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In this document, you will ultimately find all the proofs of the results given in the lecture
For the time being, you will either find the proof or a pointer to a book where you can find them
Please inform me if there is a missing proof!

1 Statistical Setting

1.1 Bayes Predictor
Claim 1. The minimizer of E [(*/1(Y, f(X))] is given by

+1 if P(Y = +1|X)

> P (Y =-1/X)
[(X) SP(Y =+1X) >1/2
—1 otherwise
Proof. We start by noticing that
mE [/(Y, f(X))] = inEyx |E Y, f( X

argmin B (¢(Y. /(X)) = argmin Ex [By x [¢(Y. /()]

so that we can focus on
Eyx [€(Y, f(X))]

where f(X) is constant.
By definition,

Eypx [, f(X))] =P (Y = 11X) £(1, (X)) + P (Y = —11X) £(~1, f(X))
_ {P(Y =1X) if f(

X) =1
P(Y = —11X) if f(X)=1
which implies

=-1|X)
—1 otherwise

The last element of the theorem is obtain by noticing that P(Y = +1|X) > P (Y
P(Y =+1|X) > 1/2.
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Claim 2. The minimizer of E [(*(Y, f(X))] is given by
f1(X) =E[Y|X]
Proof. We start by noticing that

arg minE [((Y, f(X))] = arg min Ex [Eyx [((Y, f(X))]]

so that we can focus on

Eyix (Y, f(X)] = Eyx [(Y = £(X))?]

where f(X) is constant.
Now using the definition of the conditional expectation, we obtain then

Eyx [((Y, f(X))] = Eyix [(V — f(X))?]

=Eyix [(Y —E[Y|X]+E[Y|X] - f(X))?]

=Eyx [(Y —E[Y|X])*] +Ey|x [ |X} F(X))?]
+ 2By x (Y - E[YIX])(E [Y]X] - f(X))]

=Eyix [(Y —E[Y|X))’] + (E[Y]X] - f(X))*

which is thus minimized by f*(X) =E [Y|X]. O

1.2 Training Error Optimism

Let
1 n
Ra(f) = =D Ui, (X))
i=1
and
fs = arg Ianlan(f)
Claim 3.

Ro(fs) S Ra(f8)  andE R, (fs)] < R(£3)

Proof. The first part is nothing but the definition of fs combined with the fact that f% also
belongs to S.
The second part relies on the fact that for a non random function

E[Rn] =E =E[(Y, f(X))] = R(f)
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2 Cross Validation

2.1 Leave One Out Formula

Claim 4. For the least squares linear regression,

-~ F(X,) — hiYi
Frix,) = L&D Rl

with h;; the ith diagonal coefficient of the hat (projection) matriz.

Proof. By construction,

e T hi T - T
(X)) = XT B = Ki—r(lﬁn)fi K?n)fi) 1£?’n)72’ Y(n)*i
P ; T ,
Now Xy i X{y—i = X(n)ﬂxfn) —X7X, T and X3y Y =X Y, — X7,
Using (M +uv ")t =M~ — % with M = an)X(n), u=—v =X, ylelds:

MAXex Mt
1—X* ' M-1x?

FrX) =x5" <M_1 + ) (X ¥ - X2V:)

using hy; = XTTM”X?)

: hii 2 hZ;
= f(X,)+ 1= hiif(Xi) — huY; — Y.
- (X)) — hyYs
i(x ) = J\&i) T Miidi
frixy = &I

2.2 Weighted Loss and Bayes Estimator
We assume here that the loss £(Y, f(X)) = C(Y)%/ (Y, f(X)) in a multiclass setting.

Claim 5. The minimizer of E [(Y, f(X))] is given by

fH(X) = argmax C(k)P (Y = k| X)

Proof. As in the binary ¢%/! setting, we can condition with X

By \x (Y, (X)) =Y CR)E (k, f(X)P (Y = k| X)
k

S CRP (Y = k[X)

k#f(X)
= ~C(fX)P (Y = F((X)IX) + D kCEP (¥ = k|X)

which is minimized by taking f(X) equal to the k with the largest C'(k)P (Y = k| X).

O



3 Probabilistic Point of View
3.1 Classification Risk Analysis with a Probabilistic Point of View

Claim 6. If f = sign(2py1 — 1) then

B [ FX0)] [0 (v, £7(0)]

<E [|V]X - Y|X]]
< (E [QKL(Y X, @Dm

Proof. Let us denote p;(X) =P (Y = 1]X).
Step 1: Let f(X) = sign(25 (X) — 1)

E [/, F(X0))] = Ex [p1(X) 021 + (1= p1(X)) 150
= Ex [(1=p1(X)) + (291 (X) — Dl
Step 2:
E /1Y, f0)] —E [/ F(X)]
=Ex [(21”1 (X) =D fx=—1 — lf*(i):—l)}

using the definition of f* = sign(2p(X — 1)
=Ex [|2p1(@ - 1‘1f*(£)¢f(§)}

and using the fact that f*(X) # f(X) implies that p(X) and p(X) are not on the same side with
respect to 1/2

< 2Ex [|p1(X) = p1(X)]]) = Ex [[[p(X) = p(X)[1]

using || P — Q|1 < +/2KL(P, Q) and Jensen

< Ex [VZKL(p(X), 5X)] < (Ex [2KL(p(X),p(X))]) "

3.2 Logistic Likelihood and Convexity

Claim 7. The maximum likelihood estimate of the logistic model is given by
— I -
beta = argmin — 3" log (14 H79)
eta = arg mﬁln - ; ey e

and the minimized function is convex in 3.



Proof.

|
Si=
INgh

(1vima log(h(X,T8)) + 1y, -1 log(1 — h(X, T 8))
1

n egiTﬁ 1
2\ o lor s e e e

©
I

SRS

i=1
n

1 ! !
—a (1“—1 P8 oxrs T e k’gW)

1 n
= — Z IOg (1 + e_yi(ii—rﬁ))
" i=1

Now let g(3) = log(1 + e~Y @) "), a brute force computation yields

e YXTH
Vg(/j) = Ym&
-YX'p 1
V2g(8) = — xx"

Tt e X B 4 e YX'H

and thus V2g(83) is sdp which implies the convexity of g and hence of the likelihood of the
logistic. O

4 Optimization Point of View

4.1 Classical Convexification

Claim 8. The following three losses
e Logistic loss: {'(Y, f(X)) = logy(1 + e~ Y7 X)) (Logistic / NN)
o Hinge loss: (Y, /(X)) = (1 - Y (X)), (SVM)
e Exponential loss: {'(Y, f(X)) = e Y/ X) (Boosting. ..)

satisfy

U, (X)) = 1Y (X))

with | a decreasing convex function, differentiable at O and such that I'(0) < 0.
Furthermore ((Y, f(X)) > (9/1(Y, (X))

Proof. For the logistic loss, I(z) = log,(1 + e *). So that [ is differentiable everywhere

oy 1 e ?
Hz) = log(2) 1 +e~*
1 e *

YO = @ e

Thus I'(z) < 0 and [ is decreasing with I’(0) < 0. Now I”(z) > 0 and thus [ is convex.



