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Machine Learnlng Introduction

Rules / Models Rules / Models

Expert Machine
Data system - Results Data Learning Results

The classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

Source: Council of Europe
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Bi ke DeteCtlon Introduction

A detection algorithm:

@ Task: say if a bike is present or not in an image
o Performance: number of errors

o Experience: set of previously seen labeled images
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Artlde ClUStel’Ing Introduction

= Google News a

Top Stories

An article clustering algorithm:

@ Task: group articles corresponding to the same news
o Performance: quality of the clusters

o Experience: set of articles
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Clever Chatbot Introduction

A clever interactive chatbot:

o Task: interact with a customer through a chat
o Performance: quality of the answers

e Experience: previous interactions/raw texts

Source: ClassicInformatics
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Smal't Grld COI’]tFOler Introduction

Battery Electrical vehicle

A controler in its sensors in a home smart grid:

@ Task: control the devices in real-time

o Performance: energy costs
o Experience:

e previous days
e current environment and performed actions
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Four Kinds of Learning

Introduction

Unsupervised Learning Supervised Learning Reinforcement Learning

@ Task:
Clustering/DR

@ Performance:
Quality

@ Experience:

Raw dataset
(No Ground Truth)

V.

@ Task:
Generation

@ Performance:
Quality

@ Experience:
Raw dataset

(No unique Ground
Truth)

@ Task:
Regression/Classif.

@ Performance:
Average error

@ Experience:

Good Predictions
(Ground Truth)

v

@ Task:
Actions

@ Performance:
Total reward

@ Experience:
Reward from env.
(Interact. with
env.)

@ Timing: Offline/Batch (learning from past data) vs Online (continuous learning)

DR: Dimension Reduction




Supervised and Unsupervised Introduction

Xy

Goal: Learn a function f predicting a variable Y from an individual X.

e Data: Learning set with labeled examples (X;, Y)

Assumption: Future data behaves as past datal
Predicting is not explaining!

Source: KDnuggets
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Supervised and Unsupervised Introduction

Xy X

Goal: Learn a function f predicting a variable Y from an individual X.

e Data: Learning set with labeled examples (X;, Y)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!
Unsupervised Learning (Structure Discovery)

@ Goal: Discover/use a structure of a set of individuals (X;).
e Data: Learning set with unlabeled examples (X;) (or variations. . .)

Source: KDnuggets
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@ Unsupervised learning is not a well-posed setting. ..



Machine Can and Cannot Introduction

Machine Cannot

Forecast (Prediction using the past) @ Predict something never seen before
Detect expected changes Detect any new behaviour
Create something brand new

Understand the world

Memorize/Reproduce/Imitate
Take decisions very quickly
Generate a lot of variations Plan by reasoning
Get smart really fast

Go beyond their task

Learn from huge dataset

Optimize a single task

®© 6 6 6 6 o o o
®© 6 6 6 6 o o

Help (or replace) some human beings Replace (or kill) all human beings

@ A lot of progresses but still very far from the singularity. . . 13



Machine Leal’nlng Introduction

scikit-learn

@ algorithm cheat-sheet

classification

dimensionality
reduction

Machine Learning Methods

@ Huge catalog of methods,

@ Need to define the performance,
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@ Numerous tricks: feature design, performance estimation. . .
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Under and Over Fitting Introduction

e £ B
B B1x B Byx + B2 B0 Bux * B2 * Byx2+ B2
High bias (underfit) Hig&:::;la‘r;ze o6
% X
X X
X X X
X
X XXX X XXX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting-too
explain the variance) good to be true) DG

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)
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@ Neither of them: tradeoff that depends on the dataset.
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Machine Learning Pipeline Introduction

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING l [
Feature "
New data [ — Predict Target

Learning pipeline

@ Test and compare models.

Source: CDiscount

@ Deployment pipeline is different!
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Data Science # Machine Learning Introducion

C licati

Sorry
TRY AGAIN

Doyes
NDERSTAND:
) “R ACCESS
/ todita
.

/ QUESTION |
cear

Main Data Science difficulties

e Figuring out the problem, g
e Formalizing it, f
@ Storing and accessing the data, 2
@ Deploying the solution, §
o Not (always) the Machine Learning part! "
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OUtI | ne Introduction

e Introduction

@ Motivation
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Monthly KPIl Dashboard Introduction

Monthly KPI Dashboard

@ Using financial data to display important KPI for top managers every month in a
slide

@ Automation to guaranty the quality of the results.

c
<)
s

o
v]
9]

o
v
e
S
o

(2]

—_
©

KPI: Key Performance Index



Realtime Log Dashboard

Introduction

Collect &
Transform

1) Search &
Analyze

Visualize
& Manage

Realtime Log Dashboard

@ Use log data to show the state of a system to IT in real-time using on-premise
tools.

@ Automation to handle the huge volumetry.
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IT: Information Technology
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On-demand Legal Document Generation Introduction

On-demand Legal Document Generation

@ Use raw data to legal document template for a lawyer on-demand using a local
database.

o First draft to be edited by the lawyer.
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AB TeStI ng Introduction

A B

37%
picy
Cr— Co—
) |

CONTROL VARIATION

AB Testing

@ Using customer journet to help marketing decides between two versions of a
website
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@ Automation to guaranty the accuracy of the results.
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ER Waltlng Time PredICtlon Introduction

Real-Time ER Waiting Time Prediction

@ Use patient data to provide in real-time an estimate of the remaining waiting time
to the ER patient.

@ Tool helping to bear the wait.
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ER: Emergency Room



Weekly Churn Prediction Introduction

Customer Churn Prediction Accuracy

o ™ -
i e I

N\
N\

o &

Correct prediction Incorrect prediction

Weekly Churn Prediction
@ Using consumer characteristics and history to give a churn score to the marketing
every week using the cloud.

@ Automation to scale to the volumetry but no strategy recommendation.

Source: Parthasarathy
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Realtime Automatic Fruit Sorting Introduction

Realtime Automatic Fruit Sorting

@ Using camera to sort fruits in a plant in realtime using local computers with GPU.
@ Automation to reduce cost.

Source: BitRefine

N
o1

GPU: Graphical Processing Unit



Realtlme ChatbOt Introduction

Realtime Chatbot
@ Use previous interactions to predict answer to a consumer question in real-time

using the cloud.

Source: M'Bufung

@ Reduce human interaction cost.
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Writing Assistant

Introduction

Howdy! What's up?

x X
¢ /M
N
b Hello there! How are you doing
today?

Writing Assistant

@ Enhance a text using Al in a communication system.

@ Ease writing steps.
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LLM: Large Language Model
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Recommender System Introduction

Emmy-winning US TV Shows

Critically Acclaimed Witty TV Shows

Gomoé‘ 5 }iﬂuvTMQ ﬂsﬁ#&?«% 58 fm
Place/$ T\ g ]

Video Recommender System

@ Use client history to suggest in real-time interesting videos for the current user.

o Keep its users.
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Customer Segmentation Introduction

) ) ) Qi
Data Science Project - Customer Segmentation
. Y p-4
2rcu-d ivia-@
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2 333 243
4d:1b L T 4:p
Identifying the potential Implementing Clustering Selling product to
customer base for Algorithms to group the identified
selling the product the customer base customer group

Customer Segmentation

@ Use customer data to suggest homogeneous groups to the marketing each year.

