.3 and we give here a
short outline. Let (ϕ, ψ) = I(u0) with u0 ∈ H1

inc(D) and w satisfying (2.2). From
(1.54) we get

w∞(x̂) = − 1

4π

∫
D

(
ikx̂ · (I −A)∇(u0 + w) + k2(1− n)(u0 + w)

)
e−ikx̂·y dy.

It is then easy to deduce from Lemma 2.40 that

(G1(H1ϕ), g)L2(S2) = (G1(H1g), ϕ)L2(S2) ∀ g, ϕ ∈ L2(S2). (2.71)

Using this identity, the reminder of the proof can be copied line by line from the
proof of Theorem 2.3 after identity (2.14), replacing G and H by G1 and H1 respec-
tively and substituting references to the interior transmission problem (2.6) with
references to the interior transmission problem (2.67) with appropriate changes of
solution spaces.

We proceed now with the second factorization of the far field operator. From
(1.54) we obtain

G(ϕ, ψ) = − 1

4π

∫
D

(
ikx̂ · (I −A)(ϕ+∇w) + k2(1− n)(ψ + w)

)
e−ikx̂·y dy.

Using (2.68) we get that G = H∗T where T : L3(D)× L2(D)→ L3(D)× L2(D) is
defined by

T (ϕ, ψ) := − 1

4π

(
(A− I)(ϕ+∇w), k2(1− n)(ψ + w)

)
(2.72)

with w being the solution of (2.64). One then ends up with the second factorization

F = H∗TH. (2.73)

We now give the final additional theorem needed for RGLSM and the Inf-Criterion
which is the following coercivity property of the operator T .

Assumption 6. We assume that n ∈ L∞(R3), =(n) ≥ 0, A ∈ L∞(R3)6 and
=(A) ≤ 0. Furthermore, we assume that either of the following conditions apply:

• <(A− I)− α=(A) is positive definite on D for some constant α ≥ 0.
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• <(A) is positive definite on D and there exist constants α ≥ 0, 0 < η ≤ 1 and
θ > 0 such that

(I−<(A))X ·X+(1−η)<(A)Y ·Y −α=(A)(X+Y ) ·(X+Y ) ≥ θ|X|2 (2.74)

on D for all X and Y in C3.

Theorem 2.42. Assume that Assumptions 5 and 6 hold. Then the operator T
defined by (2.72) satisfies the coercivity property

|(T I(v), I(v))L2(D)4 | ≥ θ‖v‖2H1(D) ∀v ∈ H
1
inc(D) (2.75)

for some positive constant θ. This implies in particular that T satisfies (2.22) with
Y = Y ∗ = L3(D)× L2(D) and the operator H = H defined by (2.65).

Proof. With ( , ) denoting the L2(D)4 scalar product, for (ϕ, ψ) = I(v), v ∈
H1

inc(D) and w ∈ H1
loc(R3) a solution of (2.64), we have that

(T I(v), I(v)) = − 1

4π

∫
D

(A− I)∇(v + w) · ∇v + k2(1− n)(v + w)v dx. (2.76)

From the variational formulation of (2.64) (see for instance (1.53)) with test function
equal to w we get with BR a ball of radius R containing D that∫

D

(A− I)∇(v + w) · ∇w + k2(1− n)(v + w)w dx

= −
∫
BR

|∇w|2 − k2|w|2dx+

∫
|x|=R

∂w

∂r
w ds. (2.77)

We recall that, due to the Sommerfeld radiation condition,

lim
R→∞

=

 ∫
|x|=R

∂w

∂r
w ds

 = k

∫
S2

|w∞|2ds.

Therefore, taking the imaginary part and letting R→∞ yields

=
∫
D

(A− I)∇(v + w) · ∇w + k2(1− n)(v + w)w dx = k

∫
S2

|w∞|2ds.

Consequently, using the identities

(v + w)v = |v + w|2 − (v + w)w

(A− I)∇(v + w) · ∇v = (A− I)∇(v + w) · ∇(v + w)− (A− I)∇(v + w) · ∇w
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in (2.76) and taking the imaginary part implies (the general form of (2.35))

4π=(T I(v), I(v)) =

∫
D

−=(A)∇(v + w) · ∇(v + w)dx

+ k2

∫
D

=(n)|v + w|2dx+ k

∫
S2

|w∞|2ds. (2.78)

We are now in position to prove the desired coercivity property using a contradiction
argument. Assume for instance the existence of a sequence v` ∈ R(H) such that

‖v`‖H1(D) = 1 and |(T I(v`), I(v`))| → 0 as `→∞.

We denote by w` ∈ H1
loc(R3) the solution of (2.64) with (ϕ, ψ) = I(v`). Elliptic

regularity implies that ‖w`‖H2(B\D) is bounded uniformly with respect to ` for all
bounded domains B containing D. Then up to changing the initial sequence, one
can assume that v` weakly converges to some v in H1(D) and w` converges weakly
in H1

loc(R3) ∩H2
loc(R3 \D) to some w ∈ H1

loc(R3) ∩H2
loc(R3 \D). It is then easily

seen that w and (ϕ, ψ) = I(v) satisfy (2.64), and

∆v + k2v = 0 in D. (2.79)

Identity (2.78) and |(T I(v`), I(v`))| → 0 implies that w`∞ → 0 in L2(S2) and
therefore w∞ = 0. Rellich’s Lemma implies w = 0 outside D. Consequently,
u = w + v ∈ H1(D) and v ∈ H1(D) form a solution to the interior transmission
problem (2.67) with f = g = 0. This implies that w = v = 0. Identity (2.76)
applied to v` and w`, the fact that |(T I(v`), I(v`))| → 0 and the Rellich compact
embedding theorem imply that∫

D

(A− I)∇(v` + w`) · ∇v`dx→ 0 (2.80)

as ` → ∞. From (2.77) applied to v` and w` and the Rellich compact embedding
theorem we get ∫

D

(A− I)∇(v` + w`) · ∇w` +

∫
BR

|∇w`|2dx→ 0 (2.81)

as ` → ∞. We now consider two separate cases. Consider first the case when
<(A− I)− α=(A) is positive definite on D for some constant α ≥ 0. Taking the
sum of (2.80) and (2.81) we get∫

D

(A− I)∇(v` + w`) · ∇(v` + w`)dx+

∫
BR

|∇w`|2dx→ 0 (2.82)
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as ` → ∞. On the other hand, using the assumption on A (after adding and
subtracting α=(A) to <(A− I), we easily observe that

θ

∫
D

|∇(v` + w`)|2 +

∫
BR

|∇w`|2


≤

∣∣∣∣∣∣
∫
D

(A− I)∇(v` + w`) · ∇(v` + w`)dx+

∫
BR

|∇w`|2
∣∣∣∣∣∣ dx

for some positive constant θ independent from `. We then obtain using the triangle
inequality that ‖∇v`‖L2(D) → 0. Combined with the Rellich compact embedding
theorem, this implies that v` → 0 strongly in H1(D), which gives a contradiction.
Consider now the case when (2.74) holds and <(A) positive definite on D. Taking
the difference between (2.81) and (2.80) yields∫

D

(I −A)∇v` · ∇v`dx+

∫
BR

A∇w` · ∇w`dx

+

∫
D

(I −A)∇w` · ∇(v` + w`)− (I −A)∇w` · ∇(v` + w`)dx→ 0

and taking the real part implies∫
D

(I −<(A))∇v` · ∇v`dx+

∫
BR

<(A)∇w` · ∇w`dx

− i
∫
D

=(A)∇w` · ∇(v` + w`)−=(A)∇w` · ∇(v` + w`)dx→ 0.

Taking the imaginary part of (2.82) implies that

−
∫
D

=(A)∇(v` + w`) · ∇(v` + w`)dx→ 0.

Now let λ be a positive parameter that will be fixed later. The last two identities
give∫

D

(I−<(A))∇v`·∇v`dx+

∫
D

<(A)∇w`·∇w`dx−λ
∫
D

=(A)∇(v`+w`)·∇(v`+w`)dx

− i
∫
D

=(A)∇w` · ∇(v` + w`)−=(A)∇w` · ∇(v` + w`)dx→ 0.
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Let us denote by M(∇v`,∇w`) the term under the integral over D in this identity.
We observe that

M(X,Y ) = (I −<(A))X ·X + (1− η)<(A)Y · Y − λ=(A)(X + Y ) · (X + Y )

+ |(η<(A))1/2Y + i(η<(A))−1/2=(A)(X + Y )|2 − |(η<(A))−1/2=(A)(X + Y )|2.

Choosing
λ > α+ sup

x∈D
‖=(A)(x)‖/(η‖<(A)(x)‖)

we obtain from Assumption (2.74) that

M(X,Y ) ≥ θ|X|2.

This implies ‖∇v`‖L2(D) → 0 and therefore yields a contradiction as in the first
case.

In view of Theorems 2.42 and 2.41 we now can state the following application
of Corollary 2.8 and Theorem 2.15.

Theorem 2.43. Assume that Assumptions 5 and 6 hold. Then the results of
Theorem 2.4, Theorem 2.19 and Theorem 2.20 hold true in the present case.

For the factorization method, a splitting of the real part of the operator T
into a coercive real operator and a compact operator is needed.

Let BR be a ball of radius R containing D. With the notation of the proof
of Theorem 2.42, if w ∈ H1

loc(R3) (respectively w′ ∈ H1
loc(R3)) is the solution of

2.64 with (ϕ, ψ) = I(v) (respectively (ϕ, ψ) = I(v′)) and v ∈ H1
inc(D) (respectively

v′ ∈ H1
inc(D) ) then

(T I(v), I(v′)) = − 1

4π

∫
D

(A− I)∇(v + w) · ∇v′ + k2(1− n)(v + w)v′ dx (2.83)

and from the variational formulation of (2.64) (see for instance (1.53)) with test
function equal to w′∫

D

(A− I)∇(v + w) · ∇w′ + k2(1− n)(v + w)w′ dx

+

∫
BR

∇w · ∇w′ − k2ww′dx−
∫
|x|=R

∂w

∂r
w′ ds = 0. (2.84)

Consequently, adding (2.84) to −4π times (2.83) gives

− 4π(T I(v), I(v′)) =

∫
D

(A− I)∇(v + w) · (∇v′ +∇w′)dx+

∫
BR

∇w · ∇w′dx

+

∫
D

k2(1− n)(v + w)(v′ + w′) dx−
∫
BR

k2ww′dx−
∫
|x|=R

∂w

∂r
w′ ds. (2.85)
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Adding (2.84) to 4π times (2.83) implies

4π(T I(v), I(v′)) = −
∫
D

(A− I)∇(v + w) · (∇v′ −∇w′)dx−
∫
BR

∇w · ∇w′dx

−
∫
D

k2(1− n)(v + w)(v′ − w′) dx+

∫
BR

k2ww′dx+

∫
|x|=R

∂w

∂r
w′ ds

and rearranging the terms in the right hand side we get

4π(T I(v), I(v′)) =

∫
D

(I −A)∇v · ∇v′dx+

∫
BR

A∇w · ∇w′dx

+

∫
D

(I −A)∇w · ∇v′ − (I −A)∇w′ · ∇vdx

−
∫
D

k2(1− n)(v + w)(v′ − w′) dx+

∫
BR

k2ww′dx+

∫
|x|=R

∂w

∂r
w′ ds. (2.86)

Let us introduce the operators T±0 : L2(D)3 ×L2(D)→ L2(D)3 ×L2(D) such that

−4π(T−0 I(v), I(v′)) =

∫
D

(A−I)∇(v+w)·(∇v′+∇w′)dx+

∫
BR

∇w·∇w′dx+

∫
D

vv′dx.

(2.87)

and

4π(T+
0 I(v), I(v′)) =

∫
D

(I −A)∇v · ∇v′dx+

∫
BR

A∇w · ∇w′dx

+

∫
D

(I −A)∇w · ∇v′ − (I −A)∇w′ · ∇vdx+

∫
D

vv′dx. (2.88)

Then, from the fact that w,w′ ∈ H2
loc(R3 \D) and the Rellich compact embedding

theorems, one easily concludes that

<T − T±0 : H1
inc(D)→ L2(D)3 × L2(D)

is compact. We already see from the expression of T+
0 that the case of I − A

positive definite on D is more delicate to analyze since T+
0 is not self-adjoint nor

can be written as the sum of self-adjoint and compact operators. For instance, one
cannot apply the (F ∗F )1/4 method in this case. However in the case when A is real
and I −A is positive definite on D we can state the following.

Theorem 2.44. Assume that A and n are real valued, A− I is positive definite on
D and k is not a transmission eigenvalue. Then z ∈ D if and only if Φ∞(·, z) is in
the range of (F ∗F )1/4.
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Proof. We recall that in this case the operator F is normal (Theorem 1.42). One
easily see from (2.87) that T−0 is self-adjoint and coercive on H1

inc(D). Moreover,
since k is not a transmission eigenvalue, we have that F is injective with dense range
and from the first part of the proof of Theorem 2.42 we get that =(F ) is positive.
We then conclude the result using Theorem 2.25 and Lemma 2.45

Lemma 2.45. For z ∈ R3 we have that z ∈ D if and only if φz is in the range of
H∗.

Proof. This lemma is a simple consequence of Lemma 2.22 since H∗(0, ·) coincides
with the operator H∗ in Lemma 2.22.

We now consider the F] method. Once again, the case A− I non negative can
be treated in a similar way as in the case A = I. With the notation of Section 2.4.4
we have the following theorem.

Theorem 2.46. Assume that there exists θ ∈ [−π/2, 0] such that <(eiθ(A− I)) is
positive definite in D. If θ = 0 assume in addition that (n− 1)−1 ∈ L∞(D) and if
θ 6= 0 assume in addition that k is not a transmission eigenvalue. Then z ∈ D if
and only if Φ∞(·, z) is in the range of (F θ] )1/2.

Proof. The case θ = −π/2 is the case where =(A) is positive definite in D. Then
using (2.35) one gets that T θ = =(T ) satisfies Assumption 4 with Y = Y ∗ = L2(D)4.
For the case θ 6= −π/2, we get from (2.87) that the operator <(eiθT−0 ) is coercive

on H1
inc(D). As in the proof of Lemma 2.26, =(T θ) is injective on the range R(H)

since k is not a transmission eigenvalue. Assumption 4 is then verified. In the case
θ = 0, obviously from the expression of T , Assumption 4-(i) is verified and there is
no need to exclude transmission eigenvalues (if they exist).

In the case A− I non positive we content ourselves with the following result,
assuming that the imaginary part is not too large.

Theorem 2.47. Assume that <(I − A)ξ · ξ̄ ≥ α|ξ|2 and <(A)ξ · ξ̄ ≥ γ|ξ|2 for all
ξ ∈ C3 in D and that (n−1)−1 ∈ L∞(D). Assume in addition that ‖=(A)‖L∞(D) <√
αγ. Then z ∈ D if and only if Φ∞(·, z) is in the range of (F])

1/2.

Proof. We observe from (2.88) that

4π<(T+
0 I(v), I(v)) =

∫
D

<(I −A)∇v · ∇vdx+

∫
BR

<(A)∇w · ∇wdx

− i
∫
D

=(A)∇w · ∇v −=(A)∇w · ∇vdx+

∫
D

vvdx

The assumptions on A then ensure that <T+
0 is coercive on H1

inc(D). We then



“CCH-book”
2016/4/18
page 84i

i
i

i

i
i

i
i

84 Chapter 2. The Determination of the Support of Inhomogeneous Media

conclude as in the proof of Theorem 2.46.

The conditions of Theorem 2.46 can be weakened in a similar way as in (2.74)
but at the expense of changing the expression for F] (adding a sufficiently large
imaginary part). This is left as an exercise to the reader.
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Chapter 3

The Interior Transmission
Problem

The interior transmission problem, as already mentioned in Chapter 2, plays an es-
sential role in inverse scattering theory for inhomogeneous media. It is a boundary
value problem for a coupled pair of partial differential equations in a bounded do-
main which corresponds to the support of the scatterer. This boundary value prob-
lem is not elliptic in the sense of Agmon-Douglas-Nirenberg and hence its study calls
for new techniques. The homogeneous form of the interior transmission problem is
referred to as the transmission eigenvalue problem and the corresponding eigenval-
ues as transmission eigenvalues. Typical concerns associated with these problems
are: 1) the Fredholm property and solvability of the interior transmission problems,
2) the discreteness of the transmission eigenvalues, 3) the existence of transmission
eigenvalues and 4) the determination of transmission eigenvalues from scattering
data and the relationship between them and the material properties of the inho-
mogeneous media. All these questions are at the core of inverse scattering theory.
This chapter is concerned with the Fredholm property and solvability of the interior
transmission problem corresponding to different kinds of inhomogeneous media.

We discuss in Section 3.1 the isotropic problem and more specifically the simple
case where the contrast n− 1 does not change sign in D. In this case a formulation
of the problem as a fourth order partial differential equation can be obtained and
then studied variationally. This approach that was first employed in [110] is also
very convenient for the study of the existence of transmission eigenvalues which is
the subject of next chapter. We then discuss in Section 3.1.2 the more delicate
case where n − 1 can vanish in a region strictly included D. In this case, one
can still derive a variational formulation similar to the previous case by including
the equations in the region n = 1 as a constraint in the variational space. This
section can be skipped in a first reading. A more general problem is discussed in
Section 3.1.3 where the contrast may change sign in a domain strictly contained
in D. This case was first investigated in [113] (see also the approach in [85] for
smooth coefficients). Our discussion follows the approach due to Kirsch in [77]
where the same results as in [113] are obtained for real valued refractive index by
using a variational approach. Contrary to the case with voids, this approach cannot

85



“CCH-book”
2016/4/18
page 86i

i
i

i

i
i

i
i

86 Chapter 3. The Interior Transmission Problem

fit into the analytical framework developed in next chapter to study existence of
transmission eigenvalues. We introduce in Section 3.1.4 an alternative approach to
study the interior transmission problem (3.1) based on boundary integral equations.
Although the boundary integral method recovers the same type of solvability results
discussed in Section 3.1.3 we believe that it merits discussion in this monograph for
its mathematical and computational interest. Our presentation follows closely [52].
This section can also be skipped in a first reading.

The anisotropic problem is considered in Section 3.2. When a contrast is
present in the main operator, the functional framework for the interior transmission
problem becomes different and hence a different approach is used to treat this case.
As for the isotropic problem, we first consider the simpler case where a contrast sign
is the same in all of D as presented in [17] and [28]. This configuration is treated
in Section 3.2.1 first in the case n 6= 1 and second in the case n = 1, where the
functional framework is different. The case where the anisotropic contrast changes
sign inside D is treated using the T-coercivity approach as in [12] and [36]. We also
refer to [86] for methods based on elliptic theory for partial differential equations.

The differences in the treatment of the isotropic and anisotropic cases clearly
indicate that the study of the problem where both configurations are mixed on the
boundary is more difficult and would require new approaches.

3.1 Solvability of the Interior Transmission Problem
for Isotropic Media

Let D ⊂ R3 be the support of an isotropic inhomogeneous media with refractive
index n ∈ L∞(D) such that <(n) ≥ n0 > 0 and =(n) ≥ 0. Throughout this
chapter, we assume that ∂D is Lipschitz unless otherwise indicated. The interior
transmission problem corresponding to the scattering problem for this isotropic
inhomogeneous media was already introduced in (2.6). Here we recall it for the

reader’s convenience: Given f ∈ H
3
2 (∂D) and h ∈ H

1
2 (∂D) find w ∈ L2(D),

v ∈ L2(D) with w − v ∈ H2(D) such that



∆w + k2nw = 0 in D,

∆v + k2v = 0 in D,

w − v = f on ∂D,

∂w

∂ν
− ∂v

∂ν
= h on ∂D,

(3.1)

where the equations for w and v are understood in the distributional sense and the
boundary conditions are well defined for the difference w − v.

Definition 3.1. Values of k ∈ C for which the homogeneous interior transmission
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problem 

∆w + k2nw = 0 in D,

∆v + k2v = 0 in D,

w = v on ∂D,

∂w

∂ν
=
∂v

∂ν
on ∂D,

(3.2)

has non-trivial solutions w ∈ L2(D) and v ∈ L2(D), such that w − v ∈ H2
0 (D), are

called transmission eigenvalues.

At a first glance it seems unclear why we are not formulating the problem in the
usual energy space H1(D). However, there is a simple observation which indicates
that the interior transmission problem does not fit to the standard framework of
partial differential equations of the second order. For simplicity assume that f = 0.
Then we multiply the first equation by a test function ϕ and the second equation by
a test function ψ such that ϕ = ψ on ∂D, integrate by parts and use the boundary
condition to obtain

−
∫
D

∇w · ∇ϕdx+

∫
D

∇v · ∇ψ dx+ k2

∫
D

(nwϕ− vψ) dx = −
∫
∂D

hϕ. (3.3)

Obviously, this cannot be a compact perturbation of a coercive antilinear form due
to the fact that the norm of the gradient of w and v appear with different signs.
Hence in the isotropic case the standard variational approach for elliptic equations
does not apply to the above variational equation in the energy space H1(D). We
remark that if there is contrast in the main operator (i.e in the anisotropic case that
will be discussed in Section 3.2), the corresponding H1(D) variational formulation
leads to a compact perturbation of a coercive problem under some kind of sign
control on the contrast. Furthermore, it is easy to find a function in L2(D) with
its gradient not in L2(D), and this function satisfies both equations in (3.1) with
right-hand sides and zero boundary data, meaning that in general solutions to (3.1)
can simply be in L2(D). As will become clear as we proceed with our discussion,
the interior transmission problem (3.1) essentially depends on the contrast n− 1 of
the media and different analytical techniques are needed to study it depending on
the assumptions on n− 1.

Given the structure of the boundary conditions in (3.1), it makes sense to
introduce the difference u := w−v as a new unknown and try to obtain an equation
for u. Indeed, subtracting the second equation from the first we have that

∆u+ k2nu = −k2(n− 1)v in D (3.4)

which should be considered together with

∆v + k2v = 0 in D (3.5)

and the boundary conditions

u = f and
∂u

∂ν
= h on ∂D. (3.6)
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To eliminate v we should be able to divide by n− 1 and then apply the Helmholtz
operator. This motivates us to consider in the following the case when the division
by n− 1 is possible i.e. n− 1 is bounded away from zero.

3.1.1 The Case of One Sign Contrast

We start by assuming that the real part of the contrast n− 1 does not change sign
in D, more specifically either <(n(x)) − 1 ≥ α > 0 or 1 − <(n(x)) ≥ α > 0 for
almost all x ∈ D and some α > 0. Letting

n∗ = inf
D
<(n) and n∗ = sup

D
<(n) (3.7)

the above assumption means that either n∗ > 1 or 0 < n∗ < 1. Under this
assumption it is now possible to write (3.1) as a boundary value problem for the
fourth order equation(

∆ + k2n
) 1

n− 1

(
∆ + k2

)
u = 0 in D (3.8)

u = f and
∂u

∂ν
= h on ∂D, (3.9)

where it is assumed that u := w − v ∈ H2(D). The functions v and w are related
to u through

v = − 1

k2(n− 1)
(∆u+ k2u) and w = − 1

k2(n− 1)
(∆u+ k2nu). (3.10)

This fourth order formulation of the interior transmission problem was first in-
troduced in [110] and later used in [27], [29] and [102] (see also [30]). For given

f ∈ H 3
2 (∂D) and h ∈ H 1

2 (∂D) let θ ∈ H2(D) be a lifting function [93] such that

θ = f and ∂θ/∂ν = h on ∂D and ‖θ‖H2(D) ≤ c
(
‖f‖

H
3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)
for some

c > 0. Then letting u0 := u− θ ∈ H2
0 (D), we can write (3.8)-(3.9) as an equivalent

variational problem for u0: Find a function u0 ∈ H2
0 (D) such that∫

D

1

n− 1
(∆u0+k2u0)(∆ψ+k2nψ) dx =

∫
D

1

n− 1
(∆θ+k2θ)(∆ψ+k2nψ) dx, (3.11)

for all ψ ∈ H2
0 (D). Obviously,

F : ψ 7→
∫
D

1

n− 1
(∆θ + k2θ)(∆ψ + k2nψ) dx

is a bounded antilinear functional on H2
0 (D). Let ` ∈ H2

0 (D) be such that F (ψ) =
(`, ψ)H2(D) for all ψ ∈ H2

0 (D) which is uniquely provided by the Riesz representation
theorem and satisfies

‖`‖H2(D) ≤ c1‖θ‖H2(D) ≤ c2
(
‖f‖

H
3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)
. (3.12)
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Problem (3.11), and hence the original interior transmission problem (3.1), is equiv-
alent to the following operator equation in H2

0 (D) for u0

Tu0 − k2T1u0 + k4T2u0 = `, (3.13)

where T :H2
0 (D) → H2

0 (D), T1 :H2
0 (D) → H2

0 (D) and T2 : H2
0 (D) → H2

0 (D) are
the bounded linear operators defined by mean of the Riesz representation theorem
as

(Tu, ψ)H2(D) =

∫
D

1

n− 1
∆u∆ψ dx for all u, ψ ∈ H2

0 (D), (3.14)

(T1u, ψ)H2(D) = −
∫
D

1

n− 1
u ∆ψ dx−

∫
D

n

n− 1
∆uψ dx (3.15)

= −
∫
D

1

n− 1

(
∆uψ + u ∆v

)
dx+

∫
D

∇u · ∇ψ dx for all u, ψ ∈ H2
0 (D)

(T2u, v)H2(D) =

∫
D

n

n− 1
uψ dx for all u, ψ ∈ H2

0 (D). (3.16)

The operator T in the case of n∗ > 1 (or −T in the case of 0 < n∗ < 1) is coercive
since when 1 < n∗ ≤ <(n) ≤ n∗

< (Tu, u)H2(D) ≥
1

n∗ − 1
(∆u,∆u)L2(D) ≥ α‖u‖H2(D)

(with a similar calculation when 0 < n∗ < 1), where we have used that, for u ∈
H2

0 (D), ‖u‖H2(D) is equivalent to ‖∆u‖L2(D) [93]. Furthermore, the bounded linear
operators T1 and T2 are compact which is a consequence of the compact embedding
of H2

0 (D) in L2(D). For the reader’s convenience we prove the compactness of T1.

Indeed for the part T(1)
1 of the operator T1 given by the first integral in (3.15) we

have

‖T(1)
1 u‖H2 = sup

06=ψ∈H2

1

‖ψ‖H2

∣∣∣∣∣∣
∫
D

1

n− 1
u ∆ψ dx

∣∣∣∣∣∣ ≤ C‖u‖L2

and hence for a sequence {un} bounded inH2(D), thanks to the compact embedding

of H2
0 (D) in L2(D), we obtain that a subsequence of

{
T(1)

1 un

}
converges strongly in

H2(D). The second integral in (3.15) yields the same result (consider the adjoint).
Hence we can conclude that T1 is compact. Exactly the same reasoning holds for
T2. Thus we can conclude that the Fredholm alternative can be applied to (3.13), in
particular uniqueness implies the existence of a unique solution. The homogeneous
equation

(T− k2T1 + k4T2)u = 0 (3.17)

is equivalent to the transmission eigenvalue problem (see Definition 3.28).
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90 Chapter 3. The Interior Transmission Problem

We have now proven the following theorem concerning the solvability of the
interior transmission problem (3.1) in the case when n ∈ L∞(D), such that <(n) ≥
n0 > 0 and =(n) ≥ 0, and either n∗ > 1 or n∗ < 1, where n∗ and n∗ are given by
(3.7).

Theorem 3.2. Assume that k ∈ C is not a transmission eigenvalue. Then for any
given f ∈ H 3

2 (∂D) and h ∈ H 1
2 (∂D) there exists a unique solution of the interior

transmission problem (3.1) such that w ∈ L2(D), v ∈ L2(D), u := w − v ∈ H2(D)
and

‖w‖L2(D) + ‖v‖L2(D) ≤ C
(
‖f‖

H
3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)
for some positive constant C > 0, with a similar estimate for ‖u‖H2(D).

Theorem 3.3. If n ∈ L∞(D) is such that =(n) > 0 almost everywhere in region
D0 ⊂ D with positive measure, then there are no real transmission eigenvalues.

Proof. Assume that w and v solve the transmission eigenvalue problem corre-
sponding to a real transmission eigenvalue k, i.e. u := w− v ∈ H2

0 (D) solves (3.11)
with θ = 0. Taking ψ = u in (3.11) and regrouping the terms yields∫

D

1

n− 1
|∆u+ k2u|2 dx+ k4

∫
D

|u|2 dx− k2

∫
D

|∇u|2 dx = 0.

Since =(1/(n−1)) < 0 in D0 and all the terms in the above equation are real except
for the first one, by taking the imaginary part we obtain that ∆u+ k2u = 0 in D0

and hence, from (3.10), v = 0 in D0. Since v satisfies the Helmholtz equation in D,
the unique continuation principle implies that v = 0 in D. Therefore the Cauchy
data of v, and consequently of w, are zero on ∂D, which finally implies that also
w = 0 in D. Hence k real is not a transmission eigenvalue.

Theorem 3.4. Assume that n ∈ L∞(D) such that <(n) ≥ n0 > 0, =(n) ≥ 0 and
either n∗ > 1 or n∗ < 1, where n∗ and n∗ are given by (3.7). Then the set of
transmission eigenvalues k ∈ C is discrete (possibly empty) with +∞ as the only
possible accumulation point. The multiplicity of the eigenvalues is finite with finite
dimensional generalized eigenspaces.

Proof. As discussed above, k ∈ C is a transmission eigenvalue if and only if

Tu− k2T1u+ k4T2u = 0 or (I− k2T−1T1 + k4T−1T2)u = 0

has nonzero solution u ∈ H2
0 (D), where I is the identity operator. Letting τ :=

k2 and setting U :=
(
u, τT−1T2u

)
, the interior transmission eigenvalue problem

becomes (
K− 1

τ
I
)
U = 0, U ∈ H2

0 (D)×H2
0 (D)
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for the compact operator K : H2
0 (D)×H2

0 (D)→ H2
0 (D)×H2

0 (D) given by

K :=

(
T−1T1 −I
T−1T2 0

)
and the result follows from the spectral properties of compact operators in Hilbert
spaces.

3.1.2 Variational Approach for Media with Voids

The above analysis can be extended to inhomogeneous media with voids i.e. the
inhomogeneity D ⊂ R3 contains regions D0 ⊂ D which can possibly be multiply
connected such that D \D0 is connected, for which n(x) = 1. For the purpose of
discussion in this section we still assume that the real part of n(x)− 1 is bounded
away from zero and keeps the same sign in D \D0 and for technical reasons here
we will assume that both ∂D and ∂D0 are C2-smooth surfaces with ν the unit
normal vector directed outwards to D and D0 (see Figure 3.1). We will denote by
n∗ and n∗ the essential infimum and supremum of n ∈ L∞(D \D0), i.e. given by
(3.7) where D is replaced by D \D0. Here we will present an approach introduced
in [19] (see [51] for Maxwell’s equations). In the next section we present a more
general approach to study the interior transmission problem for media with changing
sign contrast which includes the case of interior voids. The analytical framework
developed in this section will be used in the next chapter to prove the existence
of real transmission eigenvalues as well as estimates for them. Similarly to Section

o

o

D

D

D

ν

ν

ν

Figure 3.1. Configuration of the media with voids

3.1.1, since 1/(n− 1) is bounded in D \D0, we obtain for u := w − v such that(
∆ + k2n

) 1

n− 1

(
∆ + k2

)
u = 0 in D \D0, (3.18)

together with

u = f and
∂u

∂ν
= h on ∂D. (3.19)

Inside D0 one has (
∆ + k2

)
u = 0 in D0, (3.20)

with the continuity of the Cauchy data across ∂D0

u+ = u− and
∂u+

∂ν
=
∂u−

∂ν
, (3.21)
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where, for a generic function φ,

φ±(x) = lim
h→0+

φ(x± hνx) and
∂φ±(x)

∂νx
= lim
h→0+

νx · ∇φ(x± hνx) (3.22)

for x ∈ ∂D0. The latter equations for u are not sufficient to define w and v inside
∂D0 and therefore one needs to add an additional unknown inside D0, for instance
the function w that satisfies (

∆ + k2
)
w = 0 in D0 (3.23)

with the continuity of the Cauchy data across ∂D0 that can be written as(
−1

k2(n− 1)

(
∆ + k2

)
u

)+

= w− and (3.24)

∂

∂ν

(
−1

k2(n− 1)

(
∆ + k2

)
u

)+

=
∂w−

∂ν
.

We note that (3.24) is interpreted as equalities between functions in H−
1
2 (∂D0) and

H−
3
2 (∂D0) respectively.

It is easily verified that the solutions u ∈ H2(D) and w ∈ L2(D0) to (3.18)-
(3.24) equivalently define a weak solution w and v to (3.1) by

w :=
−1

k2(n− 1)

(
∆ + k2

)
u in D \D0 and v := w − u in D. (3.25)

We establish existence and uniqueness results for the solution of the above interior
transmission problem using a variational approach. The main difficulty in obtaining
the variational formulation is to properly choose the function space that correctly
handles the transmission conditions (3.21) and (3.24). More precisely, classical
variational formulations of equations (3.18), (3.20) and (3.23) would require u ∈
H2(D \D0)∩H1(D) and v ∈ H1(D0) but this regularity is not sufficient to handle
all boundary terms in (3.21) and (3.24). The proposed approach in the following
treats equation (3.18) variationally and includes (3.20)-(3.21) in the variational
space. More precisely we define

V (D,D0, k) := {u ∈ H2(D) such that ∆u+ k2u = 0 in D0} (3.26)

which is a Hilbert space equipped with the H2(D) scalar product and look for the
solution u in V (D,D0, k). We also consider the closed subspace

V0(D,D0, k) := {u ∈ H2
0 (D) such that ∆u+ k2u = 0 in D0}. (3.27)

Let u ∈ V (D,D0, k) and consider a test function ψ ∈ V0(D,D0, k). For the sake
of presentation we assume that u and ψ are regular enough to justify the various
integration by parts and then use a denseness argument. Multiplying (3.18) by ψ
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and integrating by parts we obtain

0 =

∫
D\D0

(
∆ + k2n

) 1

n− 1

(
∆ + k2

)
u ψ̄ dx (3.28)

=

∫
D\D0

((
∆ + k2

) 1

n− 1

(
∆ + k2

)
u+ k2(∆ + k2)u

)
ψ̄ dx

=

∫
D\D0

1

n− 1

(
∆ + k2

)
u
(
∆ + k2

)
ψ̄ dx+ k4

∫
D\D0

u ψ̄ dx+ k2

∫
D\D0

∆u ψ̄ dx

+

∫
∂D0

1

n− 1

(
∆ + k2

)
u
∂ψ̄

∂ν
ds−

∫
∂D0

∂

∂ν

(
1

n− 1

(
∆ + k2

)
u

)
ψ̄ ds.

Using the fact that ψ̄ ∈ V0(D,D0, k), the boundary conditions (3.24) and equation
(3.23) we obtain that∫

∂D0

1

n− 1

(
∆ + k2

)
u
∂ψ̄

∂ν
ds−

∫
∂D0

∂

∂ν

(
1

n− 1

(
∆ + k2

)
u

)
ψ̄ ds = 0. (3.29)

Therefore we finally have that∫
D\D0

1

n− 1

(
∆ + k2

)
u
(
∆ + k2

)
ψ̄ dx+ k2

∫
D\D0

(∆u+ k2u) ψ̄ dx = 0, (3.30)

which is required to be valid for all ψ ∈ V0(D,D0, k). For given f ∈ H 3
2 (∂D) and

h ∈ H 1
2 (∂D) let θ ∈ H2(D) be the lifting function such that θ = f and ∂θ/∂ν = h

on ∂D as discussed in Section 3.1. Using a cutoff function we can guarantee that
θ = 0 in Dθ such that D0 ⊂ Dθ ⊂ D. The variational formulation amounts to
finding u0 = u− θ ∈ V0(D,D0, k) such that∫

D\D0

1

n− 1

(
∆ + k2

)
u0

(
∆ + k2

)
ψ̄ dx+ k2

∫
D\D0

(∆u0 + k2u0) ψ̄ dx

=

∫
D\D0

1

n− 1

(
∆ + k2

)
θ
(
∆ + k2

)
ψ̄ dx+ k2

∫
D\D0

(∆θ + k2θ) ψ̄ dx (3.31)

for all ψ ∈ V0(D,D0, k). As one can see, the above variational formulation involves
only u (in particular it does not involve w). The following lemma shows that the
existence of w is implicitly contained in the variational formulation.