For the hinge loss, I(z) = max(0,1 — z). This is a decreasing function, [ is differentiable at 0
with I/(0) = —1 and [ is convex as the maximum of two affine (thus convex) functions.
For the exponential loss, I(z) = e™%. So that [ is differentiable everywhere

I'(z) = —e*
"(z) =e 7.

Thus I'(z) < 0 and [ is decreasing with I’(0) < 0. Now I”(z) > 0 and thus [ is convex.

—

For the three losses, by construction, [(0) =1 and I(z) > 0 thus £(Y, f(X)) = (Y f((X))) >

1 when Yf((X)) < 0 and ¢(Y, f(X)) > 0 otherwise. We obtain thus that 4(Y] f(X)) >
MY, f(X))-

O

4.2 Classification Risk Analysis with an Optimization Point of View

Claim 9. The minimizer of
E[¢(Y, f(X))] = E[I(Yf(X))]
is the Bayes classifier f* = sign(2n(X) — 1)
Furthermore it exists a convex function ¥ such that
v (E [ (v,sign(f(X))] ~ B [/ (v, /(X))
SEY, f( O] -E[Y, f7(X))]

Proof. By definition,
E [[(Y £)IX] = nX)U(f) + (1 = n(X)I(=f)

Let H(f,n) = nl(f) + (1 —n)l(—f), the optimal value for f satisfies

SH(f,n) = —ndl(f) + (L = n)sl(=f) > 0.

With a slight abuse of notation, we denote by 81(f) and 6I(—f) the two subgradients such
that

ndl(f) — (1= n)dl(—f) =0
Now we discuss the sign of f:
o If f >0, 08l(—f) < dl(f) and thus n > (1 —17), i.e. 27 —1 > 0.

e Conversely, if f < 0then2n—-1<0

Thus sign(f) = sign(2n — 1) i.e. the minimizer of E [[(yf)|X] is f*(X) = sign(2n(X) — 1)

We define H(n) = inf; H(f,n) = inf; (nl(f) + (1 — n)l(—f)). By construction, H is a concave
function satisfying H(1/2 +x) = H(1/2 — ).

Furthermore, one verify that if we consider the minimimum over the wrong sign classifiers,
infy rean—1)<oH(f,n) = 1(0).



Indeed,

rramtyco H(f.n)
= )+ (= i)
> nt((0) +1(O)f) + (1= n)I(0) = I(0)))
ZU0)+  f 1(0)f(2n-1) =1(0)
Furthermore,
E['(Y, f(X)] = Ex
E[¢/(Y, /*(X))] = Ex [H(n(X)]

We define then

which is thus a convex function satisfying ¥(0) = 0 and ¥(6) > 0 for 6 > 0.
Recall that

E [0 (v, sign(£(X)))] - & [ (¥, (X))
= Ex [|20(X) — LLp+ (x0)sign(r(x))]

Using Jensen inequality, we derive

w (B [0/ (Y, sign(F(0))| — E [, £(X))])
<Ex [¥ (120(X) = 11 (x)sin(s(x))) ]

Using ¥(0) = 0 and the symmetry of H,

( {60/1 (Y, sign(f )} {60/1 (Y, f*(

(22522

< Ex [(1(0) — H(n( )))lf - (X)sign(F(X))]
< Ex [(1(0) = H(n(X))) 1 (x)(2n(x)-1)<0)

Using the property of the wrong sign classifiers

w (B [, sign(£(X))| ~ E [©*/(v, f(x))))

<Ex [(H(f,n(X)) = H(f*,1(X))) 1 (x)(2n(x)-1)<0]
<Ex [(H(f,n(X)) = H(f*,n(X)))]
<SE(Y, f(X)] -E[((Y, (X))

)

fr(X)#sign(f(X }



4.3 SVM, distance and norm of
Claim 10. The distance between X' 5+ 59 =1 and X5+ ) = —1 is given by

2

181"
Proof. For any X', the distance between X’ and the hyperplane X8+ v =0 is given by

T

X' 8-
181
Applying this result to the hyperplane transpX 3+ 3(°) =1 and any point in the hyperplane

transpX'B + (0 = —1 yields the result. O

4.4 SVM and Hinge Loss
Claim 11. The two problems

1 n
min 5||/3||2 +CY s with

i=1

Vi, Vi(X, "B+ B0)>1—s;
V’i,Si 2 0

and

1 2 - T (0)
m1n§||ﬂ\| +CZI’H&X(O,1*E(£@ B+p5%))

i=1

Hinge Loss
yeilds the same solution for (3.

Proof. We may write

1 n
%f?i\\ﬂHQ + CZsi with

i=1

Vi, Yi(X, B+ B©)>1—s
V’i,Si > 0

1 n
(:)Irgnmgln§||ﬂ||2 + C’Zsi with

i=1

Vi, Vi(X, "B+ B0)>1—s;
VZ',SZ' > 0

Now for any S,

1 n
min §||6H2 + C’Zsi with

=1

Vi, Vi(X, "B+ B80)>1—s;
Vi,si 2 0

hence the result. O

4.5 Constrained Optimization, Lagrangian and Dual
Claim 12.
f(z) if x is feasible

AERP, pe(R+)e +o00  otherwise

max Lz, A\, p) = {

hj(x)=0, j=1,...p

gi(z) <0, i=1,...q

i L(z, A\, 1) = mi ith
min A (2, A, p) = min f(z)  wi {

1 n
= SIBI* + €D _max(0,1 - Yi(X," 5+ 5”))
i=1



Proof. The second part is a direct consequence of the first one.
For the first part,

o if x is feasible h;(z) = 0 and g;(z) < 0 thus

Lz, A\ p) = f(z)+ Z Njhy(@) + > pigi()

i=1
< f(z) = L(x,0,0)
and thus maxycre, pemtys £(2, A, 1) = f(z).
o if z is not feasible either
— 34, h;(x) # 0 and thus using \; = ssign(h;(z)), Ay =0 for i’ #iand p =0
L(z, A, p) = f(x) + rsign(hi(z))hi(z)
goes to +0o when x goes to oo
— or 35, g,(x) > 0 and thus using A =0, u; = x and p;; =0 for j # j
Lz, A p) = f(z) + Kg;(z)
goes to +0o when x goes to oo

which implies maxyegr, pe@+)e £(, A, 1) = +o0.

Claim 13.

QA p) < f(z), for all feasible x

Ap) < i
)\GRan;?GX(R+)q QA1) < z frgzlsrilblef(x)

Proof. The second part is a direct consequence of the first one.
By definition,
Q(A, 1) = min L(x, A\, )
< in Lz, \
S, i LA
< min f(z)

x feasible

where we have used that for = feasible L£(z, A\, p) < f(z).

4.6 Duality, weak, strong and Slater’s condition
Claim 14. Weak duality:

max min L(x, A\, u) < min max L(x, A,
AERP, pe(RH)e @ ( H = T AERP, pe(R+)d ( 2

Proof. This is a direct consequence of Claim 13.