@ Easier to think in term of groups than individuals
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Realtime Anomaly Detection Introduction

Realtime Anomaly Detection
@ Use production data to detect anomalies in a plant in real-time on a Scada system.

@ Reduce failure cost.

Source: Wikipedia
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Scada: Supervisory Control And Data Acquisition



On-demand Fraud Detection Introduction

On-demand Fraud Detection

@ Use claim and client data to detect fraud for an insurer on-demand using
on-premise resources

@ First automated pass on the claims.

Source: MoneyKama
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Prescriptive Maintenance

Introduction

f‘»’ Limblecuws
REACTIVE PREVENTIVE PREDICTIVE PRESCRIPTIVE

0o R

FIX IT WHEN IT BREAKS! MAINTAIN IT AT REGULAR

PREDICT EXACTLY WHEN IT WILL
INTERVALS SO IT DOESN'T BREAK!

BREAK AND MAINTAIN IT
ACCORDINGLY!

LET THE MACHINES HELP YOU
DECIDE HOW TO AVOID
PREDICTED FAILURES!

Prescriptive Maintenance (Not yet available. . .)

@ Use data to devise and apply the best maintenance plan in a plant using IOT.
@ Reduce maintenance cost.
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O Utl | ne A Practical View

9 A Practical View

33



O Utl | ne A Practical View

9 A Practical View
@ Method or Models

34



What is a Method?

A Practical View

A Standard Machine Learning Pipeline

lodel
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l- @‘ 'I‘

ture
action

A Learning Method

@ Formula/Algorithm allowing to make predictions

@ Algorithm allowing to chose this formula/algorithm
e Data preprocessing (cleansing, coding. .. )
@ Optimization criterion for the choice!

&
o
2
2

=

=
o
g
]
5
n

w
o1



Simple Approach: Similarity A Practical View

Imitate the answer to give by mixing answers to similar questions (k nearest
neighbors)

Require to search for those similar questions for each request

Not always very efficient but fast to build (less to use. . .)

Source: Analytics Vidhya

Easy to understand and rather stable
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Simple Formula: Linear Method A Practical View

¥ =0by+DbyX 4= LinearModel

P Logistic Model
oy
/ P =¥ emertin)

Linear Method
@ Simple formula: ag + aX® 4.4 adX(d)

@ Imitate the answer to give (linear regression) or a transformation of the
conditional probability of the category (logistic regression)

o
B

@ Numerous variations on the parameter optimization (regularization, SVM,. . .)
@ Pretty efficient and fast to build

@ Easy to understand and rather stable
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Simple Algorithm: Tree

A Practical View

sex = mal JE\

age>=9.5

N
died i _
660 136, sibsp >= 2.5
died survived
191 324

@ Construction of a decision tree

plass = 3rd
e
i - survived
died age >=16
183 -
- Survived
parch >_i5
died sibsp >= 1.5
81 N
g'eg age>=28
died N
29 21 age <22
died ‘survived
151 28 46

@ Impossible to really optimize but good tree can be obtained
@ Not always very efficient but very quick to build

@ Very easy to understand but not really stable
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Combining Simple Things: Ensemble A Practical View

Ensemble Methods

o Strategy:

e Bagging: construction of variations in parallel and averaging (random forest)

o Boosting: construction of sequential improvements (XGBoost, Lightgbm,
Catboost, HistGradientBoosting)

e Stacking: Use of a first set of predictors as features

@ Very good performance for structured data but quite slow to build
@ Stable but hard to understand
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Chain Simple Things: Deep Learning A Practical View

A mostly complete chart of

owwwea  Neural Networks ...

Deep Learning

@ Chain of simple formulae (Neural Network)
@ Joint optimization
@ Very good performance for unstructured data but slow to build

e Mildly stable and very hard to understand
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Methods: Pros and Cons A Practical View

Method H Performance ‘ Training Speed ‘ Inf. Speed ‘ Stability ‘ Interpretability

Similarity - 0 - + +
Linear + ++ ++ ++ +
Tree - ++ ++ - ++
Ensemble ++ - + ++ -
Deep ++ - - - -

Take Away Message

@ No unanimously best solution
@ Impossible to guess which method is going to be the best!

@ A good practice is to always try a linear method as well as an ensemble one for
structured data or deep one for unstructured data

41



PI’epI’OCGSSI ng A Practical View

Preprocessing

@ Art of creating sophisticated representations of initial data
@ Key for good performances

@ Examples: individual transformation, variable combination, category (and text)
coding. . .

Source: inovex

o Important part of the learning method
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Methods/Models in Machine Learning

scikit-learn

algorithm cheat-sheet

classification

clustering S '":(

dimensionality
reduction

Huge catalog of methods,

°
@ Need to define the performance,
@ Need to represent well the data
°

Need to choose the best method yielding a good model

A Practical View

Source: scikit-learn.org
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Under and Over Fitting A Practical View

e £ B
B B1x B Byx + B2 B0 Bux * B2 * Byx2+ B2
High bias (underfit) Hig&:::;la‘r;ze o6
% X
X X
X X X
X
X XXX X XXX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting-too
explain the variance) good to be true) DG

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)
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@ Neither of them: tradeoff that depends on the dataset.
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Which Method to Use? A Practical View

degree

-1

0.8-

Competition between several polynomial models.
@ Toy model where everything is known.

45



Over-fitting, Under-fitting and Complexity A Practical View

Prediction Error
for New Data

Model Prediction Error

Training Error
-

o 5 6

Model Complexity

Source: A. Ng
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ML Pipeline

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING l [
Feature "
New data [ — Predict Target

Learning pipeline
@ Test and compare models.

A Practical View

@ Deployment pipeline is different!

Source: CDiscount
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CI’OSS Validation PrinCiple A Practical View

Purpose . Modeling . Performance

------------------------ Random Data Groupings -----============zzzzz==>

@ Train a model and check its quality on diffent pieces of the data.
Purpose . Modeling . Performance

Resample 1
Resample 2
Resample 3
Resample 4

Resample 5

@ Check the quality of a method by repeating the previous approach.

o Beware: a different predictor is learnt for each split.

Source: M. Kiihn
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The Full Cross Validation Scheme

A Practical View

‘ Original set

‘ Training set ‘ Test set

‘ Training set i Validation set ‘ Test set

Training, tuning, and

evaluation m
Machine learning u

algorithm

Predictive Model\lf.
—J Final performance estimate

@ Most important part of machine learning.

@ Automatic choice of model possible by (intelligent ?) exploration. . .
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BeSt POlynom |a| A Practical View

Competition results
@ The true model is not the winner!

50



O Utl | ne A Practical View

9 A Practical View

@ Interpretability

51



I nterpl’etatlon ? A Practical View

1=0.791
P<0.0001

Is this that easy?

@ Simple formula setting:
Y ~ £(X) = ag + aiX® + apX® ... 4 g xX()

@ Beware of the interpretation!
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@ Everything being equal. .. Correlation is not causality. ..
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Interpl’eta blllty A Practical View

Today

Learned

Training
Data Function

Training Machine || Explainable | Explanation
Model Interface

Intepretability or Explainability

@ Interpretability: possibility to give a causal aspect to the formula.