Lemma 3.5. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue
for −∆ in D0, and let (β, α) ∈ H− 1

2 (∂D0)×H− 3
2 (∂D0) such that

〈β, ∂ψ/∂ν〉
H−

1
2 (∂D0),H

1
2 (∂D0)

− 〈α, ψ〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.32)
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for all ψ ∈ V0(D,D0, k). Then there exists a unique w ∈ L2(D0) such that ∆w +
k2w = 0 in D0 and (w, ∂w/∂ν) = (β, α) on ∂D0.

Proof. Assume that k2 is not a Dirichlet eigenvalue for −∆ in D0. Let w ∈ L2(D0)
be a weak solution of ∆w + k2w = 0 in D0 and w = β on ∂D0 (see Remark below
on how one can construct this solution from H1(D0) solutions by using a classical
duality argument, i.e. the traces of w and ∂w/∂ν can be defined in this case by
duality argument; see also [93]). Then applying Green’s formula to w and a test
function ψ ∈ V0(D,D0, k) we get

〈w, ∂ψ/∂ν〉
H−

1
2 (∂D0),H

1
2 (∂D0)

− 〈∂w/∂ν, ψ〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.33)

and therefore
〈∂w/∂ν − α, ψ〉

H−
3
2 (∂D0),H

3
2 (∂D0)

= 0 (3.34)

for all ψ ∈ V0(D,D0, k). We know that the traces of Herglotz wave functions

are dense in H
3
2 (∂D0) (see [117, Theorem 4]) provided that k2 is not a Dirichlet

eigenvalue for −∆ in D0 and, since V0(D,D0, k) contains the set of Herglotz wave
functions, we can conclude that the traces on ∂D0 of functions in V0(D,D0, k) are

dense in H
3
2 (∂D0). Hence ∂w/∂ν = g and the result follows. The case when k2

is a not a Neumann eigenvalue can be treated by choosing w ∈ L2(D0) to be a
weak solution of ∆w + k2w = 0 in D0 such that ∂w/∂ν = α on ∂D0 and using the

denseness of normal traces on ∂D0 of functions in V0(D,D0, k) in H
1
2 (∂D0) (the

denseness result follows from [117, Theorem 3]). The uniqueness of w is obvious.

Remark 3.6. We briefly recall the construction of L2 solutions for the Helmholtz
equation in D0. Assume that k2 is not a Dirichlet eigenvalue and let g ∈ H 1

2 (∂D0)
and u ∈ H1(D0) satisfy ∆u+ k2u = 0 in D0 and u = g on ∂D0. Let v ∈ H1(D0) to
be a solution of ∆v + k2v = u such that v = 0 on ∂D0. Then standard regularity
results imply that v ∈ H2(D0) and there exists a constant c independent of v and
u such that ‖v‖H2(D0) ≤ c‖u‖L2(D0). Using Green’s formula one easily obtains

‖u‖2L2(D0) =

∣∣∣∣∣∣
∫
D0

g ∂v/∂ν

∣∣∣∣∣∣ ≤ ‖g‖H− 1
2 (∂D0)

‖∂v/∂ν‖
H

1
2 (∂D0)

≤ C‖g‖
H−

1
2 (∂D0)

‖u‖L2(D0) (3.35)

and therefore the solution operator g → u is continuous from H−
1
2 (∂D0) into

L2(D0). Similar arguments also show that if k2 is not an eigenvalue for the Neumann
problem then the solution operator g → u where u ∈ H1(D0) satisfies ∆u+k2u = 0

in D0 and ∂u/∂ν = g is continuous from H−
3
2 (∂D0) into L2(D0).

Remark 3.7. If the solution of the variational problem (3.31) is in H4(D \D0)
then one can use the Calderòn projection [95] operator to construct w in D0 and
thus avoid the assumption on k2 in Lemma 3.5.
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We now can state the equivalence between solutions to interior transmission
problem (3.1) and solutions to the variational formulation (3.31).

Theorem 3.8. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue
for −∆ in D0 and either n∗ > 1 or 0 < n∗ < 1. Then the existence and uniqueness
of a solution w ∈ L2(D) and v ∈ L2(D), u := w− v ∈ H2

0 (D) to the interior trans-
mission problem (3.1) is equivalent to the existence and uniqueness of a solution
u0 ∈ V0(D,D0, k) of the variational problem (3.31).

Proof. It remains only to verify that any solution to (3.31) defines a weak solution
w and v to the interior transmission problem (3.1). Taking a test function ψ to be
a C∞ function with compact support in D \D0 one can easily verify from (3.30)
that u satisfies (3.18). In particular, the function

w+ :=

(
− 1

k2(n− 1)
(∆ + k2)u

)
|D\D0

satisfies w+ ∈ L2(D \D0) and (∆ + k2n)w+ = 0 in D \D0. For an arbitrary test
function ψ ∈ C∞(D \D0) we can apply Green’s formula and (3.30) to obtain

〈
w+, ∂ψ/∂ν

〉
H−

1
2 (∂D0),H

1
2 (∂D0)

−
〈
∂w+/∂ν, ψ

〉
H−

3
2 (∂D0),H

3
2 (∂D0)

= 0. (3.36)

Finally, applying Lemma 3.5, we now obtain the existence of w− ∈ L2(D0) satisfying
(3.23) and (3.24).

We now proceed with the proof of existence of a solution to (3.31).

Theorem 3.9. Let f ∈ H 3
2 (∂D) and h ∈ H 1

2 (∂D) and assume that n ∈ L∞(D) is
such that n = 1 in D0, <(n) ≥ c > 0 and =(n) ≥ 0 almost everywhere in D \D0.
Assume further that either n∗ > 1 or 0 < n∗ < 1. Then (3.31) satisfies the Fredholm
alternative. In particular, if the homogeneous variational problem (i.e. (3.31) with
θ = 0) has only the trivial solution u0 = 0, then (3.31) has a unique solution which
depends continuously on the data f and h.

Proof. Let us define the following bounded sesquilinear forms on V0(D,D0, k) ×
V0(D,D0, k):

A(u0, ψ) =

∫
D\D0

1

n− 1

(
∆u0 ∆ψ̄ +∇u0 · ∇ψ̄ + u0 ψ̄

)
dx

+

∫
D0

(
∇u0 · ∇ψ̄ + u0 ψ̄

)
dx

(3.37)
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and

Bk(u0, ψ) = k2

∫
D\D0

1

n− 1

(
u0(∆ψ̄ + k2ψ̄) + (∆u0 + k2nu0)ψ̄

)
dx

∓
∫

D\D0

1

n− 1

(
∇u0 · ∇ψ̄ + u0 ψ̄

)
dx−

∫
D0

(
∇u0 · ∇ψ̄ + u0 ψ̄

)
dx,

(3.38)

where the upper sign corresponds to the case when n∗ > 1 whereas the lower sign
to the case when n∗ < 1. In terms of these forms the variational equation (3.31) for
u0 ∈ V0(D,D0, k) becomes

A(u0, ψ) + Bk(u0, ψ) = A(θ, ψ) + Bk(θ, ψ) for all ψ ∈ V0(D,D0, k). (3.39)

It is clear that if the real part of 1/(n − 1) is positive definite or negative definite
then there exists a positive constant γ, that only depends on n, such that

A(u0, u0) ≥ γ(‖∆u‖2
L2(D\D0)

+ ‖u‖2H1(D)). (3.40)

Let ε = 1/(1 + k4), so that 0 < ε < 1 and εk4 < 1. Since ∆u0 = −k2u0 in D0 one
also has that

A(u0, u0) ≥ γε‖∆u‖2L2(D) + γ(1− εk4)‖u‖2H1(D)

= (γ/(1 + k4))(‖∆u‖2L2(D) + ‖u‖2H1(D)).
(3.41)

From standard elliptic regularity results we deduce that

A(u0, u0) ≥ (γ̃/(1 + k4))‖u0‖2H2(D), (3.42)

where γ̃ only depends on D and n. Therefore A defines a continuous and positive
definite sesquilinear form on V0(D,D0, k) × V0(D,D0, k). Moreover if |1/(n − 1)|
and n are bounded then the compact embedding of H2

0 (D) into H1(D) (Rellich’s
theorem) implies that Bk defines a compact perturbation of A while the right hand
side of (3.39) defines a continuous antilinear form on V0(D,D0, k). The result of
our theorem now follows from an application of the Fredholm alternative.

We can prove a similar result as in Theorem 3.3 concerning uniqueness of the
variational equation (3.31).

Theorem 3.10. If n ∈ L∞(D) is such that Im(n) > 0 almost everywhere in
D \D0, then there are no real transmission eigenvalues.

Proof. Assume that the homogeneous problem

A(u0, ψ) + Bk(u0, ψ) = 0 for all ψ ∈ V0(D,D0, k) (3.43)
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has a nontrivial solution u0 ∈ V0(D,D0, k). First taking ψ = u0 in (3.43) we obtain

0 =

∫
D\D0

1

n− 1
|∆u0 + k2u0|2 dx+ k4

∫
D\D0

|u0|2 dx (3.44)

− k2

∫
D\D0

|∇u0|2 dx− k2

∫
∂D0

ū+
0

∂u+
0

∂ν
ds.

Using Green’s first identity for u0 in D0 and the continuity of the Cauchy data of
u0 across ∂D0 we can re-write (3.44) as

0 =

∫
D\D0

1

n− 1
|∆u0 + k2u0|2 dx+ k4

∫
D\D0

|u0|2 dx− k2

∫
D\D0

|∇u0|2 dx

+ k4

∫
D0

|u0|2 dx− k2

∫
D0

|∇u0|2 dx. (3.45)

Since =(1/(n− 1)) < 0 in D \D0 and all the terms in the above equation are real
except for the first one, by taking the imaginary part we obtain that ∆u0 +k2u0 = 0
in D \D0 and since u0 has zero Cauchy data on ∂D we obtain that u0 = 0 in D \D0

and therefore k is not a transmission eigenvalue. Note that the proof requires that
=(n) > 0 a.e. in all of D \D0.

Remark 3.11. Note that, by Theorem 3.8, if k2 is not both a Dirichlet and
a Neumann eigenvalue for −∆ in D0 then the uniqueness of (3.31) is equivalent
to k ∈ C not being a transmission eigenvalue (see also Remark 3.7). Furthermore,
under the additional assumptions of Theorem 3.9, the interior transmission problem
(3.1) has a unique solution depending continuously on the data provided that k ∈ C
is not a transmission eigenvalue.

It is possible to use the analytical framework developed here to prove that
(3.31) and hence (3.1) fails to have a unique solution for at most a discrete set
of values of k with +∞ as the only possible accumulation point. However in the
next section we will prove discreteness of transmission eigenvalues for a larger class
of refractive indices which establishes this result as a special case since the set of
Dirichlet and Neumann eigenvalues for −∆ in D0 consists of discrete set of real k2

accumulating at +∞. We refer interested readers to Section 4.2.1 in [19] for the
proof of this discreteness result using the variational approach of this section.

Remark 3.12. The approach described in this section provides a general ana-
lytical framework to analyze the interior transmission problem for inhomogeneous
containing different type of inclusions D0. We refer the reader to [26] to see how
the approach can be modified to the case when D0 is a non-penetrable inclusion
with Dirichlet boundary condition.
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3.1.3 The Case of Sign Changing Contrast

In this section we investigate the solvability of the interior transmission problem
(3.1) under less restrictive assumptions on the real part of the contrast. More
specifically, we assume that there is a neighborhood of the boundary N (that is
an open subdomain N ⊂ D with ∂D ⊂ N ) where we impose conditions on the
contrast n− 1 (to become precise later on), and in D \N the contrast n− 1 can be
anything (of course under the physical assumptions on the refractive index n stated
at the beginning of this chapter). The Fredholm property of the interior transmis-
sion problem and the discreteness of transmission eigenvalues for this general case
were first investigated in [113]. The approach in [113] was revisited in [77] for real
valued refractive index where the same results were obtained by using a variational
approach. Our discussion follows the approach due to Kirsch in [77].

We recall the interior transmission problem formulated for u := 1
k2 (w−v) and

v: Given f ∈ H 3
2 (∂D) and h ∈ H 1

2 (∂D), find u ∈ H2(D) and v ∈ L2(D) such that
∆u+ k2nu = −(n− 1)v in D,

∆v + k2v = 0 in D,

u = f and
∂u

∂ν
= h on ∂D.

(3.46)

With the help of a lifting function θ ∈ H2(D) such that θ = f and ∂θ/∂ν = h
on ∂D introduced in Section 3.1, it is possible to transform (3.46) to the following
problem: Given F ∈ L2(D), find u ∈ H2

0 (D) and v ∈ L2(D) such that
∆u+ k2nu = −(n− 1)v + F in D,

∆v + k2v = 0 in D,

u = 0 and
∂u

∂ν
= 0 on ∂D.

(3.47)

The above equations are assumed to be satisfied in the following weak sense:∫
D

(∆ψ + k2ψ)v dx = 0,

∫
D

(∆u+ k2nu+ (n− 1)v)ϕdx =

∫
D

F ϕdx

for all ψ ∈ H2
0 (D) and ϕ ∈ L2(D). Let us denote X(D) := H2

0 (D)×L2(D) equipped
with the norm ‖(u, v)‖X(D) = ‖u‖H2(D) + ‖v‖L2(D), and the corresponding inner
product 〈·, ·〉X(D). Then (3.47) can be written in the following equivalent variational

form: Find (u, v) ∈ X(D) such that for all (ψ,ϕ) ∈ X(D)∫
D

(∆ψ + k2ψ)v dx+

∫
D

(∆u+ k2nu)ϕ+ (n− 1)vϕ dx =

∫
D

F ϕdx. (3.48)
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For any k ∈ C we define the sesquilinear form Ak : X(D)×X(D)→ C by

Ak(u, v;ψ,ϕ) :=

∫
D

(∆ψ + k2ψ)v dx+

∫
D

(∆u+ k2nu)ϕ+ (n− 1)vϕ dx (3.49)

for all (u, v) ∈ X(D) and (ψ,ϕ) ∈ X(D). For later use we also define the following
auxiliary sesquilinear form Âk : X(D)×X(D)→ C:

Âk(u, v;ψ,ϕ) :=

∫
D

(∆ψ + k2ψ)v dx+

∫
D

(∆u+ k2u)ϕ+ (n− 1)vϕ dx (3.50)

for all (u, v) ∈ X(D) and (ψ,ϕ) ∈ X(D). The Riesz representation theorem yields
the existence of bounded linear operators Ak, Âk : X(D)→ X(D) such that

Ak(u, v;ψ,ϕ) = 〈Ak(u, v), (ψ,ϕ)〉X(D) for all (u, v), (ψ,ϕ) ∈ X(D), (3.51)

with an analogous expression for Âk. Hence the interior transmission problem is
equivalent to the following operator equation:

Ak(u, v) = `, (u, v) ∈ X(D) (3.52)

where ` ∈ X(D) is the Riesz representative of the antilinear functional ϕ 7→∫
D
F ϕdx.

Theorem 3.13. For any two k1, k2 ∈ C the differences Ak1 − Âk2 and Ak1 − Ak2

are compact.

Proof. Let (uj , vj) ∈ X(D) converge weakly to zero in X(D) and let (ψ,ϕ) ∈
X(D). Then we have(

Ak1 − Âk2

)
(uj , vj ;ψ,ϕ) = (k2

1 − k2
2)

∫
D

ψvj dx+

∫
D

(
k2

1n− k2
2

)
ujϕdx.

Since uj ⇀ 0 in H2
0 (D), Rellich’s compact embedding theorem implies that uj → 0

in L2(D). Furthermore,∣∣∣∣∣∣
∫
D

(
k2

1n− k2
2

)
ujϕdx

∣∣∣∣∣∣ ≤ ‖k2
1n− k2

1‖L∞(D)‖uj‖L2(D)‖ϕ‖L2(D). (3.53)

Next let zj ∈ H1(D) with ∆zj = vj in D and zj = 0 on ∂D. Since zj ⇀ 0 in
H1(D), then zj → 0 in L2(D) and thus we have∣∣∣∣∣∣

∫
D

ψvj dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
D

ψ∆zj dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
D

∆ψzj dx

∣∣∣∣∣∣ ≤ ‖zj‖L2(D)‖ψ‖H2(D). (3.54)
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Thus (3.53) and (3.54) imply

‖(Ak1 − Âk2)(uj , vj)‖X(D) = sup
06=(ψ,ϕ)∈X(D)

∣∣∣(Ak1 − Âk2

)
(uj , vj ;ψ,ϕ)

∣∣∣
≤ C

(
‖uj‖L2(D) + ‖zj‖L2(D)

)
,

whence (Ak1
− Âk2

)(uj , vj) converges strongly to zero in X(D). This prove com-

pactness of Ak1 − Âk2 . The proof for Ak1 −Ak2 follows the same lines.

Theorem 3.13 suggests that we need to show the invertibility of Âk for some
k ∈ C. At this point we need to assume that <(n(x))− 1 ≥ α > 0 or 1−<(n(x)) ≥
α > 0 for almost all x ∈ N and some α > 0. Denoting

n? = inf
N
<(n) and n? = sup

N
<(n) (3.55)

(notice that here the inf and sup are taken over the boundary neighborhood N as
opposed to the entire D as in (3.7)), the latter assumption means that either n? > 1
or 0 < n? < 1.

Lemma 3.14. Assume that n ∈ L∞(D) is such that either n? > 1 or 0 < n? <
n? < 1. Then there exist constants c > 0 and d > 0 such that for all k = iκ, κ > 0,
the following estimate holds:∫

D\N

|v|2 dx ≤ ce−2dκ

∫
N

|<(n)− 1||v|2 dx (3.56)

for all solutions v ∈ L2(D) of ∆v − κ2v = 0 in D.

Proof. We choose a neighborhood N ′ of the boundary ∂D such that d = dist(D \
N ,N ′) > 0 and a function ρ ∈ C∞(D) with compact support in D such that ρ = 1
in D \ N ′. Applying the Green’s formula (1.10) to ρv and noting that ρv ≡ v in
D \ N ′, that is ∆ρv − κ2ρv = 0 in D \ N ′, yields

ρ(x)v(x) = −
∫
D

[
∆(ρv)(y)− κ2(ρv)(y)

] e−κ|x−y|
|x− y|

dy

= −
∫
N ′

[2∇ρ(y) · ∇v(y) + v(y)∆ρ(y)]
e−κ|x−y|

|x− y|
dy

=

∫
N ′

[
2∇ · ∇ρ(y)

e−κ|x−y|

|x− y|
−∆ρ(y)

e−κ|x−y|

|x− y|

]
v(y) dy.

For x ∈ D \ N we can conclude that

|v(x)| ≤ c1e−dκ
∫
N ′

|v(y)| dy
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for some constant c1 > 0 that depends only on D, N , N ′, and ρ. Thus, from the
above, using the Cauchy-Schwartz inequality we now obtain

|v(x)|2 ≤ c21e−2dκ|N |
∫
N

|v(y)|2 dx ≤ c21|N |
δ

e−2dκ

∫
N

|<(n)(y)− 1||v(y)|2 dy.

where δ = n? − 1 if n? > 1 or δ = 1 − n? if n? < 1. Integrating with respect to x
over D \ N implies the result.

Theorem 3.15. There exists a κ0 > 0 and a positive constant c > 0 such that for
all κ ≥ κ0

sup
(ψ,ϕ)6=0

∣∣∣Âiκ(u, v;ψ,ϕ)
∣∣∣

‖(ψ,ϕ)‖X(D)
≥ c‖(u, v)‖X(D) for all (u, v) ∈ X(D). (3.57)

Proof. Thanks to Lemma 3.14 we can find a κ0 > 0 such that∫
D\N

|<(n)− 1||v|2 dx ≤ ‖(n− 1)‖L∞(D)

∫
D\N

|v|2 dx ≤ 1

2

∫
N

|<(n)− 1||v|2 dx (3.58)

for all solutions of ∆v−κ2v = 0 in D and all κ ≥ κ0. Let us assume by contradiction
that a constant c > 0 such that (3.57) holds does not exist, in which case we can
find a sequence {(uj , vj)} ∈ X(D) with ‖(uj , vj)‖X(D) = 1 and

sup
(ψ,ϕ)6=0

∣∣∣Âiκ(uj , vj ;ψ,ϕ)
∣∣∣

‖(ψ,ϕ)‖X(D)
→ 0, j →∞. (3.59)

There is a weakly convergent subsequence (still denoted by {(uj , vj)}) such that
uj ⇀ u in H2

0 (D) and vj ⇀ v in L2(D) for some (u, v) ∈ X(D). From (3.59) we
see that (u, v) satisfy ∆v − κ2v = 0 and ∆u− κ2u = −(n− 1)v in D.

As a first step, we show that the weak limits are zero, i.e. u = v = 0 in D. To
this end, we notice that

<
(
Âiκ(u, v;−u, v)

)
=

∫
D

<(n− 1)|v|2 dx = 0. (3.60)

Now using (3.58), (3.60) and the fact that <(n)− 1 has one sign in N we have

∫
N

|<(n)− 1||v|2 dx =

∣∣∣∣∣∣
∫
N

<(n− 1)|v|2 dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

D\N

<(n− 1)|v|2 dx

∣∣∣∣∣∣∣
≤
∫

D\N

|<(n− 1)||v|2 dx ≤ 1

2

∫
N

|<(n)− 1||v|2 dx,



“CCH-book”
2016/4/18
page 102i

i
i

i

i
i

i
i

102 Chapter 3. The Interior Transmission Problem

and thus v = 0 in N . Unique continuation yields that v = 0 in D and hence also
u = 0 in D since 0 = −Âiκ(u, 0; 0, u) =

∫
D

(
|∇u|2 + κ2|u|2

)
dx.

We now arrive at a contradiction. We choose a neighborhood N ′ of ∂D such
that N ′ ⊂ N ∪ ∂D and a non-negative function η ∈ C∞(D) such that η = 0 in
D \ N and η = 1 in N ′. Set ψ = ηuj and ϕ = −ηvj in (3.59). Since {(ηuj ,−ηvj)}
is bounded in X(D) we have that∫
N

(∆ηuj − κ2ηuj)vj dx−
∫
N

(∆uj − κ2uj)ηvj + (n− 1)η|vj |2 dx→ 0 j →∞

and hence

<

∫
N

[
2vj∇η · ∇uj + ujvj∆η − (n− 1)η|vj |2

]
dx

→ 0 j →∞. (3.61)

Since uj ⇀ u in H2
0 (D) then ‖uj‖H1(D) → 0 due to the compact embedding of

H2(D) in H1(D). Hence the first two terms of (3.61) go to zero as j →∞ and we
are left with ∫

N

(<(n)− 1)η|vj |2 dx→ 0 j →∞.

Since <(n)− 1 has one sign in N and |<(n)− 1|η > α > 0 in N ′ (α = n? if n? > 1
and α = n? if n? < 1 in N ), we can conclude that vj → 0 in L2(N ′).

Now we choose a third neighborhood N ′′ of ∂D such that N ′′ ⊂ N ′ ∪∂D and
a non-negative function η̃ ∈ C∞(D) such that η̃ = 0 in N ′′ and η = 1 in D \ N ′.
Let zj ∈ H2(D) be the solution of ∆zj −κ2zj = vj in D and zj = 0 on ∂D. Taking
ψ = η̃zj and ϕ = 0 in (3.59) and notting that {η̃zj} is bounded in H2(D) yields∫

D\N ′′

[
∆(η̃zj)− κ2η̃zj

]
vj dx→ 0 j →∞

that is ∫
D\N ′′

[
η̃|vj |2 + 2(∇η̃ · ∇zj)vj + zj∆η̃vj

]
dx→ 0 j →∞. (3.62)

Since vj ⇀ 0 in L2(D) we conclude that zj ⇀ 0 in H2(D) and hence zj → 0 in
H1(D). Noting that η̃ = 1 in D \N ′ and is non-negative in D \N ′′ we have that in
addition vj → 0 in L2(D \ N ′). Altogether we have shown that vj → 0 in L2(D).
Finally, let ψ = 0 and ϕ = ∆uj − κuj in (3.59) which yields

1

‖∆uj − κuj‖L2(D)

∫
D

|∆uj − κuj |2 + (n− 1)vj(∆uj − κuj) dx→ 0 j →∞,

that is

‖∆uj − κuj‖L2(D) +

∫
D

(n− 1)vj
∆uj − κuj

‖∆uj − κuj‖L2(D)
dx→ 0 j →∞,
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which since vj → 0 in L2(D) implies that ∆uj − κuj → 0 in L2(D). Therefore ∆uj
converges strongly to zero in L2(D) (note that uj ⇀ 0 H2

0 (D) and hence uj → 0 in
L2(D)). Since ‖∆uj‖L2(D) is equivalent to ‖uj‖H2

0 (D) we have shown that uj → 0

in H2(D0).
Concluding, we have shown that (uj , vj)→ 0 in X(D) which is a contradiction.

This proves the theorem.

Appealing to the inf-sup condition in Theorem 3.15 implies the following in-
vertibility property for Âk.

Corollary 3.16. Let κ > 0 be such that the inf-sup condition (3.57) is valid. Then
the operator Âiκ : X → X is invertible with bounded inverse.

Combining Theorem 3.13 and Corollary 3.16 we have the following theorem
concerning the solvability of the interior transmission problem.

Theorem 3.17. Assume that n ∈ L∞(D) with <(n) > n0 > 0 and =(n) ≥ 0
almost everywhere in D and either infN <(n) > 1 or supN <(n) < 1 for some
neighborhood N of the boundary ∂D. Furthermore, assume that k ∈ C is not a
transmission eigenvalue. Then for any given f ∈ H 3

2 (∂D) and h ∈ H 1
2 (∂D), the

interior transmission problem (3.1) has a unique solution w ∈ L2(D) and v ∈ L2(D)
with w − v ∈ H2(D) and the following a priori estimates hold

‖w‖L2(D) + ‖v‖L2(D) ≤ C
(
‖f‖

H
3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)
,

‖u‖H2(D) ≤ C
(
‖f‖

H
3
2 (∂D)

+ ‖h‖
H

1
2 (∂D)

)
,

with some positive constant C > 0.

Next we derive sufficient conditions under which the set of transmission eigen-
values in C is discrete (possibly empty) with +∞ as the only accumulation point. To
this end we first show that there exists a wave number k that is not a transmission
eigenvalue.

Theorem 3.18. Assume that n ∈ L∞(D) with <(n) > n0 > 0, =(n) ≥ 0 almost
everywhere in D and infN <(n) > 1 for some neighborhood N of the boundary ∂D.
Then, for sufficiently large κ > 0, the operator Aiκ : X(D) → X(D) is invertible
with bounded inverse.

Proof. It suffices to prove that Aiκ : X(D) → X(D) is injective for some κ since
Âiκ : X(D) → X(D) is invertible and Âiκ − Aiκ : X(D) → X(D) is compact. We
prove it by contradiction, i.e. we assume that there exists a sequence κj → +∞ and
functions (uj , vj) ∈ X(D) with ‖(uj , vj)‖X(D) = 1 and Aiκj (uj , vj) = 0. Therefore,
uj ∈ H2

0 (D) and vj ∈ L2(D) satisfy

∆uj − κ2
jnuj = −(n− 1)vj and ∆vj − κ2

jvj = 0 in D. (3.63)
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We let δj = ‖n− 1‖L∞(D)ce
−2dκj , where c > 0 is the constant appearing in Lemma

3.14. Multiplying the first equation in (3.63) by vj , integrating over D and using
Green’s second identity and the second equation in (3.63) yields∫

D

κ2
j (n− 1)ujvj dx = −

∫
D

(n− 1)|vj |2 dx. (3.64)

Multiplying the first equation in (3.63) by uj , integrating over D, and using Green’s
first identity together with (3.64) yields∫

D

[
|∇uj |2 + κ2

jn|uj |2
]
dx =

∫
D

(n− 1)vjujdx = − 1

κ2
j

∫
D

(n− 1)|vj |2 dx. (3.65)

Since <(n) > n0 in D and ‖uj‖ > c > 0, on one hand we see from (3.65) that∫
D

(<(n) − 1)|vj |2 dx < 0. On the other hand, recalling that infN <(n) > 1, from
Lemma 3.14 it follows that∫

D

(<(n)− 1)|vj |2 dx ≥
∫
N

(<(n)− 1)|vj |2 dx−
∫

D\N

|<(n)− 1||vj |2 dx

≥ (1− δj)
∫
N

(<(n)− 1)|vj |2 dx > 0

which is a contradiction.

We are ready now to state the result concerning the discreteness of transmis-
sion eigenvalues.

Theorem 3.19. Assume that n ∈ L∞(D) with <(n) > n0 > 0, =(n) ≥ 0 almost
everywhere in D and either infN <(n) > 1 or supN <(n) < 1 for some neighborhood
N of the boundary ∂D. Then the set of transmission eigenvalues is at most discrete
with +∞ as the only accumulation point.

Proof. Consider first the case when infN <(n) > 1. As discussed above, transmis-
sion eigenvalues are the values of k ∈ C for which the kernel of Ak is non-trivial.
Thanks to Theorem 3.18 we chose κ0 > 0 such that Aiκ0

is invertible and write the
equation Ak(u, v) = 0 in the form

(u, v) +A−1
iκ0

(Ak −Aiκ0
)(u, v) = 0.

Now the fact that Ak − Aiκ0
: X(D) → X(D) is compact, due to Theorem 3.13,

allows us to prove the result of the theorem by appealing to the analytic Fredholm
theory for compact operators [42]. For the case when supN <(n) < 1, we can
consider the system (3.46) for v and u := − 1

k2 (w−v) and perform the same analysis
after replacing n− 1 by 1−n everywhere. In particular, the result of Theorem 3.18
still holds in this case which leads to the result of the theorem.
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Remark 3.20. It is possible to relax the coercivity assumption on the contrast n−1
in the case when n is complex valued. More specifically, in [113] it is shown that
transmission eigenvalues form at most a discrete set if infN <(eiθ(n−1)) > 0 in some
neighborhood N of the boundary ∂D for some θ ∈ (−π/2, π/2). These assumptions
are not optimal. Nevertheless it seems that some type of sign condition on the
contrast n− 1 near the boundary is necessary for the interior transmission problem
to be of Fredholm type [10].

3.1.4 Boundary Integral Equation Method

In this section we introduce an alternative approach to study the interior transmis-
sion problem (3.1) based on boundary integral equations. Although the boundary
integral method recovers the same type of solvability results discussed in the previ-
ous sections of this chapter, we believe that it merits discussion in this monograph
for its mathematical and computational interest. Our presentation follows closely
[52].

We start by assuming that the refractive index 0 < n 6= 1 is a positive constant
different from one and that ∂D is a smooth surface of class C2 (the smoothness of the
boundary is needed for certain mapping properties of boundary integral operators
although this assumption is not necessary in the analysis of the interior transmission
problem). Introducing the notation kn :=

√
nk, the interior transmission problem

for this particular case reads: Given f ∈ H 3
2 (∂D) and h ∈ H 1

2 (∂D) find w ∈ L2(D),
v ∈ L2(D), such that w − v ∈ H2(D) satisfying

∆w + k2
nw = 0 in D,

∆v + k2v = 0 in D,

w − v = f on ∂D,

∂w

∂ν
− ∂v

∂ν
= h on ∂D,

(3.66)

We recall the fundamental solution to the Helmholtz equation introduced in (1.8)

Φk(x, y) :=
1

4π

eik|x−y|

|x− y|
, x 6= y (3.67)

where here we indicate the dependence on k. A formal application of Green’s
representation formula to the solution v and w of (3.66) gives that for x ∈ D

v(x) =

∫
∂D

(
∂v(y)

∂νy
Φk(x, y)− v(y)

∂

∂νy
Φk(x, y)

)
dsy, (3.68)

w(x) =

∫
∂D

(
w(y)

∂

∂νy
Φkn(x, y)− ∂w(y)

∂νy
Φkn(x, y)

)
dsy. (3.69)

Now for a generic function u defined in R3 \ ∂D we denote

u±(x) = lim
h→0+

ν · u(x± hν) x ∈ ∂D
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∂u(x)

∂ν

±
= lim
h→0+

ν · ∇u(x± hν) x ∈ ∂D

where we recall that ν is the unit outward normal vector to ∂D. We denote by Sk
and Dk the single and double layer boundary potentials defined by

(Skψ) (x) :=

∫
∂D

ψ(y)Φk(x, y) dy x ∈ R3 \ ∂D

(Dkψ) (x) :=

∫
∂D

ψ(y)
∂

∂νy
Φk(x, y) dy x ∈ R3 \ ∂D

with similar expressions for Skn and Dkn . It can be shown [66], [82] and [95] that

for −1 ≤ s ≤ 1, the mapping Sk : Hs− 1
2 (∂D) → Hs+1

loc (R3) is continuous and the

mappings Dk : Hs+ 1
2 (∂D) → Hs+1

loc (R3 \ D) and Dk : Hs+ 1
2 (∂D) → Hs+1(D) are

continuous. We define the restriction of Sk and Dk to the boundary ∂D by

(Skψ)(x) : =

∫
∂D

ψ(y)Φ(x, y)dsy x ∈ ∂D (3.70)

(Kkψ)(x) : =

∫
∂D

ψ(y)
∂

∂νy
Φ(x, y)dsy x ∈ ∂D (3.71)

and the restriction of the normal derivative of Sk and Dk to the boundary ∂D by

(K ′kψ)(x) : =
∂

∂νx

∫
∂D

ψ(y)Φ(x, y)dsy x ∈ ∂D (3.72)

(Tkψ)(x) : =
∂

∂νx

∫
∂D

ψ(y)
∂

∂νy
Φ(x, y)dsy. x ∈ ∂D. (3.73)

It is known that [66], [95]

Sk : H−
1
2 +s(∂D) −→ H

1
2 +s(∂D) Kk : H

1
2 +s(∂D) −→ H

1
2 +s(∂D) (3.74)

K ′k : H−
1
2 +s(∂D) −→ H−

1
2 +s(∂D) Tk : H

1
2 +s(∂D) −→ H−

1
2 +s(∂D) (3.75)

are continuous for −1 ≤ s ≤ 1. It can be shown [82] that for smooth densities the
single layer potential and the normal derivative of the double layer potential are
continuous across ∂D, i.e.

(Skψ)+ = (Skψ)− = Skψ on ∂D (3.76)

∂(Dkψ)+

∂ν
=
∂(Dkψ)−

∂ν
= Tkψ on ∂D, (3.77)

while the normal derivative of the single layer potential and the double layer po-
tential are discontinuous across ∂D and satisfy the following jump relations:

∂(Skψ)±

∂ν
= K ′kψ ∓

1

2
ψ on ∂D (3.78)

(Dkψ)± = Kkψ ±
1

2
ψ on ∂D, (3.79)
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As the reader has already seen, the solution v and w of the interior transmission
problem (3.1) are simply L2

∆(D) functions, where

L2
∆(D) :=

{
u ∈ L2(D), such that ∆u ∈ L2(D)

}
with a similar definition for L2

∆(R3 \ D). Therefore their trace and their normal

derivative on the boundary live in H−
1
2 (∂D) and H−

3
2 (∂D), respectively. Hence

the representation formulas (3.68) and (3.69) suggest that we must work with single

layer potentials Sk with density in H−
3
2 (∂D) and double layer potentials Dk with

density in H−
1
2 (∂D) (i.e. for s = −1 in the above). Both obviously satisfy the

Helmholtz equation in the distributional sense and hence we can conclude that Sk :
H−

3
2 (∂D)→ L2

∆(D), Sk : H−
3
2 (∂D)→ L2

∆(R3 \D) and Dk : H−
1
2 (∂D)→ L2

∆(D),
L2

∆(R3 \D) are continuous. More importantly, by a duality argument, it is possible
to extend the jump relations (3.76), (3.77), (3.78) and (3.79) to the case of potentials
with weaker densities. More specifically, the following lemma is proven in Theorem
3.1 in [52] (see also [95]).