Claim 15. If f is convez, h; affine and g; convex then the Slater’s condition, it exists a
feasible point such that h;(z) =0 for all j and g;(x) < 0 for all i is sufficient to imply the strong
duality:

in L(xz, A\, ) = mi Lz, A,
A ey L@ A ) = min max £ A )
Proof. The simplest proof can be found in Boyd and Vandenberghe 2004. O

4.7 Karush-Kuhn-Tucker Claim

Claim 16. If f is convez, h; affine and g; convez, all are differentiable and strong duality holds
then x* is a solution of the primal problem if and only if the KKT condition

o Stationarity:

VaL(a®, A p) = V@) + > NVh(z®) + ) miVg*) =0
J i

o Primal admissibility:

hi(z*)=0 and gi(z*) <0

e Dual admissibility:

o Complementary slackness:
pigi(z*) =0
holds.

Proof. Assume first that all the KKT conditions are satisfied then
fa®) =Lz, A p)
=min L(z", \, )
< max QO p) < f(2")
o
and thus f(z*) = maxy ,Q(\, 1) < ming feasivle f(z). Thus z* is a minimizer of the primal
problem.

Let z* is a solution of the primal problem and (A*, u*) be a solution of the dual. If the strong
duality holds:

fa®) =Q(\", )
:mxinﬁ(ac,)\*,u*) < Lz, N ")

< f(z™)

10



where we have used the property that the minimizer of a convex corresponds to a 0 of the
(sub)differential. Hence all the inequalities are equalities. In particular, x* is a minimizer of
L(x, \*, u*). We obtain thus the stationarity condition:

Vo L(z™ A 1) = +Z)\ Vhi( +ZulVgl =

By construction, x* is admissible and p > 0. This implies the admissibility conditions:
hj(z*) =0 and g;(z*) <0
i > 0.
The complementary slackness condition is obtained by noticing that
L™ M) = fa)

which implies
Z pigi(z*) =0

hence the result.

O
4.8 SVM, KKT and Dual
Claim 17. For the SVM, the KKT conditions are given by
o Stationarity:
VsL(B, 89, 5,0, 1) =B — ZaiYXi =0
Vﬂ(mﬁ(ﬁ,ﬁ( S, Q, [h) Zozz =0
Ve, L(B,89 5,0, p) =C — Coy — i =0
e Primal and dual admissibility:
(1—s-Y(X," B+8D) <0, 8 >0, >0, and y; >0
o Complementary slackness:
ai(l—s = Yi(X, B+ 89) =0 and pis;=0
Proof. The Lagrangian of the SVM is given by
LB, B, 5,0, 1) —\|/3||2 - czsz + Zaz (1= = Yi(X, B+ B8D) = pisi.
We can compute the stationarity condition and obtain immediately:
VsL(B,8, 5,0, 1) =B — Z%Y'Xi =0
Vﬁ(mﬁ(ﬁ,ﬁ( S,y 1) Zaz =0
Vi L(B, 8 5,00 1) = C = 0y — i = 0
The remaining conditions are straightforward.
O

11



Claim 18. The SVM problem satisfy Slater’s constraints.

Proof. Tt suffices to verify that 8 = 0, () = 0 and s = 2 is a feasible vector for which the
inequalities in the constraints are strict. O

Claim 19. The solution of the SVM satisfy
o =3 0;Y;X; and 0 < ; <C.
o If o, #0, X, is called a support vector and either
— 5, =0 and Yi(ii—rﬁ + B =1 (margin hyperplane),
— or a; = C (outliers).
o SO =y, — Xﬁﬂ* for any support vector with 0 < o; < C.

Proof. As the SVM satisfies the Slater’s constraints. The optimal §*, (9%, s of the primal
problem and the optimal o and g of the dual satsify the KKT optimality condition.

The formula for 5* is thus a direct consequence of VgL(8, BO s, a, ) = 0.

If we use V,, L£(5*, 8% s a,u) = 0, we have a; = C — p; which leads to 0 < a; < C as
a; > 0 and p; > 0 by the dual admissibility condition.

By the complementary slackness condition, «; # 0 implies Yi(li—rﬁ* + BO*) =1 — 5; thus

e cither s; = 0 and Y;(X,' 5* + B0*) = 1,
e or s; # 0 which implies ¢; = 0 and thus «; = C (outliers).

For any support vector with 0 < a; < C, X, 8* + 3(9* =Y, hence 80* = v; — X, 5*.
O

Claim 20. The dual of the SVM

— mi O)
Qas ) = min L(B, S, 0 p)

is given by
o if Y oYy #0 or I, a5+ p; #C,
Q(O[,/j/) = -

d Zleazy; =0 andVi,ai—l—ui = C}
1
Qo 1) = Z@z’ -3 ZaianinXing
i i,
Proof. The dual of the SVM is defined as

— mi (0)
Q(ahu‘) _13’1231(101)1’5‘6(5,[3 ,S,Oé,,ll)

P ST . _ _ ‘ e T ©) -
=i GBI+ O3t Dol = s~ V(X TB+ B)) = 3 e
1

~ i MBI~ Y0t a0+ 30 o~ s+
P8 i i i i

12



We obtain immediately that this minimum is equal to —oco as soon as ), a;Y; # 0 or C' —
Q — [y 7é 0.
Assume now that >, ;Y; = 0 and C' — o; — p; = 0, we obtain

— 2 Y. 4T .
Qloyp) = min o 18 Zi:ozzYzLﬂ+Zi:az

— mi 2 vy T .
= mﬁminﬁu =D aYiX B4 o
The optimal 8 can be obtained by setting to 0 the derivative:
B=> VX, =
Plugging this value in the formula yields immediately

Qa,p) = —fZaanYXTX +Za,

()

4.9 Mercer Representation Claim

Claim 21. For any loss £ and any increasing function ®, the minimizer in 5 of

n

> 0y, X, T8+ B9 + o(|B]l2)

i=1
n

is a linear combination of the input points * = Zaé&i.
i=1

Proof. Assume f is a minimizer of

n

S0y, X, "8+ 8O+ 0(||Bll2)

i=1

and let Sx be the orthogonal projection of 3 on the finite dimensional space spanned by the X,.
By construction 3 — Bx is orthogonal to all the X, and thus

X, 78+ 89 =X,"T(Bx + 8- Bx) + BV
=X, Bx +8©

and thus

n

Sy, X, T8+ BO) + (|8]) ZM,X TBx + B) + o(||ll2)

i=1 i=1

> Y Y, X, Bx + B) + @(|1Bxl2)

=1

13



where the inequality holds because ||B[* = [|Bx||* + [|# — Bx||*. The minimum is thus reached
by a § in the space spanned by the X, i.e.