@ Explainability: possibility to find the variables having an effect on the decision and
their effect.

@ Explainability is much easier than interpretability.

@ Additional constraints that may limit performances.

@ Transparency (on the datasets, the criterion optimized and the algorithms) yields
already a lot of information.
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eXplainable Al (XAl)

A Practical View

@ Data Explanation.
@ Use of explainable methods (linear?).
@ Use of black box methods:
o Global explanation (variable importance)
o Local explanation (linear approximationn, alternative scenario. . .)
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o Causality very hard to access without a real experimental plan with interventions!

o1
>



O Utl | ne A Practical View

9 A Practical View

@ Metric Choice

55



Metric and Solution

A Practical View

Quality metric has a strong impact on the solution.

@ Implicite encoding rather than an explicit one!
@ Often simplified criterion in the optimization part.

@ More involved criterion can be used in evaluation.

Source: J. Marshall
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Supervised Performance Metrics A Practical View

Measure of the cost of not being perfect!

o Criterion used to optimize the predictor and/or evaluate its interest.

@ Classical metrics: quadratic error, zero/one error.

@ Many other possible choices, idealy encoding domain expertise (asymmetry. .. )
o

The criterion can be different between optimization and evaluation because of
computation requirements.
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Very important factor (too) often neglicted.
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Unsupervised Performance Metrics A Practical View

Measure the quality of the result!

e Dimension Reduction / Representation: reconstruction quality, relationship
preservation. . .

o Clustering: measure of intra-group proximity and inter-group difference?

@ Very subjective criterion!

@ Hard to define the right distances especially for discrete variables.

@ In practice, quality often evaluated by the a posteriori interest. |

Source: H. Chen
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Fairness

A Practical View

@ Very hard to specify criterion.
@ No consensus on its definition:
o faithful reproduction of the reality?
e correction of its bias?
@ Current approaches through constraints in the optimization.

@ A posteriori verification unavoidable!
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@ Additional constraints that may limit performances.
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What About the Data Bias? A Practical View

Central assumption: representativity of the datal!

e Optimization made in this setting.
@ Possible training data bias:
e selection bias in the data
e population evolution
o (historical) bias in the targets
o Correction possible at least up to a certain point for the two first cases if one is
aware of the situation.

Source: A. Damian
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O Utl | ne A Better Point of View

e A Better Point of View

61



O Utl | ne A Better Point of View

e A Better Point of View
@ The Example of Univariate Linear Regression
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Euca |ythS A Better Point of View

@ Simple (and classical) dataset.

@ Goal: predict the height from circumference
@ X = circ = circumference.

e Y = ht = height.

63



Euca |ythS A Better Point of View

Linear Model

@ Parametric model:

fa(circ) = BY 4 s@cire

@ How to choose = (8(1), g(2))?
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Least Sq uares A Better Point of View

Methodology

@ Natural goodness criterion:

oY= f(X)? = Iht; — fg(cire))?
i=1 i=1
=Y |ht; — (BY + gPcirc;)?
i=1

@ Choice of [ that minimizes this criterion!

n
B = argmin Z |hj — (5(1) + 6(2)circ;)]2
BeR? =il

@ Easy minimization with an explicit solution!
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P I’ed ICtIOn A Better Point of View

Prediction

@ Linear prediction for the height:
ht = fg(circ) =30 4+ g@circ

66



Heu ristic A Better Point of View

Linear Regression
e Statistical model: (circ;,ht;) i.i.d. with the same law as a generic (circ,ht).
e Performance criterion: Look for f with a small average error
E Uht - f(circ)|2}
Empirical criterion: Replace the unknown law by its empirical counterpart
1 n
= Z Int; — f(circ;)[?
n“
i=1
@ Predictor model: As the minimum over all function is 0 (if all the circ; are

different), restrict to the linear functions f(circ) = f(1) + @ circ to avoid
over-fitting.

Model fitting: Explicit formula here.

This model can be too simple!

67



Polynomial Regression A Better Point of View

30~

E20-

Polynomial Model

@ Polynomial model: fz(circ) = >F ; fcirc!~?

@ Linear in £5.
@ Easy least squares estimation for any degree!
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Wh |Ch Degl’ee7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degl’ee7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degl’ee7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degl’ee7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degl’ee7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degl’ee7 A Better Point of View

Increasing degree = increasing complexity and better fit on the data

69



Wh |Ch Degl’ee7 A Better Point of View

Best Degree?

@ How to choose among those solutions? 70




Over_flttl ng ISSUG A Better Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behavior

@ Training error (empirical error on the training set) decays when the complexity of
the model increases.

Quite different behavior when the error is computed on new observations (true
risk / generalization error).

Overfit for complex models: parameters learned are too specific to the learning set!
General situation! (Think of polynomial fit. . .)
Need to use another criterion than the training error!

71



Cross Validation and Penalization A Better Point of View

Two directions
@ How to estimate the generalization error differently?

e Find a way to correct the empirical error?

N

Two Approaches

@ Cross validation: Estimate the error on a different dataset:

o Very efficient (and almost always used in practice!)
e Need more data for the error computation.

@ Penalization approach: Correct the optimism of the empirical error:
o Require to find the correction (penalty).

.
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Univariate Regression A Better Point of View

How to build a model?

How to fit a model to the data?
How to assess its quality?

How to select a model among a collection?

How to guaranty the quality of the selected model?

73



O Utl | ne A Better Point of View

e A Better Point of View

@ Supervised Learning

74



Supervised Learning A Better Point of View

Supervised Learning Framework

@ Input measurement X € X

o Output measurement Y € ).

o (X,Y) ~ P with P unknown.

@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X — ) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.
o Classification and regression are almost the same problem!
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Loss and Probabilistic Framework A Better Point of View

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

.

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|?]

A

e Beware: As f depends on D,,, R(f) is a random variable!
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BeSt SOl Utlon A Better Point of View

@ The best solution f* (which is independent of D,) is
f* = arg min R(f) = arg min E[A(Y., f(X))] = arg min Ex [Ey|x[(Y . F(X))]]

Bayes Predictor (explicit solution)
@ In binary classification with 0 — 1 loss:
+1 if P(Y =+41X)>P(Y =-1|X)
(X) = S P(Y=+4+1|X)>1/2
—1 otherwise

@ In regression with the quadratic loss
(X) = E[Y]X]

@ R(f*) > 0in a non deterministic setting (intrinsic noise).

Issue: Solution requires to know Y| X (or E[Y|X]) for every value of X! J
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Goal A Better Point of View

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer

@ One restricts f to a subset of functions S = {fp,0 € O}
@ One replaces the minimization of the average loss by the minimization of the
empirical loss

N i
f=f=argmin— ) LY}, fp(X;
6 fe%é@n;( 5(X;))

@ Examples:
e Linear regression
e Linear classification with
S ={xwrssign{x B+ 8O} /8 R BO R}
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Example: TwoClass Dataset A Better Point of View

Synthetic Dataset

e Two features/covariates.

@ Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Classification

A Better Point of View

Logistic
Decision region Decision boundary
=
0.8 06- ® o |
Cg classes % ’ g ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

=
[}

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Example: More Complex Model

A Better Point of View

Naive Bayes with kernel density estimates

Decision region Decision boundary

=
=3

=1
=1
U
]
o
-

Cg classes % classes

% 04 B ciasst % 04~ ® Classi

& B class2 £ @ Class2
02
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0.2 04 06
PredictorA

02 0.4 06
PredictorA
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Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

e X: circumference / Y: height -




Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

e X: circumference / Y: height -




Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

e X: circumference / Y: height -




Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference, block, clone / Y: height
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Under-fitting / Over-fitting Issue

hg(z) = g(6p + 61y + Oazz) g(Og + 0121 + Ozx2 9(6o '|2' 0z + szlj
( g = sigmoid function) +632F + 0473 +03x7T0 + 042723
+85I1.If-z)
UNDERFITTING OVERFITTING

(high variance)

(high bias)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

A Better Point of View

+O0s22x3 + Osaias + ...

Source: A. Ng
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Under-fitting / Over-fitting Issue A Better Point of View

High Bias Low Bias
Low Variance High Variance
S

Prediction Error

Test error
— Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

e Under-fitting: simple model are too simple.

3
3
2
<
=}
[
e
5
)
»

@ Over-fitting: complex model are too specific to the training set.

[oe]
~



Bias-Variance Dilemma | A Better Point of View
@ General setting:

F = {measurable functions X — Y}

Best solution: f* = argmin;. » R(f)

Class & C F of functions

Ideal target in S: & = argmin,cs R(f)

Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(Fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

Agnostic approach
@ No assumption (so far) on the law of (X, Y).
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Under-fitting / Over-fitting Issue A Better Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis A Better Point of View

Statistical Learning Analysis

@ Error decomposition:
R(fs) — R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

Bound on the approximation term: approximation theory.

Probabilistic bound on the estimation term: probability theory!

Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on ... (Nonparametric Statistics?)
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Binary Classification Loss Issue A Better Point of View

Empirical Risk Minimizer

n
f = argmin ! ZKO/I(Y,-, f(X;))
fes n i=1

e Classification loss: ¢%/1(y, f(x)) = 1,200
@ Not convex and not smooth!
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PI’Obablllsth POIITt Of VIeW A Better Point of View
Estimation and Plugin

@ The best solution f* (which is independent of D) is
f* =arg ,rcn'j,;R(f) = arg m|n E[E(Y f(X))] = arg m|n Ex {EY‘X[E(Y f(x ))]]
€

Bayes Predictor (explicit solution)
@ In binary classification with 0 — 1 loss:
1 if P(Y=+1X)>P(Y =-1|X
gy = [F1 T BOY = 411X 2 B(Y = 1)
—1 otherwise

@ Issue: Solution requires to know Y|X for all values of X!

@
i
<
@
e
5
[}
n

@ Solution: Replace it by an estimate and plug it in the Bayes predictor formula.

@
©



Optlmlzathn POII"It Of VleW A Better Point of View
Loss Convexification and Optimization

E 05 1 18

0
bl

Minimizer of the risk

~ 1<
f = argmin = Zfo/l(yia f(X5))
fes N4

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant and find the best predictor for this
surrogate problem. 90




Probabilistic and Optimization Framework A Better Point of View
How to find a good function f with a small risk

R(F) = B[((Y, F(X))] 7
Canonical approach: fs = argminges 2 30 (Y5, F(X)))

Problems
@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X and plug it in any Bayes classifier: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. ..

An Optimization Point of View

Solution: Replace the loss ¢ by an upper bound ¢ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .

.

.
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OUtI Ine Risk Estimation and Method 4

Choice

a Risk Estimation and Method Choice
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OUtI Ine Risk Estimation and Method 4

Choice

a Risk Estimation and Method Choice
@ Risk Estimation and Cross Validation
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Example: TwoClass Dataset

Risk Estimation and Method 4
Choice

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
@ Numerical experiments with R and the {caret} package.

[ ]
®
06 ®
o, %
) 0e
(’?O i C ) classes.

PredictorB

@ casst
© cassz
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Example: Linear Classification

Decision region

PredictorB
o o
s [=:]

=
[}

classes

B ciasst
B class2

Risk Estimation and Method 4

Decision boundary

~ og‘;

PredictorB



Example: More Complex Model

Naive Bayes with kernel density estimates

Decision region
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r:g classes %

% 0.4 B ciasst %

& B class2 £
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PredictorA

Decision boundary
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Risk Estimation and Method 4
Choice
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@ Classi
) Class2
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Example: KNN

k-NN with k=1

Decision region

PredictorB
o o
s [=:]

=
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02 0.4
PredictorA

Risk Estimation and Method 4

Choice foutiihuan
Decision boundary
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Example: KNN

Risk Estimation and Method 4

Choice

k-NN with k=5

Decision region Decision boundary

w
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Example: KNN

Risk Estimation and Method 4

Choice

k-NN with k=9

Decision region Decision boundary

w
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Example: KNN

k-NN with k=13

Decision region
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Example: KNN

k-NN with k=17

PredictorB
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Example: KNN

k-NN with k=21

PredictorB
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Example: KNN

k-NN with k=25

PredictorB
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Example: KNN

k-NN with k=29

Decision region
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Example: KNN

k-NN with k=33

Decision region

PredictorB
o o
s [=:]

=
[}

02 0.4
PredictorA

Risk Estimation and Method 4

Choice foutiihuan
Decision boundary
-
o]
06- @ ']
classes % ’ @ classes
B ciess %0-“ > @ Classt
B cass2 £ ® Class2

02-

0.2 04 06
PredictorA

97



Example: KNN

k-NN with k=37

PredictorB
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Example: KNN

Risk Estimation and Method 4

Choice

k-NN with k=45

Decision region Decision boundary
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Example: KNN

k-NN with k=53
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Example: KNN

k-NN with k=61
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Example: KNN

k-NN with k=69
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Example: KNN

k-NN with k=77
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Example: KNN

k-NN with k=85
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Example: KNN

k-NN with k=101
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Example: KNN

k-NN with k=109
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Example: KNN

k-NN with k=117
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Example: KNN

k-NN with k=125
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Example: KNN

k-NN with k=133
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Example: KNN

k-NN with k=141
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Example: KNN

k-NN with k=149
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Example: KNN

k-NN with k=157
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Example: KNN

k-NN with k=165
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Example: KNN

k-NN with k=173
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Example: KNN

k-NN with k=181
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Example: KNN

Risk Estimation and Method 4
Choice

k-NN with k=189

Decision region Decision boundary
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Example: KNN

Risk Estimation and Method 4
Choice

k-NN with k=197

Decision region Decision boundary
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Training Risk Issue

Risk Estimation and Method 4
Choice

Underfit

: . Generalization
(High bias) error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behaviour

@ Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.

@ Quite different behavior when the risk is computed on new observations
(generalization risk).

@ Overfit for complex methods: parameters learned are too specific to the learning
set!

@ General situation! (Think of polynomial fit...)
@ Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection Risk Estimation and Method /)

Choice

Predictor Risk Estimation
@ Goal: Given a predictor f assess its quality.

@ Method: Hold-out risk computation (/ Empirical risk correction).

@ Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

@ Basic block very well understood.

Method Selection

@ Goal: Given a ML method assess its quality.
@ Method: Cross Validation (/ Empirical risk correction)

o Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection.
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Cross Validation and Empirical Risk Correction Risk Estimation and Method 2K

Choice

Two Approaches

@ Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.

@ Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Ro(fs) = Ra(fs) + cor(S)

and choose the method with the smallest corrected risk.

.

@ The loss used in the risk!

@ Not the loss used in the training!

.

@ Other performance measure can be used.
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P

C ross Va | id atIO n Risk Estimation and Method

Choice
Purpose Modeling Performance
Resample
< -m-mmeemsmmmeeeeeooo---- Random Data Groupings -------------===-------- >
e Very simple idea: use a second learning/verification set to compute a verification

risk.
o Sufficient to remove the dependency issue!
@ Implicit random design setting. . .
Cross Validation

@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable risk estimate if en is too small 7

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.

Source: M. Kiihn
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Hold OUt Risk Estimation and Method é
Principle . o
@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn MO from the subset Dirain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
(X;,Yi)EDxest

v
Predictor Risk Estimation

o Use FHO as predictor.

o Use RHMO(fHO) as an estimate of the risk of this estimator.
v

Method Selection by Cross Validation

e Compute R,,HO(?SHO) for all the considered methods,
@ Select the method with the smallest CV risk,

@ Reestimate the ?5 with all the data. 102




HOICI OUt Risk Estimation and Method /'“
bosics {588

Principle
@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn £HO from the subset Dypain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
n
ne (X;,Yi)EDxest

@ Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
@ Biased toward simpler method as the estimation does not use all the data initially.

e Learning variability of RHO(£HO) not taken into account.
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V-fold Cross Validation =" —

@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, . 6V}

o Learn £~V from the dataset D minus the set D,.

e Compute the empirical risk:

—V(T—Vv\ _ i - T—v
R == D UYL (X)
@ Compute the average empirical risk:

Risk Estimation and Method 4

@ Estimation of the quality of a method not of a given predictor.

@ Leave One Out : V = n.
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V—fOld Cross Validation Risk Estimation and Method é"“

Choice

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variables but are not independent!

@ Consequence:
E[RSY(F)| = E[R;"(F™)]

Var {RSV(?)} = %Var {”R;V(?_V)}

Average risk for a sample of size (1 — 4)n.

Variance term much more complex to analyze!

Fine analysis shows that the larger V the better. ..

Accuracy/Speed tradeoff: V =5 or V =10...
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Linear Regression and Leave One Out Risk Estimation and Method /YK

Choice

@ Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,
f(X;) — hiY;
1 — hij
with hj; the ith diagonal coefficient of the hat (projection) matrix.

(X)) =

@ Proof based on linear algebra!
@ Leads to a fast formula for LOO:
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Risk Estimation and Method

Choice

Cross Validation
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Example: KNN (k = 61 using cross-validation)

k-NN with k=61
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Risk Estimation and Method 4
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BOOtSt rap Risk Estimation and Method £ X

Choice
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Risk Estimation and Bootstrap

@ Bootstrap train/test splitting:
e Draw a bootstrap sample Dﬂai“ of size n (drawn from the original data with
replacement) as training set.
o Use the remaining samples to test DIt = D \ Diran,
e On average .632n distinct samples to train and .368n samples to test.

@ Basic bootstrap strategy:

o Learn f, from D2,

e Compute a risk estimate on the test:
A 1 ~
Ros(fs) = ey > Ui h(X)
b (X,,Y:)eDss

@ Looks similar to a 2/3 train and 1/3 test holdout!
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Bootstrap

Choice

[T 5 FA £ A A EA EA A A 2

Repeated Bootstrap Risk Estimation

o Compute several bootstrap risks Rn,b(?b) and average them
B
2 1 5
REH(F) = 5> Rap(fs)
b=1

@ Pessimistic (but stable) estimate of the risk as only .632n samples are used to
train.

@ Bootstrap predictions can be used to assess of the stability!

Risk Estimation and Method 4
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BOOtSt rap Risk Estimation and Method £ X
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Corrected Bootstrap Risk Estimation

@ The training risk is an optimistic risk estimate:

Ralh) = = S (Y h(X))

train
’Db ‘ (KHY’,)EIDZrain
@ Combine both estimate for every b:
R,b(fb) = WRn,b(fb) aF (1 — w)Rn(fb)
@ Choices for w:

e .632 rule: set w = .632 . . .
o 632+ rule: set w = .632/(1 — .368R) with R = (Ryb(F) — Ru($))/(7 — Ra())
where  is the risk of a predictor trained on the n? decoupled data samples (X, Y;).

@ Works quite well in practice but heuristic justification not obvious.
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Tra | n /Va | id ation/TeSt [ Original set | Risk Estimation and Method /

| Choice

[ Training set [ Testset

‘ Training set ‘ Validation set | Test set |

uuuuuu tuning, and

ing,
eval ation
Oy

Machme Iearnmg
b

@ Selection Bias Issue:

e After method selection, the cross validation is biased.
e Furthermore, it qualifies the method and not the final predictor.

o Need to (re)estimate the risk of the final predictor.

(Train/Validation)/Test strategy 5
@ Split the dataset in two a (Train/Validation) and Test. 3
@ Use CV with the (Train/Validation) to select a method. f
@ Train this method on (Train/Validation) to obtain a single predictor. 2
o Estimate the performance of this predictor on Test. uﬁ
@ Every choice made from the data is part of the method! 109



RISk COI’I’eCtiOI"I Risk Estimation and Method 4

Choice

@ Empirical loss of an estimator computed on the dataset used to chose it is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic

@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.
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Pen a | ization Risk Estimation and Method
Choice

Penalized Loss
@ Minimization over a collection of models (©,)
enewlen fZE(Y,,fg X;)) + pen(©pm)
where pen(©) is a risk correctlon (penalty) depending on the model.

\

Penalties
@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

.

Instantiation
@ Mallows Cp: Least Squares with pen(©)
o AIC Heuristics: Maximum Likelihood with pen(©) = <.
o BIC Heuristics: Maximum Likelihood with pen(©) = log(n)2

|
S|
Q

_2d 2

7

@ Structural Risk Minimization: Pred. loss and clever penalty.
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OUtI Ine Risk Estimation and Method 4

Choice

a Risk Estimation and Method Choice

@ Cross Validation and Test

112



Com parison Of Two |\/|ea ns Risk Estimation and Method

Choice

e Setting: r.v. efl) with 1 </ < n;and / € {1,2} and their means
_ 1 /
e = =% e

@ Question: are the means e(/) statistically different?

Classical i.i.d setting

e Assumption: e are i.i.d. for each .

i

.

o Test formulation: Can we reject the null hypothesis that E{e(l)} = E[e(z)}?

@ Methods:

o Gaussian (Student) test using asymptotic normality of a mean.
e Non-parametric permutation test.

.

Gaussian approach is linked to confidence intervals.
The larger n; the smaller the confidence intervals.

7
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Com parISOH Of TWO Mea ns Risk Estimation and Method 4

Choice

Non i.i.d. case

o Assumption: e,-(I) are i.d. for each / but not necessarily independent.

@ Test formulation: Can we reject the null hypothesis that E{e(l)} = E{e(ﬂ?
e Methods:

o Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
e Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).