Lemma 3.21. The single layer potential Sk : H−
3
2 (∂D)→ L2

∆(D), Sk : H−
3
2 (∂D)→

L2
∆(R3 \D) and the double layer potential Dk : H−

1
2 (∂D) → L2

∆(D), L2
∆(R3 \D)

satisfy the jump relations on ∂D

(Skψ)+ = (Skψ)− = Skψ and
∂(Skψ)±

∂ν
= K ′kψ ∓

1

2
ψ in H−

1
2 (∂D)

(Dkψ)± = Kkψ ±
1

2
ψ and

∂(Dkψ)+

∂ν
=
∂(Dkψ)−

∂ν
= Tkψ in H−

3
2 (∂D)

where the bounded linear operators

Sk : H−
3
2 (∂D) −→ H−

1
2 (∂D) Kk : H−

1
2 (∂D) −→ H−

1
2 (∂D)

K ′k : H−
3
2 (∂D) −→ H−

3
2 (∂D) Tk : H−

1
2 (∂D) −→ H−

3
2 (∂D)

are given by (3.70), (3.71), (3.72) and (3.73), respectively.

To arrive at a system of boundary integral equations equivalent to the inte-
rior transmission problem (3.1) for v ∈ L2(D) and w ∈ L2(D) we introduce two
unknowns

α :=
∂v

∂ν

∣∣∣∣
∂D

∈ H− 3
2 (∂D) and β := v|∂D ∈ H−

1
2 (∂D) (3.80)

and use the ansatz (3.68) and (3.69) along with the boundary conditions in (3.1) to
write

v = Skα−Dkβ and w = Sknα−Dknβ + Sknh−Dknf (3.81)

where we note
∂w

∂ν

∣∣∣∣
∂D

= α+ f and w|∂D = β + h. (3.82)
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Using the jump relations in Lemma 3.21 and once again the boundary conditions
in (3.1) we arrive at the following system of integral equations

Zn(k)

(
α
β

)
= Fn(k)

(
h
f

)
(3.83)

where

Zn(k) :=

(
Skn − Sk −Kkn +Kk

−K ′kn +K ′k Tkn − Tk

)
(3.84)

and

Fn(k) :=

(
−Skn 1

2I +Kkn

− 1
2 +K ′kn −Tkn

)
.

Since h ∈ H 1
2 (∂D) and f ∈ H 3

2 (∂D), the mapping properties (3.74) and (3.75) for

s = 1 imply that Fn(k)

(
h
f

)
∈ H 3

2 (∂D)×H 1
2 (∂D).

To understand the mapping properties of the operator Zn(k) we must recall
some regularity results concerning single and double layer potentials and conse-
quently the associated boundary integral operators. Notice that the components in
(3.84) are more regular that each of the operators involved since the singular part,
which is independent of k, cancels.

Lemma 3.22. Assume that k, kn ∈ C have nonzero real part. Then the operators
Sk−Skn : H−

3
2 (∂D)→ H2(D) and Dk−Dkn : H−

1
2 (∂D)→ H2(D) are continuous.

Proof. We sketch here the proof following the proof of Theorem 3.2 in [52]. First
we notice that Vk − Vkn , where Vk is the volume potential defined by

(Vkψ) (x) :=

∫
D

ψ(y)Φk(x, y) dy,

is a pseudo differential operator of order −4. This follows from applying Theorem
7.1.1 in [66] on integral operators with pseudo-homogeneous kernels to the operator
Vk − Vkn whose kernel takes the form a(x, x− y) where

a(x, z) :=
eik|z| − eikn|z|

4π|z|

=
i

4π
(k − kn)− 1

4π

∞∑
j=0

ij

(j + 2)!
(kj+2 − kj+2

n )|z|j+1.

Now using Theorem 8.5.8 in [66] it is possible to deduce from this the regularity
result for the difference of the single layer potentials Sk−Skn . Finally, the fact that

(Dk −Dkn)ψ = −∇ · (Sk − Skn)(νψ) (3.85)

implies that the regularity result for Dk −Dkn can also be deduced from the regu-
larity property of the difference of the single layer potentials.
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Later on in our analysis we would like to decompose the operator Zn(k) into
an invertible operator and a compact operator. Hence we will need to find more
regular operators, and the away to achieve this is to eliminate the principal part in
the asymptotic expansion of the kernel of the operator Vk − Vkn . To this end we
consider the operator

(Vk − Vkn) + γ(k)(Vi|k| − Vi|kn|)

where

γ(k) :=
k2 − k2

n

|k|2 − |kn|2

and which has the kernel ã(x, x− y) where

ã(x, z) :=
eik|z| − eikn|z|

4π|z|
+
e−|kz| − e−|knz|

4π|z|

=
1

4π

[
i(k − kn)− k2 − k2

n

|k|+ |kn|

]
−
∞∑
j=0

ãj+2(x, z)

with

ãj+2(x, z) :=
1

4π(j + 3)!

[
ij+1(kj+3 − kj+3

n ) + (−1)j
(
|k|j+3 − |kn|j+3

)
∂D(k)

]
|z|j+2,

for all j ≥ 0, which satisfies

ãp(x, tz) = tpãp(x, z).

From [66, Theorem 7.1.1], we deduce that(
(Vk − Vkn) + γ(k)(Vi|k| − Vi|kn|)

)
ϕ(x) =

∫
D

ã(x, x− y)ϕ(y)dy

is a pseudo-differential operator of order −5 since ã is a pseudo-homogeneous kernel
of degree 2. Then, applying Theorem 8.5.8 in [66] and (3.85), we can immediately
prove the following regularity result for the operators (Sk−Skn)+γ(k)(Si|k|−Si|kn|)
and (Dk −Dkn) + γ(k)(Di|k| −Di|kn|).

Lemma 3.23. Assume that k, kn ∈ C have nonzero real part. Then the operators

(Sk − Skn) + γ(k)(Si|k| − Si|kn|) : H−
3
2 (∂D)→ H3(D)

and
(Dk −Dkn) + γ(k)(Di|k| −Di|kn|) : H−

1
2 (∂D)→ H3(D)

are continuous.

We now return to our main system of integral equation (3.83) which, if it is
uniquely solvable, is equivalent to the interior transmission problem (3.1) via Green’s
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representation formulas (3.68) and (3.69) using (3.80) and (3.82). Lemma 3.22

implies that Zn(k) : H−
3
2 (∂D)×H− 1

2 (∂D)→ H
3
2 (∂D)×H 1

2 (∂D) is continuous.
In the next step we want to show that Zn(k) is a Fredholm operator of index

zero. To this end we decompose Zn(k) as

Zn(k) = −γ(k)Zn(i|k|) + (Zn(k) + γ(k)Zn(i|k|)) .

From Lemma 3.23 and the classic trace theorems we know that Zn(k)+γ(k)Z(i|k|) :

H−
3
2 (∂D)×H− 1

2 (∂D)→ H
3
2 (∂D)×H 1

2 (∂D) is compact. Hence it suffices to show

that Zn(i|k|) : H−
1
2 (∂D)→ H

3
2 (∂D)×H 1

2 (∂D) is invertible.

Lemma 3.24. Zn(i|k|) : H−3/2(∂D) × H−1/2(∂D) → H3/2(∂D) × H1/2(∂D) is
coercive, i.e.∣∣∣∣〈Zn(i|k|)

(
α
β

)
,

(
α
β

)〉∣∣∣∣ ≥ C (‖α‖2H 3
2 (∂D)

+ (‖β‖2
H

1
2 (∂D)

)
where 〈·, ·〉 denotes the duality between H−

3
2 (∂D) × H−

1
2 (∂D) and H

3
2 (∂D) ×

H
1
2 (∂D).

Proof. For simplicity we set κ := |k| and κn := |kn|. Let α be in H−3/2(∂D) and
β ∈ H−1/2(∂D) and consider the following problem:

(∆− κ2)(∆− κ2
n)u = 0 in R3\∂D

[∆u]∂D = β(κ2
n − κ2) on ∂D[

∂(∆u)

∂ν

]
∂D

= α(κ2
n − κ2) on ∂D

(3.86)

where for a generic function u, [u] := u+ − u− denotes the jump of u across the
boundary ∂D. Multiplying the first equation by ϕ ∈ H2(R3), integrating by parts
on both sides of ∂D and using the jump conditions on ∂D, we can reformulate
(3.86) as the following variational problem: find u ∈ H2(R3) such that∫

R3\∂D

(∆u− κ2u)(∆ϕ− κ2
nϕ)dx = −

∫
∂D

(κ2
n − κ2)

(
αϕ− β ∂ϕ

∂ν

)
ds, (3.87)

for all ϕ ∈ H2(R3). We remark that u = (Siκn − Siκ)α − (Diκn −Diκ)β obviously
solves (3.87). Using the Lax-Milgram theorem, the existence and uniqueness of a
solution u ∈ H2(R3) to (3.87) can be established. Thus the only solution to (3.87)
is u = (Siκn − Siκ)α− (Diκn −Diκ)β. In particular,

u|∂D = (Siκn−Siκ)α−(Kiκn−Kiκ)β and
∂u

∂ν
|∂D = (K ′iκn−K

′
iκ)α−(Tiκn−Tiκ)β

Taking ϕ = u in (3.87) we obtain∫
R3\∂D

(∆u− κ2u)(∆u− κ2
nu)dx = −

∫
∂D

(κ2
n − κ2)

(
αu− β ∂u

∂ν

)
ds. (3.88)
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The inequality ∫
R3\∂D

(∆u− κ2u)(∆u− κ2
nu)dx ≥ C‖u‖2H2(R3)

along with (3.88) imply that∣∣∣∣∣〈α, u〉H− 3
2 (∂D),H

3
2 (∂D)

−
〈
β,
∂u

∂ν

〉
H−

1
2 (∂D),H

1
2 (∂D)

∣∣∣∣∣ ≥ C ′‖u‖2H2(R3). (3.89)

Next we want to show that there exists C1 > 0 such that ‖α‖
H−

3
2 (∂D)

≤ C1‖u‖H2(R3).

To this end, we take ϕ ∈ H3/2(∂D) such that ‖ϕ‖H3/2(∂D) = 1. Then there exists

ϕ̃ ∈ H2(R3) such that ϕ̃|∂D = ϕ and
∂ϕ̃

∂ν
|∂D = 0. From (3.87) we have that

∣∣∣〈α,ϕ〉
H−

3
2 (∂D),H

3
2 (∂D)

∣∣∣ =
1

|κ2
n − κ2|

∣∣∣∣∣∣∣
∫

R3\∂D

(∆u− κ2u)(∆ϕ̃− κ2
nϕ̃)dx

∣∣∣∣∣∣∣
≤ C‖u‖H2(R3)‖ϕ̃‖H2(R3) ≤ C1‖u‖H2(R3)

because ‖ϕ̃‖H2(R3) ≤ ‖ϕ‖H3/2(∂D) = 1. Hence ‖α‖H−3/2(∂D) ≤ C1‖u‖H2(R3).
Similarly we show that ‖β‖H−1/2(∂D) ≤ C2‖u‖H2(R3) for some constant C2 > 0.

Indeed, take ψ ∈ H1/2(∂D) such that ‖ψ‖H1/2(∂D) = 1 and choose ψ̃ ∈ H2(R3)

such that ψ̃|∂D = 0 and ∂ψ̃
∂ν |∂D = ψ. Then

∣∣∣〈β, ψ〉
H−

1
2 (∂D),H

1
2 (∂D)

∣∣∣ =
1

|κ2
n − κ2|

∣∣∣∣∣∣∣
∫

R3\∂D

(∆u− κ2u)(∆ψ̃ − κ2
nψ̃)dx

∣∣∣∣∣∣∣
≤ C‖u‖H2(R3)‖ψ̃‖H2(R3) ≤ C2‖u‖H2(R3)

since ‖ψ̃‖H2(R3) ≤ ‖ψ‖H1/2(∂D) = 1, whence ‖β‖H−1/2(∂D) ≤ C2‖u‖H2(R3).
We have now all the ingredients to show the coercivity property for Z(i|k|). Thus,∣∣∣∣〈Zn(i|k|)

(
α
β

)
,

(
α
β

)〉∣∣∣∣ =
∣∣∣〈(Siκn − Siκ)α− (Kiκn −Kiκ)β, α〉

H−
3
2 (∂D),H

3
2 (∂D)

+
〈
−(K ′iκn −K

′
iκ)α+ (Tiκn − Tiκ)β, , β

〉
H

1
2 (∂D),H−

1
2 (∂D)

∣∣∣
≥

∣∣∣∣∣〈u|∂D, α〉H 3
2 (∂D),H−

3
2 (∂D)

+

〈
−∂u
∂ν
|∂D, β

〉
H

1
2 (∂D),H−

1
2 (∂D)

∣∣∣∣∣
≥ C ′‖u‖2H2(R3) ≥

C ′

C1
‖α‖2H−3/2(∂D) +

C ′

C2
‖β‖2H−1/2(∂D),

which proves the result.
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Summarizing the above analysis we can now state the following result.

Theorem 3.25. The operator Zn(k) : H−
1
2 (∂D) → H

3
2 (∂D) × H

1
2 (∂D) is

Fredholm with index zero and is analytic on k ∈ C \ R−. The kernel of Zn(k) is
trivial for all k ∈ C \ R− except for at most a discrete set with +∞ as the only
possible accumulation point.

Proof. Thanks to Lemma 3.23 along with the classic trace theorems and Lemma
3.24, the operator Zn(k) is the sum of the compact operator Zn(k) + γ(k)Z(i|k|)
and the coercive operator −γ(k)Z(i|k|). Hence it is Fredholm of index zero. The
analyticity of Zn(k) on k is a direct consequence of the fact that the kernels of
the boundary integral operators that compose Zn(k) are analytic functions of k ∈
C \ R−. Finally, since Z(iκ) for κ > 0 is invertible, an application of the analytic
Fredholm theory [42] implies that the kernel of Zn(k) is trivial for all k ∈ C \ R−
except for at most a discrete set with +∞ as the only possible accumulation point.

We remark that the set of values of k ∈ C for which the kernel of Zn(k)
fails to be trivial is larger than the set of transmission eigenvalues. In addition to
transmission eigenvalues, it also contains the so-called exterior transmission eigen-
values (see [22] and [45] for the relevance of the exterior transmission eigenvalues
to the scattering theory of inhomogeneous media). The next theorem shows the
relation between transmission eigenvalues and the kernel of Zn(k) using the fact
that in the Green’s representation (3.68) and (3.69) a solution to (3.1) corresponds
to non-radiating fields. To this end, let

P∞(α, β)(x̂) =
1

4π

∫
∂D

(
β(y)

∂e−ikx̂·y

∂ν(y)
− α(y)e−ikx̂·y

)
ds(y),

P∞n (α, β)(x̂) =
1

4π

∫
∂D

(
β(y)

∂e−iknx̂·y

∂ν(y)
− α(y)e−iknx̂·y

)
ds(y),

which are the far field patterns of v and w defined by 3.68) and (3.69), respectively.

Theorem 3.26. The following statements are equivalent.

(i) There exist a non-trivial solution v, w ∈ L2(D) to (3.1) such that w − v ∈
H2(D).

(ii) There exist α 6= 0 in H−3/2(∂D) and β 6= 0 in H−1/2(∂D) such that

Zn(k)

(
α
β

)
= 0 and P∞(α, β) = 0.

(iii) There exist α 6= 0 in H−3/2(∂D) and β 6= 0 in H−1/2(∂D) such that

Zn(k)

(
α
β

)
= 0 and P∞n (α, β) = 0.
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Proof. From the construction of the operator Zn, it remains to show that (ii)
implies (i) and that (iii) implies (i). Assume that there exist α ∈ H−1/2(∂D)

and β ∈ H1/2(∂D) satisfying Zn(k)

(
α
β

)
= 0. We define v = Skα − Dkβ and

w = Sknα − Dknβ in R3 \ ∂D. The mapping properties of single and double layer
potentials shows that v and w are in L2(D) and w − v ∈ H2(D) and they satisfy
∆v + k2v = 0 and ∆w + k2nw = 0 in D. Now assume that P∞(α, β) = 0. We
want to show that v 6= 0. From Rellich’s Lemma we deduce that v = 0 in Rd\D.
Assume that v = 0 also in D. We have in particular that [v]∂D =

[
∂v
∂ν

]
∂D

= 0 and
from the jump properties of the single and double layer potentials we also have that
[v]∂D = −β and

[
∂v
∂ν

]
∂D

= −α. This contradicts the fact that (α, β) 6= (0, 0). Then
v 6= 0 in D. In a similar way we can show that if P∞n (α, β) = 0 and then w 6= 0.

We can now use the integral equation framework to study the solvability of
the interior transmission problem and show the discreteness of transmission eigen-
values for media with sign changing contrasts. To present the idea we first consider
piecewise homogenous media where we assume that D = D1∪D2 such that D1 ⊂ D
and D2 := D \D1 and consider the simple case when n := n1 in D1 and n := n2 in
D2, where n1 > 0, n2 > 0 are two positive constants such that (n1−1)(n2−1) < 0.
We denote by Σ = ∂D1 which is assumed to be a C2 smooth surface with ν the unit
normal vector to either ∂D or Σ outward to D and D1, respectively (see Figure 3.2).
We let k1 = k

√
n1 and k2 = k

√
n2. In the following we use the notations S∂Dk , D∂Dk

D1

D2

n

n

S
n1

n2 Dδ

Figure 3.2. Configuration of the geometry for two homogeneous media

and SΣ
k , DΣ

k in order to differentiate between the potentials with densities defined
on ∂D or Σ. We also use the notation

(
S∂Dk ψ

)
(x) =

∫
∂D

ψ(y)Φ(x, y)dsy, x ∈ ∂D

(
SΣ
k ψ
)

(x) =

∫
Σ

ψ(y)Φ(x, y)dsy x ∈ Σ
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(
S∂D,Σk ψ

)
(x) =

∫
∂D

ψ(y)Φ(x, y)dsy, x ∈ Σ

(
SΣ,∂D
k ψ

)
(x) =

∫
Σ

ψ(y)Φ(x, y)dsy x ∈ ∂D,

with the respective notations for the other operators Kk, K
′

k and Tk. Letting

α :=
∂v

∂ν

∣∣∣∣
∂D

=
∂w

∂ν

∣∣∣∣
∂D

− f ∈ H− 3
2 (∂D) and β := v|∂D = w|∂D − h ∈ H−

1
2 (∂D)

and

α̃ :=
∂w

∂ν

∣∣∣∣
Σ

∈ H− 1
2 (Σ) and β̃ := w|Σ ∈ H

1
2 (Σ)

the solution to (3.1) can be written as

v = S∂Dk α−D∂Dk β in D (3.90)

and

w =


S∂Dk2

α−D∂Dk2
β + S∂Dk2

h−D∂Dk2
f − SΣ

k2
α̃+DΣ

k2
β̃ in D2

SΣ
k1
α̃−DΣ

k1
β̃ in D1.

(3.91)

Note that the interior regularity for the solutions to the Helmholtz equation implies
that v and w are at least in H1

loc(D) . Using the boundary conditions on ∂D and
continuity of the Cauchy data of w across Σ we arrive at the following system of
integral equations S∂Dk2

− S∂Dk −K∂D
k2

+K∂D
k

−K ′∂Dk2
+K

′∂D
k T ∂Dk2

− T ∂Dk


︸ ︷︷ ︸

=Z∂Dn2
(k)

 α

β

−
 SΣ,∂D

k2
−KΣ,∂D

k2

−K
′Σ,∂D
k2

TΣ,∂D
k2


︸ ︷︷ ︸

=ZΣ,∂D(k)

 α̃

β̃



=

 −S∂Dk2

1
2I +K∂D

k2

− 1
2 +K

′∂D
k2

−T ∂Dk2


︸ ︷︷ ︸

=Fn2
(k)

 h

f

 ,

and SΣ
k2

+ SΣ
k1

−KΣ
k2
−KΣ

k1

−K ′Σk2
−K ′Σk1

TΣ
k2
− TΣ

k1


︸ ︷︷ ︸

=Z̃Σ
n1,n2

(k)

 α̃

β̃

 =

 −S
∂D,Σ
k2

K∂D,Σ
k2

K
′∂D,Σ
k2

−T ∂D,Σk2


︸ ︷︷ ︸

=Z∂D,Σ(k)

 α

β

 .
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The operator Z̃Σ
n1,n2

(k) : H−
1
2 (Σ)×H 1

2 (Σ)→ H−
1
2 (Σ)×H 1

2 (Σ) is invertible since

it corresponds to the following transmission problem: For given φ ∈ H
1
2 (Σ) and

ψ ∈ H− 1
2 (Σ) find v ∈ H1(R3 \D1) and w ∈ H1(D1) such that

∆w + k2n1w = 0 in D1,

∆ω + k2n2ω = 0 in R3 \D1,

w − ω = φ on Σ,

∂w

∂ν
− ∂ω

∂ν
= ψ on Σ,

lim
r→∞

r

(
∂ω

∂r
− ik
√
n2ω

)
= 0

(3.92)

which is well-known to be uniquely solvable [15] (see also Chapter 1 of this book).
Indeed, using Green’s representation formula for the solution ω and w of (3.92) it
is easy to see that (3.92) is equivalent to the following integral equation

Z̃Σ
n1,n2

(k)

 ∂ω

∂ν

∣∣∣∣
Σ

ω|Σ

 =

 −SΣ
k1

1
2I +KΣ

k1

− 1
2 +K

′Σ
k1

−TΣ
k1

( ψ
φ

)
.

The interior transmission problem can clearly be written as

Z(k)

(
α
β

)
= Fn2

(k)

(
h
f

)
(3.93)

where Z(k) : H−
3
2 (∂D)×H− 1

2 (∂D)→ H
3
2 (∂D)×H 1

2 (∂D) is given by

Z(k) = Z∂Dn2
(k) + ZΣ,∂D(k)

(
Z̃Σ
n1,n2

(k)
)−1

Z∂D,Σ(k).

Now the operator Z∂Dn2
(k) corresponds to the interior transmission problem with

n := n2 which is studied above and thanks to Theorem 3.25 is a Fredholm opera-

tor of index zero. Furthermore, the operator ZΣ,∂D(k)
(
Z̃Σ
n1,n2

(k)
)−1

Z∂D,Σ(k) is

compact as product of compact operators and bounded operators. All operators
involved in the expression of Z(k) are analytic k ∈ C \ R−. Thus we have shown
the following result.

Theorem 3.27. The operator Z(k) : H−
3
2 (∂D)×H− 1

2 (∂D)→ H
3
2 (∂D)×H 1

2 (∂D)
is Fredholm with index zero and is analytic on k ∈ C \ R−.

The idea presented above for the case of a piecewise homogeneous media can
be generalized to a more general case when the medium inside D1 is not necessarily
homogeneous. More specifically, in the more general case where the refractive index
n(x) in D1 is such that n ∈ L∞(D1), <(n) ≥ α > 0, =(n) ≥ 0, and n 6= 1 is a
positive constant in D2, we can use exactly the same approach as above to prove
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the result in Theorem 3.25 by replacing the fundamental solution Φk1(·, y) with the
free space fundamental solution G(·, y) of

∆G(·, y) + k2n(x)G(·, y) = −δy in R3

in the distributional sense together with the Sommerfeld radiation condition, where
n(x) is extended by its constant value in D2 to the whole space R3. Because
Φk2

(·, y)−G(·, y) solves the Helmholtz equation with wave number k2 in the neigh-
borhood of Γ the mapping properties of the integral operators do not change. We
refer the reader to Section 4.2 of [52] for more details.

In fact the above idea can be applied even in a more general case, provided that
n is a positive constant not equal to one in a neighborhood of ∂D. More precisely,
consider a neighborhood D2 of ∂D in D with C2 smooth boundary (e.g. one can
take D2 to be the region in D bounded by ∂D and Σ := {x− εν(x), x ∈ ∂D} for
some ε > 0 where ν is the outward unit normal vector to ∂D). Assume that the
refractive index in D2 is a positive constant n 6= 1, whereas in D1 := D \ D2 the
refractive index is such that the transmission problem

∆w + k2n(x)w = 0 in D1,

∆ω + k2nω = 0 in R3 \D1,

w − ω = φ on Σ,

∂w

∂ν
− ∂ω

∂ν
= ψ on Σ,

lim
r→∞

r

(
∂ω

∂r
− ik
√
n2ω

)
= 0

(3.94)

is well posed. Then a similar result as in Theorem 3.25 holds true in this case.
Indeed, without going into details, in D2 we can express v and w by (3.90) and
(3.91), respectively, and in D1 we leave the expressions for v and w in the form of
a partial differential equation with Cauchy data connected to w in D2. Hence it is
possible to obtain an equation of the form (3.93) where the operator Z(k) is written
as

Z(k) = Z∂Dn (k) + ZΣ,∂D(k) (A(k))
−1
Z∂D,Σ(k),

where now A(k) is the invertible solution operator corresponding to the well-posed
transmission problem (3.94).

The above discussion implies that the Fredholm alternative can be applied
to the interior transmission problem (3.1) provided that the refractive index is a
positive constant different from one in a neighborhood of the boundary ∂D and
otherwise satisfies the assumptions for which the direct scattering problem is well-
posed. Note that this analysis includes the case when inside D there are obstacles
with different types of boundary conditions. The solvability of the interior transmis-
sion problem (3.1) for almost all k ∈ C amounts to proving that there exists a wave
number k which is not a transmission eigenvalue. Assumptions on n under which the
latter is true are discussed in Section 3.1.3 and in [113]. It is possible to derive differ-
ent boundary integral equations equivalent to the interior transmission problem. In
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[33] the transmission eigenvalue problem is analyzed as one single boundary integral
equation in terms of the Dirichlet-to-Neumann or Robin-to-Neumann operators. In
particular, when this formulation is used to compute transmission eigenvalues, it
results in a noticeable reduction of computational costs.

3.2 Solvability of the Interior Transmission Problem
for Anisotropic Media

We turn our attention to the interior transmission problem corresponding to the
scattering problem for the anisotropic inhomogeneous media introduced in Section
1.2.2, which reads: Given f ∈ H

1
2 (∂D), h ∈ H−

1
2 (∂D), `1 ∈ H−1(D) snd `2 ∈

L2(D), find w ∈ L2(D) and v ∈ H1(D) satisfying

∇ ·A∇w + k2nw = `1 in D,

∆v + k2v = `2 in D,

w − v = f on ∂D,

∂w

∂νA
− ∂v

∂ν
= h on ∂D

(3.95)

where
∂u

∂νA
:= ν ·A∇u.

Definition 3.28. Values of k ∈ C for which the homogeneous interior transmission
problem 

∇ ·A∇w + k2nw = 0 in D,

∆v + k2v = 0 in D,

w = v on ∂D,

∂w

∂νA
=
∂v

∂ν
on ∂D

(3.96)

has non-trivial solutions w ∈ H1(D) and v ∈ H1(D) are called transmission eigen-
values.

As in the case of isotropic media we are concerned with whether the interior
transmission problem, or a compact perturbation of it, has a unique solution that
depends continuously on the data. In many applications discussed in Chapter 2,
(3.95) appears with `1 = `2 = 0. However, in our presentation here we include
possibly non-zero `1 and `2; this case is needed for instance in the proof of the
uniqueness theorem in Section 1.4.2. In general we will assume that the support
D ⊂ R3 of the anisotropic inhomogeneous media has Lipschitz boundary ∂D, unless
mentioned otherwise, and ν is the unit normal vector directed outwards to D. The
assumptions on the constitutive material properties are those introduced in Section
2.5 which we recall here for sake of the reader’s convenience: A is a 3×3 symmetric
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matrix with L∞(D)-entries such that

ξ · <(A)ξ ≥ γ |ξ|2 and ξ · =(A)ξ ≤ 0

for all ξ ∈ C3, a.e. for x ∈ D and some constant γ > 0, whereas n ∈ L∞(D) is a
complex-valued scalar function such that <(n) > 0 and =(n) ≥ 0 For the purpose
of this section and for later use we make the following notations:

a∗ := inf
D

inf
|ξ|=1

ξ · <(A)ξ > 0,

a∗ := sup
D

sup
|ξ|=1

ξ · <(A)ξ <∞,

n∗ := inf
D
<(n) > 0 and n∗ := sup

D
<(n) <∞.

(3.97)

Various techniques are used to analyze the interior transmission problem de-
pending on the assumptions on the constitutive material parameters A and n.

3.2.1 The Case of One Sign Contrast in A

In this section we consider the case when the contrast A − I does not change sign
in D, more specifically we assume that either or a∗ > 1 or 0 < a∗ < 1. To present
our ideas we start the discussion with the case when a∗ > 1 following [17] and
[28] (see also [15]). We first study an intermediate problem called the modified
interior transmission problem, which turns out to be a compact perturbation of our
original transmission problem. The modified interior transmission problem is given
f ∈ H 1

2 (∂D), h ∈ H− 1
2 (∂D), a real valued function γ ∈ C(D̄), and two functions

`1 ∈ L2(D) and `2 ∈ L2(D) find w ∈ H1(D) and v ∈ H1(D) satisfying

∇ ·A∇w − γw = `1 in D,

∆v − v = `2 in D,

w − v = f on ∂D,

∂w

∂νA
− ∂v

∂ν
= h on ∂D.

(3.98)

This is exactly the problem whose well-posedeness is needed in the proof of the
uniqueness theorem in Section 1.4.2. We now reformulate (3.98) as an equivalent
variational problem. To this end, we define the Hilbert space

W (D) :=
{

v ∈
(
L2(D)

)2
: ∇ · v ∈ L2(D) and ∇× v = 0

}
equipped with the norm ‖v‖2W = ‖v‖2L2(D) + ‖∇ · v‖2L2(D). We denote by 〈·, ·〉 the

duality pairing between H
1
2 (∂D) and H−

1
2 (∂D). The duality pairing

〈ϕ, ψ · ν〉 =

∫
D

ϕ ∇ ·ψ dx+

∫
D

∇ϕ ·ψ dx (3.99)
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for (ϕ,ψ) ∈ H1(D)×W (D) will be of particular interest in the sequel.
We next introduce the sesquilinear form A defined on {H1(D)×W (D)}2 by

A(U, V ) =

∫
D

A∇w · ∇ϕ̄ dx+

∫
D

mw ϕ̄ dx+

∫
D

∇ · v∇ · ψ̄ dx+

∫
D

v · ψ̄ dx

−
〈
w, ψ̄ · ν

〉
− 〈ϕ̄, v · ν〉 (3.100)

where U := (w,v) and V := (ϕ,ψ) are in H1(D) × W (D). We denote by L :
H1(D)×W (D)→ C the bounded antilinear functional given by

L(V ) =

∫
D

(ρ1 ϕ̄+ ρ2 ∇ · ψ̄) dx+ 〈ϕ̄, h〉 −
〈
f, ψ̄ · ν

〉
. (3.101)

Then the variational formulation of problem (3.98) is to find U = (w,v) ∈ H1(D)×
W (D) such that

A(U, V ) = L(V ), for all V ∈ H1(D)×W (D). (3.102)

The following theorem states the equivalence between problems (3.98) and (3.102)
and for the proof we refer the reader to Theorem 6.5 of [15].

Theorem 3.29. The problem (3.98) has a unique solution (w, v) ∈ H1(D)×H1(D)
if and only if the problem (3.102) has a unique solution U = (w,v) ∈ H1(D) ×
W (D). Moreover if (w, v) is the unique solution to (3.98) then U = (w,∇v) is
the unique solution to (3.102). Conversely, if U = (w,v) is the unique solution to
(3.102) then the unique solution (w, v) to (3.98) is such that v = ∇v.

We now investigate the modified interior transmission problem in the varia-
tional formulation (3.102).

Lemma 3.30. Assume that a∗ > 1 and γ(x) ≥ a∗. Then problem (3.102) has a
unique solution U = (w,v) ∈ H1(D) ×W (D). This solution satisfies the a priori
estimate

‖w‖H1(D) + ‖v‖W ≤ 2C
a∗ + 1

a∗ − 1

(
‖`1‖L2(D) + ‖`2‖L2(D)

+ ‖f‖
H

1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

) (3.103)

where the constant C > 0 is independent of `1, `2, f , h and a∗.

Proof. The trace theorems and Schwarz’s inequality ensure the continuity of the
antilinear functional L on H1(D)×W (D) and the existence of a constant C inde-
pendent of ρ1, ρ2, f and h such that

‖L‖ ≤ C
(
‖`1‖L2 + ‖`2‖L2 + ‖f‖

H
1
2

+ ‖h‖
H−

1
2

)
. (3.104)
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On the other hand, if U = (w,v) ∈ H1(D) ×W (D), the assumptions that a∗ > 1
and γ(x) ≥ a∗ imply

|A(U,U)| ≥ a∗ ‖w‖2H1 + ‖v‖2W − 2 Re (〈w̄, v〉) . (3.105)

According to the duality identity (3.99), one has by Schwarz’s inequality that

| 〈w̄, v〉 | ≤ ‖w‖H1 ‖v‖W

and therefore

|A(U,U)| ≥ a∗ ‖w‖2H1 + ‖v‖2W − 2 ‖w‖H1 ‖v‖W .

Using the identity αx2+y2−2xy = α+1
2

(
x− 2

α+1 y
)2

+ α−1
2 x2+ α−1

α+1y
2 with α = a∗,

we conclude that

|A(U,U)| ≥ a∗ − 1

a∗ + 1

(
‖v‖2W + ‖w‖2H1

)
,

whence A is coercive. The continuity of A follows easily from Schwarz’s inequality
and the classic trace theorems. Lemma 3.30 is now a direct consequence of the
Lax-Milgram lemma applied to (3.102).

Combining Theorem 3.29 and Lemma 3.30 gives the following result concern-
ing the well-posedness of the modified interior transmission problem.

Corollary 3.31. Assume that a∗ > 1 and γ(x) ≥ a∗. Then the modified interior
transmission problem (3.98) has a unique solution (w, v) that satisfies

‖w‖H1(D) + ‖v‖H1(D) ≤ c
(
‖`1‖L2(D) + ‖`2‖L2(D) + ‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
with c > 0 independent of `1, `2, f , h.

It is possible to perform the same analysis for the case when 0 < a∗ < 1 and
prove a similar statement as in Corollary 3.31 for γ chosen such that a∗ < γ < 1.
This is done by arriving at a similar variational formulation where the roles of w and
v are interchanged, i.e. making the substitution ∇w = w (see [28] for the details).

Summarizing the above analysis we can state the following result concerning
the solvability of interior transmission problem (3.95):

Theorem 3.32. Assume that either a∗ > 1 or 0 < a∗ < 1. Then the Fredholm
alternative can be applied to (3.95). In particular if k is not a transmission eigen-
value then (3.95) has a unique solution (w, v) ∈ H1(D) ×H1(D) that satisfies the
estimate

‖w‖H1(D) + ‖v‖H1(D) ≤ c
(
‖`1‖L2(D) + ‖`2‖L2(D) + ‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
with c > 0 independent of `1, `2, f , h.
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Proof. Let us consider a∗ > 1 (the other case can be handled exactly in the same
way). Set

X (D) =
{

(w, v) ∈ H1(D)×H1(D) : ∇·A∇v ∈ L2(D) and ∆w ∈ L2(D)
}

(3.106)

and consider the operator G from X (D) into L2(D)×L2(D)×H 1
2 (∂D)×H− 1

2 (∂D)
defined by

G(w, v) =

(
∇·A∇w − γw,∆v − v, (w − v)|∂D ,

(
∂w

∂ν
− ∂v

∂ν

)
|∂D

)

with a constant γ > 1. Obviously G is continuous and from Theorem 3.31 we know
that the inverse of G exists and is continuous. Now consider the operator T from
X (D) into L2(D)× L2(D)×H 1

2 (∂D)×H− 1
2 (∂D) defined by

T (w, v) =
(
(k2 n+ γ)w, (k2 + 1)v, 0, 0

)
.