ﬁ = i Oézll
i=1

4.10 Mercer Kernel Claim

Claim 22. For any PDS kernel k: X x X — R, it exists a Hilbert space H C RY with a scalar
product (-, )y such that

e it exists a mapping ¢ : X — H satisfying
k(X X') = ($(X), 6(X))y
e the reproducing property holds, i.e. for any h € H and any X € X
MX) = (b (X, ))g -

Proof. For any x, we define ®(X) = k(X,-), (X) is thus a function from X — R. Now denote
H the set of finite linear combination of ¢(X). We can define a scalar product between the
function by:

(2(X), 2(Y))y = k(X,Y).
Indeed because k is a PDS kernel, all the properties of a scalar product are satisfied. Now let

[ € H, by definition f =" | a;k(X;,-) and thus

i=1
D i (h(X, ), kX, )y

= <Z Ozik‘(zi, ')7 k(&v )>

H
‘H is not a Hilbert space but only a pre-Hilbert space. It has to be completed by the Cauchy
sequence process to obtain an Hilbert space H satisfying all the required properties. O

4.11 Kernel Construction Machinery
Claim 23. For any function ¥ : X — R, k(X, X") = ¥(X)¥(X') is PDS.

Proof. k is symmetric by construction. Now for any NV, and any X, and u;

D wiuik(X, Xj) = uiud(X,) (X))
i,J %]

= (D wo(X)* > 0.

14



Claim 24. For any PDS kernels k1 and ko, and any A > 0 k1 + Mk and Ak1ko are PDS kernels.

Proof. The symmetry is a direct consequence of the symmetry of k; and k.
Now for any N, and any X, and u,;, we have

Z uiuj(k'l + )\kQ Z U'LUJ kl ) + AkQ(KUKJ))
.
_Zulujkl “!‘)\Zuiuij(Xij) >0
0,J

as a sum of two non negative term.
Now for the product

> wiug (M ko) ( )\Zuzu]kl X )ka (X, X )

4,J

As k; is a PDS the matrix K1 = (k1(X,, X)) is sdp and thus can be expressed as a product

z?—]

K, = MM? so that k1 (X ) Zk 3k Mp ;. We can plug this expression in the previous
sum

fAZuzuyZMlkMkij X))
= AZZ% M g My jks(X,, X ;) 2 0

as each term in the sum in £ is non negative.
O

Claim 25. For any sequence of PDS kernels k,, converging pointwise to a kernel k, k is a PDS
kernel.

Proof. The symmetry is preserved by the pointwise convergence as well as the positivity. O

Claim 26. For any PDS kernel k such that |k| < r and any power series ), a,z" with a, >0

and a convergence radius larger than 7, Zank” is a PDS kernel.

Proof. This a direct consequence of the previous claim. O
k(X, X') .
is

VEX, X)k(X', X)

Claim 27. For any PDS kernel k, the renormalized kernel k' (X, X') =
a PDS kernel.

Proof. As before, the symmetry is not an issue. For the positivity,

Z wiuik' (X Z Uil
i \/
Z W“ KX X)) 20

(Xivij)
k(X X, )k(x- X))

15



4.12 Mercer Representation Claim

Claim 28. Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R™ — R, the optimization problem

argmin L(h(XOﬂ R h(Kn)) + @(Hh”)
heH

admits only solutions of the form

n
i=1
Proof. The proof is similar to the one for the non kernel setting. Assume h is a minimizer of

argmin L(h(X,), ..., h(X,,)) + ®(|[A]])-
heH

Let hx be the orthogonal projection of & on the finite dimensional space spanned by the k(X,, ).
By construction, h — hx is orthogonal to all the k(X,,-) and thus

h(X;) = (h,k(X;,)) = (hx + h— hx, k(X;,")) = (hx,k(Xi, ")) = hx (X;).
This implies that

L(h(Xy), - (X)) + @([|Bll2) = L(A(X4), - - hx (X)) + @(]|Bll2)
> LX), - hx (X)) + @([|6xl2)

where the inequality holds because ||h||*> = ||hx]||*> + ||h — hx|*. The minimum is thus reached
by a h in the space spanned by the k(X ), i.e.

B= k(X ")
=1

4.13 SVM and VC dimension
See Mohri, Rostamizadeh, and Talwalkar 2012 as the VC dimension will only be defined later.

5 Optimization

Most, of the results can be found in Bubeck 2015.

5.1 Linear Predictor, Gradient and Hessian

Claim 29. e Gradient: Lo
VF(w) =~ ;é’m, (X, w) X,

oy, f)

with (' (y, f) =
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e Hessian matriz: n
1
V2 == (Y (X, w XX, "
F(w) - E Vi, (X, w) X, X

=1

2
with '(y, f) = S0 8(?27 /)

5.2 Exhaustive Search

Claim 30. e If G is C-Lipschitz, evaluating G on a grid of precision ¢/(v/dC) is sufficient
to find a e-minimizer of G.

o Required number of evaluation: N, = O ((C\/&/e)d)

5.3 L Smoothness
Claim 31. If G is twice differentiable, G is L-smooth if and only if for all x € RY,

Amax(V2G(z)) < L.

Proof. Fix z,y € R% and ¢ > 0. Let g(t) = VG(x + tcy). Thus, ¢'(t) = [V2G(x + tey)](cy). By
the mean value theorem, there exists some constant t. € [0, 1] such that

VG(z +cy) = VG(x) = g(1) = 9(0) = ¢'(tc) = [V?C(z + tecy)](cy). (1)
First implication
Taking the norm of both sides of (1) and applying the smoothness condition, we obtain
I[V2G(x + teey)lyll < Lyl
By taking ¢ — 0 and using the fact that t. € [0,1] and G € C?, we have
I[V2G(@)]yll < Llly]-
Then, Ao (V2G(2)) < L.
Second implication
Taking the norm of both sides of (1), we have
IVG(z + cy) — VG(2)|2 = [[V2G(z + teey)l(cy) -

Note that, for any real-valued symmetric matrix A and any vector w,

[Aully = u" AT Au = (AT Au,u) < Npar(A)?|Ju?
Thus,

IVG (2 + cy) = VG(@)ll2 < Amaa([VZG (@ + teey)])ll(cy) |2 < eyl

Claim 32. F is L-smooth in the linear regression and the logistic regression cases.
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5.4 Convergence of GD

Claim 33. Let G : R? — R be a L-smooth convex function. Let w* be the minimum of f on
R?. Then, Gradient Descent with step size o < 1/L satisfies

[0] _ o,0% |2
K]y *) < [|w w Hz_
Gwh) - Gw*) < =

Proof. This is a consequence of Lemma, 7. O
Claim 34. In particular, for o = 1/L,

Ne = O(L|w!” — w*|[3/(2¢))
iterations are sufficient to get an e-approximation of the minimal value of G.

e . . [0] _ %112 . [0] . 2 .
Proof. In order to have an e-minimizer, it suffices that W <eie k> W which
yields the result. O

Claim 35. If G is convex and L-smooth, then for any w,w’ € R?
/ nT / L m2
G(w) < G(w') + VG (w') (w —w) + o [lw —w;.