@ Much more complicated than the i.i.d. case
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Comparison of Several Means Risk Estimation and Method K

Choice

Several means

@ Assumption: e,-(l) are i.d. for each / but not necessarily independent.
o Tests formulation:
o Can we reject the null hypothesis that the E[e(’)] are different?
o Is the smaller mean statistically smaller than the second one?
e Methods:
o Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
e Non-parametric permutation test but no confidence intervals. )
@ Setting for Cross Validation (other than holdout).
@ The more models one compares:
e the larger the confidence intervals
e the most probable the best model is a lucky winner
@ Justify the fallback to the simplest model that could be the best one.



PAC ApproaCh Risk Estimation and Method 7

Choice

CV Risk, Methods and Predictors
@ Cross-Validation risk: estimate of the average risk of a ML method.

@ No risk bound on the predictor obtained in practice.

\.

Probabibly-Approximately-Correct (PAC) Approach
@ Replace the control on the average risk by a probabilistic bound
P(E[(Y,F(X))| > R) <e

@ Requires estimating quantiles of the risk. 116
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Cross Validation and Confidence Interval Risk Estimation and Method /)

Choice
@ How to replace pointwise estimation by a confidence interval?

@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!
Gaussian Interval (Comparison of the means and ~ indep.)
@ Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
@ Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a small risk with high
probability. )

@ Always reestimate the chosen model with all the data.

@ To obtain an unbiased risk estimate of the final predictor: hold out risk on

untouched test data.



Risk Estimation and Method

Choice

Cross Validation

1.0-00

09-

. AccuracyCVPAC

. AccuracyCVinf
. Accuracy

. AccuracyCV

variable

model

s
anjea

118



OUtI Ine Risk Estimation and Method 4

Choice

a Risk Estimation and Method Choice

@ Cross Validation and Weights

119



Unbalanced and Rebalanced Dataset Risk Estimation and Method /)

Choice

Unbalanced Class
@ Setting: One of the classes is much more present than the other.

o lIssue: Classifier too attracted by the majority class!

.

Rebalanced Dataset

e Setting: Class proportions are different in the training and testing set (stratified
sampling)

@ Issue: Training risks are not estimate of testing risks.
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Resa m pl | ng Stl’ategies Risk Estimation and Method 4

Choice

Sampling: Rebalancing

the dataset Imbalanced Data

Under-sampling Over-sampling

Resampling

@ Modify the training dataset so that the classes are more balanced.
e Two flavors:

e Sub-sampling which spoils data,
e Over-sampling which needs to create new examples.

Source: Oracle

@ Issues: Training data is not anymore representative of testing data
e Hard to do it right!
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Resa m pl I ng Effect Risk Estimation and Method

Choice

(Training
@ Testing class prob.: Tiest(k) @ Training class prob.: Tiain(k)
o Testing risk target: @ Training risk target:
Erest [(( Y, f(X))] = Etrain[((Y, f(X))] =
Zﬂtest YE[L(Y, F(X))|Y = K] > Train(KE[L(Y, F(X))Y = K]
k

Implicit Testing Risk Using the Training One

@ Amounts to use a weighted loss:
Etrain[(Y, f(X ]—Zﬂ'tram JE[LCY, F(X))|Y = K]

= 3 s (F v, f)|Y = 4

— B[22 Y, ()

@ Put more weight on less probable classes! 122




Welghted LOSS Risk Estimation and Method 4

Choice

@ In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. .. )

@ Much better to use this explicitly than to do blind resampling!

Weighted Loss

o Weighted loss:
(Y, £(X)) = (Y)Y, f(X))
o Weighted risk target:
E[C(Y)e(Y, f(X))]

@ Rk: Strong link with ¢ as C is independent of f.
o Often allow reusing algorithm constructed for /.

@ C may also depend on X. ..
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Weighted Loss, ¢%/! loss and Bayes Classifier Risk Estmation and Method X

Choice

@ The Bayes classifier is now:
f* = argmin E[C(Y){(Y, £(X))] = argmin Ex [Ey x[C(Y)((Y, F(X))]]

Bayes Predictor

@ For (%' loss, f*(X) = argmax C(k)P(Y = k|X)
k

@ Same effect than a threshold modification for the binary setting.

@ Allow putting more emphasis on some classes than others.

Two possible probabilistic implementations (plus their interpolation)

@ Estimation of the true P(Y = k|X) with observed empirical data and use of the
cost dependent Bayes predictor.
CRP(Y=k|X)

e Estimation of the skewed P{Y = k|X} = SRR
weighted by C(k) and use of the cost independent Bayes predictor.

with empirical data

@ Same target but no equivalence (different approximation error average along X!) 124



Llnking WelghtS and PI’OpOI’tIOﬂS Risk Estimation and Method /

Choice

Cost and Proportions

@ Testing risk target:
IE’Etest[c—.test(y) ] = Zﬂ'test Ctest )E[E(Y f( ))‘ Y = k]

Training risk target
Etraln[Ctram(Y) ] - Z"Ttraln Ctraln )E[E(Y, f(&)” Y = k]

Coincide if
7Ttest(k)ctest(k) = 7Ttrain(k)Ctrain(k)

Lots of flexibility in the choice of C;, Cirain OF Ttrain-
Same target if  Tiest(k) Grest(k) = Cirain(k) Cirain (k)
Can be generalized to respectively
71'test(y‘)<)ctest(ya X) = 7Ttrain(y‘)<)ctrain( Y, X)

and
7Ttest( Y|X) Ctest( Y7 X) = X(X)Trtrain( Y|X)Ctrain(Y7 X) 125



Comblning WelghtS and Resampllng Risk Estimation and Method /

Choice

Weighted Loss and Resampling

o Weighted loss: choice of a weight Ciest # 1.

@ Resampling: use a Tirain 7 Ttest-

@ Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling

) WE|ghted loss: use Ctrain = Ctest aS Ttrain — Ttest-
e Resampling: use an implicit Geest(k) = Ttrain(k)/Ttest (k).
o Combined: use Ctrain(k) = Ctest(k)ﬂ'test(k)/ﬂ'train(k)

@ Most ML methods allow such weights!
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OUtI Ine Risk Estimation and Method 4

Choice

a Risk Estimation and Method Choice

@ Auto ML

127



AUtO M L Risk Estimation and Method 4

Choice

]
H Dataset —
EEm

AR S i
Optimization
Metric

Autornated Machine Learning
Machine Learning Meodel

_ Constraints
J | (Time/cost)

@ Automatically propose a good predictor

softwareengineeringdaily.com /2019/05/15 /introduction-to:

@ Rely heavily on risk evaluations

@ Pros: easy way to obtain an excellent baseline

automated-machine-learning-automl/

Source

@ Cons: black box that can be abused. . .
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Auto ML Task

Risk Estimation and Method 4

Choice

AutoML service User Compute (e, oswmecc)

i High Quality
M viodel

Userscript
IJUPV‘E' AutoML it

@ Input:
e adataset D = (X, Y))
e a loss function (Y, (X))

e a set of possible predictors f; 5 o corresponding to a method / in a list, with
hyperparameters h and parameters 6

o Output:

n:j{.j
=

e a predictor f equal to f; ; 5 or combining several such functions.