From the compact embedding of H1(D) in L2(D), the operator T is compact. Hence
the injectivity of G+T , which is equivalent to k not being a transmission eigenvalue,
implies (G + T )−1 exists (i.e the existence of a unique solution to (3.95)) and is
bounded (i.e this solution satisfies the a priori estimate stated in the formulation of
Theorem 3.32).

In general we cannot conclude the solvability of the interior transmission prob-
lem as k may be a transmission eigenvalue (see Definition 3.28). Similarly to the
case of isotropic media, it is of great interest to know what assumptions on A and
n guarantee that transmission eigenvalues either do not exist or form a countable
set. The following theorem concerning the non-existence of transmission eigenvalues
holds under no assumptions on the contrasts A− I and n− 1.

Theorem 3.33. Assume that A ∈
(
C1(D)

)3×3
and n ∈ C(D). If either =(n) > 0

or =
(
ξ̄ ·Aξ

)
< 0 at a point x0 ∈ D, then the interior transmission problem (3.95)

has at most one solution, (i.e. there are no transmission eigenvalues).

Proof. Let w and v be a solution of the homogeneous interior transmission prob-
lem (3.96). Applying the divergence theorem to w and A∇w, using the boundary
condition and applying Green’s first identity to v and v, we obtain∫

D

∇w ·A∇w dy −
∫
D

k2n|w|2 dy =

∫
∂D

w · ∂w
∂νA

dy =

∫
D

|∇v|2 dy −
∫
D

k2|v|2 dy.

Hence

=

∫
D

∇w ·A∇w dy

 = 0 and Im

∫
D

n|v|2 dy

 = 0. (3.107)
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If Im(n) > 0 at a point x0 ∈ D, and hence by continuity in a small disk Ωε(x0),
then the second equality of (3.107) and the unique continuation principle (Theorem
17.2.6 in [65]) imply that v ≡ 0 in D. From the boundary conditions in (3.96),
and the integral representation formula, w also vanishes in D. In the case when
=
(
ξ̄ ·Aξ

)
< 0 at a point x0 ∈ D for all ξ ∈ C2, and hence by continuity in a small

ball Ωε(x0), from the first equality of (3.107) we obtain that ∇w ≡ 0 in Ωε(x0) and
from the equation w ≡ 0 in Ωε(x0), whence again from the unique continuation
principle w ≡ 0 in D. Similarly as above, this implies that v = 0 also, which ends
the proof.

Remark 3.34. The result of Theorem 3.33 holds true for A ∈ (L∞(D))
3×3

and
n ∈ L∞(D) but in this case one has to assume that either =(n) > 0 or =

(
ξ̄ ·Aξ

)
<

0 almost everywhere in D

In view of Theorem 3.33 and Remark 3.34 we now assume that both A and
n are real valued, and show that under appropriate assumptions the transmission
eigenvalues k ∈ C form at most a discrete set with +∞ as the only accumulation
point. To this end, it suffices to show that there exists a κ ∈ C which is not
a transmission eigenvalue. Indeed, let us define the operator Lk from X (D) into

L2(D)× L2(D)×H 1
2 (∂D)×H− 1

2 (∂D) by

Lk(w, v) =

(
∇·A∇w + k2nw,∆v + k2v, (w − v)|∂D ,

(
∂w

∂ν
− ∂v

∂ν

)
|∂D

)
where X (D) is defined by (3.106). Obviously the family of operators Lk depends
analytically on k ∈ C. If we can show that Lκ is injective for some κ ∈ C (i.e. this
κ is not a transmission eigenvalue), then, thanks to Theorem 3.32, L−1

κ exists and
is bounded. Then, writing

Lk = Lκ
(
I − L−1

κ (Lκ − Lk)
)
,

the discreteness of transmission eigenvalues follows form the fact that

Lκ − Lk =
(
(κ2 − k2)nw, (κ2 − k2)v, 0, 0

)
is compact. The approach to show that Lκ is injective for some κ ∈ C depends
fundamentally on whether n ≡ 1 or n 6≡ 1. Hence in the following we distinguish
between these two cases.

Discreteness of Transmission Eigenvalues for n ≡ 1. Here we assume that
=(A) = 0 and either a∗ > 1 or 0 < a∗ < 1. The transmission eigenvalue problem
for n ≡ 1 reads 

∇ ·A∇w + k2w = 0 in D,

∆v + k2v = 0 in D,

w = v on ∂D,

∂w

∂νA
=
∂v

∂ν
on ∂D.

(3.108)
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with v ∈ H1(D) and w ∈ H1(D). The structure of this problem resembles the
problem studied in Section 3.1.1. The main idea is to make an appropriate sub-
stitution and rewrite it as a transmission eigenvalue problem with contrast in the
lower order terms and hence use a fourth order formulation as in Section 3.1.1. This
approach was first introduced in [20] and later used in [16] and [29]. To this end,
let w ∈ H1(D) and v ∈ H1(D) satisfy (3.108) and make the substitution

w = A∇w ∈ L2(D)3, and v = ∇v ∈ L2(D)3.

Since from (3.97) A−1 exists and is bounded, we have that

∇w = A−1w.

Taking the gradient of both equations in (3.108), we obtain that w and v satisfy

∇(∇ ·w) + k2A−1w = 0 (3.109)

and

∇(∇ · v) + k2v = 0, (3.110)

respectively, in D. Obviously the second boundary condition in (3.108) implies that

ν · v = ν ·w on ∂D, (3.111)

whereas the equations in (3.108) yield

−k2w = ∇ ·w and − k2v = ∇ · v

which together with the first boundary condition in (3.108) gives

∇ ·w = ∇ · v on ∂D. (3.112)

We can now formulate the interior transmission eigenvalue problem (3.108) in terms
of w and v. In addition to the usual energy spaces H1(D) and H1

0 (D), we introduce
the Sobolev spaces

H(div, D) : =
{
u ∈ L2(D)2 : ∇ · u ∈ L2(D)

}
H0(div, D) : = {u ∈ H(∇·, D) : ν · u = 0 on ∂D}

and

H(D) : =
{
u ∈ H(div, D) : ∇ · u ∈ H1(D)

}
H0(D) : =

{
u ∈ H0(div, D) : ∇ · u ∈ H1

0 (D)
}

(3.113)

equipped with the scalar product

(u,v)H(D) := (u,v)L2(D) + (∇ · u,∇ · v)H1(D) .
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Letting N := A−1, in terms of new vector valued functions w and v the transmission
eigenvalue problem (3.108) can be written as the equivalent problem

∇(∇ ·w) + k2Nw = 0 in D,

∇(∇ · v) + k2v = 0 in D,

ν ·w = ν · v on ∂D,

∇ ·w = ∇ · v on ∂D

(3.114)

with w ∈ (L2(D))2, v ∈ (L2(D))2 such that w − v ∈ H0(D).
Following Section 3.1.1, we can now write (3.114) as an equivalent eigenvalue prob-
lem for w − v ∈ H0(D) satisfying the forth order equation(

∇∇ ·+k2N
)

(N − I)−1
(
∇∇ · u + k2u

)
= 0 in D (3.115)

which in the variational form reads: Find u ∈ H0(D) such that∫
D

(N − I)−1
(
∇∇ · u + k2u

)
·
(
∇∇ · u′ + k2Nu′

)
dx = 0 (3.116)

for all u′ ∈ H0(D). The variational equation (3.116) can in turn be written as an
operator equation

Aku− k2Bu = 0 or Ãku− k2Bu = 0 for u ∈ H0(D) (3.117)

where the bounded linear operators Ak : H0(D) → H0(D), Ãk : H0(D) → H0(D)
and B : H0(D)→ H0(D) are defined by means of the Riesz representation theorem

(Aku,u′)H0(D) = Ak(u,u′) and (Ãku,u′)H0(D) = Ãk(u,u′) (3.118)

and
(Bu,u′)H0(D) = B(u,u′) (3.119)

with the sesquilinear forms Ak, Ãk and B given by

Ak(u,u′) :=
(
(N − I)−1

(
∇∇ · u + k2u

)
,
(
∇∇ · u′ + k2u′

))
D

+ k4 (u,u′)D ,

Ãk(u,v) :=
(
N(I −N)−1

(
∇∇ · u + k2u

)
,
(
∇∇ · u′ + k2u′

))
D

+ (∇∇ · u,∇∇ · v)D

and
B(u,v) := (∇ · u,∇ · v)D

respectively, where (·, ·)D denotes the L2(D)-inner product.
In our discussion we must distinguish between the two cases a∗ > 1 and

0 < a∗ < 1 (note that a∗ and a∗ are the infimum in D of the smallest eigenvalue
of A and the supremum in D of the largest eigenvalue of A, respectively). The
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assumption that 0 < a∗ ≤ a∗ < 1 implies that ξ · (N − I)−1ξ ≥ α|ξ|2 for all ξ ∈ R3

a.e. in D and some constant α > 0 since

inf
ξ ∈ C3

‖ξ‖ = 1

ξ̄ · (A−1 − I)−1 ξ =
1

supξ ξ̄ ·A−1 ξ − 1
≥ 1

1/a∗ − 1
= α

where

α :=
a∗

1− a∗
> 0. (3.120)

On the other hand, the assumption that 1 < a∗ ≤ a∗ < ∞ implies that ξ · N(I −
N)−1ξ ≥ α|ξ|2 for all ξ ∈ R3 a.e. in D and some constant α > 0. Indeed, noting
that A−1(I −A−1)−1 = (I −A−1)−1 − I we have

inf
ξ ∈ C3

‖ξ‖ = 1

ξ̄ ·A−1(I −A−1)−1 ξ = inf
ξ
ξ̄ · (I −A−1)−1 ξ − 1

=
1

1− supξ ξ̄ ·A−1 ξ
− 1 ≥ 1

1− 1/a∗
− 1 = α

where

α :=
1

a∗ − 1
> 0. (3.121)

Theorem 3.35. Let λ1(D) be the first eigenvalue of −∆ on D. Then

1. for 0 < a∗ < 1, real wave numbers k > 0 such that k2 < a∗λ1(D) are not
transmission eigenvalues,

2. for a∗ > 1, real wave numbers k > 0 such that k2 < λ1(D) are not transmis-
sion eigenvalues.

Proof. First we recall that for ∇ · u ∈ H1
0 (D), using the Poincaré inequality, we

have that

‖∇ · u‖2L2(D) ≤
1

λ1(D)
‖∇∇ · u‖2L2(D) (3.122)

where λ1(D) is the first Dirichlet eigenvalue of −∆ on D.
Now assume that a∗ < 1 which from the above implies ξ · (N(x)− I)−1ξ ≥ α|ξ|2 for
all ξ ∈ R3 and a.e. x ∈ D with α given by (3.120). Then we have that

Ak(u,u) ≥ α‖∇∇ · u + k2u‖2L2(D) + k4‖u‖2L2(D).

Setting X = ‖∇∇ · u‖L2(D) and Y = k2‖u‖L2(D) we have that

‖∇∇ · u + k2u‖2L2(D) ≥ X
2 − 2XY + Y 2

and therefore

Ak(u,u) ≥ αX2 − 2αXY + (α+ 1)Y 2. (3.123)
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From the identity,

αX2 − 2αXY + (α+ 1)Y 2 = ε
(
Y − α

ε
X
)2

+

(
α− α2

ε

)
X2 + (1 + α− ε)Y 2

for α < ε < α+ 1 and (3.122) we have that

Ak(u,u)− k2B(u,u) ≥
(
α− α2

ε

)
‖∇∇ · u‖2L2(D) + (1 + α− ε)k2‖u‖2L2(D)

− k2 1

λ1(D)
‖∇∇ · u‖2L2(D).

Therefore, if k2 <
(
α− α2/ε

)
λ1(D) for every α < ε < α+1, then Ak(·, ·)−k2B(·, ·)

is coercive and hence Ak − k2B is invertible. In particular taking ε arbitrarily close
to α + 1 we have that if k2 < α

1+αλ1(D) = a∗λ1(D) then k is not a transmission
eigenvalue, which proves the first part.
Next, let a∗ > 0 which from the above implies ξ ·N(x)(I −N(x))−1ξ ≥ α|ξ|2 for all
ξ ∈ R3 a.e. for x ∈ D with α given by (3.121). Then exactly the same way as for
the first part we obtain

Ãk(u,u)− k2B(u,u) ≥ (1 + α− ε)‖∇∇ · u‖2L2(D) +

(
α− α2

ε

)
k2‖u‖2L2(D)

− k2 1

λ1(D)
‖∇∇ · u‖2L2(D).

In particular, Ãk(·, ·)−k2B(·, ·) is coercive as long as k2 < (1 +α− ε)λ1(D). Hence
by taking ε > 0 arbitrarily close to α we have that, for k2 < λ1(D), Ãk − k2B is
invertible which proves the second part.

Combining Theorem 3.35 with the discussion right below Remark 3.34 we can
state the following result.

Theorem 3.36. Assume that n ≡ 1, =(A) = 0 and either a∗ > 1 or 0 < a∗ < 1.
Then the transmission eigenvalues form a discrete (possibly empty) set in C with
+∞ as the only passible accumulation point.

Discreteness of Transmission Eigenvalues for n 6≡ 1. Again from Theorem
3.33 and Remark 3.34 we can assume that =(A) = 0 and =(n) = 0, and either
a∗ > 1 or 0 < a∗ < 1 and consider the transmission eigenvalue problem (3.96).
While we have assumed that the contrast A− I does not change sign in D, our goal
here is to prove the discreteness of transmission eigenvalues under less restrictive
assumptions on n− 1, more specifically allowing n− 1 to change sign in D. To this
end, we see that a natural variational formulation equivalent to the transmission
eigenvalue problem is as follows: find (w, v) ∈ H(D) such that∫

D

A∇w · ∇w′ dx−
∫
D

∇v · ∇v′ dx− k2

∫
D

nww′ dx+ k2

∫
D

v v′ dx = 0 (3.124)
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for all (w′, v′) ∈ H(D) where H(D) denotes the Sobolev space

H(D) :=
{

(w, v) ∈ H1(D)×H1(D) : w − v ∈ H1
0 (D)

}
, (3.125)

equipped with the H1(D) cartesian product norm. To this end, taking w′ = v′ = 1
in (3.124), we first notice that the solution (w, v) of (3.96) satisfies

k2

∫
D

(nw − v)dx = 0.

This suggests to consider (3.124) in a subspace of H(D) defined by

Y(D) :=

(w, v) ∈ H(D) such that

∫
D

(nw − v)dx = 0

 .

Now suppose
∫
D

(n − 1)dx 6= 0. Arguing by contradiction, one can in standard
manner prove the existence of a Poincaré constant CP > 0 (which depends only on
D and n) such that

‖w‖2D + ‖v‖2D ≤ CP (‖∇w‖2D + ‖∇v‖2D), ∀(w, v) ∈ Y(D). (3.126)

We observe that k 6= 0 is a transmission eigenvalue if and only if there exists a non
trivial element (v, w) ∈ Y(D) such that

ak((v, w), (v′, w′)) = 0 for all (v′, w′) ∈ Y(D),

where the sesquilinear from ak(·, ·) : Y(D)× Y(D)→ C is defined by

ak((v, w), (v′, w′)) :=

∫
D

A∇w ·∇w′ dx−
∫
D

∇v ·∇v′ dx−k2

∫
D

nww′ dx+k2

∫
D

v v′ dx.

If Ak : Y(D)→ Y(D) is the bounded linear operator defined by means of the Riesz
representation theorem by

(Ak(v, w), (v′, w′))Y(D) := ak((v, w), (v′, w′)),

our goal is to find a k ∈ C for which the operator Ak is invertible. To this end, we
observe that ak(·, ·) is not coercive for any k ∈ C due to the different signs in front
of the gradient terms, but employing the argument in [12] and [36], we show in the
following that ak(·, ·) is so-called T -coercive for some particular values of k and this
suffices to show that Ak is invertible for those k. The T -coercivity property can be
interpreted as a form of the Babuśka-Brezzi inf-sup conditions. More specifically,
the idea behind it is to replace ak(·, ·) by aTk (·, ·) defined by

aTk ((w, v), (w′, v′)) := ak((w, v),T(w′, v′)), (3.127)

for all ((w, v), (w′, v′)) ∈ Y(D)× Y(D) with the operator T : Y(D)→ Y(D) being
an isomorphism. If we can choose the isomorphism T such that aT (·, ·) is coercive,
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then using the Lax-Milgram theorem and the fact that T is an isomorphism we can
deduce that the operator Ak : Y(D)→ Y(D) is invertible.

To present the idea how to apply the T -coercivity approach, we focus on the case
when 0 < a∗ < 1. Letting

λ(v) := 2

∫
D

(n− 1)v dx∫
D

(n− 1) dx

we consider the mapping T : Y(D)→ Y(D) defined by

T : (w, v) 7→ (w − 2v + λ(v),−v + λ(v)).

Note that λ(λ(v)) = 2λ(v) which implies that T2 = I and hence T is an isomor-
phism in Y(D). Then for all (w, v) ∈ Y(D) we have that∣∣aTk ((w, v), (w, v))

∣∣
= |(A∇w,∇w)D + (∇v,∇v)D − 2(A∇w,∇v)D

− k2 ((nw,w)D + (v, v)D − 2(nw, v)D)
∣∣

≥ (A∇w,∇w)D + (∇v,∇v)D − 2 |(A∇w,∇v)D|
− |k|2 ((nw,w)D + (v, v)D + 2 |(nw, v)D|)
≥ (1−

√
a∗) ((A∇w,∇w)D + (∇v,∇v)D)

− |k|2
(

1 +
√
n∗)((nw,w)D + (v, v)D

)
. (3.128)

If we choose k ∈ C such that

|k|2 < a∗(1−
√
a∗)

CP max(n∗, 1) (1 +
√
n∗)

(3.129)

then aTk and hence Ak is invertible in Y(D), in other words all k ∈ C satisfying
(3.129) are not transmission eigenvalues.

The case a∗ > 1 can be handled in a similar way by using the isomorphism
T : Y(D)→ Y(D) defined by

T : (w, v) 7→ (w − λ(w),−v + 2w − λ(w)).

In particular in this case all k ∈ C such that

|k|2 <
(1− 1/

√
a∗))

CP max(n∗, 1) (1 + 1/
√
n∗)

(3.130)

are not transmission eigenvalues.
Combining the above analysis with the discussion right below Remark 3.34 we

can prove the following result.
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Theorem 3.37. Assume that either 0 < a∗ < 1 or a∗ > 1, and
∫
D

(n− 1)dx 6= 0.
Then the transmission eigenvalues form a discrete (possibly empty) set in C with
+∞ as the only passible accumulation point.

Summarizing, in the case when <(A) − I is bounded away from zero and
does not change sign in D, and either =(A) < 0 or =(n) > 0 in a subset of D,
then the interior transmission problem (3.95) has a unique solution which depends
continuously on the data. Furthermore, if =(A) = 0 and =(n) = 0 in D, and
A− I is bounded away from zero and does not change sign in D, then the interior
transmission problem (3.95) has a unique solution depending continuously on the
data except for a possibly discreet set of wave numbers k ∈ C with +∞ the only
possible accumulation point, referred to as transmission eigenvalues.

3.2.2 The Case of Sign Changing Contrast in A

We return to the solvability question of (3.95) but here we allow for <(A) − I to
change sign inside D. The T -coercivity approach used to prove Theorem 3.37 can be
applied to study the interior transmission problem in this case. To this end, without
loss of generality, we can take f = 0 in (3.95). Otherwise from the trace theorem
it is possible to find v0 ∈ H1(D) supported inside D such that v0|∂D = f with
‖f‖

H
1
2 (∂D)

≤ ‖v0‖H1(D) and then w and v − v0 satisfies the interior transmission

problem with f := 0, h := h+∂v0/∂ν and ` := `2 +∆v0 +k2v0. Similarly to (3.124),
the interior transmission problem (3.95) is equivalently formulated as follows: find
(w, v) ∈ H(D) such that∫

D

A∇w · ∇w′ dx−
∫
D

∇v · ∇v′ dx− k2

∫
D

nww′ dx+ k2

∫
D

v v′ dx

=

∫
∂D

hw′ ds−
∫
D

`1w′ dx−
∫
D

`2v′ dx, for all (w′, v′) ∈ H(D), (3.131)

where H(D) is defined by (3.124). Let us define the bounded sesquilinear forms
ak(·, ·), a(·, ·), b(·, ·) : H(D)×H(D)→ C by

ak((w, v), (w′, v′)) :=

∫
D

A∇w ·∇w′ dx−
∫
D

∇v ·∇v′ dx−k2

∫
D

nww′ dx+k2

∫
D

v v′ dx

a((w, v), (w′, v′)) :=

∫
D

A∇w ·∇w′ dx−
∫
D

∇v ·∇v′ dx+κ2

∫
D

γww′ dx−κ2

∫
D

v v′ dx

for some constants κ > 0 and γ > 0 (to become precise later) and

b((w, v), (w′, v′)) := (κ2 − k2)

∫
D

(γ − n)ww′ dx− (κ2 − k2)

∫
D

v v′ dx,
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and the bounded antilinear functional L : H(D)→ C by

L(w′, v′) :=

∫
∂D

hw′ ds−
∫
D

`1w′ dx−
∫
D

`2v′ dx.

Letting A : H(D)→ H(D) and B : H(D)→ H(D) be the bounded linear operators
defined by means of the Riesz representation theorem

(Ak(w, v), (w′, v′))H(D) = ak((w, v), (w′, v′)), (3.132)

(A(w, v), (w′, v′))H(D) = a((w, v), (w′, v′)), (3.133)

(B(w, v), (w′, v′))H(D) = b((w, v), (w′, v′)), (3.134)

respectively, and ` ∈ H(D) the Riesz representative of L defined by

(`, (w′, v′))H(D) = L(w′, v′),

then the interior transmission problem becomes find (w, v) ∈ H(D) satisfying

Ak(w, v) := (A + B)(w, v) = `.

Thanks to the compact embedding of H1(D) in L2(D), B is a compact operator
since obviously ‖B(w, v)‖H(D) is bounded by ‖(w, v)‖L2(D)×L2(D). Hence it suffices
to show that A is invertible for some κ > 0 and γ > 0 in order to conclude that
A + B is a Fredholm operator of index zero, in which case the interior transmission
problem (3.95) has a unique solution provided k is not transmission eigenvalue
(see Definition 3.28). To prove the invertibility of A we employ the T -coercivity
argument as discussed above in Theorem 3.37.

At this point we need to assume that there exists a δ-neighborhood N of the
boundary ∂D in D i.e.

N := {x ∈ D : dist(x, ∂D) < δ}

such that =(A) = 0 in N and either 0 < a? < 1 or a? > 1 where

a? := inf
x∈N

inf
ξ ∈ R3

|ξ| = 1

ξ ·A(x)ξ > 0,

a? := sup
x∈N

sup
ξ ∈ R3

|ξ| = 1

ξ ·A(x)ξ <∞.
(3.135)

Note that the above requirements hold only in the boundary neighborhood N
whereas in D \N there are no assumptions on the contrast A− I and =(A) besides
the physical assumptions stated at the beginning of Sections 3.2.

Let us start with the case when 0 < a∗ < 1 and choose 0 < γ < 1. We in-
troduce χ ∈ C∞(D) a cut off function such that 0 ≤ χ ≤ 1 is supported in N
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and equals to one in a neighborhood of the boundary and define the isomorphism
T : H(D)→ H(D) by

T : (w, v) 7→ (w − 2χv,−v).

(Note again that T is an isomorphism since T2 = I). We then have that for all
(w, v) ∈ H(D)∣∣aT ((w, v), (w, v))

∣∣ = |(A∇w,∇w)D + (∇v,∇v)D − 2(A∇w,∇(χv))D

+ κ2 (γ(w,w)D + (v, v)D − 2γ(w,χv)D)
∣∣ . (3.136)

Using Young’s inequality, we can write

2 |(A∇w,∇(χv))D| ≤ 2 |(χA∇w,∇v)N |+ 2 |(A∇w,∇(χ)v)N |
≤ η(A∇w,∇w)N + η−1(A∇v,∇v)N (3.137)

+ α(A∇w,∇w)N + α−1(A∇(χ)v,∇(χ)v)N

and

2 |(γw, χv)D| ≤ β(γw,w)N + β−1(γv, v)N (3.138)

for arbitrary constants α > 0, β > 0 and η > 0. Substituting (3.137) and (3.138)
into (3.136), we now obtain∣∣aT ((w, v), (w, v))

∣∣ ≥ (A∇w,∇w)D\N + (∇v,∇v)D\N

+κ2
(
γ(w,w)D\N + (v, v)D\N

)
(3.139)

+((1− η − α)A∇w,∇w)N + ((I − η−1A)∇v,∇v)N

+κ2((1− β)γw,w)N + ((κ2(1− β−1γ)− sup
N
|∇χ|2 a?α−1)v, v)N .

Taking η, α and β such that a? < η < 1, γ < β < 1 and 0 < α < 1− η, and κ > 0
large enough we obtain the coercivity of aT (·, ·), which implies that A is invertible.

Exactly in the same way we can treat the case when a? > 1. More specifically
we chose γ > 1, define the isomorphism T : H(D)→ H(D) by

T : (w, v) 7→ (w,−v + 2χw),

and do exactly the same calculations as for the case of 0 < a? < 1 to obtain the
T -coercivity of a(·, ·) and consequently the invertibility of A.

Thus we have proven the following result.

Theorem 3.38. Assume that there exists a neighborhood N of the boundary ∂D
where =(A) = 0 and either 0 < a? < 1 or a? > 1 (see (3.135). Then the interior
transmission problem (3.95) satisfies the Fredholm alternative, i.e. there exists a
unique solution depending continuously on the data provided k is not a transmission
eigenvalue.
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Remark 3.39. In view of the result of Theorem 3.34, the above theorem implies
the well-posedeness of the interior transmission problem (3.95) provided that either
=(A) < 0 in a subregion of D \ N or =(n) > 0 is a subregion of D.

Remark 3.40. The assumption that A is real in some neighborhood of ∂D in
Theorem 3.39 can be relaxed. In particular, by taking the real part in (3.139)
the estimates can be carried through if either sup

N
ξ · (−=(A))ξ < inf

N
ξ · <(A)ξ or

0 < sup
N
ξ · <(A)ξ < 1, for some neighborhood N of the boundary ∂D.

We conclude this section by proving a discreteness result concerning transmis-
sion eigenvalues in the case when =(A) = =(n) ≡ 0. To this end let us introduce

n? := inf
x∈N

n(x) > 0 and n? := sup
x∈N

n(x) <∞, (3.140)

Theorem 3.41. Assume that either 0 < a? < 1 and 0 < n? < 1, or a? > 1 and
n? > 1. Then the set of transmission eigenvalues k ∈ C is discrete with +∞ as the
only possible accumulation point.

Proof. First we notice that Aiκ for κ > 0 is invertible. Indeed, Aiκ defined by
(3.133) coincides with A defined by (3.134) where γ is replaced by n(x), and hence
the proof of T -coercivity goes though in the same way as in (3.139) thanks to
the assumptions on n(x). Then the result of the theorem follows from the fact
that Ak − Aiκ is compact and an application of the analytic Fredholm theory (see
Theorem 8.26 in [42]). Note that the mapping k 7→ Ak is analytic in k ∈ C.

We end our discussion in this section by remarking that, as indicated earlier
in the isotropic media case, some sign condition on the contrast A − I is needed
to prove the Fredholm property of the interior transmission problem as well as the
discreteness of the set of transmission eigenvalues. This is also the case in a series
of papers [83], [85], [84] and [86] by Lakshtanov and Vainberg where an alternative
approach is introduced to investigating the transmission eigenvalue problem for
anisotropic media as well as initiating a study of the counting function for trans-
mission eigenvalues. Although it is not yet understood whether the assumption on
the contrast A− I not changing sign in a neighborhood of the boundary is optimal,
there is indication that it can not be relaxed too much. More specifically, in [10]
it is shown that if the contrast A − I changes sign up to the boundary then the
interior transmission problem may loose its Fredholm property. The extension to
Maxwell’s equations of all the techniques discussed in this chapter can be found in
[11], [31], and [51].
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Chapter 4

The Existence of
Transmission Eigenvalues

In the previous chapter we have only considered the solvability of the interior trans-
mission problem and have provided sufficient conditions on the material properties
that guarantee that the transmission eigenvalues form at most a discrete set. The
study of these questions was mainly motivated by the application of sampling meth-
ods introduced in chapter 2. In particular, knowing that the transmission eigenval-
ues form at most a discrete set was deemed to be sufficient since the transmission
eigenvalues were something to be avoided in the context of these reconstruction
techniques. Our attention from now on will be to obtain qualitative information on
the material properties of the scattering media using real transmission eigenvalues
since, as we show in Section 4.4, they can be determined from the far field data.
Thus the existence of transmission eigenvalues as well as the derivation of inequal-
ities connecting transmission eigenvalues and the constitutive material properties
become central questions and this chapter is dedicated to their investigation. We
remind the reader that the transmission eigenvalue problem is non self-adjoint and
nonlinear. Hence questions related to the existence of transmission eigenvalues or
the structure of associated eigenvectors appeal for non standard approaches.

Our discussion in this chapter will be mainly limited to the approach intro-
duced in [102] and refined in [27] which, under appropriate assumptions on the
contrast in the medium, transforms the transmission eigenvalue problem to a para-
metric eigenvalue problem for an auxiliary self-adjoint operator and this provides a
structure to obtain Faber-Krahn type inequalities and monotonicity properties for
the real transmission eigenvalues. The abstract framework is presented in Section
4.1.

We proceed in Section 4.2 with the application of this theory to prove the
existence of real transmission eigenvalues for isotropic media under fixed sign for
the contrast. We rely on the variational framework introduced in the previous
chapter.

We show in section 4.2.1 how the analysis can also be adapted to include the
case of media with voids discussed in Section 3.1.2. The main difficulty here is how
to cope with dependence of the variational space on k. The reader can skip this

133
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section in a first reading.
One of the interesting points of the analytical framework of Section 4.1 is that

it allows the derivation of inequalities on real transmission eigenvalues that may be
exploited in the inverse medium problem. We present these inequalities in Section
4.2.2 and complement our discussion with some results from the literature on free
zones for complex transmission eigenvalues.

When the index of refraction changes sign inside D, our analytical framework
does not apply any more. As an opening for possible other strategies to prove
existence of transmission eigenvalues, we outline at the end of the Section 4.2.2 the
approach proposed in [108] that allows us to obtain information on the spectrum in
the complex plane.

The study of the transmission eigenvalue problem in the case of absorbing
media and background has been initiated in [21] (see also [53]) and we present some
of these results in Section 4.2.3

We address in Section 4.3.2 the general case of anisotropic media. The exis-
tence of transmission eigenvalues for this case is more delicate since the nonlinear
eigenvalue problem is no longer quadratic. We follow here the approach in [32] for
fixed contrast sign. Similarly to the case of isotropic media, alternative approaches
have been introduced to investigate the spectral properties of the anisotropic trans-
mission eigenvalue problem under the assumptions that the contrast has one sign
only in a neighborhood of the boundary (see for instance [83] and [86]). These
techniques are not presented here.

We end this chapter by Section 4.4 that discusses how real transmission eigen-
values can be determined from the far field data. This section can be read inde-
pendently from other sections in this chapter but it heavily relies on the material
of Chapter 2.

4.1 Analytical Tools
In this section we develop the general analytical framework that will be the theoreti-
cal foundation of our method to prove the existence of real transmission eigenvalues.

Let X be a an infinite dimensional separable Hilbert space with scalar product
(·, ·) and associated norm ‖ · ‖, and A be a bounded, positive definite and self-
adjoint operator on X. Under these assumptions A±1/2 are well defined (c.f. [107]).
In particular, A±1/2 are also bounded, positive definite and self-adjoint operators,
A−1/2A1/2 = I and A1/2A1/2 = A. We shall consider the spectral decomposition
of the operator A with respect to self-adjoint non negative compact operators. The
next two theorems [29] indicate the main properties of such a decomposition.

Definition 4.1. A bounded linear operator A on a Hilbert space X is said to be
non negative if (Au, u) ≥ 0 for every u ∈ X. A is said to be coercive(or positive
definite) if (Au, u) ≥ β‖u‖2 for some positive constant β.

In the following N(B) denotes the null space of the operator B.
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Theorem 4.2. Let A be a bounded, self-adjoint and coercive operator on a Hilbert
space and let B be a non negative, self-adjoint and compact linear operator with null
space N(B). There exists an increasing sequence of positive real numbers (λj)j≥1

and a sequence (uj)j≥1 of elements of X satisfying

Auj = λjBuj

and
(Buj , u`) = δj`

such that each u ∈ [A(N(B))]⊥ can be expanded in a series

u =

∞∑
j=1

γjuj .

If N(B)⊥ has infinite dimension then λj → +∞ as j →∞.

Proof. This theorem is a direct consequence of the Hilbert-Schmidt theorem ap-
plied to the non negative self-adjoint compact operator B̃ = A−1/2BA−1/2. Let
(µj)j≥1 be the decreasing sequence of positive eigenvalues and (vj)j≥1 the cor-

responding eigenfunctions associated with B̃ that form an orthonormal basis for
N(B̃)⊥. Note that zero is the only possible accumulation point for the sequence
(µj). Straightforward calculations show that

λj = 1/µj and uj =
√
λk A−1/2vj

satisfy
Auj = λjBuj .

Obviously if w ∈ A (N(B)) then w = Az for some z ∈ N(B) and hence

(uj , w) = λj(A−1Buj , w) = λj(A−1Buj ,Az) = λj(Buj , z) = 0,

which means that uj ∈ [A (N(B))]
⊥

. Furthermore, any u ∈ [A (N(B))]
⊥

can be

written as u =
∑
j γjuj =

∑
j γj
√
λjA−1/2vj since A1/2u ∈

[
N(A−1/2BA−1/2)

]⊥
.

This ends the proof of the theorem.

Theorem 4.3. Let A, B and (λj)j≥1 be as in Theorem 4.2 and define the Rayleigh
quotient as

R(u) =
(Au, u)

(Bu, u)

for u /∈ N(B), where (· , ·) is the inner product on X. Then the following min-max
principles hold:

λj = min
W∈UA

j

(
max

u∈W\{0}
R(u)

)
= max
W∈UA

j−1

(
min

u∈(A(W+N(B)))⊥\{0}
R(u)

)
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where UA
j denotes the set of all j-dimensional subspaces of [A (N(B))]

⊥
.

Proof. The proof follows the classical proof of the Courant-Fischer min-max prin-
ciple [88] and is given here for the reader’s convenience. It is based on the fact that
if u ∈ [A(N(B))]⊥ then from Theorem 4.2 we can write u =

∑
j γjuj for some coef-

ficients γj , where the uj are defined in Theorem 4.2 (note that the uj are orthogonal
with respect to the inner product induced by the self-adjoint invertible operator A).
Then using the facts that (Buj , u`) = δj` and Auj = λjBuj it is easy to see that

R(u) =
1∑
j |γj |2

∑
j

λj |γj |2.

Therefore, if Wj ∈ UA
j denotes the space generated by {u1, . . . , uj} we have that

λj = max
u∈Wj\{0}

R(u) = min
u∈[A(Wj−1+N(B))]⊥\{0}

R(u).

Next let W be any element of UA
j . Since W has dimension j and W ⊂ [A(N(B))]⊥,

then W ∩ [AWj−1 + A(N(B))]⊥ 6= {0}. Therefore

max
u∈W\{0}

R(u) ≥ min
u∈W∩[A(Wj−1+N(B))]⊥\{0}

R(u)

≥ min
u∈[A(Wj−1+N(B))]⊥\{0}

R(u) = λj

which proves the first equality of the theorem. Similarly, if W has dimension j − 1
and W ⊂ [A(N(B))]⊥, then Wj ∩ (AW )⊥ 6= {0}. Therefore

min
u∈[A(W+N(B))]⊥\{0}

R(u) ≤ max
u∈Wj∩(AW )⊥\{0}

R(u) ≤ max
u∈Wj\{0}

R(u) = λj

which proves the second equality of the theorem.