Proof. Using the fact that

Gmw=G@»+Aﬂvaw+ww—mew—wMt
= G(w) + VG(w) (w' - w)
+Aanw+aw—w»—vawwhu—wm,
so that
G(w') - Glw) — (VG(w) (W' - w)|
slﬂwaw+ﬂw—w»—vawWﬂw—wm|
<AWVMw+aw—w»—vmwmlw—MMt

L

1
s/wa—wwwzgwu—wﬁ
0

O

Claim 36. Let G : RY — R be a L-smooth, ju strongly convex function. Let w* be the minimum
of G on R%. Then, Gradient Descent with step size o < 1/L satisfies

Gw) ~ Glat) < 5 (1 an) GG — Gl 3

Proof. This is a consequenc of Lemma 10. O

18



Claim 37. Let G : R? — R be a conver function, C-Lipschitz in B(w*, R) where w* be the
minimizer of f on R%. Assume that

ofl >0, offl -0, Za[k] = +o0
k

and Hw[o] — w*H < R Then, Subgradient Descent with step size o!¥! satisfies

2 k [&'])\2
min G(w[k}) - G(w*) < CR + %k/:o(a )
¥ 25°F,_,alk]

Proof. This is a consequence of Lemma 14 O

5.5 Proximal Descent
Claim 38. ¢ R(w) = 1lg(w): prox, R(w') = Po(w')
1

* R(w) = j|jw||3: prox, R(w') = ﬁ'w.

¢ R(w) = [lw|y: prox, R(w') = T,(w') with T,(w); = sign(w;) max(0, |w;| — ) (soft
thresholding).

Proof. If R(w) = 1g(w), then
1
prox., R(w') = argmin — [lw — w’||* + R(w)
w2y
1
= arg min — ||w — w'||?
weQ 2y

= PQ(’UJ/)

If R(w) = |lwl||? then

1
prox, R(w') = argmin — [|lw — w’||* + R(w’)
w2y

1
“(w—-w)+w
v

which is equal to 0 iff w = ——w’, hence the result.

Ty
If R(w) = |Jw]||; then

d
1 me . 1 AW
o w| +R<w>—2(<wi—wi> o)
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We can analyse thus each coordinate independently. Let f(z) = g (z — a)® + [z/, this function
is strongly convex and its subgradient is given by

%(xfz’)fl ifz<0
Op(x) = [%(—m’) - 1,%(—x’)—|—1] ifx=0
%(w—:v’)—i—l ifx>0

One verify easily that
o if ' < —y then 0 € ds(x) for x =2’ + 7~
o if 2’ > 7 then 0 € §¢(z) for z =2’ — v
o if —y <2’ <~ then 0 € §;(0)
and thus
4y ifr <—y
prox, | - [[(z") = 4 0 if —y <<~y
-y ifa >y

or equivalently

prox, | - [[(z) = sign(z') max(0, [+'| — )

O
Claim 39. o I L-smooth and R simple:
0] _ w*Hz
G (%] -G *) < ||w 2.
(wh) - Gw) < 1
and N, = O(L||w!® — w*||3/2¢).
o F L-smooth and p-convex and R simple:
(k] * 1 k [0] NP
Gwl) - G(w') < o (1-ap) [G(w!”) - Glw)3.
and N. = O(—loge/(ap)).
o F' C-Lipschitz and R is the characteristic function of a convez set:
2, .2
mink’ < kG(wl)) — Gw) < ¢tk + 1)
drvk +1
and Ne = O ((C(—loge)/€)?).
Proof. Those are consequences of Lemma 4, Lemma 9 and Lemma 14. O
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5.6 Coordinate Descent

Claim 40. If G is continuously differentiable and strictly convex, then exact coordinate descent
converges to a minimum.

Claim 41. Assume that G is conver and smooth and that each G* is L;-smooth.
Consider a sequence {w*} given by CGD with o!*! = 1/L;, and coordinates iy, is, . .. chosen
at random: i.i.d and uniform distribution in {1,...,d}. Then

E [G(w[kHl) - G(w*)]

< (1 @) — ) + g |w -

2
).
L

. 2 d
with [|wl|, =375, Lj'w]?.

5.7 Gradient Descent Acceleration
Claim 42. Assume that G is a L-smooth, convex function whose minimum is reached at w*.

Then, if B* = (k —1)/(k + 2),

2] w!® — w*||3

(kly _ *) <
Glw™) Gl <
Proof. See Lemma 13 O

Claim 43.

Assume that G is a L-smooth, p strongly convex function whose minimum is reached at w*.

Then, if ¥l = L=V 1/E

1+ u/L’

[0] _ qp*||2 k
K]y _ * |w w*[|3 e
G(w'™) — G(w*) < — (1 L) .

Proof. The proof combines ideas of Lemma 9 and Lemma 13. It is left as an exercise or can be
found in Beck 2017. O

ﬁ

Claim 44. e For any w® € R? and any k satisfying 1 < k < (d — 1)/2, there eists a
L-smooth convex function f such that for any general first order method

3LHw[O] — w*||3
(kly _ x> 27N 0 ™ N2
Glw™) = Gw’) 2 =07y

e For any wl® € R? and any k < (d — 1)/2, there exists a L-smooth, u strongly convex
function f such that for any general first order method

W) Gl > P (LT VIV ol 2
G(w!) - G( )22<1+M) || 13-

Proof. The proof is quite technical and can be found in Nesterov 2018. O
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5.8 Stochastic Gradient Descent
Claim 45. o With ol¥ = 2R/(bVk)

k
1 ; 3rb
EGwam -G(w*) < —=
(kal ) (W' = 7=
o If G is p-strictly convex then with o) = 2/(u(k + 1)),
2 & 202
E - il _ *) <
G(k( g 1j'w ) G(w™)

k1) - = u(k+ 1)

Proof. Those are consequences of Lemma 17. O

5.9 Lemma and more

Here we let G = F' 4+ R with R simple.
The proximal gradient descent algorithm is given by

w1 = PrOX, 1 p <'w[k] - a[k](SF(w[k]))

where 0 (w!*) is a subgradient of F at w!*). If F is differentiable then dp(w!*) = VF(w!*).

Lemma 1. For any differentiable function F' and w, if we let
w? = prox, p(w — aVF(w))

then as soon as « satisfy
1
F(w") < F(w) +(VF(w),w" —w) + 2—||wJr —w|?
o
then for any z

G(e) ~ Glw™) > gllz —wt? = ool — wl + () — F(w) ~ (VF(w), 2 — w)

Proof. We introduce the function
¢(x) = F(w) + (VF(w),z —w) + R(z) + illfﬂ —wlf?
By construction,
¢(z) = R(z) + i\lx —w — aF (w)|? + F(w) — o VF(w)]?

and thus w* = prox, p(w — aVF(w)) is the minimizer of the 1/« strictly convex function ¢.
This implies that for any z,

8(2) — ow®) > 5o~ w* |’
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Now
Hw*) = F(w) + (VF(w),w —w) + Rw") + 5w —wl?
and thus using the assumption on «
Pp(w®) > F(w™h) + R(w™) = G(w™)
while
¢(z) = F(w) + (VF(w),z —w) + R(z) + illz — wlf

adding and substracting F'(z) yields

5(2) = G(o) + o2 — w4 F(w) — F() + (VF(w). 2 w)
and thus
G(z) + i“z —wl|]* + F(w) — F(2) + (VF(w), z — w) — G(w™") > %Hz —wt|?

which is equivalent to the inequality in the lemma.

