Exercice 1. Dérivation faible et l'espace H^1 en dimension 1

Soit I=]a,b[un intervalle borné de $\mathbb R$ et v une fonction de $L^2(I)$ on dit que v admet une déridée faible dans L^2 s'il existe une fonction de $L^2(I)$, notée v', telle que, pour toute fonction dans $\mathcal C^\infty_c(I)$ (espace des fonctions C^∞ à support compact dans I):

$$\int_{a}^{b} v'(x)\varphi(x) \ dx = -\int_{a}^{b} v(x)\varphi'(x) \ dx$$

On appelle $H^1(I)$ le sous-espace des fonctions de $L^2(I)$ amettant une dérivée faible dans $L^2(I)$, ce que l'on écrit :

$$H^1(I) = \{ v \in L^2(I) \text{ tq } v' \in L^2(I) \}.$$

1.1 - Montrer que si $v \in L^2(I)$ avec v' = 0 alors v est une fonction constante.

1.2 - Soit $v \in H^1(I)$. On pose $w(x) = \int_a^x v'(t)dt$. Montrer que $w \in H^1(I)$ et que w' = v'.

1.3 - En déduire que, pour toute fonction $v \in H^1(I)$:

$$v(y) = v(x) + \int_{x}^{y} v'(t) dt, \quad \forall x \in \bar{I}, \ \forall y \in \bar{I}.$$

1.4 - Soit $v \in H^1(I)$ et $\psi \in C^\infty(\bar{I})$, montrer que $\psi v \in H^1(I)$ et que :

$$(\psi v)' = \psi' v + \psi v'.$$

Exercice 2. Propriétés de H^1 en dimension 1

On reprend les notations de l'exercice précédent. D'autre part on désigne par $\mathcal{C}^0(\bar{I})$ l'espace des fonctions continues sur \bar{I} muni de la norme :

$$||v||_{\mathcal{C}^0(\bar{I})} = \sup_{x \in \bar{I}} |v(x)|$$

qui en fait un espace de Banach. Plus généralement, si $\alpha \in]0,1[,$ on pose :

$$\mathcal{C}^{\alpha}(\bar{I}) = \{ v \in \mathcal{C}^{0}(\bar{I}) / \exists C > 0$$
tel que $|v(x) - v(y)| \le C |x - y|^{\alpha} \}$

que l'on munit de la norme :

$$||v||_{\mathcal{C}^{\alpha}(\bar{I})} = ||v||_{\mathcal{C}^{0}(\bar{I})} + \sup_{(x,y)\in\bar{I}^{2}} \frac{|v(x) - v(y)|}{|x - y|^{\alpha}}$$

 $\mathcal{C}^{\alpha}(\bar{I})$ est ainsi un espace de Banach.

2.1 - Montrer que $H^1(I)\subset \mathcal{C}^0(\bar{I})$ et que l'injection est continue (on donnera une estimation de la constante de continuité).

2.2 - Montrer que $H^1(I) \subset \mathcal{C}^{1/2}(\bar{I})$ et que l'injection est continue. Montrer que $H^1(I)$ n'est pas inclus dans $\mathcal{C}^{\alpha}(\bar{I})$ pour $\alpha > 1/2$.

On rappelle le Théorème d'Ascoli : Soit K un espace métrique compact (on note d(.,.) la distance) et soit \mathcal{B} un sous-ensemble borné de $\mathcal{C}^0(K)$. Si \mathcal{B} est uniformément équicontinu, i.e., si :

$$\forall \ \varepsilon > 0, \ \exists \ \delta > 0 \ tel \ que \ d(x,y) < \delta \\ \Longrightarrow |f(x) - f(y)| < \varepsilon, \quad \forall f \in \mathcal{B},$$

alors \mathcal{B} est relativement compact: autrement dit, de tout suite de \mathcal{B} on peut extraire une sous-suite convergente pour la topologie de $\mathcal{C}^0(K)$.

2.3 - Montrer que l'injection de $H^1(I)$ dans $C^0(\bar{I})$, et donc dans $L^2(I)$ est compacte. Montrer que le résultat est faux dans $H^1(\mathbb{R})$.