The following corollary shows that it is possible to remove the dependence on
A in the choice of the subspaces in the min-max principle for the eigenvalues λj .

Corollary 4.4. Let A, B, (λj)j≥1 and R be as in Theorem 4.3. Then

λj = min
W⊂Uj

(
max

u∈W\{0}
R(u)

)
(4.1)

where Uj denotes the set of all j-dimensional subspaces W of X such that
W ∩N(B) = {0}.

Proof. From Theorem 4.3 and the fact that UA
j ⊂ Uj it suffices to prove that

λj ≤ min
W⊂Uj

(
max

u∈W\{0}
R(u)

)
.

Let W ∈ Uj and let v1, v2, . . . , vk be a basis for W . Each vector vj can be decom-
posed into a sum v0

j + ṽj where ṽj ∈ [A(N(B))]⊥ and v0
j ∈ N(B) (which is the
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orthogonal decomposition with respect to the inner product induced by A). Since
W ∩N(B) = {0}, the space W̃ generated by ṽ1, ṽ2, . . . , ṽj has dimension j. More-

over, W̃ ⊂ [A(N(B))]⊥. Now let ũ ∈ W̃ . Obviously ũ = u−u0 for some u ∈W and
u0 ∈ N(B). Since Bu0 = 0 and (Au0, ũ) = 0 we have that

R(u) =
(Aũ, ũ) + (Au0, u0)

(Bũ, ũ)
= R(ũ) +

(Au0, u0)

(Bũ, ũ)
.

Consequently, since A is positive definite and B is non negative, we obtain

R(ũ) ≤ R(u) ≤ max
u∈W\{0}

R(u).

Finally, taking the maximum with respect to ũ ∈ W̃ ⊂ [A(N(B))]⊥ in the above
inequality, we obtain from Theorem 4.3 that

λj ≤ max
u∈W\{0}

R(u),

which completes the proof after taking the minimum over all W ⊂ Uj .

The following theorem provides the theoretical basis of our analysis of the
existence of transmission eigenvalues. This theorem is a simple consequence of
Theorem 4.3 and Corollary 4.4.

Theorem 4.5. Let τ 7−→ Aτ be a continuous mapping from ]0,∞[ to the set of
bounded, self-adjoint and coercive operators on the Hilbert space X and let B be a
self-adjoint and non negative compact bounded linear operator on X. We assume
that there exist two positive constants τ0 > 0 and τ1 > 0 such that

1. Aτ0 − τ0B is positive on X,

2. Aτ1 − τ1B is non positive on a `-dimensional subspace Wj of X.

Then each of the equations λj(τ) = τ for j = 1, . . . , `, has at least one solution in
[τ0, τ1] where λj(τ) is the jth eigenvalue (counting multiplicity) of Aτ with respect
to B, i.e. N(Aτ − λj(τ)B) 6= {0}.

Proof. First we can deduce from (4.1) that for all j ≥ 1, λj(τ) is a continuous
function of τ . Assumption 1. shows that λj(τ0) > τ0 for all j ≥ 1. Assumption 2.
implies in particular that Wj ∩ N(B) = {0}. Hence, another application of (4.1)
implies that λj(τ1) ≤ τ1 for 1 ≤ j ≤ `. The desired result is now obtained by
applying the intermediate value theorem.

We now explicitly state a particular case of Theorem 4.5, which is the version
used in [102] and is needed here to analyze the transmission eigenvalue problem
for anisotropic media. Let X be an infinite dimensional separable Hilbert space
and let Tk : X → X be a family of compact symmetric bounded linear operators.
Furthermore, assume that the mapping k 7−→ Tk from ]0, +∞[ to the space of



“CCH-book”
2016/4/18
page 138i

i
i

i

i
i

i
i

138 Chapter 4. The Existence of Transmission Eigenvalues

compact symmetric bounded linear operators is continuous. The Hilbert-Schmidt
theorem [107] ensures the existence of a sequence of real eigenvalues (µj(k))j≥1 of
the operator Tk for any fixed k > 0, accumulating to 0 where positive eigenvalues are
ordered in the decreasing order and negative eigenvalues ordered in the increasing
order. From the Courant-Fischer max-min principle (see [88] page 319)

µj(k) = min
W∈UA

j

max
u∈W\{0}

(Tku, u)X
‖u‖X

= max
W∈UA

j−1

min
u∈W⊥\{0}

(Tku, u)X
‖u‖X

(4.2)

for positive eigenvalues (with a similar expression for negative eigenvalues since
max-min applied to −T gives min-max) implies that µj(k) are continuous function
of k. The question of interest is to find k > 0 for which the kernel of I + Tk is
nontrivial, where I is the identity operator, in other words to find the zeros of

µj(k) + 1 = 0, j ≥ 1.

Theorem 4.6. Assume that

1. there is a κ0 such that I + Tκ0
is positive on X.

2. there is a κ1 > κ0 such that I+Tκ1
is nonpositive on a p-dimensional subspace

Wk of X.

Then the equation µj(k)+1 = 0 has p solutions in [κ0, κ1] counting their multiplic-
ity.

Proof. If I + Tκ0
is positive then from (4.2) µj(κ0) + 1 > 0. Now Assumption

2. and another application of (4.2) implies that µj(κ1) + 1 ≤ 0 for j = 1 . . . p,
counting the multiplicity. Since µj(k) + 1 is a continuous function of k, the mean
value theorem implies that for each j, 1 ≤ j ≤ p, there is a k ∈ [κ0, κ1] such that
µj(k) + 1 = 0.

4.2 Existence of Transmission Eigenvalues for
Isotropic Media

In this section we are concerned with proving the existence of real transmission
eigenvalues, i.e. the values of k > 0 for which

∆w + k2n(x)w = 0 and ∆v + k2v = 0 in D,

w = v and
∂w

∂ν
=
∂v

∂ν
on ∂D,

has non-trivial solutions w ∈ L2(D) and v ∈ L2(D), such that w − v ∈ H2(D),
which are referred to as the corresponding eigenfunctions.

As already mentioned the transmission eigenvalue problem is non self-adjoint
and in Chapter 5 it is shown that for special cases of spherically stratified media
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there exists complex eigenvalues (see also [44]). For general media, we limit ourself
to proving the existence of real eigenvalues for two reasons: firstly our approach
based on auxiliary self-adjoint operators works only for real eigenvalues and sec-
ondly the real eigenvalues are of particular interest in the application to the inverse
scattering problem since only they can be measured from scattering data. Therefore
in view of Theorem 3.3 we now assume that n ∈ L2(D) is a real valued function
(i.e =(n) ≡ 0) such that

n∗ = inf
x∈D

n(x) > 0 and n∗ = sup
x∈D

n(x) < +∞. (4.3)

For historical reasons we mention that the first result on the existence of
real transmission eigenvalues was obtained for spherically stratified media when
D := BR where BR :=

{
x ∈ R3 : |x| < R

}
is a ball of radius R centered at the

origin and n := n(r) is a radial function [42] which we include here for sake of
completeness.

Theorem 4.7. Assume that n ∈ C2[0, R], =(n(r)) = 0 and either n(R) 6= 1

or n(R) = 1 and
1

R

R∫
0

√
n(ρ)dρ 6= 1. Then there exists an infinite discrete set of

transmission eigenvalues with spherically symmetric eigenfunctions.

Proof. To show existence, we restrict ourself to spherically symmetric solutions to
(3.28) and look for solutions of the form.

v(r) = a0j0(kr) and w(r) = b0
y(r)

r

where

y′′ + k2n(r)y = 0, y(0) = 0, y′(0) = 1,

where j0(r) is the spherical Bessel function of order zero. Using the Liouville trans-
formation

z(ξ) := [n(r)]
1
4 y(r) where ξ(r) :=

r∫
0

[n(ρ)]
1
2 dρ

we arrive at the following initial value problem for z(ξ):

z′′ + [k2 − p(ξ)]z = 0 , z(0) = 0 , z′(0) =
[
n(0)

]− 1
4 (4.4)

where

p(ξ) :=
n′′(r)

4[n(r)]2
− 5

16

[n′(r)]2

[n(r)]3
.

Now exactly in the same way as in [42], [48], by writing (4.4) as a Volterra inte-
gral equation and using the methods of successive approximations, we obtain the
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following asymptotic behavior for y

y(r) =
1

k
[
n(0)n(r)

]1/4 sin

k r∫
0

[
n(ρ)

]1/2
dρ

 + O
(

1

k2

)
(4.5)

y′(r) =

[
n(r)

n(0)

]1/4

cos

k r∫
0

[n(ρ)]
1/2

dρ

 + O
(

1

k

)
(4.6)

uniformly on [0, R]. Applying the boundary conditions on r = R, we see that a
nontrivial solution to (3.28) exists if and only if

d0(k) = det


y(R)

R
−j0(kR)

d

dr

(
y(r)

r

)
r=R

−k j′0(kR)

 = 0 .

Since j0(kr) = sin kr/kr, from the above asymptotic behavior of y(r) we have that

d0(k) =
1

kR2
[A sin(kδR) cos(kR)−B cos(kδR) sin(kR)] + O

(
1

k2

)
(4.7)

where

δ =
1

R

R∫
0

√
n(ρ)dρ, A =

1

[n(0)n(R)]1/4
, B =

[
n(R)

n(0)

]1/4

.

If n(R) = 1, since δ 6= 1 the first term in (4.7) is a periodic function if δ is rational
and almost-periodic (see [48]) if δ is irrational and in either case takes both positive
and negative values. This means that d0(k) has infinitely many real zeros which
proves the existence of infinitely many real transmission eigenvalues. Now if n(R) 6=
1 then A 6= B and the above argument holds independently of the value of δ.

We refer the reader to Chapter 5 for more results on the spectral properties
of the transmission eigenvalue problem for spherically stratified media.

The following result is an important tool in our proofs of the existence of real
eigenvalues for general media and can be obtained by separating variables in the
transmission eigenvalue problem (3.2).

Corollary 4.8. Let D := BR and n > 0 a positive constant such that n 6= 1. The
infinitely many real zeros of

d`(k) = det

(
j`(ka) j`(k

√
na)

−j′`(ka) −
√
nj′`(k

√
na)

)
= 0

are transmission eigenvalues for the media BR, n, where j`(r), ` ≥ 0 are spherical
Bessel function of order n.
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We denote by ka,n the smallest real eigenvalue (which is not necessarily the
smallest real zero of d0(k))

We now turn our attention to general inhomogeneous media. Setting τ := k2,
in Section 3.1 it is shown that the transmission eigenvalue problem is equivalent to∫

D

1

n− 1
(∆u+ τu)(∆ψ + τnψ) dx = 0, for all ψ ∈ H0(D) (4.8)

or
Tu− τT1u+ τ2T2u = 0 (4.9)

where the coercive operator T, compact operator T1 and nonnegative compact op-
erator T2 are defined by (3.14), (3.15) and (3.16), respectively. Note that for real
valued refractive index these operators are self-adjoint. However the quadratic pen-
cil of operators (4.9) after linearization does not correspond to an eigenvalue problem

for a self-adjoint compact operator. Indeed, since T is coercive, T 1
2 is positive and

T− 1
2 exists. Hence we have that

u− τK1u+ τ2K2u = 0, (4.10)

where the self-adjoint compact operators K1 :H2
0 (D)→ H2

0 (D) and K2 :H2
0 (D)→

H2
0 (D) are given by K1 = T−1/2T1T−1/2 and K2 = T−1/2T2T−1/2. Now noting

that K2 is nonnegative, we set U :=
(
u, τK1/2

2 u
)

to obtain(
K− 1

τ
I

)
U = 0, U ∈ H2

0 (D)×H2
0 (D)

for the compact (non self-adjoint) operator K : H2
0 (D)×H2

0 (D)→ H2
0 (D)×H2

0 (D)
given by

K :=

(
K1 −K1/2

2

K1/2
2 0

)
.

Obviously although each of the entries in K are self-adjoint, K itself is not self-
adjoint.

To proceed further, following [27] we define the following bounded sesquilinear
forms on H2

0 (D)×H2
0 (D):

Aτ (u, ψ) =

(
1

n− 1
(∆u+ τu), (∆ψ + τψ)

)
D

+ τ2 (u, ψ)D , (4.11)

Ãτ (u, ψ) =

(
1

1− n
(∆u+ τnu), (∆ψ + τnψ)

)
D

+ τ2 (nu, ψ)D (4.12)

=

(
n

1− n
(∆u+ τu), (∆ψ + τψ)

)
D

+ (∆u, ∆ψ)D ,

B(u, ψ) = (∇u, ∇ψ)D , (4.13)
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where (· , ·)D denotes the L2(D) inner product. Using the Riesz representation

theorem we now define the bounded linear operators Aτ : H2
0 (D) → H2

0 (D), Ãτ :
H2

0 (D)→ H2
0 (D), and B : H2

0 (D)→ H2
0 (D) by

(Aτu, ψ)H2(D) = Aτ (u, ψ),
(
Ãτu, ψ

)
H2(D)

= Ãτ (u, ψ),

(Bu, ψ)H2(D) = B(u, ψ).

In terms of these operators we can rewrite (4.8) as

(Aτu− τBu, ψ)H2(D) = 0 or
(
Ãτu− τBu, ψ

)
H2(D)

= 0 (4.14)

for all ψ ∈ H2
0 (D), which means that k is a transmission eigenvalue if and only if

τ := k2 is such that the kernel of the operator Aτu− τB or the operator Ãτu− τB
is not trivial.

In order to analyze (4.14), we recall the following results from [29] about the
properties of the above operators. To this end, let λ1(D) be the first Dirichlet
eigenvalue for −∆ in D and assume that either n∗ < 1 or n∗ > 1.

Lemma 4.9. The operators Aτ : H2
0 (D)→ H2

0 (D), Ãτ : H2
0 (D)→ H2

0 (D), τ > 0,
and B : H2

0 (D) → H2
0 (D) are self-adjoint. If n∗ > 1 then Aτ is positive definite,

whereas if 0 < n∗ < n∗ < 1 then Ãτ is positive definite. In addition, B is positive
and compact.

Proof. Obviously Aτ , Ãτ and B are self-adjoint since n and τ are real. Now assume
that n∗ > 1. Then since 1

n(x)−1 >
1

n∗−1 = γ > 0 almost everywhere in D, we have

(Aτu, u)H2(D) ≥ γ‖∆u+ τu‖2L2 + τ2‖u‖2L2

≥ γ‖∆u‖2L2 − 2γτ‖∆u‖L2‖u‖L2 + (γ + 1)τ2‖u‖2L2 (4.15)

= ε
(
τ‖u‖L2 − γ

ε
‖∆u‖L2(D)

)2

+

(
γ − γ2

ε

)
‖∆u‖2L2(D)

+ (1 + γ − ε)τ2‖u‖2L2

≥
(
γ − γ2

ε

)
‖∆u‖2L2(D) + (1 + γ − ε)τ2‖u‖2L2

for some γ < ε < γ + 1. Furthermore, since ∇u ∈ H1
0 (D)2, using the Poincaré

inequality we have that

‖∇u‖2L2(D) ≤
1

λ1(D)
‖∆u‖2L2(D).

Hence we can conclude that

(Aτu, u)H2(D) ≥ Cτ‖u‖
2
H2(D)
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for some positive constant Cτ . Consequently Aτ is positive definite and hence
invertible. Exactly in the same way one can prove that if 0 < n∗ < 1 then(

Ãτu, u
)
H2(D)

≥ Cτ‖u‖2H2(D)

for some positive constant Cτ since in this case n(x)
1−n(x) >

n∗
1−n∗ = γ > 0 almost

everywhere in D.
We now consider the operator B. By definition B is nonnegative, and further-

more the compact embedding of H2(D) into H1(D) and the fact that ∇u ∈ H1
0 (D)

imply that B : H2
0 (D)→ H2

0 (D) is compact since ‖Bu‖H2(D) ≤ c‖u‖H1(D).

Lemma 4.10.

1. If n∗ > 1 then

(Aτu− τBu, u)H2 ≥ α‖u‖2H2 for all 0 < τ <
λ1(D)

n∗
.

2. If n∗ < 1 then(
Ãτu− τBu, u

)
H2
≥ α‖u‖2H2 for all 0 < τ < λ1(D).

Proof. Assume that n∗ > 1. Then 1
n(x)−1 >

1
n∗−1 = γ > 0 almost everywhere in

D. We have

(Aτu− τBu, u)H2
0

= Aτ (u, u)− τ‖∇u‖2L2 (4.16)

≥
(
γ − γ2

ε

)
‖∆u‖2L2 + (1 + γ − ε)‖u‖2L2 − τ‖∇u‖2L2

for γ < ε < γ + 1. Since ∇u ∈ H1
0 (D), using the Poincaré inequality we have that

‖∇u‖2L2(D) ≤
1

λ1(D)
‖∆u‖2L2(D),

and hence we obtain

(Aτu− τBu, u)H2
0
≥
(
γ − γ2

ε
− τ

λ1(D)

)
‖∆u‖2L2 + τ(1 + γ − ε)‖u‖2L2 .

Thus Aτ − τB is positive as long as τ < (γ − γ2

ε )λ1(D). In particular, choosing
γ = 1

n∗−1 , and taking ε arbitrary closed to γ+1, the latter becomes τ < γ
1+γλ1(D) =

λ1(D)
n∗ .
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Next assume that 0 < n∗ < 1. Then n(x)
1−n(x) >

n∗
1−n∗ = γ > 0. Hence(

Ãτu− τBu, u
)
H2

0

= Ãτ (u, u)− τ‖∇u‖2L2 (4.17)

≥ (1 + γ − ε− τ 1

λ1(D)
)‖∆u‖2L2 +

(
γ − γ2

ε

)
‖u‖2L2

for γ < ε < γ + 1. Thus Ãτ − τB is positive as long as τ < (1 + γ − ε)λ1(D). In
particular, taking ε arbitrary closed to γ, the latter becomes τ < λ1(D).

Obviously Aτ and Ãτ depend continuously on τ ∈ (0, +∞). From the above
discussion, k > 0 is a transmission eigenvalue if for τ = k2 the kernel of the operator
Aτ − τB if n∗ > 1, or the kernel of the operator Ãτ − τB if n∗ < 1, is nontrivial. In
order to analyze the kernel of these operators, we consider the auxiliary eigenvalue
problems

Aτu− λ(τ)Bu = 0 u ∈ H2
0 (D) if n∗ > 1 (4.18)

and
Ãτu− λ(τ)Bu = 0 u ∈ H2

0 (D) if n∗ < 1. (4.19)

Thus a transmission eigenvalue k > 0 is such that τ := k2 solves λ(τ)−τ = 0, where
λ(τ) is an eigenvalue corresponding to (4.18) or (4.19) in the respective cases. Our
goal is now to apply Theorem 4.5 to (4.18) or (4.19) to prove the existence of an
infinite set of transmission eigenvalues.

Remark 4.11. The multiplicity of transmission eigenvalues is finite since if k0 is

a transmission eigenvalue then, letting τ0 := k2
0, the kernel of I− τ0A−1/2

τ0 BA−1/2
τ0 if

n∗ > 1, or I−τ0Ã−1/2
τ0 BÃ−1/2

τ0 if n∗ < 1, is finite since the operators τ0A−1/2
τ0 BA−1/2

τ0

and τ0Ã−1/2
τ0 BÃ−1/2

τ0 are compact and self-adjoint [107].

We are now ready to prove the main theorem of this section.

Theorem 4.12. Let n ∈ L∞(D) satisfy either one of the following Assumptions:

1. 1 < n∗ ≤ n(x) ≤ n∗ <∞,

2. 0 < n∗ ≤ n(x) ≤ n∗ < 1.

Then there exists an infinite set of real transmission eigenvalues with +∞ as the
only accumulation point.

Proof. Assume that Assumption 1. holds, which also implies that

0 <
1

n∗ − 1
≤ 1

n(x)− 1
≤ 1

n∗ − 1
<∞.

Therefore, from Lemma 4.9, Aτ and B satisfy the requirement of Theorem 4.5 with
X = H2

0 (D), and from Lemma 4.10 they also satisfy Assumption 1 . of Theorem 4.5
with τ0 ≤ λ1(D)/n∗.
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Next let k1,n∗ be the first transmission eigenvalue for the ball B of radius
R = 1 and let n := n∗. By a scaling argument, it is obvious that kε,n∗ := k1,n∗/ε is
the first transmission eigenvalue corresponding to the ball of radius ε > 0 with index
of refraction n∗. Now take ε > 0 small enough such that D contains m := m(ε) ≥
1 disjoint balls B1

ε , B
2
ε , . . . , B

m
ε of radius ε, that is Bjε ⊂ D, j = 1, . . . ,m, and

Bjε ∩Biε = ∅ for j 6= i. Then kε,n∗ := k1,n∗/ε is the first transmission eigenvalue for

each of these balls with index of refraction n∗ and let uB
j
ε ,n∗ ∈ H2

0 (Bjε ), j = 1, . . . ,m,

be the corresponding eigenfunction. The extension by zero ũj of uB
j
ε ,n∗ to the whole

of D is obviously in H2
0 (D) due to the boundary conditions on ∂Bjε,n∗ . Furthermore,

the vectors {ũ1, ũ2, . . . , ũm} are linearly independent and orthogonal in H2
0 (D) since

they have disjoint supports. From (4.8) we have that

0 =

∫
D

1

n∗ − 1
(∆ũj + k2

ε,n∗ ũ
j)(∆ũ

j
+ k2

ε,n∗n∗ũ
j
) dx (4.20)

=

∫
D

1

n∗ − 1
|∆ũj + k2

ε,n∗ ũ
j |2 dx+ k4

ε,n∗

∫
D

|ũj |2 dx− k2
ε,n∗

∫
D

|∇ũj |2 dx

for j = 1, . . . ,m. Let us denote by U the m-dimensional subspace of H2
0 (D) spanned

by {ũ1, ũ2, . . . , ũm}. Since each ũj , j = 1, . . . ,m satisfies (4.20) and they have
disjoint supports, we have that for τ1 := k2

ε,n∗ and for every ũ ∈ U

(Aτ1 ũ− τ1Bũ, ũ)H2
0 (D) =

∫
D

1

n− 1
|∆ũ+ τ1ũ|2 dx+ τ2

1

∫
D

|ũ|2 dx− τ1
∫
D

|∇ũ|2 dx

≤
∫
D

1

n∗ − 1
|∆ũ+ τ1ũ|2 dx+ τ2

1

∫
D

|ũ|2 dx− τ1
∫
D

|∇ũ|2 dx=0. (4.21)

This means that Assumption 2. of Theorem 4.5 is also satisfied and therefore we
can conclude that there are m(ε) transmission eigenvalues (counting multiplicity)
inside [τ0, kε,n∗ ]. Note that m(ε) and kε,n∗ both go to +∞ as ε → 0. Since the
multiplicity of each eigenvalue is finite, we have shown, by letting ε→ 0, that there
exists an infinite countable set of transmission eigenvalues that accumulate at ∞.

If the index of refraction is such that Assumption 2. holds, then we have that

0 <
n∗

1− n∗
≤ n(x)

1− n(x)
≤ n∗

1− n∗
<∞,

and therefore according to Lemmas 4.9 and 4.10, Ãτ and B, τ > 0, satisfy the
requirements and Assumption 1. of Theorem 4.5 with X = H2

0 (D) for τ0 ≤ λ1(D).
In this case we can estimate(

Ãτu− τBu, u
)
H2

0 (D)
=

∫
D

n

1− n
|∆u+ τu|2 dx+

∫
D

|∆u|2 dx− τ
∫
D

|∇u|2 dx

≤
∫
D

n∗

1− n∗
|∆u+ τu|2 dx+

∫
D

|∆u|2 dx− τ
∫
D

|∇u|2 dx. (4.22)
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The rest of the proof for checking the validity of Assumption 2 of Theorem 4.5 goes
exactly in the same way as for the previous case if one replaces n∗ by n∗. This
proves the result.

4.2.1 Media with Voids

The above analysis can be adapted to include the case of media with voids discussed
in Section 3.1.2. In this case the transmission eigenvalue problem is formulated in
variational form as finding u ∈ V0(D,D0, k) such that∫

D\D0

1

n− 1

(
∆ + k2

)
u
(
∆ + k2

)
ψ̄ dx+ k2

∫
D\D0

(∆u+ k2u) ψ̄ dx = 0 (4.23)

for all ψ ∈ V0(D,D0, k), where the Hilbert space V0(D,D0, k) is defined by (3.26).
As shown in Section 3.1.2, this variational formulation is equivalent to the trans-
mission eigenvalue problem provided that k2 is not both a Dirichlet and a Neumann
eigenvalue for −∆ in D0. With this understanding, our goal is to show the existence
of k > 0 such that the homogeneous problem

A(u, ψ) + Bk(u, ψ) = 0 for all ψ ∈ V0(D,D0, k) (4.24)

has a nonzero solution u ∈ V0(D,D0, k) where the sesquilinear forms A(·, ·) and
B(·, ·) on V0(D,D0, k)× V0(D,D0, k) are defined by (3.37) and (3.38), respectively.
Let Ak : V0(D,D0, k) → V0(D,D0, k) and Bk be the self-adjoint operators associ-
ated with A and Bk, respectively, by using the Riesz representation theorem (note
that Ak depends on k since the space of definition depends on k). In the proof
of Theorem 3.9 it is shown that the operator Ak : V0(D,D0, k) → V0(D,D0, k) is
positive definite, i.e., A−1

k : V0(D,D0, k) → V0(D,D0, k) exists, and the operator
Bk : V0(D,D0, k) → V0(D,D0, k) is compact. Hence we can define the operator

A
−1/2
k [107], in particular A

−1/2
k is also bounded, self-adjoint and positive definite.

Thus we have that (4.24) is equivalent to finding u ∈ V0(D,D0, k) such that

u+A
−1/2
k BkA

−1/2
k u = 0. (4.25)

In particular, if k2 is not both a Dirichlet and a Neumann eigenvalue for −∆ in D0,
k is a transmission eigenvalue if and only if the operator

Ik +A
−1/2
k BkA

−1/2
k : V0(D,D0, k)→ V0(D,D0, k) (4.26)

has a nontrivial kernel where Ik is the identity operator on V0(D,D0, k). To avoid
dealing with function spaces depending on k, we introduce the orthogonal projec-
tion operator Pk from H2

0 (D) onto V0(D,D0, k) and the corresponding injection

Rk : V0(D,D0, k) → H2
0 (D). Then one easily sees that A

−1/2
k BkA

−1/2
k is injective

on V0(D,D0, k) if and only if

I + Tk : H2
0 (D)→ H2

0 (D) (4.27)
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is injective, where

Tk := RkA
−1/2
k BkA

−1/2
k Pk : H2

0 (D)→ H2
0 (D)

and I is the identity operator on H0(D). Indeed, if u+ RkA
−1/2
k BkA

−1/2
k Pku = 0,

then by taking the inner product of the latter with the component w = u − Pku
which is orthogonal to Pku, we have that

0 = (u, w)H2 +
(
RkA

−1/2
k BkA

−1/2
k Pku, w

)
H2

(4.28)

= (w, w)H2 +
(
A
−1/2
k BkA

−1/2
k Pku, Pkw

)
H2

= ‖w‖2H2 ,

and hence w = 0. The injectivity of A
−1/2
k BkA

−1/2
k now implies the injectivity of

(4.27) since the component Pku is in V0(D,D0, k). The converse is obvious. Fur-

thermore, compactness of Bk implies that Tk := RkA
−1/2
k BkA

−1/2
k Pk : H2

0 (D) →
H2

0 (D) is also compact. Therefore we have that k > 0 is a transmission eigenvalue
provided that the kernel of I + Tk is nontrivial.

Lemma 4.13. The mapping k → Tk := RkA
−1/2
k BkA

−1/2
k Pk is continuous from

]0, +∞[ to the space of bounded linear compact self-adjoint operators in H2
0 (D)

Proof. The proof is straightforward but technical and we refer the reader to The-
orem 4.5 and Corollary 4.6 of [19].

Now we can apply Theorem 4.6 to Tk to prove the existence of real transmis-
sion eigenvalues. To this end we recall the notation

n∗ := inf
D\D0

(n) and n∗ := sup
D\D0

(n).

Theorem 4.14. Let n ∈ L∞(D), n = 1 in D0, satisfy either one of the following
Assumptions:

1. 1 < n∗ ≤ n(x) ≤ n∗ <∞,

2. 0 < n∗ ≤ n(x) ≤ n∗ < 1

for x ∈ D \D0. Then there exists an infinite set of transmission eigenvalues with
+∞ as the only accumulation point.

Proof. First we assume that Assumption 1. holds in which case we have

0 <
1

n∗ − 1
≤ 1

n(x)− 1
≤ 1

n∗ − 1
<∞ in D \D0.

First we note that I + Tk where Tk := RkA
−1/2
k BkA

−1/2
k Pk is positive on H2

0 (D) if
and only if Ak +Bk is positive on V0(D,D0, k).
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Next, combining the terms in (4.23) in a different way, we have that for u ∈
V0(D,D0, k)

(Aku+Bku, u)H2
0 (D) =

∫
D\D0

1

n− 1
|∆u+ k2nu|2 dx− k4

∫
D\D0

n|u|2 dx

+k2

∫
D\D0

|∇u|2 dx− k4

∫
D0

|u|2 dx+ k2

∫
D0

|∇u|2 dx. (4.29)

For n∗ = supD\D0
n > 1, if the sum of the last four terms in (4.29) is nonnegative,

then we have Ak +Bk is positive. Hence we have

−k2

∫
D\D0

n|u|2 dx+

∫
D\D0

|∇u|2 dx− k2

∫
D0

|u|2 dx+

∫
D0

|∇u|2 dx (4.30)

≥
∫
D

|∇u|2 dx− k2n∗
∫
D

|u|2 dx ≥ (λ1(D)− k2n∗)‖u‖2L2(D).

Therefore for all κ0 > 0 such that κ2
0 ≤

λ1(D)
n∗ we have that Ak + Bk is positive in

V0(D,D0, k) and hence I + Tk satisfies Assumption 1. of Theorem 4.6.
Next we proceed in the same way as in the proof of Theorem 4.12. To this

end, take ε > 0 small enough such that D \D0 contains m := m(ε) ≥ 1 disjoint
balls B1

ε , B
2
ε , . . . , B

m
ε of radius ε. With k1,n∗ being the first transmission eigenvalue

for the ball B of radius R = 1 and n := n∗, we take kε,n∗ := k1,n∗/ε the first
transmission eigenvalue for each of these balls with index of refraction n∗, and
uB

j
ε ,n∗ ∈ H2

0 (Bjε ), j = 1, . . . ,m, the corresponding eigenfunction. The extension

by zero ũj of uB
j
ε ,n∗ to the whole of D is obviously in V0(D,D0, k) and the vectors

{ũ1, ũ2, . . . , ũm} are linearly independent and orthogonal since they have disjoint
supports in D \D0. Let us denote by U the m-dimensional subspace of V0(D,D0, k)
spanned by {ũ1, ũ2, . . . , ũm}. Since each ũj , j = 1, . . . ,m, satisfies (4.20) and they
have disjoint supports, we have that for κ1 := kε,n∗ and for every ũj ∈ U (note that
ũj = 0 in a neighborhood of D0)

(Aκ1
ũ+Bκ1

ũ, ũ)H2
0 (D) (4.31)

=

∫
D\D0

1

n− 1
|∆ũ+ κ1ũ|2 dx+ κ4

1

∫
D\D0

|ũ|2 dx− κ2
1

∫
D\D0

|∇ũ|2 dx

≤
∫

D\D0

1

n∗ − 1
|∆ũ+ κ2

1ũ|2 dx+ κ4
1

∫
D\D0

|ũ|2 dx− κ2
1

∫
D\D0

|∇ũ|2 dx = 0.

This means that I + Tk satisfies Assumption 2. of Theorem 4.6, and therefore
there are m(ε) transmission eigenvalues (counting multiplicity) inside [κ0, kε,n∗ ].
Note that m(ε) and kε,n∗ both go to +∞ as ε → 0. Since the multiplicity of each
eigenvalue is finite we have shown that there exists an infinite countable set of
transmission eigenvalues that accumulate at +∞.
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Now consider the case 0 < n∗ ≤ n(x) ≤ n∗ < 1. Similarly to the previous
case, from the definitions (3.37) and (3.38) of Ak and Bk, we have that

(Aku+Bku, u)H2
0 (D) =

∫
D\D0

1

1− n
|∆u+ k2u|2 dx− k4

∫
D\D0

|u|2 dx

+ k2

∫
D\D0

|∇u|2 dx− k4

∫
D0

|u|2 dx+ k2

∫
D0

|∇u|2 dx. (4.32)

Hence we have that Ak +Bk is positive as long as

−k2

∫
D\D0

n|u|2 dx+

∫
D\D0

|∇u|2 dx− k2

∫
D0

|u|2 dx+

∫
D0

|∇u|2 dx (4.33)

≥
∫
D

|∇u|2 dx− k2

∫
D

|u|2 dx ≥ (λ1(D)− k2)‖u‖2L2(D) ≥ 0.

Therefore, for all κ0 > 0 such that κ2
0 ≤ λ1(D), I + Tk satisfies Assumption 1. of

Theorem 4.6. The rest of the proof can be done exactly in the same way as for the
first part, where n∗ is replaced by n∗.

4.2.2 Inequalities for Transmission Eigenvalues

The proofs of Theorem 4.12 and Theorem 4.14 provide as byproduct inequalities
on real transmission eigenvalues that can be used in the inverse medium problem
to obtain information about the material properties of the scatterer. We start by
stating Faber-Krahn type inequalities which are merely consequence of Lemma 4.10
for media without voids, and (4.29)-(4.30) and (4.32)-(4.33) for media with voids.

Theorem 4.15. Let n ∈ L∞(D) and n = 1 in D0 (D0 is possibly empty) and denote
by 0 < n∗ := infD\D0

(n) and n∗ := supD\D0
(n) ≤ ∞. Then all real transmission

eigenvalues k > 0 satisfy

1. k2 ≥ λ1(D)
n∗ , if 1 < n∗ or

2. k2 ≥ λ1(D), if n∗ < 1

where λ1(D) be the first Dirichlet eigenvalue for −∆ in D.

The above inequalities are not isoperimetric. The proof of Theorem 4.12
implies the following monotonicity results for a sequence of eigenvalues which can
be seen as a type of “isoperimetric” inequality for transmission eigenvalues in terms
of the refractive index for fixed D. Let kj := kj(n(x), D) > 0 for j ∈ N be the
increasing sequence of the transmission eigenvalues for the media with support D
and refractive index n(x) such that tj = k2

j is the smallest zero of λj(τ,D, n(x)) = τ
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where λj(τ,D, n(x)), j ≥ 1, are the eigenvalues of the auxiliary problem (see the
proof of Theorem 4.12) given by

λj(τ,D, n(x)) = min
W∈Uj

max
u ∈W

‖∇u‖L2 = 1

∫
D

1

n(x)− 1
|∆u+ τu|2 dx+ τ2‖u‖2L2(D) (4.34)

where Uj denotes the set of all j-dimensional subspaces W of H2
0 (D). Then the

following monotonicity property for transmission eigenvalues is true.

Theorem 4.16. Let n ∈ L∞(D) and 0 < n∗ = infD(n), n∗ := supD(n) ≤ +∞.
Assume that B1 and B2 are two balls of radius r1 and r2 respectively, such that
B1 ⊂ D ⊂ B2. Then

1. If 1 < n∗, then

kj(n
∗, B2) ≤ kj(n∗, D) ≤ kj(n(x), D) ≤ kj(n∗, D) ≤ kj(n∗, B1).

2. If n∗ < 1, then

kj(n∗, B2) ≤ kj(n∗, D) ≤ kj(n(x), D) ≤ kj(n∗, D) ≤ kj(n∗, B1).