Lemma 2. For any convez function F and w, if we let

+

w’ = prox, p(w —aVF(w))

then as soomn as « satisfy
1
Fw") < F(w) + <VF('w),wJr — w> + —|lwt —wl|?
a
then for any z

1 1
_ + > _ +12 _ _— 1— _ 2
G(2) = Glw*) = == w ] = (1 — o)z w]

where p > 0 if F' is p strongly convex and = 0 otherwise. Furthermore au < 1.

Proof. This is an immediate consequence of the previous lemma as
F(2) = F(w) = (VF(w), 2 = w) > 5z — w|?

which yields the bounds.
Furthermore, as

F(w") > F(w) + (VF(w),w" —w) + Z|lw" - w|?

we deduce p < é and thus ap < 1.
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Lemma 3. If F is convex and we use the Gradient Descent algorithm with o'l such that

Flwl 1)y < F(w) + <VF(,w[k) wlk 1 _ ,w[k]> w1 qplk])2

20l¥]
then
G(,w[k-‘rl]) _ G( [k]) 2a H,w[k+1] _ w[k]||2
* 1 * *
G(w! ) — G(w*) < 2o (1~ alfl ) ™ — w*||? — 2o 1w W] — |2

where p > 0 if F is p strongly convez and = 0 otherwise. Furthermore o/ < 1.
Proof. As

w1 = proxa,R('w[k] — aVF(w))
we can apply the previous lemma with z = w!*! and z = w* as soon as

Fw" 1) < Fw) + <VF(w[k) w1 _ w[k1> [l k2

20!¥]

This leads to

G(,w[k]) _ G(warl) > o ]-[k ||w [k+1] _ w[k]||2

and

Glw®) — Glwl ) > a1 g2 -

= 9ql¥] (1 - a[k]ﬂ)|‘w[k] - W*HQ

2al¥]

Lemma 4. If F is L-smooth and we use the Gradient Descent algorithm with ¥ satisfying

— [lw!* ] — qpl*)2

F(w 1) < Fwl) + (VF(w), w1 - wll) + 5

then

! — w*||2

2k (% 20 o)

Gy — G(w*) <

Proof. Lemma 3 yields

1
GwF 1 — gty < ~ [P — qp k]2
G’(w[k+1]) - G(w*) < 5ol Hw[k] —w*||? - mH'w[kJrl] —w*|?

O

The first inequality implies that the G(w!*) are decreasing. For the second one, we multiply

first the inequality by a{* and sum them over k

k—1

/ 1 1
>~ ol (Gl ) — Gw)) < Sl - w? - 3wl - w?

k’'=0
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and thus as G(w!*]) are decreasing
k-1 )
> anGl) - Gw") < Sfwl - w|?
k=0

which implies
1

< wl —
2k (% k=0 O‘[k]>

O
Lemma 5. if F is L smooth then if alFl < % then
1
Flwl 1) < Fwl) + <VF(w[k])7w[k+1] _ w[k]> +m w1 — gkl |2
Proof. if F is L-smooth then
L
Flwl 1) < Fwl) + <vp(w[k])7w[k+1] _ w[k]> + §||w[k+1] — M2
and thus
. 1 .
< Fwl) + <VF(w[k])7w[k+1] _ w[k]> + m\\w[’”” — w2
O

Lemma 6. In the backtracking algorithm, at each step

1
Fwl 1)y < F(aw) + <VF(w[kl),w[k+1l _ w[k1> + 5o a1 — gtk |2,
and
k—1 k
1 p Jé; 1 L B
=3 a2 - a Lo PRk
A al®l > 7 and 5oTH] (1—-a™pu) < Zﬁ(l 7 )
k'=0 k'=0

(%]

Proof. First point is satisfied by construction as al®! is equal to B'ag where [ is the smallest

integer such that Blaq satisfies

k+1] ,w[k] ||2’

F(w! ) < Fw™) + (VF (), w1 - wlt) 4 —
ap

26
Note that such a [ exists as the condition is satisfied for any I such that Slay < 1/L. In
particular, one always has that o« > §/L. Furthermore, as al®ly < 1 and Ly < 1, we obtain
0<1-—alflpy<i1-— B/ L this implies immediately

>
|

1

| =

k
W s B L Ta—a®y < £ Bk
Oa 27 and 2o Fl kl;lo( a®lp) < 25( 7 )

’

e
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Lemma 7. If F is L-smooth and we use the Gradient Descent algorithm with ol¥l = o < 1/L
then

! — w?

[kly _ *) <
Gt - owt) < 7

Proof. We combine Lemma 4 and Lemma 5 to obtain

0 * |2
G(w[k]) — G(w*) < ”w[ J—w [
2k( K ,10 a)
[ — |2
- 2ka

O

Lemma 8. If F is L-smooth and we use the Gradient Descent algorithm with ¥l obtained by
backtracking then

[ —'w*||2

Gw™) — G(w*) <
2% (£ Shy )

with £ S0 a1 > g/L.
Proof. This is the result of Lemma 4 and Lemma 6. O

Lemma 9. If F is L-smooth and p strictly convex, and we use the Gradient Descent algorithm
with ol satisfying

Flw+1) < Plwh) + <VF(w[k])7w[k+1] _ w[k]> ; 1%] 1] _ qplk] 2
(6]

then

k
* 1 *
Gw™) - Glw") < 5= kI_[()(l — alMlp) ! — w2

Proof. Acccording to Lemma 3, we have

1
k+1 k k+1 k]2

G(w* ) — G(w*) < [k+1]

1 N 1 X
< m(l —a[k}ﬂ)”w[k] -—w ||2 20k |w -—w ||2

The second inequality implies immediately
1) — w2 < (1 = ¥ ) o —

so that

k
o) = w2 < T (1 = o)l — w2
k/=
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Plugging this bound in the same inequality we have used yields

* 1 *
Gl ) - Gl € (- )l - w
1 k
< ekl kHO(l - a[k]N)Hw[O] —w|%.

O

Lemma 10. If F' is L-smooth and p stricly convex and we use the Gradient Descent algorithm
with with o/F! obtained by backtracking then

k
Gw!™ ) - G(w") < T = e w® — w2,
=0

= 2alk]
with
k
1 L B
L Ay < 21 = PPk
SulF] [Ta-al¥p< 25(1 7)
k' =0

Proof. This is a direct consequence of Lemma 6 and Lemma 9. O

Lemma 11. If F is L-smooth and p stricly convexr and we use the Gradient Descent algorithm
with a*! = o < 1/L then

k
1 *
GwlF 1y — 2— | I (1 — ap)||w® — w*|?.

Proof. This is a direct consequence of Lemma 5 and Lemma 9. O

Lemma 12. If F is convex and we use the Accelerated Gradient Descent algorithm with o!¥]
decreasing such that

Fwl 1) < F(alk+1/2y 4 <VF(w[k+1/2])7 w1 _ w[k+1/21> w1 qplk+1/2))2

o [k] |
then provided BIFl = (tF=1 — 1) /t(Fl with tI*] satisfying tl0] = 1, tF] > 1 and (tF+1)2 —¢lk +1] <
(tF)2 then

. 1
Gw 1 — G(w*) < LS w!® — w

* (12
< S 2.