Exercice 3. Exemples de fonctions H^1

3.1 - Soit $\Omega \subset \mathbb{R}^n$ un ouvert borné tel que $\bar{\Omega} = \bar{\Omega}_1 \cup \bar{\Omega}_2$ avec Ω_1, Ω_2 deux ouverts disjoints de bords lipschitziens. Montrer que toute fonction $u \in \mathcal{C}^0(\bar{\Omega})$ telle que $u_{|\Omega_i} \in C^1(\bar{\Omega}_i)$ pour i=1,2, appartient à $H^1(\Omega)$.

On note $\Gamma = \bar{\Omega}_1 \cap \bar{\Omega}_2$ et $\gamma_i : H^1(\Omega_i) \to \Gamma$ l'application trace sur Γ . Montrer que le résultat reste vrai lorsque $u_{|\Omega_i} \in H^1(\Omega_i)$ et $\gamma_1(u_{|\Omega_1}) = \gamma_2(u_{|\Omega_2})$.

3.2 - Trouver une fonction $\varphi \in L^2(\mathbb{R})$ telle que φ soit dérivable presque partout, telle que la fonction g définie presque partout par

$$g(x) = \lim_{t \to 0} \frac{\varphi(x+t) - \varphi(x)}{t}$$

appartienne à $L^2(\mathbb{R})$ et telle que $\varphi \notin H^1(\mathbb{R})$.

3.3 - Soit R < 1 et $B_R \subset \mathbb{R}^2$ le disque de centre 0 et de rayon R. Montrer que la fonction

$$u(x,y) = |\log(\sqrt{x^2 + y^2})|^k$$

appartient à $L^2(B_R)$ pour tout $k \in \mathbb{R}$. Pour quelles valeurs de k cette fonction est-elle dans $H^1(B_R)$? Déduire qu'une fonction de $H^1(\Omega)$ avec $\Omega \subset \mathbb{R}^2$ n'admet pas de représentant continu en général.

Exercice 4. Inégalités de type Poincaré

Soit Ω un ouvert borné, connexe et régulier de \mathbb{R}^n .

4.1 - Montrer qu'il existe une constante C telle que pour toute fonction $f \in H^1(\Omega)$,

$$\inf_{c \in \mathbb{P}} \|f - c\|_{L^2(\Omega)} \le C \|\nabla f\|_{L^2(\Omega)}.$$

Indication : On pourra raisonner par l'absurde et utiliser le Théorème de Rellich.

4.2 - Montrer qu'il existe une constante C telle que pour toute fonction $f \in H^1(\Omega)$,

$$||f||_{L^2(\Omega)} \le C(||\nabla f||_{L^2(\Omega)} + ||\gamma(f)||_{L^2(\partial\Omega)}),$$

où $\gamma: H^1(\Omega) \to L^2(\partial\Omega)$ désigne l'application trace.

Exercice 5. Espaces de Sobolev périodiques

Soit $I =]-\pi,\pi[$. On note $H^1_p(I)$ le sous-espace des fonctions u de $H^1(I)$ avec conditions aux bords de périodicité, c'est à dire telles que

$$u(\pi) = u(-\pi).$$

5.1 - Montrer que pour toutes fonctions v et $u \in H_p^1(I)$,

$$\int_{I} v'(x)u(x)dx = -\int_{I} v(x)u'(x)dx.$$

5.2 - Donner l'expression des normes $H^1(I)$ et $L^2(I)$ des éléments de $H^1_p(I)$ en fonction de leurs coefficients de Fourier.

5.3 - Montrer qu'il existe une constante C telle que pour tout $u \in H_p^1(I)$ tel que $\int_I u(x) dx = 0$,

$$\int_{I} |u|^2 dx \le C \int_{I} |u'|^2 dx.$$

Déterminer la meilleur constante C possible.

5.4 - Prouver que l'injection de $H_p^1(I)$ dans $L^2(I)$ est compacte (sans l'utilisation du théorème d'Ascoli).