In particular, these inequalities hold true for the smallest transmission eigenvalue
k1(n(x), D).

Proof. For simplicity of presentation we prove the theorem for the smallest trans-
mission eigenvalue. Take 1 < n∗. Then for any u ∈ H2

0 (D) such that ‖∇u‖L2(D) = 1
we have

1

n∗ − 1
‖∆u+ τu‖2L2(D) + τ2‖u‖2L2(D) ≤

∫
D

1

n(x)− 1
|∆u+ τu|2 dx+ τ2‖u‖2L2(D)

≤ 1

n∗ − 1
‖∆u+ τu‖2L2(D) + τ2‖u‖2L2(D). (4.35)

Therefore from (4.34) we have that for an arbitrary τ > 0

λ1(τ,B2, n
∗) ≤ λ1(τ,D, n∗) ≤ λ1(τ,D, n(x))

≤ λ1(τ,D, n∗) ≤ λ1(τ,Br1 , n∗).

Now for τ1 := k1,n∗/r1, Br1 ⊂ D, from the proof of Theorem 4.12 we have that
λ1(τ,D, n(x)) − τ ≤ 0. On the other hand, for τ0 := k1,n∗/r2, D ⊂ Br2 , we have
λ1(τ0, Br2 , n

∗) − τ0 = 0 and hence λ1(τ0, D, n(x)) − τ0 ≥ 0. Therefore the first
eigenvalue k1,D,n(x) corresponding to D and n(x) is between k1,n∗/r2 and k1,n∗/r1.
Note that there is no transmission eigenvalue for D and n(x) that is less than
k1,n∗/r2. Indeed, if there is a transmission eigenvalue strictly less than k1,n∗/r2, then
by the monotonicity of the eigenvalues of the auxiliary problem with respect to the
domain and the fact that for τ small enough there are no transmission eigenvalues
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we would have found an eigenvalue of the ball Br2 and n∗ that is strictly smaller
than the first eigenvalue. The case of n∗ < 1 can be proven in the same way if n∗
is replaced by n∗.
Now it is clear how to modify the same argument for the the smallest zero of
λj(τ,D, n(x)) = τ .

Remark 4.17. We remark that obviously the balls B1 and B2 in Theorem 4.16
can be replaced by any two domains such that D1 ⊂ D ⊂ D2. Also for fixed D and
two media with the same support support D and refractive index n1(x) and n2(x)
both in L∞(D) the proof of Theorem 4.16 can be adapted in an obvious way to
prove the following:

1. If 1 < α ≤ n1(x) ≤ n2(x) for almost all x ∈ D, then

kj(n2(x), D) ≤ kj(n1(x), D)

2. If 0 < α ≤ n1(x) ≤ n2(x) ≤ β < 1 for almost all x ∈ D, then

kj(n1(x), D) ≤ kj(n2(x), D).

Theorem 4.16 shows in particular that for constant index of refraction the first
transmission eigenvalue k1(n,D) as a function of n for D fixed is monotonically
increasing if n > 1 and is monotonically decreasing if 0 < n < 1. In fact in [16]
it is shown that this monotonicity is strict which leads to the following uniqueness
result for a constant index of refraction in terms of the first transmission eigenvalue,
which is the only known inverse spectral result for general media (see Chapter 5 for
results on inverse spectral problems for spherically stratifies media).

Theorem 4.18. The constant index of refraction n is uniquely determined from
a knowledge of the corresponding smallest transmission eigenvalue k1(n,D) > 0
provided that it is known a priori that either n > 1 or 0 < n < 1.

Proof. Here we show the proof for the case of n > 1 (see [16] for the case of
0 < n < 1). Consider two homogeneous media with constant index of refraction
n1 and n2 such that 1 < n1 < n2, and let u1 := w1 − v1, where w1, v1 is the
nonzero solution of (3.2) with n(x) := n1 corresponding to the first transmission
eigenvalue k1(n1, D). Now, setting τ1 = k1(n1, D) and after normalizing u1 such
that ‖∇u1‖L2(D) = 1, we have

1

n1 − 1
‖∆u1 + τ1u1‖2L2(D) + τ2

1 ‖u1‖2L2(D) = τ1 = λ1(τ1, D, n1). (4.36)

Furthermore, we have

1

n2 − 1
‖∆u+ τu‖2L2(D) + τ2‖u‖2L2(D) <

1

n1 − 1
‖∆u+ τu‖2L2(D) + τ2‖u‖2L2(D)
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for all u ∈ H2
0 (D) such that ‖∇u‖L2(D) = 1 and all τ > 0. In particular for u = u1

and τ = τ1

1

n2 − 1
‖∆u1 +τ1u1‖2L2(D) +τ2

1 ‖u1‖2L2(D) <
1

n1 − 1
‖∆u1 +τ1u1‖2L2(D) +τ2

1 ‖u1‖2L2(D).

But using (4.36) we have

λ(τ1, D, n2) ≤ 1

n2 − 1
‖∆u1 + τ1u1‖2L2(D) + τ2

1 ‖u1‖2L2(D) < λ1(τ1, D, n1)

and hence for this τ1 we have a strict inequality, i.e.

λ1(τ1, D, n2) < λ1(τ1, D, n1). (4.37)

Obviously (4.37) implies the the first zero τ2 of λ1(τ,D, n2) − τ = 0 is such that
τ2 < τ1 and therefore we have that k1(n2, D) < k1(n1, D) for the first transmission
eigenvalues k1(n1, D) and k1(n2, D) corresponding to n1 and n2, respectively. Hence
we have shown that if n1 > 1 and n2 > 1 are such n1 6= n2 then k1(n1, D) 6=
k1(n2, D), which proves uniqueness.

We finally present a monotonicity result for the first transmission eigenvalue
corresponding to media with voids. For a fixed D, denote by k1(D0, n) the first
transmission eigenvalue corresponding to the void D0 and the index of refraction n.

Theorem 4.19. If D0 ⊆ D̃0 and n, ñ ∈ L2(D) such that n(x) ≤ ñ(x) for almost
every x ∈ D then

1. k1(D0, ñ) ≤ k1(D̃0, n) if 1 < α ≤ n(x) ≤ ñ(x),

2. k1(D0, n) ≤ k1(D̃0, ñ) if 0 < α ≤ n(x) ≤ ñ(x) ≤ β < 1.

Proof. Consider the first case. Repeating the proof of Theorem 4.14 with κ0 >

0 such that κ2
0 =

λ1(D)

supD(ñ)
and κ1 = k1(D0, n) one deduces that k1(D0, ñ) ≤

k1(D0, n). It remains to show that for fixed n, k1(D0, n) ≤ k1(D̃0, n). To this
end, again from the proof of Theorem 4.14, Aκ0

+ Bκ0
is positive for κ0 > 0 such

that κ2
0 =

λ1(D)

supD(n)
. Next let κ1 = k1(D̃0, n) and let v ∈ V0(D, D̃0, κ1) be its



“CCH-book”
2016/4/18
page 153i

i
i

i

i
i

i
i

4.2. Existence of Transmission Eigenvalues for Isotropic Media 153

corresponding eigenvector. Then

(Aκ1v +Bκ1v, v)H2
0 (D) =

∫
D\D0

1

n− 1
|∆v + κ2

1nv|2 dx− κ4
1

∫
D

n|v|2 dx

+ κ2
1

∫
D

|∇u|2 dx

=

∫
D\D̃0

1

n− 1
|∆v + κ2

1nv|2 dx− κ4
1

∫
D

n|v|2 dx

+ κ2
1

∫
D

|∇u|2 dx = 0

which implies from Theorem 4.6 that there exists a transmission eigenvalue in
[κ0, κ1] for media with void D0 and refractive index n. The same type of argu-
ment shows that this indeed is the first eigenvalue. Hence we have that k1(D0, n) ≤
k1(D̃0, n) which proves the estimates in the first case. The second case can be
handled similarly and we leave it to the reader as an exercise.

Estimates concerning complex transmission eigenvalues for problem (3.2) are
limited to indicating eigenvalue free zones in the complex plane. A first attempt to
localize transmission eigenvalues in the complex plane is done in [16]. However to
our knowledge the best results on the location of transmission eigenvalues are given
in [64] and [116], where it is shown that almost all transmission eigenvalues k2 are
confined to a parabolic neighborhood of the positive real axis. More specifically the
following theorem is proven in [64].

Theorem 4.20. Assume that D has C∞ boundary, n ∈ C∞(D) and 1 < α ≤
n ≤ β. Then there exists δ, 0 < δ < 1, and C > 1 both independent of n (but
depending on α and β) such that all transmission eigenvalues τ := k2 ∈ C with
|τ | > C satisfies <(τ) > 0 and =(τ) ≤ C|τ |1−δ.

The above theorem rewritten for k ∈ C states that, except for a finite set,
all transmission eigenvalues lie in an arbitrary small wedge about the real axis.
We do not include the proof of Theorem 4.20 here (we refer the reader to [64] for
the proof) since the proof employs an approach that is quite different from the
analytical framework developed in this chapter. More comprehensive results of a
similar nature on transmission eigenvalue-free regions in the complex plane can
be found in [116]. If D is a ball and n spherically symmetric, better estimates are
obtained in [104], where in particular for n constant it is shown that all transmission
eigenvalues lie in a strip.

Note that although the transmission eigenvalue problem (3.2) has the struc-
ture of a quadratic pencil of operators (4.10), it appears that available results on
quadratic pencils [94] are not applicable to the transmission eigenvalue problem due
to the incorrect signs of the involved operators. The crucial assumption in our anal-



“CCH-book”
2016/4/18
page 154i

i
i

i

i
i

i
i

154 Chapter 4. The Existence of Transmission Eigenvalues

ysis in this chapter is that the contrast does not change sign inside D, i.e n − 1 is
either positive or negative and bounded away from zero in D, except that we allow
that n = 1 in a subregion of D. By using weighted Sobolev spaces it is also possible
in a similar way as in this chapter to consider the case when n − 1 goes smoothly
to zero at the boundary ∂D [40], [47], [63], [111]. However, the real interest is in
investigating the case when n − 1 is allowed to change sign in D. The question of
discreteness of transmission eigenvalues in the latter case has been related to the
uniqueness of the sound speed for the wave equation with arbitrary source, which
is a question that arises in thermo-acoustic imagining [57]. In the general case
n ≥ c > 0 with no assumptions on the sign of n− 1, the study of the transmission
eigenvalue problem is completely open. As the reader has seen in Chapter 3, the
discreteness of transmission eigenvalues is obtained under the assumption that n−1
has a fixed sign in a neighborhood of the boundary. In the case when both the do-
main D and refractive index n(x) are C∞-smooth, with the additional assumption
that n 6= 1 on the boundary ∂D, a complete characterization of the spectrum of
the transmission eigenvalue problem is presented in [108]. This study is done in
the framework of semiclassical analysis [35], relating the transmission eigenvalue
problem to the spectrum of a Hilbert-Schmidt operator whose resolvent exhibits
the desired growth properties following the approach of Agmon in [1]. For the sake
of completeness, we sketch here the main points of this approach.

Let n ∈ C∞(D) where D ⊂ R3 such that ∂D is of class C∞. Furthermore, we
assume that n(x) ≥ n0 > 0 for x ∈ D and n 6= 1 on ∂D (note that by continuity the
latter means that n 6= 1 in a neighborhood of ∂D). As the reader has already seen,
the transmission eigenvalue problem can be written in terms of u := 1

k2 (w − v) ∈
H2

0 (D) and v ∈ L2(D) as

1

n
∆u+

n− 1

n
v + k2u = 0 in D

∆v + k2v = 0 in D (4.38)

For z ∈ C define the operator Bz : H2
0 (D) × {L2(D), ∆u ∈ L2(D)} → L2(D) ×

L2(D) by
(u, v) 7→ (f, g)

where

1

n
∆u+

n− 1

n
v − zu = f in D (4.39)

∆v − zv = g in D. (4.40)

We already know from Section 3.1.3 that there is a fixed z ∈ C such that Rz := B−1
z

is bounded. The spectral properties of the transmission eigenvalue problem can be
deduced from the spectral analysis of Bz or more precisely its inverse Rz. Indeed
if η is an eigenvalue of Bz then k ∈ C such that k2 = −z − η is a transmission
eigenvalue with the same eigenfunction. To this end, a key tool is the following
lemma that is a direct consequence of Proposition 4.2 and the proof of Theorem 5
in [108]. Indeed the statement of the lemma is a slight modification of the celebrated
result of Agmon stated in Theorem 16.4 in [1].



“CCH-book”
2016/4/18
page 155i

i
i

i

i
i

i
i

4.2. Existence of Transmission Eigenvalues for Isotropic Media 155

Theorem 4.21. Let H be a Hilbert space and S : H → H be a bounded linear
operator. If λ−1 is in the resolvent of S, define

Sλ = S(I − λS)−1. (4.41)

Assume Sp : H → H is a Hilbert-Schmidt operator for some integer p ≥ 2. For the
operator S, assume there exist 0 ≤ θ1 < θ2 < · · · < θN < 2π such that θk−θk−1 <

π
2p

for k = 2, · · · , N and 2π−θN+θ1 <
π
2p satisfying the condition that there exists r0 >

0, c > 0 such that supr≥r0‖(S)reiθk ‖H→H ≤ c for k = 1, · · · , N . Then eigenvalues
of S exist and the space spanned by the nonzero generalized eigenfunctions is dense
in the closure of the range of Sp.

One can now apply Lemma 4.21 to the operator S := Rz for fixed z and
H := L2(D) × L2(D) to derive the desired spectral decomposition for Rz, noting
that (Rz)λ = Rz+λ where (Rz)λ is defined by (4.41) with S replaced by Rz. To this
end one needs to prove:

1. A regularity result for the solution of (4.38). This part is quite technical and
the approach involves results from pseudo-differential calculus. For the details
we refer the reader to [108]. In particular, it is possible to prove that Rz is two
orders smoothing, i.e. the mapping Rz : H2(D)× L2(D)→ H4(D)×H2(D)
is bounded which first proves that Rz on H2(D)×L2(D) is compact and then
applying Theorem 13.5 in [1] proves that R2

z on H2(D) × L2(D) is Hilbert-
Schmidt.

2. Then using the theory of pseudo-differential operators for symbols with a
parameter, it is possible to prove a growth condition for Rz along the rays
such as stated in Theorem 4.21 for p = 2. This step is also technical and more
details can be found in Section 3.1 in [108].

The final result of the above effort is stated in the following theorem.

Theorem 4.22. Assume that n ∈ C∞(D) where D ⊂ R3 is such that ∂D is of
class C∞ and n(x) ≥ n0 > 0 for x ∈ D and n 6= 1 on ∂D. Then there exist an
infinite number of transmission eigenvalues k ∈ C and the space spanned by the
generalized eigenfunctions is dense in H2

0 (D)×
{
L2(D), ∆u ∈ L2(D)

}
.

We note that although in [108] the refractive index is allowed to be complex
valued, the analysis there does not imply any result on transmission eigenvalues
for absorbing media, i.e when the refractive index depends on the wave number.
Further results on transmission eigenvalues for isotropic media, including Weyl-
type asymptotic estimates for the counting function for transmission eigenvalues,
can be found in [55], [85], [87] and [103].
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4.2.3 Remarks on Absorbing Media

The refractive index n(x) for an absorbing media depends on the wave number k,
more precisely for a large range of frequencies it assumes the form

n(x) = ε(x) + i
γ(x)

k

for real valued functions ε and γ. The reader can view the complex part in the re-
fractive index as arising from the Fourier transform of the damping which involves
the time derivative of the field. In our analysis in the previous chapters we have
considered the complex valued refractive index where we have ignored the depen-
dence on k of the imaginary part. This is fine as long as we are considering a fixed
frequency and this is the case in our discussion of the direct scattering problem, the
reconstruction techniques and the solvability of the interior transmission problem.
However, in order to correctly investigate the spectral properties of the transmission
eigenvalue problem for absorbing media, it is necessary to take into consideration
the k-dependence of the refractive index since k is the eigenvalue parameter. At this
time, very little is known about the spectral properties of the transmission eigen-
value problem in this case, and in many recent studies (e.g. [108]) the k-dependence
on the refractive index is dropped.

The study of the transmission eigenvalue problem in the general case of ab-
sorbing media and background has been initiated in [21] (see also [53]), and we now
present these results. In particular we prove that the set of transmission eigenvalues
in the open right complex half plane is at most discrete provided that the contrast
in the real part of the index of refraction does not change sign in D. Furthermore,
using perturbation theory, we show that if the absorption in the inhomogeneous
media and (possibly) in the background is small enough then there exist (at least)
a finite number of complex transmission eigenvalues each near a real transmission
eigenvalue associated with the corresponding non-absorbing media and background.

Before we start with our presentation, we alert the reader that up to now
we have considered for simplicity a homogeneous non-absorbing background with
refractive index scaled to one. On the other hand, as the reader has by now seen,
the interior transmission problem depends on the refractive index of the scattering
inhomogeneity and the refractive index of the background in the region D occupied
by this inhomogeneity. The difference of the refractive index of the inhomogeneity
and background, referred to as the contrast in the media, fundamentally characterize
the properties of the interior transmission problem. In order to introduce the reader
to the interior transmission problem arising from scattering due to an inhomogeneity
embedded in a complex background, in this section we consider a inhomogeneous
(possibly absorbing) background to the scattering inhomogeneity.

The interior transmission eigenvalue problem for an inhomogeneous absorbing
media of support D occupying a part of an inhomogeneous absorbing background
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is formulated as

∆w + k2

(
ε1(x) + i

γ1(x)

k

)
w = 0 in D (4.42)

∆v + k2

(
ε0(x) + i

γ0(x)

k

)
v = 0 in D (4.43)

v = w on ∂D (4.44)

∂v

∂ν
=
∂w

∂ν
on ∂D (4.45)

where w ∈ L2(D) and v ∈ L2(D) such that w − v ∈ H2
0 (D). Here we assume

that ε1 ∈ L∞(D) and γ1 ∈ L∞(D) such that ε1(x) ≥ η1 > 0, γ1(x) ≥ 0 almost
everywhere in D, and similarly ε0 ∈ L∞(D) and γ0 ∈ L∞(D) such that ε0(x) ≥
η0 > 0, γ0(x) ≥ 0. Similarly to Section 3.1.1, it is possible to write (4.42)-(4.45) as
an eigenvalue problem for the fourth order differential equation(

∆ + k2ε1(x) + ikγ1(x)
) 1

kεc(x) + iγc(x)

(
∆ + k2ε0(x) + ikγ0(x)

)
u = 0 (4.46)

for u ∈ H2
0 (D), where we denote by εc := (ε1−ε0) and γc := (γ1−γ0) the respective

contrasts. Obviously if u ∈ H2
0 (D) satisfies (4.46) then

w :=
−1

k2εc + ikγc
(∆ + k2ε0 + ikγ0)u ∈ L2(D)

and v = w − u ∈ L2(D) satisfy (4.42)-(4.45).
In variational form (4.46) is formulated as the problem of finding u ∈ H2

0 (D)
such that∫
D

1

kεc + iγc

[
∆u+ (k2ε0 + ikγ0)u

] [
∆v + (k2ε1 + ikγ1)v

]
dx = 0 (4.47)

for all v ∈ H2
0 (D). It is easy to see that the interior transmission problem (4.42)-

(4.45) does not have purely imaginary eigenvalues k = iτ as long as τ > 0 is such
that τεc + γc > 0. Indeed, after integrating by parts and using the zero boundary
conditions, we have that

0=

∫
D

1

τεc + γc

[
∆u− (τ2ε0 + τγ0)u

] [
∆u− (τ2ε1 + τγ1)u

]
dx

=

∫
D

1

τεc + γc

∣∣∆u− (τ2ε0 + τγ0)u
∣∣2 dx− τ ∫

D

[
∆u− (τ2ε0 + τγ0)u

]
u dx

=

∫
D

1

τεc + γc

∣∣∆u− (τ2ε0 + τγ0)u
∣∣2 dx+ τ

∫
D

|∇u|2 dx+ τ2

∫
D

(τε0 + γ0)|u|2 dx

which implies that u = 0 in D. In a similar way, by exchanging subindices 1 and

0 one can show the same result for τεc + γc < 0. The situation is not clear for
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k = iτ for which τεc + γc changes sign. For example if ε0 > 0, ε1 > 0, γ0 > 0 and
γ1 > 0 are all positive constants then k = iτ0 where τ0 = γ1−γ0

ε1−ε0 is an eigenvalue
and the corresponding eigenspace is infinite dimensional since for any solution v to
the Helmholtz equation ∆v − τ0(τ0ε0 + iγ0)v = 0, v and w = v are eigenfunctions.

Remark 4.23.

1. If εc(x) ≥ θ > 0 and γc(x) ≥ 0 almost everywhere in D, then k = iτ where τ

is such that τ ≥ − supD γc
infD εc

or τ ≤ − infD γc
supD εc

is not a transmission eigenvalue.

2. If εc(x) ≥ θ > 0 and |γc(x)| < M almost everywhere in D, then k = iτ where

τ > 0 is large enough such that τ ≥ M

infD εc
is not a transmission eigenvalue.

In the following we assume that the real part of k ∈ C is positive. Furthermore,
we assume that the contrast εc is bounded and does not change sign, more specif-
ically, due to the symmetric role of ε1 and ε0, we require that 0 < θ ≤ εc(x) < N
almost everywhere in D, whereas the contrast γc is only bounded, i.e. |γc(x)| < M
almost everywhere in D.

Lemma 4.24. Assume that 0 < θ ≤ εc(x) < N and |γc(x)| < M almost ev-
erywhere in D. Then the set of transmission eigenvalues in the region Gσ :=
{k = κ+ iτ : κ ≥ σ > 0 and τ ≤ 2M/θ}∪{k = κ+ iτ : κ ∈ R and τ ≥ 2M/θ} is dis-
crete.

Proof. Let us define the following sesquilinear forms on H2
0 (D):

Ak(u, v) =

∫
D

1

kεc + iγc
∆u∆v dx

Bk(u, v) =

∫
D

[
k
kε1 + iγ1

kεc + iγc
∆u v + k

kε0 + iγ0

kεc + iγc
u∆v + k2 (kε0 + iγ0)(kε1 + iγ1)

kεc + iγc
u v

]
dx.

From our assumption we have that |kεc + iγc| ≥ β > 0 almost everywhere in D and
therefore the above bilinear forms define bounded linear operators Ak : H2

0 (D) →
H2

0 (D) and Bk : H2
0 (D) → H2

0 (D) by means of the Riesz representation theorem.
In terms of these operators the transmission eigenvalue problem takes the form

(Ak + Bk)u = 0, u ∈ H2
0 (D). (4.48)

In particular, k is a transmission eigenvalue if and only if the kernel of the operator
Ak + Bk is non-trivial. In the same way as is Section 3.1.1 one can prove that
Ak is invertible for fixed k ∈ Gσ ⊂ C and Bk is compact. Since (4.48) becomes(
I + A−1

k Bk

)
u = 0, if k is a transmission eigenvalue −1 is an eigenvalue of the

compact (non self-adjoint) operator A−1
k Bk and hence transmission eigenvalues
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have finite multiplicity. Note that the eigenfunctions of A−1
k Bk are elements of the

kernel of Ak + Bk and vice versa.
Next we show that the set of transmission eigenvalues is discrete and to this end we
apply the analytic Fredholm theory. Obviously the bilinear formsAk(·, ·) and Bk(·, ·)
depend analytically on k ∈ Gσ ⊂ C, and thus the mapping k 7→ Ak and k 7→ Bk are
weakly analytic in this region and hence strongly analytic [42]. Therefore, k 7→ A−1

k

is also strongly analytic and so is k 7→ A−1
k Bk. Furthermore, from Remark 4.23,

k0 = iτ for some τ > 2M/θ is not a transmission eigenvalue, i.e. the kernel
of Ak0

+ Bk0
and hence of I + A−1

k0
Bk0

, is nontrivial. Hence from the analytic
Fredholm theory [42] we can conclude that the set of transmission eigenvalues in
the region Gσ ⊂ C of the complex plane is discrete (possibly empty) with ∞ as the
only possible accumulation point.

Now since the region k ∈ C such that <(k) > 0 is included in
⋃∞
n=1G1/n we

have proven the following theorem:

Theorem 4.25. Assume that 0 < θ ≤ εc(x) < N and |γc(x)| < M almost every-
where in D. Then the set of transmission eigenvalues k ∈ C, <(k) > 0 is discrete
(possibly empty).

The existence of transmission eigenvalues for absorbing media is in general an
open problem. However, for small enough conductivities γ0 and γ1, using perturba-
tion theory [72] it is possible to show the existence of transmission eigenvalues near
the real axis. The following theorem is just a reformulation of Theorem 4.12.

Theorem 4.26. Assume that both γ0 = 0 and γ1 = 0 almost everywhere in D and
ε0 ∈ L∞(D) and ε1 ∈ L∞(D) are such that ε0(x) ≥ θ0 > 0, ε1(x) ≥ θ1 > 0 and
εc := ε1 − ε ≥ θ > 0 almost everywhere in D. Then there exists an infinite set of
positive real transmission eigenvalues that accumulate only at +∞. Furthermore,

the smallest real transmission eigenvalue k1 > 0 satisfies k1 >
λ1(D)

supD εc
, where

λ1(D) > 0 is the first Dirichlet eigenvalue for −∆ in D.

Our aim is to now use the upper semicontinuity of the spectrum of linear
operators. To this end we rewrite the eigenvalue problem (4.42)-(4.45) in a different
equivalent form. Note that we already know by Theorem 4.25 that in the right half
plane (4.42)-(4.45) has a discrete point spectrum. Obviously in terms of v and
u := w − v, (4.42)-(4.45) can be written as

∆u+
(
k2ε1 + ikγ1

)
u+

(
k2εc + ikγc

)
v = 0 in D (4.49)

∆v +
(
k2ε0 + ikγ0

)
v = 0 in D, (4.50)

together with the boundary conditions

u = 0
∂u

∂ν
= 0 on ∂D. (4.51)

These equations make sense for u = H2
0 (D) and v ∈ L2(D) such that ∆v ∈ L2(D).
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Setting X(D) := H2
0 (D) ×

{
v ∈ L2(D) : ∆v ∈ L2(D)

}
, we can define the linear

operators A,B,D : L2(D)× L2(D)→ L2(D)× L2(D) by

A =

(
∆00 0

0 ∆

)
, Bγ =

(
iγ1 iγc
0 iγ0

)
, Dε =

(
ε1 εc
0 ε0

)
where ∆00 indicate that the Laplacian acts on a function in H2

0 (D), i.e. one with

zero Cauchy data on ∂D. Let p :=

(
u
v

)
and note that the domain of definition

of A is X(D) and A is an unbounded densely defined operator in L2(D) × L2(D).
Furthermore, A is a closed operator, i.e. for any sequence {pn} ∈ X(D) such that
pn → p in L2(D) × L2(D) and Apn → q, we have that p ∈ X(D) and Ap = q.
Indeed, since ‖∆00u‖L2(D) defines an equivalent norm in H2

0 (D), if un → u in L2(D)
and ∆00un → q1 in L2(D) then u ∈ H2

0 (D) and q1 = ∆00u. Similarly, if vn → v
in L2(D) and ∆vn → q2 in L2(D) then ∆v = q2. The operators Bγ and Dε are
bounded in L2(D)× L2(D) and D−1

ε exists in L2(D)× L2(D) and is given by

D−1
ε =

1

ε0ε1

(
ε0 −εc
0 ε1

)
.

Thus the transmission eigenvalue problem is equivalent to the following quadratic
eigenvalue problem

Ap + kBγp + k2Dεp = 0, p ∈ L2(D)× L2(D). (4.52)

Introducing U =

(
p

kDε p

)
the eigenvalue problem (4.52) becomes

(KU− kIε,γ)U = 0 U ∈ (L2(D)× L2(D))2, (4.53)

where the 4× 4 matrix operators K and Iγ,ε are given by

K :=

(
A 0
0 I

)
, Iε,γ :=

(
−Bγ −I
Dε 0

)
where I is the identity operator in L2(D)×L2(D). By straightforward calculation we

obtain I−1
ε,γ := D−1

ε

(
0 I

−Dε −Bγ

)
which is a bounded operator in L2(D)×L2(D).

Thus we have that the original transmission eigenvalue problem (4.42)-(4.45) is
equivalent to an eigenvalue problem for the closed (unbounded) operator Tε,γ :=
I−1
ε,γK (note Tε,γ is closed since it is the product of a closed operator with bounded

operator in (L2(D) × L2(D))2). Let us denote by Tε,γ=0 the operator defined as
above corresponding to the non-absorbing case, i.e. γ0 = 0 and γ1 = 0 almost
everywhere in D (Bγ=0 becomes the zero operator). Let Σ(Tε,γ) be the spectrum
of Tε,γ and R(k;Tε,γ) the resolvent of Tε,γ . We have proven in Theorem 4.25
that R(k;Tε,γ) = (Tε,γ − kI)−1 is well defined for all k ∈ C such that <(k) >
0 except for a discrete set of k without any finite accumulation point (possibly
empty). Furthermore, from Theorem 4.26 we already know that Σ(Tε,γ=0) contains
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infinitely many isolated points lying on the positive real axis, which indeed are real
transmission eigenvalues. Our aim is to use the stability of eigenvalues for closed
operators under small perturbations as described in [72] (Chapter 4, Section 3). To
this end we need to define what small perturbation means and prove that Tε,γ is
a small perturbation of Tε,γ=0 assuming that the absorptions γ0 and γ1 are small
enough.

To do this we set P := Tε,γ −Tε,γ=0 and by straightforward calculation we see
that the perturbation P is a bounded operator in (L2(D)× L2(D))2 given by

P =

(
0 0
0 −D−1

ε Bγ

)
.

According to [72], the perturbation P is considered small if the so-called gap between

the two closed operators Tε,γ ,Tε,γ=0, denoted by δ̂(Tε,γ ,Tε,γ=0) is small. For the

sake of the reader’s convenience we include here the definition of the gap δ̂(T, S)
between two closed operators T and S on a Banach space X. In particular

δ̂(T, S) = max(δ(T, S), δ(S, T )), where δ(T, S) = sup
u∈G(T ),‖u‖=1

dist(u,G(S))

where G(T ) and G(S) are the graphs of T and S respectively, which are closed
subsets of X × X. In particular, if S = T + A with A a bounded operator in X
then (see [72], Chapter 4, Theorem 2.14)

δ̂(T +A, T ) ≤ ‖A‖.

In our case it is now easy to show that

δ̂(Tε,γ ,Tε,γ=0) ≤ ‖P‖ ≤ ‖D−1
ε Bγ‖ (4.54)

≤ 4
supD(ε0) + supD(ε1)

infD(ε0) infD(ε1)

(
sup
D

(γ0) + sup
D

(γ1)

)
. (4.55)

Now let k∗ be a real transmission eigenvalue corresponding to the operator Tε,γ=0,
and consider a neighborhood Nσ(k∗) ⊂ C of k∗ of radius σ > 0. Then there is
a ηk∗ > 0 (of course depending on σ) such that this neighborhood contains at

least one point in Σ(Tε,γ) as long as δ̂(Tε,γ ,Tε,γ=0) < ηk∗ since otherwise from [72]
(Theorem 3.1, Chapter 4) Nσ(k∗) must be included in both resolvents, R(k;Tε,γ)
and R(k;Tε,γ=0). Thus we have shown that for small absorption there is at least
one transmission eigenvalue near k∗.

Theorem 4.27. Let ε0 ∈ L∞(D) and ε1 ∈ L∞(D) satisfy ε0(x) ≥ θ0 > 0, ε1(x) ≥
θ1 > 0 and εc := ε1 − ε ≥ θ > 0, and let kj > 0, j = 1, . . . , ` be the first `
real transmission eigenvalues (multiple eigenvalues are counted once) corresponding
to (4.42)-(4.45) for non-absorbing media, i.e. for γ0 = γ1 = 0. Then for every
σ > 0 there is a η̃ > 0 (depending on σ) such that if the absorption in the media
is such that supD γ0 + supD γ1 < η̃, there exist at least ` transmission eigenvalues
corresponding to (4.42)-(4.45) in a σ-neighborhood of kj, j = 1, . . . , `.
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Proof. To prove this theorem, it suffices to choose η̃ = max(η̃k1 , η̃k2 , · · · η̃k`) thanks
to (4.54), where

η̃kj < ηki
infD(ε0) infD(ε1)

4 supD(ε0) + 4 supD(ε1)

and ηkj is the size of the perturbation corresponding to kj , j = 1, · · · `, as discussed
above.

Remark 4.28. The approach developed in this section can be seen as a the de-
velopment of continuity property for the resolvent of the transmission eigenvalue
problem. In particular, for a real-valued refractive index the same analysis can
be done to show that, if the real-valued refractive index in the media is slightly
perturbed, then so are the transmission eigenvalues.

4.3 Existence of Transmission Eigenvalues for
Anisotropic Media

We now return our attention to the transmission eigenvalue problem for anisotropic
media (3.96) and prove the existence of real transmission eigenvalues under a sign
restriction on the contrast. As the reader has already learned from Section 3.2, the
transmission eigenvalue problem for anisotropic media assumes a different structure
provided whether n ≡ 1 or n 6≡ 1.

Let us recall the transmission eigenvalue problem for anisotropic media:

∇ ·A∇w + k2nw = 0 in D,

∆v + k2v = 0 in D,

w = v on ∂D,

∂w

∂νA
=
∂v

∂ν
on ∂D.

(4.56)

with w ∈ H1(D) and v ∈ H1(D), where in view of Theorem 3.33 we assume that
=(A) = 0 and =(n) = 0 and remind the reader of the notations

a∗ := inf
D

inf
|ξ|=1

ξ ·Aξ > 0 and a∗ := sup
D

sup
|ξ|=1

ξ ·Aξ <∞,

n∗ := inf
D
n > 0 and n∗ := sup

D
n <∞.

(4.57)

4.3.1 The Case n ≡ 1

We start by assuming that n(x) ≡ 1 for almost all x ∈ D and in addition =(A) = 0
and either a∗ > 1 or 0 < a∗ < 1. Under these assumptions, in Section 3.2 (right
below Remark 3.34), it is shown that real transmission eigenvalues, i.e. the values
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of k > 0 for which there exists non-zero solutions v ∈ H1(D) and w ∈ H1(D) of

∇ ·A∇w + k2w = 0 and ∆v + k2v = 0 in D

w = v and
∂w

∂νA
=
∂v

∂ν
on ∂D,

are the values of τ := k2 for which the kernel of the operators

Aτ − τB or Ãτ − τB defined in H0(D), (4.58)

is nontrivial. Here we recall

H0(div, D) : =
{
u ∈ L2(D)2, ∇ · u ∈ L2(D), ν · u = 0 on ∂D

}
H0(D) : =

{
u ∈ H0(div, D) : ∇ · u ∈ H1

0 (D)
}

and the bounded linear operators Aτ : H0(D)→ H0(D), Ãτ : H0(D)→ H0(D) and
B : H0(D) → H0(D) are defined via the Riesz representation theorem respectively
applied to the forms

Aτ (u,u′) :=
(
(N − I)−1 (∇∇ · u + τu) , (∇∇ · u′ + τu′)

)
D

+ τ2 (u,u′)D ,

Ãτ (u,v) :=
(
N(I −N)−1 (∇∇ · u + τu) , (∇∇ · u′ + τu′)

)
D

+ (∇∇ · u,∇∇ · v)D ,

and
B(u,v) := (∇ · u,∇ · v)D ,

with N = A−1 and (·, ·)D denoting the L2(D)-inner product (see (3.118) and the
equations following). Exactly in the same way as in Lemma 4.9 we can prove the
following result.

Lemma 4.29. The bounded self-adjoint operator Aτ : H0(D)→ H0(D) is positive
definite if 0 < a∗ < 1, whereas Ãτ : H0(D)→ H0(D) is positive definite if a∗ > 1.

Lemma 4.30. The self-adjoint non-negative linear operator B : H0(D) → H0(D)
is compact.