Proof. As
wlFtl — proxayR(w[k“/z] _ aVF(wU““/?]))
with
wlF 172 — k] 4 BIF] (K] — qp[k—1])

we can apply Lemma 2 with w = w1/ and wT = w1, As soon as al*! is such that

Fw* 1) < P+ 4 <VF(,w[k+l/2])7,w[k+l] _ w[k+1/2]> 4 ]||w[k+1] wlk+1/2))2

2alk
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we have

L”Z _ w[k+1/2]||2

_ [k+1]
G(z) — G(w ) > 5ol

= m”z - ’U’[M”H2 -

Using z = 0Fw* 4 (1 — 0wl yields
* ]' *
GOMw* + (1 — o) wlk) — G(w+1) > mneiklw + (1 — gFhyaplFl — qplh+11)2

1 *
W”mk]w + (1 — OF)aplRl — qp[k+1/2])12

By convexity of G,
G(OMw* + (1 — o) wlk]) — Gw* ) < IMG(w*) + (1 - 0 G (wlk]) — G(w!* 1)
< (1- 0k (G(w[k]) - G(w*)) - (G(M’H”) - G(w*))

Now
He[k]'w* + (1 _ e[k])w[k] _ w[k+1/2]||2 — ||0[k]w* + (1 _ e[k])w[k] _ ,w[k] _ B[k] (wk _ wk—l) ||2
- ||9[k]w* + BlFlqplk=1] — (ﬁ[k] + g[k])wk||2

_< gl )2 glk—1]
—\ gl—1]

_ 2
pl—Ugpr 4 & glkly k1) _ o1 Bk 4 glkT) gk
olF] o1F]

if we let 0% = 5[k] 719[;[,;]1], we obtain provided 0 < gl <1
e[k] ’ k— k— k— k
— <[k1]) ||9[ 1]w*_|_(1_9[ 1])w[ 1] _w[ ]”2

Combining the two previous bounds yields

(1 — g1y lH) (G(w[k]) - G(w*)) L (G(w[k“]) - G(w*))

gkl
> Ho[kfl]w* + (1 . a[kfl]),w[kfl] - ,w[k]”Z

z glk—1]

N | =

1
0 ™ 1 (1 — Kkl _ plk+1l12 _ =
|6 w™* + ( Jw w I 5

and equivalently

1 . 1 *
——— [ al" (Gw™]) — Gw*) ) + = [0 w* + (1 — 6w — w12
(01F]) 2
1 glk=11)2(1 — gl¥l . L1l s _ _
< ( ),S = ) ol Gw*y — G(w*)) + =[|0FYw* + (1 — =)k =1 — qplk)|2
(O1k=11) (01k) 2
1 ~ . Lot _ _
< GEp (a[k U (Gl - Glw)) + S0 4+ (1 — g~ yeplk ) —w[k]||2>
provided

k—1]\2 k
. ]()9[1511)2 O i < b,
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If this holds, one has

1 1
(01k])2 (a[k] (G(w[k+1l) — G(w*)) + §||9““]w* (1 — gyl ,w[k+1]||2>
1 [0] [1] * 1 [0],,,* [0] [0] (1])12
= (oo \@ (G(“’ ) = G(w )) + 5160w 4 (1= 60l — )|

Using the result obtained with Lemma 2 at k = 0 and using w!'/? = w!%, we obtain

1 1
(K] k+1]y « Lk, K]k [k j2
GEIE (a (G('w ) — G(w )) + 2||9 w4+ (1 - 6w w!™ | )
L (Lo i — Lol — w12 + L1610 0101 _ 1112
< (e §||w —w ||—§Hw —w’| +§H6‘ w* 4 (1 — 0w — w!M|

and thus if we assume that 00 = 1

1 1
- [k] [k+1]y _ * Lnlk],,.* k] k] . (k12
(g[k])z (O‘ (G(w ) — G(w )) + 2”9 w* + (1 - 0w w I )
< Ll — w2
2

We deduce thus the following bound

(6™)?
G(w!" ) — G(w*) < ! — w2
2alk]
Defining everything in term of (¥l = 1/6[* yields
gl — okl (1 — glk—1)
Ql—1]
te=1 1
T M
we have obtained
1
[E+1]y _ * - 0] _ %2
G(w ) — G(w") < 2(tF)2a M [|w w”||

provided tl% =1,
g >1
and

((tmy _ t[k]) altl < g le=1](ylk=11y2,

As we assume that the a!* are decreasing, it is enough to verify that

(tF2 ¢k < (glk—1])2
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Lemma 13. If F is convex, L-smooth and we use the Accelerated Gradient Descent algorithm
with either alfl < 1/L or al*l obtain by the decreasing backtracking algorithm then for pF =
(te=1 — 1) /tI¥] defined with either Nesterov choice of tFl or tIF] = % with ko > 2 then then

k
GwF ) - Guw) < ———2
S TR
with v = 1 for the constant step size and kg = 2 for Nesterov’s choice.

Proof. The bound

lw® — 2.

(¢ — ¢lFl < (glk—1])2
is equivalent to

M < 1+ /1 +4(tk-1)2
- 2

144/ 144(tlk—11)2

Nesterov parameters is obtained by optimizing this later bound and defining t*! = 5
starting from ¢°) = 1. Note that if t*} > (k 4+ 2)/2 then

i) _ LH VL 4]

2
14+ /1 + (k+ 2)2

= 2

- 1+k+2 (k+1)+2

= 2 - 2

and thus this property is satisfied for any k.
One verify easily that the choice t!Fl = kt—f" is suitable as ¢/ = 1 and

2 2
(¢H1)2 _ gle1) _ (glkly2 k+1+ko\" k+1+4k (k+ko
ko ko ko

]:2 ((k+1+ko)> —ko(k+1+ko) — (k+k&3))

k;12( (k+ko)+1—Fko(k+ 1+ ko))

1
= 2 (2= ko)k +1—ko(1 + ko)) <0
0
as soon as ko > 2. It leads to
e L e S |
otk ’%@o k4 ko

Lemma 14. If F is convex such that the sub gradient 5r can be bounded, ||6r|> < B2, ||w!* —
w*|| <72 then

, k=1 [k']\2 R2
min  F(wF!) - Fw*) < 4 Sl )*B

0<k’<k—1 - QZk/ Oa[k/
k 2 k=1, [k 2
1 ' 2+ 3 (alF1)2B
F - [k] _F * < k=0
(/ﬂ k/z::lw > (w ) - 2k minlgklgk a[k']
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Proof. As R is the characteristic function of a convex set C' and thus the proximal operator is a
projection, one verify immediately that provided that w(*! € C,

”w[k—i-l] o w*HQ < ”,w[k] _ a[k](sF(w[k]) _ w*”?
< ol — w2 = 20 (5 (), wh — w*) + ()2 o (w!H) |2
< Jlwl — w2 4+ 20 (Fw*) = Fw™)) + ()2 o5 (w2
this implies
o (Fawt) — Plaw)) < & () w2 o) 4 O o )2