Proof. Let un be a bounded sequence in H0(D). Hence there exists a subsequence,
denoted again by un, which converges weakly to u0 in H0(D). Since ∇ · un is
also bounded in H1(D), from Rellich’s compactness theorem we have that ∇ · un
converges strongly to ∇ · u0 in L2(D). But

‖B(un − u0)‖H0(D) ≤ ‖∇ · (un − u0)‖L2(D)

which proves that Bun converges strongly to Bu0.

The kernel of the operator B : H0(D)→ H0(D) is given by

Kernel(B) = {u ∈ H0(D); ∇ · u = 0} ,
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which is obvious from the representation

(Bu,v)H0(D) = (∇ · u,∇ · v)D .

To carry over the approach of Section 4.2 to the eigenvalue problem for anisotropic
media, we also need to consider the corresponding transmission eigenvalue problem
for a ball BR of radius R centered at the origin with a constant index of refraction
0 < n 6= 1, which is formulated as

∆w + k2nw = 0 and ∆v + k2v = 0 for |x| < R, (4.59)

w = v and
1

n

∂w

∂ν
=
∂v

∂ν
for |x| = R. (4.60)

By separation of variables we can prove the following lemma :

Lemma 4.31. Let D := BR and n > 0 a positive constant such that n 6= 1. The
infinitely many real zeros of

dn(k) = det

(
jn(kR) jn(k

√
nR)

−j′n(kR) − 1√
n
j′n(k
√
nR)

)
= 0

are transmission eigenvalues for the anisotropic media with support BR and refrac-
tive index A := 1

nI.

We denote by kR,n the smallest real eigenvalue. An eigenfunction correspond-
ing to kR,n, is uBR,n = n∇wBR,n − ∇vBR,n ∈ H0(BR), where wBR,n, vBR,n is a
nonzero solution to (4.59)-(4.60). Furthermore, uBR,n satisfies∫
BR

1

n− 1
(∇∇ · uBR,n + k2

R,nuBR,n) · (∇∇ · uBR,n + k2
R,nnuBR,n) dx = 0. (4.61)

By definition uBR,n is not in the kernel of B : H0(D)→ H0(D). Finally, if BR ⊂ D,
then the extension by zero ũ of uBR,n to the whole D is in H0(D), respectively.

Now we have all the pieces to repeat word by word the proof of Theorem 4.12
to obtain the following theorem on the existence of real transmission eigenvalues
for anisotropic media.

Theorem 4.32. Assume =(A) = 0, n ≡ 1 and the matrix valued function A
satisfies either

1. 1 < a∗ ≤ ξ ·A(x)ξ ≤ a∗ <∞ or

2. 0 < a∗ ≤ ξ ·A(x)ξ ≤ a∗ < 1

for almost all x ∈ D and all ξ ∈ R3 with ‖ξ‖ = 1. Then there exists an infinite set
of real transmission eigenvalues for the anisotropic media problem (4.56) with +∞
as the only accumulation point.
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4.3.2 The Case n 6≡ 1

We here discuss the existence of positive transmission eigenvalues in the general
case of anisotropic media with n 6= 1. Unfortunately the existence of transmission
eigenvalues for this case can only be shown under restrictive assumptions on A− I
and n−1. The approach presented here follows the lines of [32] where, motivated by
the case of n ≡ 1, the transmission eigenvalue problem is formulated in terms of the
difference u := v − w. However, due to the lack of symmetry, the problem for u is
no longer a quadratic eigenvalue problem but takes the form of a more complicated
nonlinear eigenvalue problem as will become clear in the following.

Example 4.33 The spherically symmetric case: In the case when D := BR is a ball
of radius R centred at the origin and both constitutive material properties A = a(r)I
and n = n(r) depend only on the radial variable, similarly to the isotropic media in
Theorem 4.7 we can directly show that there exists an infinite set of transmission
eigenvalues. We assume that both a ∈ C2[0, R] and n ∈ C2[0, R]. Obviously if both
a ≡ 1 and n ≡ 1 every k > 0 is a transmission eigenvalue (i.e. this corresponds to
the case when there is no inhomogeneity and therefore no waves are scattered). To
avoid such a situation we assume that either a(R) 6= 1 and n(R) 6= 1 or otherwise

δ :=
1

R

R∫
0

(
n(r)

a(r)

) 1
2

dr 6= 1. (4.62)

We restrict our attention to solutions of (4.56) that depends only on r = |x|, that
is

v(x) = a0j0(kr)

where j0 is the spherical Bessel function of order zero and a0 is a constant. Next,
making the substitution w(x) = [a(r)]−1/2W (x) we see that the first equation in
(4.56) takes the form

∆W +

(
k2 n(r)

a(r)
−m(r)

)
W = 0

where

m(r) =
1√
a(r)

∆
√
a(r).

Hence, setting

w(x) =
b0

[a(r)]
1
2

y(r)

r

where b0 is a constant, straightforward calculations show that if y is a solution of

y′′ +

(
k2n(r)

a(r)
−m(r)

)
y = 0, y(0) = 0, y′(0) = 1,

then w satisfies the first equation in (4.56). Define c(r) by

c(r) :=
n(r)

a(r)
.
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Again following [42], [48], in order to solve the above initial value problem for y we
use the Liouville transformation

z(ξ) := [c(r)]
1
4 y(r) where ξ(r) :=

r∫
0

[c(ρ)]
1
2 dρ

which yields the following initial value problem for z(ξ):

z′′ + [k2 − p(ξ)]z = 0 , z(0) = 0 , z′(0) =
[
c(0)

]− 1
4 (4.63)

where

p(ξ) :=
c′′(r)

4[c(r)]2
− 5

16

[c′(r)]2

[c(r)]3
+

m(r)

c(r)
.

Now exactly in the same way as in Theorem 4.7, then (4.63) can be rewritten as
a Volterra integral equation and using the method of successive approximations
we can obtain the asymptotic behavior for y which is the same as (4.5) and (4.6)
where n(r) is replaced by c(r). Applying the boundary conditions on |x| = R, the
transmission eigenvalues are the zeros of

d0(k) = det


1

[a(R)]1/2
y(R)

R
j0(kR)

a(R)
d

dr

(
1

[a(r)]1/2
y(r)

r

)
r=R

k j′0(kR)

 = 0

which has the same asymptotic expression as in (4.7) where

δ :=
1

R

R∫
0

n(r)

a(r)
, A =

1

[a(R)]1/2
1

[c(0)c(R)]1/4
, B =

[
a(R)

]1/2 [c(R)

c(0)

]1/4

.

Then, as in the proof of Theorem 4.7, we can conclude the existence of infinitely
many eigenvalues provided the above assumptions are met.

In the following we need to consider a particular case of the above spherically
stratified media where A = aI and a 6= 1 and n 6= 1 are both positive constants.
Separation of variables leads to solutions of (4.56) of the form

v(r, x̂) = a`j`(kr)Y
m
` (x̂) , w(r, x̂) = b`j`

(
k

√
n

a
r

)
Y m` (x̂)

where jn are spherical Bessel functions of order n, Y mn are the spherical harmonics
and x̂ = x/r. Then the corresponding transmission eigenvalues are zeros of the
determinants

d`(k) = det

 j`(kR) j`

(
k

√
n

a
R

)
k j′`(kR) k

√
na j′`

(
k

√
n

a
R

)
 = 0 (4.64)

for ` ≥ 0. For later use we denote by ka,n,R the smallest transmission eigenvalue,
which may not necessarily be the first zero of d0(k).
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We now turn our attention to the general case (4.56). To simplify the expres-
sions we set τ := k2 and observe that if (v, w) satisfies (4.56) then subtracting the
equation for v from the equation for w we arrive at the equivalent formulation for
u := v − w ∈ H1

0 (D) and v ∈ H1(D)

∇ ·A∇u+ τnu = ∇ · (A− I)∇v + τ(n− 1) v in D ,

ν ·A∇u = ν · (A− I)∇v on ∂D,
(4.65)

along with
∆v + τv = 0 in D. (4.66)

The main idea of the proof of the existence of transmission eigenvalues consists in
expressing v in terms of u, using (4.65), and substituting the resulting expression
into (4.66) in order to formulate the eigenvalue problem only in terms of u. In
the case when A = I this substitution is simple and leads to an explicit expression
as a fourth order equation satisfied by u as discussed in Section 3.1.1 (see also
[75]). In the current case the substitution requires the inversion of the operator
∇ ·
[
(A− I)∇·

]
+ τ(n− 1) with a Neumann boundary condition. It is then obvious

that the case where (A − I) and (n − 1) have the same sign is more problematic
since in that case the operator may not be invertible for special values of τ . This
is why we only consider in detail the simpler case when (A − I) and (n − 1) have
the opposite sign almost everywhere in D. Thus we now assume that either a∗ < 1
and n∗ > 1, or a∗ > 1 and n∗ < 1.

Note that for given u ∈ H1
0 (D), the problem (4.65) for v ∈ H1(D) is equivalent

to the variational formulation∫
D

[
(A− I)∇v · ∇ψ − τ (n− 1) v ψ

]
dx =

∫
D

[
A∇u · ∇ψ − τn uψ

]
dx (4.67)

for all ψ ∈ H1(D). The following result concerning the invertibility of the operator
associated with (4.67) can be proven in a standard way using the Lax-Milgram
lemma. We skip the proof here and refer the reader to [32]

Lemma 4.34. Assume that either a∗ > 1 and 0 < n∗ < 1, or 0 < a∗ < 1 and
n∗ > 1. Then, for every u ∈ H1

0 (D) and τ ≥ 0 there exists a unique solution
v := vu ∈ H1(D) of (4.67). The operator Aτ : H1

0 (D) → H1(D), defined by
u 7→ vu, is bounded and depends continuously on τ ≥ 0.

For fixed u ∈ H1
0 (D), we now set vu := Aτu and denote by Lτu ∈ H1

0 (D) the
unique Riesz representation of the bounded antilinear functional

ψ 7→
∫
D

[
∇vu · ∇ψ − τ vu ψ

]
dx for ψ ∈ H1

0 (D) ,

i.e.

(Lτu, ψ)H1(D) =

∫
D

[
∇vu · ∇ψ − τ vu ψ

]
dx for ψ ∈ H1

0 (D) . (4.68)
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Obviously Lτ also depends continuously on τ . Now we are able to connect a trans-
mission eigenfunction, i.e. a nontrivial solution (v, w) of(4.56), to the kernel of the
operator Lτ .

Theorem 4.35. The following statements are true:

1. Let (w, v) ∈ H1(D) × H1(D) be a transmission eigenfunction corresponding
to some eigenvalue τ > 0. Then u = v − w ∈ H1

0 (D) satisfies Lτu = 0.

2. Let u ∈ H1
0 (D) satisfy Lτu = 0 for some τ > 0. Furthermore, let v := vu =

Aτu ∈ H1(D) be as in Lemma 4.34, i.e. the solution of (4.67). Then τ is
a transmission eigenvalue with (w, v) ∈ H1(D) × H1(D) the corresponding
transmission eigenfunction where w = v − u.

Proof. Formula (4.68) implies that (Lτu, ψ)H1(D) = 0 for all ψ ∈ H1
0 (D) which

means that Lτu = 0.
The proof of the second part of the theorem is a simple consequence of the

observation that (4.66) is equivalent to∫
D

[
∇v · ∇ψ − τ v ψ

]
dx = 0 for all ψ ∈ H1

0 (D). (4.69)

Hence Lτu = 0 implies that vu solves the Helmholtz equation in D. Since w := v−u
we have that the Cauchy data of w and v coincide. The equation for w follows from
(4.67).

The operator Lτ plays a similar role as the operator Ak − k2B for the case of
n ≡ 1 discussed in the first part of this section.

Theorem 4.36. The bounded linear operator Lτ : H1
0 (D)→ H1

0 (D) satisfies:

1. Lτ is self-adjoint for all τ > 0.

2. (σL0u, u)H1(D) ≥ c ‖u‖2H1(D) for all u ∈ H1
0 (D) and c > 0 independent of u

where σ = 1 if a∗ > 1 and 0 < n∗ < 1, and σ = −1 if 0 < a∗ < 1 and n∗ > 1.

3. Lτ − L0 is compact.

Proof. 1. Let u1, u2 ∈ H1
0 (D) and v1 := vu1

and v2 := vu2
be the corresponding

solution of (4.67). Then we have that

(Lτu1, u2)H1(D) =

∫
D

[
∇v1 · ∇u2 − τ v1u2

]
dx

=

∫
D

[
A∇v1 · ∇u2 − τn v1 u2

]
dx

−
∫
D

[
(A− I)∇v1 · ∇u2 − τ (n− 1) v1 u2

]
dx .
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Using (4.67) twice, first for u = u2 and the corresponding v = v2 and ψ = v1 and
then for u = u1 and the corresponding v = v1 and ψ = v2, yields

(Lτu1, u2)H1(D) =

∫
D

[
(A− I)∇v1 · ∇v2 − τ (n− 1) v1 v2

]
dx

−
∫
D

[
A∇u1 · ∇u2 − τn u1 u2

]
dx (4.70)

which shows that Lτ is self-adjoint.
2. In order to show that σL0 : H1

0 (D) → H1
0 (D) is a coercive operator, we

recall the definition (4.68) of L0 and use the fact that v = vu = u+ w to obtain

(L0u, u)H1(D) =

∫
D

∇v · ∇u dx =

∫
D

|∇u|2 dx+

∫
D

∇w · ∇u dx . (4.71)

From (4.67) for τ = 0 and ψ = w we now have that∫
D

∇w · ∇u dx =

∫
D

(A− I)∇w · ∇w dx . (4.72)

If a∗ > 0 we have
∫
D

(A− I)∇w · ∇w dx ≥ (a∗ − 1)‖∇w‖2L2(D) ≥ 0 and hence

(L0u, u)H1(D) ≥
∫
D

|∇u|2 dx .

Since from Poincaré’s inequality ‖∇u‖L2(D) is an equivalent norm on H1
0 (D), this

proves the strict coercivity of L0.
Now if 0 < a∗ < 1, from (4.70) with u1 = u2 = u and τ = 0 we have

−(L0u, u)H1(D) = −
∫
D

(A− I)∇w · ∇w dx +

∫
D

A∇u · ∇u dx

≥ a∗
∫
D

|∇u|2 dx

which proves the strict coercivity of −L0 since a∗ > 0.
3. This follows from the compact embedding of H1

0 (D) into L2(D).

We are now in the position to establish the existence of infinitely many positive
transmission eigenvalues, i.e. the existence of a sequence of τj > 0, and correspond-
ing uj ∈ H1

0 (D), such that uj 6= 0 and Lτjuj = 0. Obviously these τ > 0 are such
that the kernel of I+Tτ is not trivial, which correspond to one being an eigenvalue
of the compact self-adjoint operator Tτ where Tτ : H1

0 (D)→ H1
0 (D) is defined by

Tτ := (σL0)−
1
2 (σ(Lτ − L0)) (σL0)−

1
2 .
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Thus we can conclude that real transmission eigenvalues have finite multiplicity.
We can now use Theorem 4.6 to prove the main result of this section.

Theorem 4.37. Assume that either a∗ > 1 and 0 < n∗ < 1, or 0 < a∗ < 1 and
n∗ > 1. Then there exists an infinite sequence of positive transmission eigenvalues
kj > 0 (τj := k2

j ) with +∞ as the only accumulation point.

Proof. We sketch the proof only for the case of a∗ > 1 and 0 < n∗ < 1 (i.e. take
σ = 1 in Theorem 4.36). First, we recall that Assumption 1. of Theorem 4.6 is
satisfied with τ0 = 0 from Theorem 4.36 part 2. Next, from the definition of Lτ
and the fact that v = w + u, we have

(Lτu, u)H1(D) (4.73)

=

∫
D

[
∇v · ∇u− τ v u

]
dx =

∫
D

[
∇w · ∇u− τ w u+ |∇u|2 − τ |u|2

]
dx.

We also have that w satisfies∫
D

[
(A− I)∇w · ∇ψ − τ(n− 1)wψ

]
dx =

∫
D

[
∇u · ∇ψ − τ uψ

]
dx (4.74)

for all ψ ∈ H1(D). Now taking ψ = w in (4.74) and substituting the result into
(4.73) yields

(Lτu, u)H1(D) (4.75)

=

∫
D

[
(A− I)∇w · ∇w − τ (n− 1) |w|2 + |∇u|2 − τ |u|2

]
dx .

Let now τ̂ be such that τ̂ := k2
n∗,a∗,R

(the first transmission eigenvalue corresponding
to (4.59)-(4.60) for the disk BR with a := a∗ and n := n∗). We denote by v̂, ŵ
the corresponding non-zero solutions and set û := v̂− ŵ ∈ H1

0 (BR). We denote the

corresponding operator by L̂τ . Of course, by construction, we have that (4.75) still

holds, i.e. since L̂τ̂ û = 0,

0 =
(
L̂τ̂ û, û

)
H1(BR)

(4.76)

=

∫
BR

[
(a∗ − 1)|∇v̂|2 − τ̂ (n∗ − 1)|v̂|2 + |∇û|2 − τ̂ |û|2

]
dx .

Next we denote by ũ ∈ H1
0 (D) the extension of û ∈ H1

0 (BR) by zero to the whole
of D, let ṽ := vũ be the corresponding solution to (4.67) and set w̃ := ṽ − ũ. In
particular w̃ ∈ H1(D) satisfies∫

D

[
(A− I)∇w̃ · ∇ψ − τ̂ (n− 1) w̃ ψ

]
dx =

∫
D

[
∇ũ · ∇ψ − τ̂ ũ ψ

]
dx

=

∫
BR

[
∇û · ∇ψ − τ̂ û ψ

]
dx =

∫
BR

[
(a∗ − 1)∇ŵ · ∇ψ − τ̂ (n∗ − 1) ŵ ψ

]
dx
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for all ψ ∈ H1(D). Therefore, for ψ = w̃ we have∫
D

(A− I)∇w̃ · ∇w̃ − τ̂ (n− 1) |w̃|2 dx

=

∫
BR

(a∗ − 1)∇ŵ · ∇w̃ + τ̂ |n∗ − 1| ŵ w̃ dx.

Using the Cauchy-Schwarz inequality we obtain∫
D

(A− I)∇w̃ · ∇w̃ − τ̂ (n− 1) |w̃|2 dx

≤

∫
BR

(a∗ − 1) |∇ŵ|2 + τ̂ |n∗ − 1| |ŵ|2 dx

 1
2
∫
BR

(a∗ − 1) |∇w̃|2 + τ̂ |n∗ − 1| |w̃|2 dx

 1
2

≤

∫
BR

(a∗ − 1) |∇ŵ|2 − τ̂ (n∗ − 1) |ŵ|2 dx

 1
2
∫
D

(A− I)∇w̃ · ∇w̃ − τ̂ (n− 1) |w̃|2 dx

 1
2

since |n− 1| = 1− n ≥ 1− n∗ = |n∗ − 1|. Hence we have∫
D

[
(A− I)∇w̃ · ∇w̃ − τ̂ (n− 1) |w̃|2

]
dx

≤
∫
BR

[
(a∗ − 1) |∇ŵ|2 − τ̂ (n∗ − 1) |ŵ|2

]
dx .

Substituting this into (4.75) for τ = τ̂ and u = ũ yields(
Lτ̂ ũ, ũ

)
H1(D)

=

∫
D

[
(A− I)∇w̃ · ∇w̃ − τ̂ (n− 1) |ṽ|2 + |∇w̃|2 − τ̂ |w̃|2

]
dx

≤
∫
BR

[
(a∗ − 1)|∇ŵ|2 − τ̂ (n∗ − 1) |ŵ|2 + |∇ŵ|2 − τ̂ |ŵ|2

]
dx = 0

by (4.76). Hence from Theorem 4.6 we have that there is a transmission eigenvalue
k > 0, such that k2 ∈ (0, τ̂ ]. Finally, repeating this argument for disks of arbitrary
small radius, we can show the existence of infinitely many transmission eigenvalues
exactly in the same way as in the proof Theorem 4.12. In a similar way we can
prove the same result for the case when 0 < a∗ < 1 and n∗ > 1 where in the proof
we consider the operator −Lτ and the ball BR with a := a∗ and n := n∗.

We end our discussion in this section by making a few comments on the case
when (A − I) and (n − 1) have the same sign. As indicated above, if we follow a
similar procedure, then we are faced with the problem that (4.67) is not solvable
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for all τ . For this reason it is only possible to prove the existence of a finite number
of transmission eigenvalues under the restrictive assumption that n∗ − 1 is small
enough. To avoid repetition, we refer the reader for more details to [32]. We also
mention that the approach of this section can be modified to include anisotropic
media with small voids [62].

4.3.3 Inequalities for Transmission Eigenvalues

Similarly to the case of isotropic media, our proof of the existence of real transmis-
sion eigenvalues provides a framework for deriving inequalities between transmission
eigenvalues and the matrix valued refractive index. In view of the fact that the ma-
trix valued refractive index can not be uniquely determined from scattering data,
such inequalities become particularly important in the context of the inverse prob-
lem for anisotropic media since real transmission eigenvalues can be determined
from far field data (see Section 4.4). In Section 4.4.1 we show that the inequali-
ties and monotonicity properties of transmission eigenvalues can be used to obtain
information about anisotropic media from scattering data.

Let us start with the case when n ≡ 1. Rephrasing Theorem 3.35 we have the
following lower bounds for transmission eigenvalues.

Theorem 4.38. Let A ∈ (L∞(D))3×3, =(A) = 0, n ≡ 1 in D and 0 < a∗ and
a∗ ≤ ∞ be defined by (4.57). Then all real transmission eigenvalues k > 0 satisfy

1. k2 ≥ a∗λ1(D), if 0 < n∗ < 1 or

2. k2 ≥ λ1(D), if 1 < n∗

where λ1(D) is the first Dirichlet eigenvalue for −∆ in D.

As the reader has already seen, the analytical structure of the transmission
eigenvalue problem for anisotropic media with contrast only in A resembles the
one corresponding to isotropic media with N := A−1. Hence, as in the proof of
Theorem 4.16, we can prove a monotonicity property for transmission eigenvalues
for anisotropic media. To this end let kj := kj(A(x), D) > 0 for j ∈ N be the
increasing sequence of transmission eigenvalues for the media with support D and
refractive index A, such that tj = k2

j is the smallest zero of λj(τ,D,A(x)) = τ where
λj(τ,D,A(x)), j ≥ 1, are the eigenvalues of the auxiliary problem (see Theorem
4.32) given by

λj(τ,D,A) =min
W∈Uj

max
u ∈W

‖∇ · u‖L2(D) = 1

∫
D

(A−1 − I)−1|∇∇ · u + k2u|2 dx+ k4

∫
D

|u|2 dx

(4.77)
where Uj denotes the set of all j-dimensional subspaces W of H0(D). Then for this
sequence of kj(A(x), D) > 0 we have the following monotonicity property.

Theorem 4.39. Let A ∈ (L∞(D))3×3, =(A) = 0, n ≡ 1 in D and 0 < a∗ and
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a∗ ≤ ∞ be defined by (4.57). Assume that B1 and B2 are two balls such that
B1 ⊂ D ⊂ B2. Then

1. If a∗ < 1, then

kj(a∗, B2) ≤ kj(a∗, D) ≤ kj(A(x), D) ≤ kj(a∗, D) ≤ kj(a∗, B1).

2. If 1 < a∗, then

kj(a
∗, B2) ≤ kj(a∗, D) ≤ kj(A(x), D) ≤ kj(a∗, D) ≤ kj(amin, B1).

In particular, these inequalities hold true for the smallest transmission eigenvalue
k1(A(x), D).

As a consequence of this theorem we have the following more general formu-
lation of the monotonicity property for the sequence of transmission eigenvalues
kj(A(x), D) > 0 described above.

Corollary 4.40. Let D1 ⊂ D ⊂ D2 and A1 < A < A2 where A1, A,A2 all satisfy
the assumptions of Theorem 4.39.

1. If A1 < A < A2 < I, then

kj(A1, D2) ≤ kj(A1, D) ≤ kj(A,D) ≤ kj(A2, D) ≤ kj(A2, D1).

2. If I < A1 < A < A2, then

kj(A2, D2) ≤ kj(A2, D) ≤ kj(A,D) ≤ kj(A1, D) ≤ kj(A1, D1).

Here I is 3 × 3 identity matrix and for any two matrices B < A means that the
matrix A−B is positive definite uniformly in D.

Theorem 4.39 shows in particular that for A = aI where a 6= 1 is a positive
constant the first transmission eigenvalue k1(a,D) as a function of a for D fixed is
monotonically increasing if a < 1 and is monotonically decreasing if a > 1. As in
Theorem 4.18, this leads to the following uniqueness result for the constant index
of refraction in terms of the first transmission eigenvalue.

Theorem 4.41. The constant index of refraction A = aI is uniquely determined
from a knowledge of the corresponding smallest transmission eigenvalue k1(a,D) > 0
provided that it is known a priori that either a > 1 or 0 < a < 1.

Next we consider the case when n 6= 1. Unfortunately, the proof of the ex-
istence of transmission eigenvalues in this case has a more complicated structure.
Hence we can derive only an inequality for the first transmission eigenvalue.

Theorem 4.42. Let BR ⊂ D be the largest disk contained in D and λ1(D)
the first Dirichlet eigenvalue of −∆ in D. Furthermore, let k1(A,n,D) be the first
transmission eigenvalue corresponding to D, A and n, and 0 < a∗ ≤ a∗ < ∞,
0 < n∗ ≤ n∗ <∞ define by (4.57).
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1. If a∗ > 1 and 0 < n∗ < 1 then

λ1(D) ≤ k2
1(A,n,D) ≤ k2

1(a∗, n
∗, BR).

2. If 0 < a∗ < 1 and n∗ > 1 then

a∗
n∗

λ1(D) ≤ k2
1(A,n,D) ≤ k2

1(a∗, n∗, BR).

Proof. The upper bounds in both cases are consequence of the proof of Theorem
4.37. We now prove a lower bound for the first transmission eigenvalue. To this
end, let us assume that a∗ > 1 and 0 < n∗ < 1 and consider (4.75), i.e.

(Lτu, u)H1(D) =

∫∫
D

[
(A− I)∇w · ∇w − τ (n− 1) |u|2 + |∇u|2 − τ |u|2

]
dx .

The first term is estimated by∫∫
D

[
(A− I)∇w · ∇w− τ (n− 1) |w|2

]
dx ≥ min(a∗− 1), τ(1−n∗)) ‖w‖2H1(D) ≥ 0

and, since u ∈ H1
0 (D), we have that ‖∇u‖2L2(D) ≥ λ1(D) ‖u‖2L2(D) where λ1(D) is

the first Dirichlet eigenvalue of −∆ in D. Therefore, (Lτu, u)H1(D) > 0 as long as
τ < λ1(D). Thus, we can conclude that all transmission eigenvalues k are such that
k2 ≥ λ1(D).

Next we consider 0 < a∗ < 1 and n∗ > 1 and from (4.70) since v = w + u we
have that

−(Lτu, u)H1(D) =

∫∫
D

[
(I −A)(∇w +∇u) · (∇w +∇u) + τ(n− 1) |w + u|2

]
dx

+

∫∫
D

[
A∇u · ∇u− τ n |u|2

]
dx .

In this case∫∫
D

[
(I −A)|∇w +∇u|2 + τ(n− 1) |w + u|2

]
dx ≥ C ‖u+ v‖2H1(D) ≥ 0

where C = min((1− a∗), τ(n∗ − 1)), whereas∫∫
D

[
A∇u · ∇u− τ n |u|2

]
dx ≥

[
a∗λ1(D)− τn∗

]
‖v‖2L2(D) .

Hence if 0 < τ < a∗
n∗λ1(D) there are no transmission eigenvalues which proves the

lower bound in the second case.
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We end this section by stating an estimate on transmission eigenvalues which
is a consequence of the proof of Theorem 3.37.

Theorem 4.43. Assume that either 0 < a∗ < 1 or a∗ > 1, and
∫
D

(n − 1)dx 6= 0.
Then the nonzero eigenvalue k1 ∈ C of the smallest modulus satisfies

|k|2 ≥ a∗(1−
√
a∗)

CP max(n∗, 1) (1 +
√
n∗)

with CP > 0 defined by

1

CP
:= min

(w, v) ∈ Y(D)
(w, v) 6= (0, 0)

‖∇w‖2D + ‖∇v‖2D
‖w‖2D + ‖v‖2D

where

Y(D) :=

(w, v) ∈ H(D)×H(D), w = v on ∂D,

∫
D

(nw − v)dx = 0

 .

Note that under the weaker assumption on n in Theorem 4.43 it is not known
whether real transmission eigenvalues exist. In particular, the eigenvalue of the
smallest modulus may not necessarily be real.

We end this section with the comment that, similarly to the case of isotropic
media, alternative approaches have been introduced to investigate the spectral prop-
erties of the anisotropic transmission eigenvalue problem under the assumptions that
A−I has one sign in a neighborhood of the boundary. Under the latter assumption,
in a series of papers by Lakshtanov and Vainberg [83], [84], [85] and [86], the exis-
tence of transmission eigenvalues is proven and a study of the counting function for
transmission eigenvalues is initiated. We also mention that there is a considerable
body of work connected with numerical computations of transmission eigenvalues
[69], [70] and [80].

4.4 The Determination of Transmission Eigenvalues
from Far Field Data

We discuss in this section the determination of transmission eigenvalues from a
knowledge of the far field data. This is important for applications as it shows
that these quantities can be determined from measurements and therefore can be
exploited in the solution of inverse problems. We restrict ourselves to the scattering
problem for isotropic media defined by (1.25)-(1.27). We make the assumption that
=(n) = 0 for which real transmission eigenvalues are proven to exist. The case of
anisotropic media can be treated in a very similar way and is skipped here.



“CCH-book”
2016/4/18
page 176i

i
i

i

i
i

i
i

176 Chapter 4. The Existence of Transmission Eigenvalues

We present three approaches to determine transmission eigenvalues from the
far field operator (2.1) as introduced in Chapter 2, namely F : L2(S2) → L2(S2)
defined by

(Fg)(x̂) :=

∫
S2

u∞(x̂, d)g(d) ds(d) (4.78)

where u∞(x̂, d) denote the far field pattern.
The first approach uses the LSM algorithm and requires a priori knowledge

of a non empty open subset of D (which is the support of n − 1 where n is the
refractive index) [20]. For z in this subregion we exploit the fact that the linear
sampling method indicator function blows up if k is a transmission eigenvalue while
it remains bounded if k is not a transmission eigenvalue. The second approach
uses a similar characterization but is based on the GLSM algorithm [5]. The third
approach uses a different philosophy [79]. It is based on an analysis of accumulation
points of the normalized eigenvalues of the far field operator. Roughly speaking,
transmission eigenvalues are detected when these normalized eigenvalues accumulate
at two different points as the the wave number approaches a transmission eigenvalue.

We remark that our presentation here is slightly different from the one in the
indicated literature.

4.4.1 An Approach Based on LSM

The main assumption here is that the operator F has dense range. This is indeed
guaranteed if k is not a non-scattering wave number. Moreover we assume that a
non empty open subset of D is known a priori and that D is simply connected (see
Remark 4.46 for a discussion of the case of a multiply connected domain D). We
set φz(x̂) := 1

4π e
−ikx̂·z to be the far field pattern associated with the fundamental

solution Φ(·, z). We let gαz ∈ L2(S2) be the solution to

(α+ F ∗F )gαz = F ∗φz.

Recall that F = GH where H : L2(S2)→ Hinc(D) is the Herglotz operator defined
by (2.3) and G : Hinc(D) → L2(S2) is defined by (2.4). We prove the following
result.

Theorem 4.44. Assume that n − 1 ≥ α > 0 (respectively 1 − n ≥ α > 0) in D
for some constant α and that k > 0 is not a non-scattering wave number. Then for
any ball B ⊂ D, ‖Hgαz ‖L2(D) is bounded as α→ 0 for a.e. z ∈ B if and only if k is
not a transmission eigenvalue.

Proof. If k is not a transmission eigenvalue, then one can apply Theorem 2.27
and Theorem 2.35 to deduce that ‖Hgαz ‖L2(D) is bounded as α→ 0 for all z in D.
Now assume that k is a transmission eigenvalue. Since F has dense range (by the
assumption that k is not a non-scattering wave number, Theorem 1.16) then,

Fgαz → φz as α→ 0,
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(c.f. Theorem 1.30). Assume that there exists a ball B ⊂ D such that for a.e.
z ∈ B, ‖Hgαz ‖L2(D) ≤ M for some constant M > 0 as α → 0 (the constant M
may depend on z). Then (for fixed z) there exists a subsequence vn = Hgαnz that
weakly converges to vz in Hinc(D). Since G is a compact operator, we deduce
that Gvz = φz. Using Rellich’s lemma, one deduces the existence of a solution
(uz, vz) ∈ L2(D)× L2(D) of the interior transmission problem

∆uz + k2nuz = 0 in D,

∆vz + k2vz = 0 in D,

uz − vz = Φ(·, z) on ∂D,

∂(uz − vz)/∂ν = ∂Φ(·, z)/∂ν on ∂D

(4.79)

such that the function wz = uz − vz ∈ H2(D). As in Chapter 3, one verifies that
wz satisfies ∫

D

1

n− 1
(∆wz + k2wz)(∆ϕ+ k2nϕ)dx = 0 ∀ϕ ∈ H2

0 (D) (4.80)

and

wz = Φ(·, z) and
∂wz
∂ν

=
∂Φ(·, z)
∂ν

on ∂D.

Since k is a transmission eigenvalue, according to the results of Chapter 3 there
exists a non trivial function w0 ∈ H2

0 (D) satisfying

(∆ + k2)
1

n− 1
(∆w0 + k2nw0) = 0 in D. (4.81)

Taking ϕ = w0 in (4.80) and applying Green’s theorem twice yields, after using
(4.81),∫
∂D

(
1

n− 1
(∆w0 + k2nw0)

)
∂Φ(· , z)
∂ν

ds

−
∫
∂D

∂

∂ν

(
1

n− 1
(∆w0 + k2nw0)

)
Φ(· , z) ds = 0, (4.82)

where these integrals have to be understood in the sense of H∓1/2(∂D) (resp.
H∓3/2(∂D)) duality pairing. Defining ψ(x) := 1

n−1 (∆ + k2n(x))w0(x) in D, we
observe that

∆ψ + k2ψ = 0 in D.

Classical interior elliptic regularity results and the Green’s representation theorem
imply that

ψ(z) =

∫
∂D

(
ψ(x)

∂Φ(x, z)

∂ν
− ∂ψ(x)

∂ν
Φ(x, z)

)
dsx for z ∈ D. (4.83)
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Equation (4.82) and the unique continuation principle now show that ψ = 0 in D.
Therefore (∆ + k2n(x))w0(x) = 0 in D. Since w0 ∈ H2

0 (D) one deduces again from
the unique continuation principle that w0 = 0 in D, which is a contradiction.

There are two weak points of the characterization provided by Theorem 4.44.
The first one is related to the assumption that k should not be a non-scattering
wave number. It is shown in [9] that, in two dimensions, if the domain D contains
corners, then the set of non-scattering wave numbers is empty. The only known
case for which the set of non-scattering wave numbers is not empty is the case of
sphere with constant index of refraction. We refer to [20] for a way to get around
this problem exploiting the fact that the noisy operator has in general dense range.

The second weak point is indeed the fact that the characterization of trans-
mission eigenvalues is given in terms of the behavior of ‖Hgαz ‖L2(D) which re-
quires a knowledge of D. In practice, numerical experiments show that replacing
‖Hgαz ‖L2(D) with ‖gαz ‖L2(S2) provide satisfactory results [23, 18, 59].

Numerical Examples

For the numerical experiments one needs to have access to points zi i = 1, . . . , N
inside the domain D. We then evaluate

k 7→
N∑
i=1

‖gαzi‖L2(S2)

for some regularization parameter α that can be chosen using the Morozov discrep-
ancy principle. This in turn assumes that one has access to the far field operator
for a range of wave numbers that contain the sought transmission eigenvalues. We
now give some numerical examples from [59] for a circular domain D of radius = 0.5
with index of refraction n = ni in an inner circle and n = ne in the outer annulus
(see Figure 4.1). More examples can be found in [25] and [62].