Summing those bounds along k yields

k—1 1 k— 1 k‘,
> o) (Fawt) - Faw)) < L - w2+ 3 O ol
k’=0 k=0
We deduce thus that
k—1 1 k']
(k'] i 1y _ ) < !0 — 2 w® 112
o (oo, P~ F(w)) < gl - ]+ Z E 60wt
that is

min  Fwl)) - Fw) < 120 =@+ Z’“ < [’“’1>2||6F<w%’]>||2
0<k/<k—1 = 22 1]

Along the same line, we have simultaneously

k
/ / 1
i (%] KTy — * M — 2 K'Ty(12
min_o ,;(F(w ) - F(w") < 5wl —w| +Z E o)
and thus
k « _ ’ ’
1 Z (P - F(w") < ! — w2 + 37 (@) 6 (w2
k —1 - 2kmin1§k/§ka[k']

and thus using the convexity of F

k / [0] 2 k=1 ¢ [K'] (K1Y
F(,ﬁZﬂf””) _ Py < 10w P+ S L @) or (w D)

k'
Py} 2k ming <<k alk’]

If we assume that [|w!* —w*||2 <72 and ||0p(w!*'1)||2 < B2 then this yields

, K] 22
min Pl - Fw) < + Yol
0<k'<k—1 QZkl Oa[k'

k k—1
1 W o T2 (alF )2 B2
F(kg wl! }>—F(w)< - ;

B—1 2k minj <g/<k a[k ]
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Lemma 15. If F is convex such that the sub gradient 5r can be bounded, ||6r|> < B2, ||w!* —
w*|| < 72 then for olFl = ag/VE with ag = r/(v/2B), we have

k

k=1

and
. [k‘,] . < fTB
pig Pl ~ Pl < =5

Proof. We start from the first bound obtain in the proof of the previous lemma
9 (o) — Flw) < (Tl — w12 — o+t (2) o« D% 15 iy 2
a (w) = F(w") ) < 5 ([w™ —w’|" ~ fJw 7)) + =5 [l0r (w™)]]

or rather

1

(%]
Flo) - Fw') < o (ot — w2 — ) — w ) + 2= 6p(wl)]?

2a
We are going to use that the o!* are decreasing we have
" (%] - 2 [K+1] 2 alt’] NI
S (Fot) = Fw) < 37 (5o (o = w2 o+ a0*2) + o5 ()|
k=1 k=1
k—1 k ’
[0l — ") o1 K] _ ¥ 2 ol Wy 2
< a2 g g ) e e D Sl
k'=2 k'=1
- & ,
||w *||2 1 (k'] (12 al¥] &'y 12
< + Z [k' ~ gy ) v - wrlE + kZﬂ 5 lor(w™ )]

If we assume that ||w*] — w*||2 <2 and |6z (w*7)||2 < B2 then this yields

, 2 k=1 [k']\2 R2
F(w[k}) *F(’w*) < r +Z (Oé ) B

min
0<k'<k—1 = sz/ Oa[k'
k 2 k=1, 1k']\2 p2
1 , e+ > _ ("B
Fl= [E"] — Flw*) < k=0
(k klzzlw (’LU ) - 2k Ininlgklgk alk’]

and if the al¥! are decreasing

r? k k' 2
ol D=1 a*1B
0<k/'<k—1 - 2k

k K 2

1 / +§ . a¥1B
,5 ’l(?[k] _ < O‘] k=1
F(kz > w') < 2k

k'=1

min F(w[k/]) — Fw*) <

Plugging al*! = ay/vk and using ZZ,:I \/—1,? < 2vk and Z:,:l 1/K <lIn(k) + 1 yields

F lzk:w[k’} — F(w*) < o Gop
k k=1 - 2040\/% \/E




Optimizing in ag yields g = r/(v/2B) and

k

k'=1

Lemma 16. If I is 1 strongly convez and |[VF|> < B? then for al¥ = 2 with ay > %

[l : Ko — P < 208
k(k+1)z wh ) = Fw) < 57

k=1
and
min F(w') - F(w*) < @B
W<k =92(k+1)

Proof. Using the strong convexity of F
ol — w2 < [l — @Y P - w0
< — w2 = 201 (TF (), wl) - w*) + (@26 p (w!H)

< JJwt* — w*||? + 42al*] (F(w*) — F(w[k])) — oM p)jw® — w2 +

which implies

1
(K]y — *
F(w'™) — F(w*) < 5oTH]

We can now sum those inequalities

k

* k/ 4 4 * ! *
Zk’( wll) - F(w")) < 3 m((1—a[’”m\m[’”—w 2 = w1 —

k'=1 k'=1

(@26 (w2

1— (k] (k] _ *12 [k+1] * |12 ﬂ VF 2
(1= a®™p)[w™ —w*[|” — flw w|*) + = IVF]

k

E olk]
)+ 3 v

k'=1

1—ally k’l—a[] ) k-1
T Ay ) 2 K

k k/ (k'] )
+y IVE]

k'=1

One verify easily that for al¥l = ag/k this yields

]) o) — w2

k
L—aop, ny w12 O‘OU — 1 x2 4 @0 2
< ool — | P30 Bmawb L g 90 5 o

k'=2
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so that for any o > %

k

1—aop Qo
< 0 1] _ * (|2 v VF 2
< gy ot = w P+ P 3 I9F

a k

0
<23 |vF)?
k'=1

< k’OéoB2
- 2

By convexity of F'

k
F (k,(k,l_i_l) Z k/,w[k']) — F(w*) < k(%—i_l) Zk/ _ lkk/ (F(,w[k’]) _ F(w*))

k=1
OéoB2
~2(k+1)
Note that using
1 k
. ky < / (]
min F(wh) < 20— k,:lkF(“’ )
leads to
/ B?
in F(w) — Flw") < —
P Pl = R < 505

O
Lemma 17. Assume we have access to @(w) which verify E {@(w)} = dp(w) where ép(w) is

a subgradient of F at w and E [||g;(w)|\2|w} <B.
o if F is convex and ||w* — w*| < 72 then for al*l = ag/Vk with ag = r/(v/2B), we have

k
1 , VorB
,2' (%]
F(k‘ w )

k
k=1

E — F(w") <

o if F is pu strongly convex then for olFl = % with ag > %

k
v ayl¥)
F <k(k+1) kz W

r—=1

aoB2
2k + 1)

E — F(w") <
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Proof. In this stochastic setting, we have, if we let = 0 if F' is not strongly convex:
E [[[wl) —w|w | < E [l - a5m(w) - w 2wl
<E [Hw[k] _ w*Hﬂw[k]] _9.HR [<g;(w[k]), wlk — w*> |w“ﬂ
+ (ol)2E [ 3 () 20 |
< [ — w*||? — 2a! <5F(w[k]),'w[k] _ w*> + (alfy2pB2
< (1 - alIp)fwh — w2 = 208 (F(wl) - F(w")) + (¥)?B”

which implies

* 1 * * a[k]
Fwh) - Fw') < o= (1= ol wl) - w2 ~ B [Jlwl ) - w* |2l ) + 552
and thus
E [F(w)] - F(w) < 1 (1= M [Jwl — w* 2] =B [l —w|?]) + ol po
= 2al¥] 2

We can now repeat the proof of the previous lemmas to obtain the results.
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