Figure 4.1. Configuration of the refractive index in a circular domain D
of radius 0.5. Reproduced from [59] with permission.

In Figure 4.2 we indicate the behavior of k 7→ ‖gαzi‖L2(S2) for several choices
of the refractive index ni and ne and for different choices of the points zi. The
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parameter α is fixed using the Morozov discrepancy principle. Observe in particular
that some peaks disappear (or are less sharp) for some choices of the points zi. This
confirms that several points are needed in order to obtain stable determination of
the peaks that correspond to transmission eigenvalues.
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Figure 4.2. From left to right, plots of k 7→ ‖gαz ‖L2(S) for several choices
of points z, respectively for (ne, ni) = (11, 5), (22, 19), (67, 61). Reproduced from [59]
with permission.

4.4.2 An Approach Based on GLSM

One can also use the algorithm of GLSM to detect transmission eigenvalues and
thus avoid the second weak point of the algorithm introduced above. We use the
same assumptions as above and shall rely on the version of GLSM that uses the F]
operator defined as

F] := |<(F )|+ |=(F )|.
To this end, define

Jα(φz; g) := α(F]g, g)L2(S2) + ‖Fg − φz‖2L2(S2)

and set
jα(φz) = inf

g∈L2(S2)
Jα(φz; g).

We then consider gαz to be the minimizing sequence satisfying

Jα(φ; gαz ) ≤ jα(φ) + p(α)

with 0 < p(α)
α → 0 as α→ 0.

Theorem 4.45. Assume that n − 1 ≥ α > 0 (respectively 1 − n ≥ α > 0) in D
for some constant α. Assume in addition that k > 0 is not a non-scattering wave
number. Then for any ball B ⊂ D, (F]g

α
z , g

α
z )L2(S2) is bounded as α → 0 for a.e.

z ∈ B if and only if k is not a transmission eigenvalue.

Proof. The case when k is not a transmission eigenvalue is a consequence of
Theorem 2.36.
If z is a transmission eigenvalue then, since F has dense range, by Lemma 2.6,

Fgαz → φz as α→ 0.
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We also remark that, thanks to Lemma 2.33 and Theorem 2.31, F] = H∗T]H with

T] : L2(D)→ L2(D) being coercive on R(H).
Now for fixed z, assume that (F]g

α
z , g

α
z )L2(S2) is bounded as α→ 0. Thanks to the

coercivity property of T], we deduce that ‖Hgαz ‖L2(D) is also bounded as α → 0.
We then can conclude the result as in the second part of the proof of Theorem 4.44.

Remark 4.46. For Theorems 4.44 and 4.45, the assumption that D is simply con-
nected can be removed by assuming that the intersection of the set of points z with
each connected component of D contains an open set with positive measure. Also in
the case of a multiply connected domain D, if we restrict the set of used points z to
a connected component of D, then one recovers the transmission eigenvalues related
to that connected component. This has been observed and numerically tested in
[59].

4.4.3 An Approach Based of the Eigenvalues of the Far Field
Operator

We present in this section a different approach to identify transmission eigenvalues
based on the behavior of the phase of the eigenvalues of the normal operator F . In
many aspects, this approach can also be seen as the complement of the (F ∗F )1/4

method (Section 2.4.1) in determining transmission eigenvalues. We here adopt
the notations of Section 2.4.2 and explicitly indicate the dependence on k in our
notation: for instance the far field operator is denoted by Fk. We recall that

Fk = H∗kTkHk

with Tk : L2(D) → L2(D) is defined by (2.17). We recall (Lemma 2.26) that if
n − 1 ≥ α > 0 (respectively 1 − n ≥ α > 0) in D for some constant α > 0 and
if k > 0 is not a transmission eigenvalue then the operator Tk : L2(D) → L2(D)
(respectively −Tk) satisfies Assumption 3 with Y = Y ∗ = L2(D).

Moreover, the operator I + iγFk, with γ = k
4π , is unitary which is equivalent

to the fact that Fk is normal. If k > 0 is not a transmission eigenvalue, then
Fk is injective. We hence have the existence of an orthonormal complete basis
(gj(k))j=1,+∞ of L2(S2) such that Fkgj(k) = λj(k)gj(k) where λj(k) 6= 0 form a
sequence of complex numbers that goes to 0 as j →∞. Define

λ̂j(k) := λj(k)/|λj(k)|.

Since λj(k) (for all j) lies on the circle of radius 1/γ and center i/γ and λj → 0

as j → ∞, the only possible accumulation points of the sequence (λ̂j(k)) are −1
and +1. From the proof of Theorem 2.25 we see that if k is not a transmission
eigenvalue and n− 1 ≥ α > 0 then +1 is the only accumulation point of λ̂j(k). In
the case 1− n ≥ α > 0, applying Theorem 2.25 to −Fk shows that in this case −1
is the only accumulation point of λ̂j(k).

The following theorem is almost the contrapositive of these statements.
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Theorem 4.47. Assume that n− 1 ≥ α > 0 (respectively 1− n ≥ α > 0) in D for
some constant α. Let k0 > 0 and (k`) be a sequence of positive numbers converging

to k0 as ` → ∞. Assume that there exists a sequence (λ̂`) such that λ̂` = λ̂j`(k`)

for some index j` and λ̂` → −1 (respectively λ̂` → +1) as ` → ∞. Then k0 is a
transmission eigenvalue.

Proof. The proof uses basically the same arguments as the proof of Theorem 2.25
and a continuity property with respect to k of the operator Tk formulated in Lemma
4.49 below. We shall consider only the case n − 1 ≥ α > 0 since the other case
follows from the same arguments (replacing Fk with −Fk). Define

ψ` :=
1√
|λj` |
Hk`gj` .

From (2.43) we clearly have

(Tk`ψ`, ψ`)L2(D) = λ̂`(gj` , gj`)L2(S2) = λ̂` → −1. (4.84)

Assume that k0 is not a transmission eigenvalue. Then from Lemma 2.26 we deduce
that Tk0

is coercive. Using the continuity of k 7→ Tk we deduce that Tk` are
uniformly coercive for ` sufficiently large since

|(Tk`ψ,ψ)L2(D)| ≥ |(Tk0
ψ,ψ)L2(D)| − ‖Tk0

− Tk`‖‖ψ‖2L2(D).

Choosing ` sufficiently large so that ‖Tk0
− Tk`‖ ≤ β/2 where β is the coercivity

constant for Tk0
we get

|(Tk`ψ,ψ)L2(D)| ≥
β

2
‖ψ‖2L2(D).

We then deduce from (4.84) that the sequence (ψ`) is bounded in L2(D). Therefore,
up to a subsequence, one can assume that (ψ`) weakly converges to some ψ0 in
L2(D). Since

∆ψ` + k2
`ψ` = 0 in D,

we deduce that
∆ψ0 + k2

0ψ0 = 0 in D,

meaning that ψ ∈ R(Hk0
). Let us denote by w` ∈ H2

loc(R3) the solution of (2.2)
with ψ = ψ` and w∞` the corresponding far field pattern. We recall from (2.35) that

4π=(Tk`ψ`, ψ`) = k`

∫
S2

|w∞` |2ds. (4.85)

From Lemma 4.48, the Rellich compact embedding theorem and the continuity of
the mapping w → w∞ from L2(D) into L2(S2) we deduce that

=(Tk`ψ`, ψ`)→ =(Tk0
ψ0, ψ0).
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From (4.84) we then get =(Tk0ψ0, ψ0) = 0 and therefore ψ0 = 0 (since k0 is not a
transmission eigenvalue). We now note that

k2
`

4π
((n− 1)ψ`, ψ`)L2(D) = (Tk`ψ`, ψ`)L2(D) −

k2
`

4π
((n− 1)ψ`, w`)L2(D)

where ((n− 1)ψ`, w`)L2(D) → ((n− 1)ψ0, w0)L2(D) by Lemma 4.48 and the Rellich
compact embedding theorem. Consequently

0 ≤ k2
`

4π
((n− 1)ψ`, ψ`)L2(D) → −1

which is a contradiction.

We now proceed with proving the continuity property with respect to k of
the operator Tk. We first show a uniform bound on the solution of (2.2) for wave
numbers in a bounded interval.

Lemma 4.48. Let ψ ∈ L2(D) and wk ∈ H1
loc(R3) be the solution of (2.2) for the

wave number k > 0. Then, for all bounded intervals I ⊂ R+ and compact K ∈ R3

there exists a constant C independent of k and ψ such that

‖wk‖H1(K) ≤ C‖ψ‖L2(D) ∀k ∈ I.

Proof. Using the Lippmann-Schwinger integral equation for wk (see Theorem (1.9))
we have

wk +Akwk = −Akψ in L2(D) (4.86)

where Ak : L2(D)→ L2(D) is the compact operator defined by

Akϕ := k2

∫
D

Φk(x, y)(1− n(y))ϕ(y) dy.

From the expression Φk(x, y) = exp(ik|x−y|)/(4π|x−y|) one can easily verify that

‖Akϕ−Ak′ϕ‖L2(D) ≤ C|k − k′|‖ϕ‖L2(D) (4.87)

and
‖Akϕ‖L2(D) ≤ C‖ϕ‖L2(D) (4.88)

with a constant C independent from k, k′ ∈ I and ϕ. Fix δ sufficiently small such
that 2Cδ ≤ infk∈I ‖I +Ak‖. Let k0 ∈ I. Writing I +Ak = (I +Ak0

) + (Ak−Ak0
),

we then deduce from (4.87) that for k ∈ (k0 − δ, k0 + δ),

‖(I +Ak)−1‖ ≤ 2‖(I +Ak0
)−1‖.

Combined with (4.88) we observe that for k ∈ (k0 − δ, k0 + δ)

‖wk‖L2(D) ≤ C̃‖ψ‖L2(D)
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for some different constant C independent from k. Since

wk(x) = k2

∫
D

Φk(x, y)(1− n(y))(ϕ(y) + wk(y))dy, x ∈ R3

we then also get, with a different constant C, that

‖wk‖H1(K) ≤ C‖ψ‖L2(D) ∀k ∈ (k0 − δ, k0 + δ).

The result follows from considering a finite covering of I with intervals of size 2δ.

We now prove the following technical lemma needed in the proof of Theorem
4.47.

Lemma 4.49. The mapping k 7→ Tk is continuous from R+ into the space of linear
mappings from L2(D) into itself.

Proof. Consider two wave numbers k > 0 and k′ > 0 in some given bounded
interval I. Then

wk − wk′ +Ak(wk − wk′) = −(Ak −Ak′)(ψ + wk′) in L2(D)

Therefore, using (4.86), (4.87) and Lemma 4.48 one deduces that

‖wkϕ− wk′‖L2(D) ≤ C(k)|k − k′|‖ψ‖L2(D)

for some constant C(k) independent of k′ ∈ I and ψ. The proof then directly follows
from the expression of Tk.

The criterion of Theorem 4.47 can be used as an indicator of transmission
eigenvalues. However, the hard part is to prove that it occurs for every transmission
eigenvalue. We refer to [79] for a proof that this is the case for the first transmission
eigenvalue if the contrast is a sufficiently large constant (or small perturbation of a
constant). A different proof of Theorem 4.47 based on the scattering operator can
also be found in [79] and [91]. A discussion of numerical issues related to the use of
this criterion can be found in [71].
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Chapter 5

Inverse Spectral Problems
for Transmission
Eigenvalues

5.1 Spherically Stratified Media with Spherically
Symmetric Eigenfunctions

The (normalized) transmission eigenvalue problem for an isotropic spherically strat-
ified medium in R3 is to find a nontrivial solution v, w ∈ L2(B), v − w ∈ H2

0 (B)
to

∆w + k2n(r)w = 0 in B (5.1)

∆v + k2v = 0 in B (5.2)

v − w = 0 on ∂B (5.3)

∂v

∂r
− ∂w

∂r
= 0 on ∂B (5.4)

where B := {x : |x| < 1}. We assume that n ∈ C3[0, 1] although this condition can
be weakened. If we look for spherically symmetric eigenfunctions

w(x) = a0
y(r)

r

v(x) = b0
sin kr

kr

where a0, b0 are constants then

y′′ + k2n(r)y = 0

y(0) = 0, y′(0) = 1

where the second initial condition is a normalization condition. From this we see,
after simplification, that k is a transmission eigenvalue if and only if

d(k) := det

∣∣∣∣y(1) sin k
k

y′(1) cos k

∣∣∣∣ = 0.

185
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Note that, in contrast to previous sections, we are now allowing the possibility that
k is complex, i.e. we drop the condition that k > 0.

Theorem 5.1. If d(k) is identically zero then n(r) is identically equal to one.

Proof. [2] If d(k) = 0 then

sin k

k
y′(1) = y(1) cos k. (5.5)

Each of the four functions in (5.5) is an entire function of k of order one. Fur-
thermore, y′(1) and y(1) cannot vanish simultaneously and 1

k sin k and cos k cannot
vanish simultaneously. Thus (5.5) implies that 1

k sin k and y(1) = y(1; k) must have
the same set of zeros including multiplicities and that cos k and y′(1) = y′(1; k) must
have the same zeros including multiplicities. Hence, by the Hadamard factorization
theorem [112] and the fact that 1

k sin k and y(1; k) are even entire functions of order
one we can conclude that

y(1; k) = c1
sin k

k
, y′(1; k) = c1 cos k

for some nonzero constant c1. But the zeros of y(1; k) and y′(1; k) correspond to
two sets of spectra for y′′ + k2n(r)y = 0 and it is well known that this information
uniquely determines n(r) for r ∈ [0, 1] [8]. Thus n(r) is uniquely determined by the
combined knowledge of the zeros of 1

k sin k and cos k and these zeros correspond to
n(r) = 1 for r ∈ [0, 1].

If n(1) = 1 and n′(1) = 0 then an elementary asymptotic analysis shows that
[42]

d(k) =
1

k[n(0)]1/4

sin k

( 1∫
0

√
n(ρ) dρ− 1

)
+ O

(
1

k

) (5.6)

as k →∞ and hence if

δ :=

1∫
0

√
n(ρ) dρ 6= 1

there exist an infinite number of positive transmission eigenvalues. This can also
be shown to be true of n(1) 6= 1 and n′(1) 6= 0 [48]. However, as the following
examples show, there can also exist complex eigenvalues.

Example 5.2 [2] When n(r) = 1/4 we have that

d(k) =
2

k
sin3

(
k

2

)
and hence there exist an infinite number of real eigenvalues and no complex eigen-
values. On the other hand, if n(r) = 4/9 we have that

d(k) =
1

k
sin3

(
k

2

)[
3 + 2 cos

(
2k

3

)]
,
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i.e. in this case there exist an infinite number of both real and complex eigenvalues.

The above examples are special cases of the following theorem [92]:

Theorem 5.3. Let n(r) = n2
0 where n0 is a positive constant not equal to one. Then

if n0 is an integer or the reciprocal of an integer all the transmission eigenvalues are
real. If n0 is not an integer or the reciprocal of an integer then there are infinitely
many real and complex transmission eigenvalues.

We now note that

1. d(k) is an even entire function of order one, i.e. d(
√
k) is an entire function

of order 1/2.

2. If 0 < n(r) < 1 then d(k) has a zero of order two at the origin.

Both of these facts can be seen by determining y(r) by successive approximations
as a perturbation from y0(r) = r and then substituting y(1) and y′(1) into the
expression for d(k). Hence, if δ 6= 1 and the zeros {kj} of d(k) are known (including
multiplicity) then by Hadamard’s factorization theorem [112]

d(k) = ck2
∞∏
j=1

(
1− k2

k2
j

)

where, from the asymptotic expansion (5.6), we can determine cn(0)1/4 (we assume
from now on that, in addition to 0 < n(r) < 1, we have that n(1) = 1 and n′(1) = 0).
Thus, under these assumptions, the transmission eigenvalues (real and complex and
including multiplicity) determine n(0)1/4d(k).

Further results on transmission eigenvalues for constant index of refraction
can be found in [104], [105] and [114].

We now turn our attention to the inverse spectral problem of determining
n(r) from a knowledge of the transmission eigenvalues. From the above discussion
and assumptions this is equivalent to determining n(r) from a knowledge of the
determinant d(k). We first need an integral representation of the solution to

y′′ + k2n(r)y = 0

y(0) = 0, y′(0) = 1.

To this end, using the Liouville transformation

ξ :=

r∫
0

√
n(ρ) dρ

z(ξ) := [n(r)]
1/4

y(r),

we arrive at
z′′ +

[
k2 − p(ξ)

]
z = 0 (5.7)
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z(0) = 0, z′(0) = [n(0)]
−1/4

(5.8)

where

p(ξ) :=
n′′(r)

4 [n(r)]
2 −

5

16

[n′(r)]
2

[n(r)]
3 . (5.9)

The solution of (5.7), (5.8) can be represented in the form [76]

z(ξ) =
1

[n(0)]
1/4

 sin kξ

k
+

ξ∫
0

K(ξ, t)
sin kt

k
dt


for 0 ≤ ξ ≤ δ and K(ξ, t) is the unique solution to the Goursat problem

Kξξ −Ktt − p(ξ)K = 0 , 0 < t < ξ < δ

K(ξ, 0) = 0 , 0 ≤ ξ ≤ δ

K(ξ, ξ) =
1

2

ξ∫
0

p(s) ds , 0 ≤ ξ ≤ δ.

The following theorem, due to Rundell and Sachs [109], is fundamental to our
investigation.

Theorem 5.4. Let K(ξ, t) satisfy the above Goursat problem. Then p ∈ C1[0, δ] is
uniquely determined by the Cauchy data K(δ, t) and Kξ(δ, t).

We can now establish our desired inverse spectral theorem [43].

Theorem 5.5. Assume that n ∈ C3[0, 1], n(1) = 1 and n′(1) = 0. Then if 0 <
n(r) < 1 the transmission eigenvalues (including multiplicity) uniquely determine
n(r).

Proof. Recall the determinant

d(k) = det

∣∣∣∣y(1) sin k
k

y′(1) cos k

∣∣∣∣ = 0.

From the above discussion we have that

y(1) =
1

[n(0)]
1/4

 sin kδ

k
+

δ∫
0

K(δ, t)
sin kt

k
dt


y′(1) =

1

[n(0)]
1/4

cos kδ +
sin kδ

2k

δ∫
0

p(s) ds

+

δ∫
0

Kξ(δ, t)
sin kt

k
dt
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where again

δ :=

1∫
0

√
n(ρ) dρ.

Note that δ can be determined from the asymptotic expansion (5.6). The above
formulas now give us

`πd (`π) =
(−1)`

[n(0)]
1/4

sin `πδ +

δ∫
0

K(δ, t) sin `πt dt

 (5.10)

and

`πd

(
`π

δ

)
= y(1)

`π

δ
cos

`π

δ

−
sin `π

δ

[n(0)]
1/4

(−1)` +
δ

`π

δ∫
0

Kξ(δ, t) sin
`πt

δ
dt

 . (5.11)

We now note the following:

1. Since {sin `πt} is complete in L2[0, δ] if δ < 1 ([118], p.97) we have from (5.10)
that K(δ, t) is known.

2. Since
{

sin `πt
δ

}
is complete in L2[0, δ] we have from (5.11) that Kξ(δ, t) is

known.

Hence from Theorem 5.4 we can now conclude that p(ξ) is uniquely determined for
0 ≤ ξ ≤ δ.

We now need to determine n(r) from p(ξ). Suppose n1(r) and n2(r) correspond
to the same set of eigenvalues. Then p(ξi) is uniquely determined where

ξi :=

r∫
0

√
ni(ρ) dρ , i = 1, 2.

Since ni(1) = 1 and n′i(1) = 0 we have from (5.9) that ni(r(ξi)) satisfies(
n

1/4
i

)′′
− p(ξi)n1/4

i = 0 , 0 < ξi < δ

n
1/4
i (r(δ)) = 1(

n
1/4
i

)′
(r(δ)) = 0

for i = 1, 2. Hence by the uniqueness of the solution to the initial value problem
for linear ordinary differential equations we have that n1(r(·)) = n2(r(·)). But
ri = r(ξi) satisfies

dri
dξi

=
1√

ni(r(ξi))
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ri(0) = 0

for i = 1, 2 and hence r1(·) = r2(·). This implies that ξ1 = ξ2 and hence n1(r) =
n2(r).

In view of Theorem 5.5, a natural question to ask is whether or not complex
transmission eigenvalues exist. To this end, we define ξ, z(ξ) and δ as before and
set

α := n(0)1/4.

Then, under the assumption that n ∈ C2[0, 1], we have that

z(δ) =
1

αk

sin(kδ) +

δ∫
0

K(δ, t) sin(kt)dt

 (5.12)

z′(δ) =
1

αk

k cos(kδ) +K(δ, δ) sin(kδ) +

δ∫
0

Kξ(δ, t) sin(kt) dt

 . (5.13)

and note the z(δ) and z′(δ) are both entire functions of type δ as a function of k.
Since z(ξ) = n(r)1/4y(r) we have that

y(1) =
z(δ)

n(1)1/4
,

y′(1) = n(1)1/4z′(δ)− n′(1)

4n(1)
y(1).

and hence

d(k) =

[
cos(k)

n(1)1/4
+
n′(1)

4n(1)

sin(k)

k

]
z(δ)− n(1)1/4 sin(k)

k
z′(δ).

Integrating by parts in (5.12) we have that

z(δ) =
1

αk

sin(kδ)−K(δ, δ)
cos(kδ)

k
+

δ∫
0

Kt(δ, t)
cos(kt)

k
dt


and thus in terms of the kernel function K(ξ, t) we have from (5.13) that

d(k) =

(
cos(k)

αk n(1)1/4
+

n′(1)

4αn(1)

sin(k)

k2

)

·

sin(kδ)−K(δ, δ)
cos(kδ)

k
+

δ∫
0

Kt(δ, t)
cos(kt)

k
dt


− n(1)1/4 sin(k)

αk

k cos(kδ) +K(δ, δ) sin(kδ) +

δ∫
0

Kξ(δ, t) sin(kt) dt

 .
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Setting

D(k) := αn(1)1/4 k d(k)

we can now arrive at the formula

D(k) = cos(k) sin(kδ)−
√
n(1) sin(k) cos(kδ) +H(k) (5.14)

where

H(k) :=

(
n′(1)

4[n(1)]3/4
−
√
n(1)K(δ, δ)

)
sin(k) sin(kδ)

k
−K(δ, δ)

cos(k) cos(kδ)

k

− n′(1)

4[n(1)]3/4
K(δ, δ)

sin(k) cos(kδ)

k2
+

cos(k)

k

δ∫
0

Kt(δ, t) cos(kt)dt

− [n(1)]1/2
sin(k)

k

δ∫
0

Kξ(δ, t) sin(kt)dt+
n′(1)

4[n(1)]3/4
sin(k)

k2

δ∫
0

Kt(δ, t) cos(kt)dt.

Using the representation (5.14) we intend to show that if n(1) = 1, n′(1) = 0,
n′′(1) 6= 0 and δ 6= 1 then there exist an infinite number of complex transmission
eigenvalues, i.e. an infinite number of complex zeros of d(k). However, in order
to do this we must first collect together a number of results from the theory of
entire functions of exponential type. Our first result is the celebrated Paley–Wiener
theorem [81], [118].

Theorem 5.6 (Paley–Wiener). The entire function f(z) is of exponential type
less than or equal to τ and belongs to L2 on the real axis if and only if

f(z) =

τ∫
−τ

φ(t)eizt dt

for some ϕ ∈ L2(−τ, τ). f(z) is of type τ if ϕ(t) does not vanish in a neighborhood
of τ or −τ .

We say that an entire function belongs to the Paley–Wiener class if it has the
representation given in the Paley–Wiener Theorem.

A simple consequence of the Paley–Wiener theorem is the following corollary.

Corollary 5.7. Suppose f(z) and g(z) are in the Paley–Wiener class of types τ
and σ respectively. If σ < τ then the sum f(z) + g(z) is of type τ .

For future reference we note that

τ∫
0

ψ(t) sin(zt) dt
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can be expressed as
τ∫
−τ

φ(t)eizt dt

for some function φ(t) defined for t ∈ [−τ, τ ] if ψ(t) is extended onto the interval
[−τ, 0] in an appropriate fashion.

Now let n+(r) denote the number of zeros of an entire function f(z) in the
right half plane for |z| ≤ r (One can also define a corresponding function n−(r) for
zeros in the left half plane). We then have the following theorem [81].

Theorem 5.8 (Cartwright–Levinson Theorem). Let the entire function f(z)
of exponential type be such that

a)

∞∫
−∞

log+ |f(x)|
1 + x2

dx <∞

and suppose that

b) lim
y→±∞

|f(iy)|
|y|

= τ.

Then

lim
r→∞

n+(r)

r
=
τ

π
.

The limit τ/π is called the density of the zeros of f(z) in the right half plane.

Corollary 5.9. Let f(z) be an entire function that is real valued for z real and is
in the Paley–Wiener class of type at most τ . Suppose x2f(x) = sin(τx)−O

(
1
x

)
as

x tends to infinity on the real axis. Then f(z) is of type τ .

Proof. The density of the positive zeros of f(z) is τ/π. Therefore the type of f(z)
must be at least τ and so it equals τ .

Armed with the above tools from the theory of entire functions, we now return
to (5.14) and use this representation to prove the following theorem [44].

Theorem 5.10. Suppose the refractive index n ∈ C3 [0, 1] with n(1) = 1, n′(1) = 0,
n′′(1) 6= 0 and δ 6= 1. Then the entire function d(k) has infinitely many non-real
zeros and infinitely many real zeros.

Proof. From (5.14) and the fact that n(1) = 1 and n′(1) = 0 we have that

D(k) = sin ((δ − 1)k)−K(δ, δ)
cos ((δ − 1)k)

k

+
cos k

k

δ∫
0

Kt(δ, t) cos (kt) dt− sin k

k

δ∫
0

Kξ(δ, t) sin (kt) dt.
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An integration by parts on the last two integrals and using the fact that Kξ(δ, 0) = 0
shows that

D(k) = sin ((δ − 1)k)−K(δ, δ)
cos ((δ − 1)k)

k

+Kt(δ, δ)
cos k sin (kδ)

k2
+Kξ(δ, δ)

sin k cos (kδ)

k2

− cos k

k2

δ∫
0

Ktt(δ, t) sin(kt) dt− sin k

2k2

δ∫
0

Kξt(δ, t) cos(kt) dt

In the above expression the terms of order 1/k2 can be rewritten as

Kt(δ, δ)

2k2
[sin((δ + 1)k) + sin((δ − 1)k)] +

Kξ(δ, δ)

2k2
[sin((δ + 1)k)− sin((δ − 1)k)] .

Hence, by Corollary 5.9, the sum of the expression with the remainder term which
is of order 1/k3 is an entire function of exponential type δ + 1 if the coefficient of
sin ((δ + 1)k) is nonzero. This coefficient is

Kt(δ, δ) +Kξ(δ, δ)

2

and since

K(δ, δ) =
1

2

ξ∫
0

p(s) ds

for 0 ≤ ξ ≤ δ we have that

Kt(δ, δ) +Kξ(δ, δ)

2
=

1

2
p(δ).

From (5.10) we see that p(δ) = 1
4n
′′(1) since n(1) = 1 and n′(1) = 0. In summary,

under the assumptions of the theorem, the asymptotic expansion of D(k) has the
form

D(k) = sin ((δ − 1)k)− 1

2k

δ∫
0

p(s) ds cos ((δ − 1)k)

+
Kt(δ, δ)−Kξ(δ, δ)

2k2
sin ((δ − 1)k) +

n′′(1)

8
sin ((δ + 1)k) + O

(
1

k3

)
.

Hence, if δ 6= 1 then from Corollaries 5.7 and 5.9 we have that D(k) is of exponential
type δ+ 1. Since the leading term sin ((δ − 1)k) generates an infinite set of positive
real zeros with density equal to |1− δ| /π while the density of all the zeros in the
right half plane equals (δ+ 1)/π we have by the Cartwright–Levinson theorem that
in addition to the infinite set of positive real zeros there exist an infinite number of
non-real zeros in the right half plane.
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5.2 Spherically Stratified Media with All Eigenvalues
We return to the inverse problem for (5.1)-(5.4) but no longer assume that the
transmission eigenfunctions are spherically symmetric. In this case, we will show
that the transmission eigenvalues uniquely determine n(r) provided n(0) is known
but without assuming that 0 < n(r) < 1 as in Theorem 5.5. More specifically
we consider the interior transmission eigenvalue problem (5.1)-(5.4) where again
B := {x : |x| < 1} and assume that either 0 < n(r) < 1 or n(r) > 1 for 0 ≤ r ≤ 1
and n ∈ C2[0, ∞).

Introducing spherical coordinates (r, θ, ϕ), we look for solutions of (5.1)-(5.4)
in the form

v(r, θ) = a`j`(kr)P`(cos θ),

w(r, θ) = b`y`(r)P`(cos θ),

where P` is Legendre’s polynomial, j` is a spherical Bessel function, a` and b` are
constants, and y` is a solution of

y′′ +
2

r
y′ +

(
k2n(r)− `(`+ 1)

r2

)
y` = 0

for r > 0 such that y`(r) behaves like j`(kr) as r → 0; i.e.,

lim
r→0

r−`y`(r) =

√
πk`

2`+1Γ(`+ 3/2)
.

From [42] Section 9.4, in particular Theorem 9.9, we can deduce that k is a (possibly
complex) transmission eigenvalue if and only if

d`(k) = det

 y`(a) −j`(ka)

y′`(a) −kj′`(ka)

 = 0 (5.15)

and that d`(k) has the asymptotic behavior

d`(k) =
1

a2k [n(0)]
`/2+1/4

sin k

a− a∫
0

[n(r)]1/2dr

+O

(
ln k

k2

)
. (5.16)

From [50] pp. 45-50, we can represent y`(r) in the form

y`(r) = j`(kr) +

r∫
0

G(r, s, k)j`(ks)ds, (5.17)



“CCH-book”
2016/4/18
page 195i

i
i

i

i
i

i
i

5.2. Spherically Stratified Media with All Eigenvalues 195

Figure 5.1. Configuration of the Goursat problem. Here L(G) = 0 denotes
(5.18).

where G(r, s, k) satisfies the Goursat problem

r2

[
∂2G

∂r2
+

2

r

∂G

∂r
+ k2n(r)G

]
= s2

[
∂2G

∂s2
+

2

s

∂G

∂s
+ k2G

]
, (5.18)

G(r, r, k) =
k2

2r

r∫
0

ρm(ρ)dρ, (5.19)

G(r, s, k) = O
(

(rs)1/2
)
, (5.20)

and m := 1−n (see Figure 5.1). It is shown in [50] that G can be solved by iteration,
is an even function of k, and is an entire function of exponential type satisfying

G(r, s, k) =
k2

2
√
rs

√
rs∫

0

ρm(ρ) dρ
(
1 +O(k2)

)
. (5.21)

We now return to the determinant (5.15) and compute the coefficient c2`+2 of the
term k2`+2. A short computation using using (5.15), (5.17), (5.21), and the order
estimate

j`(kr) =

√
π(kr)`

2`+1Γ(`+ 3/2)

(
1 +O(k2r2)

)
(5.22)

shows that

c2`+2

[
2`+1Γ(`+ 3/2)√

πa(`−1)/2

]2

= a

a∫
0

d

dr

 1

2
√
rs

√
rs∫

0

ρm(ρ) dρ


r=a

s` ds (5.23)

−`
a∫

0

1

2
√
as

√
as∫

0

ρm(ρ) dρ s` ds+
a`

2

a∫
0

ρm(ρ) dρ.
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After a rather tedious calculation involving a change of variables and interchange
of orders of integration, the identity (5.23) remarkably simplifies to

c2`+2 =
πa2

2`+1Γ(`+ 3/2)

a∫
0

ρ2`+2m(ρ) dρ. (5.24)

We now note that j`(r) is odd if ` is odd and even if ` is even. Hence, since G is an
even function of k, we have that d`(k) is an even function of k. Furthermore, since
both G and j` are an entire function of k of exponential type, so is d`(k). From the
asymptotic behavior of d`(k) for k →∞, i.e., (5.16), we see that the rank of d`(k)
is one, and hence by Hadamard’s factorization theorem

d`(k) = k2`+2ea`k+b`

∞∏
n = −∞
n 6= 0

(
1− k

kn`

)
ek/kn` ,

where a`, b` are constants or, since d` is even,

d`(k) = k2`+2c2`+2

∞∏
n=1

(
1− k2

k2
n`

)
, (5.25)

where c2`+2 is a constant given by (5.24) and kn` are zeros in the right half-plane
(possibly complex). In particular, kn` are the (possibly complex) transmission
eigenvalues in the right half-plane. Thus if the transmission eigenvalues are known,
so is

d`(k)

c2`+2
= k2`+2

∞∏
n=1

(
1− k2

k2
n`

)
as well as (from (5.16)) a nonzero constant γ` independent of k such that

d`(k)

c2`+2
=

γ`
a2k

sin k

a− a∫
0

[n(r)]
1/2

dr

+O

(
ln k

k2

)
,

i.e.,
1

c2`+2 [n(0)]
`/2+1/4

= γ`.

From (5.24) we now have

a∫
0

ρ2`+2m(ρ) dρ =

(
2`+1Γ(`+ 3/2)

)2
[n(0)]

`/2+1/4
γ`πa2

.

If n(0) is given, then m(ρ) is uniquely determined by Müntz’s theorem [118].

Theorem 5.11. Assume that n(r) ∈ C2[0, ∞), 0 < n(r) < 1 or n(r) > 1 and that
n(0) is given. Then n(r) is uniquely determined from a knowledge of the transmis-
sion eigenvalues corresponding to (5.1)-(5.4).
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Born approximation, 11

Cartwright–Levinson Theorem, 190

Dirichlet-to-Neumann map, 27

factorization method, 57
(F ∗F )1/4 method, 57, 67
F] method, 68

far field operator, 13, 31
far field pattern, 5

generalized linear sampling method,
43, 52, 67, 68

noise free data, 44
noisy data, 50
regularized formulation, 48

Green’s formula, 4

Herglotz kernel, 14
Herglotz wave function, 14
Holmgren’s Theorem, 4

ill-posed problems, 21
regularization methods, 22
Tikhonov regularization, 25

inf-criterion, 55
integral equation method, 102
interior transmission problem, 83, 114,

117
inverse problem

uniqueness, 19, 33

Lax–Milgram Lemma, 27
Legendre polynomial, 1
linear sampling method, 37, 66
Lippmann–Schwinger integral equation,

9, 10

media with voids, 88, 143
min-max principles, 133
mixed reciprocity relation, 31
modified interior transmission prob-

lem, 115
monotonicity property, 170, 171

non-scattering wave numbers, 16, 33

operator
non negative, 132
strictly coercive, 132

Paley–Wiener
class, 189
Theorem, 189

Picard’s Theorem, 23

reciprocity principle, 13
refractive index, 8
Rellich’s Lemma, 6

scattering operator, 14
scattering problem

anisotropic media, 26
isotropic media, 7

sign changing contrast, 95, 110, 126,
152

Sommerfield radiation condition, 2
spherical Bessel function, 2
spherical Hankel functions, 2
spherical harmonics, 1
spherical Neumann function, 2

transmission eigenvalue problem, 16,
33, 38, 126, 133, 134, 165,
166, 168, 171
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inverse spectral theorem, 185, 192,
194

spherically symmetric media, 136,
162, 183

transmission eigenvalues, 16, 33, 38
absorbing media, 153
anisotropic media, 114, 159, 160,

162, 169
determination form scattering data,

173, 174, 176, 178
discreteness, 87, 101, 109, 119,

123
existence, 136, 145, 152, 159, 160,

162
inequalities, 146, 169
isotropic media, 84, 136
monotonicity, 147, 149, 170

unique continuation principle, 12

volume potential, 9

wave number, 8
weak scattering, 11