129
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Predictors

Risk Estimation and Method
Choice

A Standard Machine Learning Pipeline

l [
[@w@fﬂ-m

Predictors, a.k.a fitted pipelines

@ Preprocessing:
o Feature design: normalization, coding, kernel. ..
e Missing value strategy
o Feature selection method
e ML Method:
o Method itself
e Hyperparameters and architecture
o Fitted parameters (includes optimization algorithm)

@ Quickly amounts to 20 to 50 design decisions!
e Bruteforce exploration impossible!
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AUtO ML and Hyperparameter Optlmlzatlon Risk Estimation and Method /k‘v‘:

Choice

Most Classical Approach of Auto ML

@ Task rephrased as an optimization on the discrete/continous space of
methods/hyperparameters/parameters.

@ Parameters obtained by classical minimization.

e Optimization of methods/hyperparameters much more challenging.
@ Approaches:

o Bruteforce: Grid search and random search
o Clever exploration: Evolutionary algorithm
e Surrogate based: Bayesian search and Reinforcement learning
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AUtO ML and Meta_l_earning Risk Estimation and Method /"“

Choice

Em B B
] o $training data
= m m e - )
= | @ -
performance plrl aaaaaaa Pperformance ‘performance

Learn from other Learning Tasks

@ Consider the choice of the method from a dataset and a metric as a learning task.
@ Requires a way to describe the problems (or to compute a similarity).

@ Descriptor often based on a combination of dataset properties and fast method
results.

@ May output a list of candidates instead of a single method.

@ Promising but still quite experimental!
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AUtO M L a nd Tl me BUdget Risk Estimation and Method /'%‘;

Choice S

Boston Housing

- RS
- TPE
- HB

e~ BOHB

negative log-likelihood

3 .
10 10° 10°
MCMC steps

How to obtain a good result with a time constraint?

@ Brute force: Time out and methods screening with Meta-Learning (less
exploration at the beginning)

@ Surrogate based: Bayesian optimization (exploration/exploitation tradeoff)

@ Successive elimination: Fast but not accurate performance evaluation at the
beginning to eliminate the worst models (more exploration at the beginning)

Source: A. Biedenkapp

@ Combined strategy: Bandit strategy to obtain a more accurate estimate of risks
only for the promising models (exploration/exploitation tradeoff)
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AUtO M L benCh mark Risk Estimation and Method 4

Benchmark

@ Almost always (slightly) better than a good random forest or gradient boosting
predictor.

o Worth the try!
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O Utl Ine A Probabilistic Point of View

© A Probabilistic Point of View
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Three Classical Methods in a Nutshell A Probabilstic Point of View ¥

Logistic Regression

o Let f5(X) = X' B+ B with § = (8, ).

o Let Py(Y = 1|X) = ef(X) /(1 4 £f(X))

e Estimate 6 by  using a Maximum Likelihood.
o Classify using Py(Y = 1|X) > 1/2

v

k Nearest Neighbors

@ For any X', define VX as the k closest samples X; from the dataset.

o Compute a score gk = > x.cy,, 1vi=«

o Classify using arg max gx (majority vote).

.
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Three Classical Methods in a Nutshell A Probabilstic Point of View ¥

Quadratic Discrimant Analysis

@ For each class, estimate the mean px and the covariance matrix > .
e Estimate the proportion P(Y = k) of each class.
e Compute a score In(P(X|Y = k)) + In(P(Y = k))
1 _
gk(X) = — 5(5 — ) T HX — k)
d

— —In
2
Classify using arg max gx

(2) (IZk]) + In(B(Y = k))

1
— —In
2

Those three methods rely on a similar heuristic: the probabilistic point of view!

Focus on classification, but similar methods for regression: Gaussian Regression, k
Nearest Neighbors, Gaussian Processes. . .
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BeSt SOl Utlon A Probabilistic Point of View 4

@ The best solution f* (which is independent of D) is
f*=arg ;mg R(f) = arg m|n E[K(Y f(X))] = arg m|n Ex [Ey|x[€(Y f(X))]}
€

Bayes Predictor (explicit solution)
e In binary classification with 0 — 1 loss:
+1 if P(Y =+41X)>P(Y = -1X)
f*(X) = e P(Y =+1|X)>1/2
—1 otherwise

o In regression with the quadratic loss
f*(X) = E[Y|X]

Issue: Explicit solution requires to know Y|X for all values of X! J
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P I ugl n P red ICtOI' A Probabilistic Point of View 4

@ ldea: Estimate Y|X by VIX and plug it the Bayes classifier.

Plugin Bayes Predictor

@ In binary classification with 0 — 1 loss:
+1 if P(Y =+1X) > P(Y = —1[X)
f(X) = & P(Y = +1[X) > 1/2
—1 otherwise

@ In regression with the quadratic loss
F(X) =E[VIX]

@ Rk: Direct estimation of E[Y|X] by m also possible. ..
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P I Ugl n P red ICtOI’ A Probabilistic Point of View

@ How to estimate Y|X?

Three main heuristics
e Parametric Conditional modeling: Estimate the law of Y|X by a parametric
law Ly(X): (generalized) linear regression. . .
e Non Parametric Conditional modeling: Estimate the law of Y|X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .

e Fully Generative modeling: Estimate the law of (X, Y) and use the Bayes
formula to deduce an estimate of Y|X: LDA/QDA, Naive Bayes, Gaussian
Processes. . .

@ More than one loss can be minimized for a given estimate of Y|X (quantiles, cost
based loss. . .)
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PIUgI n ClaSSIfler A Probabilistic Point of View £

@ Input: a data set D,
Learn Y|X or equivalently P(Y = k|X) (using the data set) and plug this
estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}
)=+ P(Y = 1|X) > P(Y = —1]X)
- —1 otherwise

¥

e Can we guaranty that the classifier is good if Y|X is well estimated?
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Classification Risk Analysis A Probabiistic Point of View K

o If f =sign(2py1 — 1) then
E[1(Y, F(X))| - E[X(Y, (X))
<E[|Y]X - YIX]|s]
2
< (E[2KL(Y|X, Y[X)]) Y
e If one estimates P(Y = 1|X) well then one estimates * well!

Link between a conditional density estimation task and a classification one!
Rk: Conditional density estimation is more complicated than classification:
o Need to be good for all values of P(Y = 1|X) while the classification task focus on
values around the decision boundary.
o But several losses can be optimized simultaneously.

In regression, (often) direct control of the quadratic loss. ..
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O Utl Ine A Probabilistic Point of View

© A Probabilistic Point of View
@ Parametric Conditional Density Modeling

143



Parametric Conditional Density Models A Probabiistic Point of View K

@ ldea: Estimate directly Y|X by a parametric conditional density Py(Y|X).

Maximum Likelihood Approach

@ Classical choice for 6:
n
0 = argmin — > " log Py(Yi| X))
o i=1
Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y|X and Py(Y|X)

E[KL (Y|X,Pa(Y|X))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Py(Y|X)} but depends on Y (and X).

Regression: One can also model directly E[Y|X] by fy(X) and estimate it with a
least-squares criterion. . .
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Linear Conditional Density Models A Probabiistic Point of View K

Linear Models

@ Classical choice: 6 = (3, ¢)
Po(Y|X) = ]P)KTﬂ#?(Y)
@ Very strong modeling assumption!

o Classical examples:

Binary variable: logistic, probit. ..

Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. ..

Continuous variable: Gaussian regression. . .

145



BI nary Classifier A Probabilistic Point of View X

Plugin Linear Classification
e Model P(Y = +1|X) by A(X "8 + 5©) with h non decreasing.
o (X"B+B0)>1/22 X"+ 80 —h71(1/2) >0
o Linear Classifier: sign(X' g+ 5 — h=1(1/2))

.

Plugin Linear Classifier Estimation

@ Classical choice for h: .

e . _—

h(t) = T logit or logistic
h(t) = Fn(t) probit
h(t)=1—e* log-log

@ Choice of the best  from the data.

@ Extension to multi-class with multinomial parametric model.
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|\/|aximum leellhOOd Estimate A Probabilistic Point of View é"“

Probabilistic Model
@ By construction, Y|X follows B(P(Y = +1|X))
@ Approximation of Y|X by B(h(x' g + 5(©))
o Natural probabilistic choice for 8: maximum likelihood estimate.

@ Natural probabilistic choice for 5: 8 approximately minimizing a distance between

B(h(xT 8)) and BB(Y = 1|X)).

.

Maximum Likelihood Approach
° I\/I|n|m|zat|on of the negat|ve log-likelihood:
- Z og(B(V/X,) = 3 (1vi—1 log(h(X;T8)) + 1v,— 1 log(1 — h(X; )))
i=1
° M|n|m|zat|on possible if h is regular. . .

.
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|\/|aximum leellhOOd Estimate A Probabilistic Point of View [“

KL Distance and negative log-likelihood

@ Natural probalistic loss: Kullback-Leibler divergence
KL(B(P(Y = 1|X)), B(h(X'5))

= Ex [IP(Y: 11X) lo P(:(X:T;')X)
+P(Y :—1|X)Iog1 P (X_T,18|)X)]

= Ex [-P(Y = 1X) |og(h(f6))
—P(Y = ~1X)log(1 — K(X"B))] + Cx.v

e Empirical counterpart = negative log-likelihood (up to 1/n factor):

- Z <1Y _1log(h(X;"B)) + 1y,—_1log(1 — h(X; 5)))
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LOgiStiC Regression A Probabilistic Point of View X

Logistic Regression and Odd

@ Logistic model: h(t) = %tet (most natural choice. . .)

@ The Bernoulli law B(h(t)) satisfies then
P(Y =1)
P(Y =-1)
@ Interpretation in term of odd.

t I

Y=-1) '

@ Logistic model: linear model on the logarithm of the odd
P(Y=1X) -
log—— —2- =X
By ——1x) ~ 7

Associated Classifier

. . T
@ Plugin strategy: {1 i GXXB >1/2 S X'8>0

fa(X) = Liex 7
—1 otherwise
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LOgiStiC Regression and Minimization A Probabilistic Point of View é"“

Likelihood Rewriting
o Negative log-likelihood:

—fZ(lmlog (X,TB)) + Ty—1log(1 — h(X;" 5)))

1 I s 1 I !
——*Z Y= 10g XT,B+ Yi=—1 Ogm

_ - ; log (1 + e—Yi(K,’TB))

@ Convex and smooth function of 3

e Easy optimization.
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Example: Logistic
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Featu re Design A Probabilistic Point of View X

Transformed Representation

e From X to ¢(X)!
@ New description of X leads to a different linear model:
f3(X) = o(X)' 8

Feature Design

@ Art of choosing .
@ Examples:

e Renormalization, (domain specific) transform
e Basis decomposition
o Interaction between different variables. . .
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Example: Quadratic Logistic

Quadratic Logistic
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Gaussian Linear Regression A Probabiistic Point of View K

Gaussian Linear Model
e Model: Y|X ~ N(X',5?) plus independence

@ Probably the most classical model of all time!

@ Maximum Likelihood with explicit formulas for the two parameters.

@ In regression, estimation of E[Y|X] is sufficient: other/no model for the noise
possible.
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Extension of Gaussian Linear Regression A Probabiistic Point of View K

Generalized Linear Model

@ Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Ep[Y]) = 6 with v invertible).
@ Exponential family: Probability law family Py such that the density can be written

f(y,0,0) =7 W0

where ¢ is a nuisance parameter and w a function independent of 6.
@ Examples:

y0=02/2 _ y%/2

o Gaussian: f(y,0,p) =€ = B
o Bernoulli: f(y,0) = //="1+¢") (9 = Inp/(1 — p))
o Poisson: f(y,0) = e0=¢)+n() (9 = In ))

o Linear Conditional model: Y[X ~ Py7j. ..

@ Maximum likelihood fit of the parameters
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O Utl Ine A Probabilistic Point of View

© A Probabilistic Point of View

@ Non Parametric Conditional Density Modeling
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A Probabilistic Point of View

Non Parametric Conditional Estimation

@ ldea: Estimate Y|X directly without resorting to an explicit parametric model.

Non Parametric Conditional Estimation

@ Two heuristics:
e Y|X is almost constant (or simple) in a neighborhood of X. (Kernel methods)

e Y|X can be approximated by a model whose dimension depends on the complexity
and the number of observation. (Quite similar to parametric model plus model

selection. . .)

@ Focus on kernel methods!
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Kernel M ethOdS A Probabilistic Point of View

@ Idea: The behavior of Y|X is locally constant or simple!

Choose a kernel K (think of a weighted neighborhood).

For each X, compute a simple localized estimate of Y|K:)~(

@ Use this local estimate to take the decision

In regression, an estimate of E[Y|X] is easily obtained from an estimate of Y|X.

Lazy learning: computation for a new point requires the full training dataset.
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Example: k Nearest-Neighbors (with k = 3)
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Example: k NeareSt_Nelghbors (Wlth k - 4) A Probabilistic Point of View /'%
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k Nea reSt— N elgh bOrS A Probabilistic Point of View

e Neighborhood V, of x: k learning samples closest from x.

k-NN as local conditional density estimate

2 x,evx L{vi=+1}
Vx|

P(Y =1|X) =

KNN Classifier:
frnn(X) = {

Lazy learning: all the computations have to be done at prediction time.

—_—

+1 ifP(Y = 11X) > P(Y = —1|X)

—1 otherwise

Easily extend to the multi-class setting.

Remark: You can also use your favorite kernel estimator. . .
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Example: KNN

k-NN with k=1
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Example: KNN

k-NN with k=5
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Example: KNN

k-NN with k=9
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Example: KNN

k-NN with k=13
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Example: KNN

k-NN with k=17
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Example: KNN

k-NN with k=21
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Example: KNN

k-NN with k=25
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Example: KNN

k-NN with k=29
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Example: KNN

k-NN with k=33
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Example: KNN

k-NN with k=37
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Example: KNN

k-NN with k=45
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Example: KNN

k-NN with k=53
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Example: KNN

k-NN with k=61
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Example: KNN

k-NN with k=69
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Example: KNN

k-NN with k=77
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Example: KNN

k-NN with k=85
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Example: KNN

k-NN with k=101

Decision region

PredictorB
o o
s [=:]

=
[}

02 0.4
PredictorA

A Probabilistic Point of View £

Decision boundary

-
@
06- ® .
classes % ’ ©  classes
B ciasst %0-4' N ® Classi
B class2 £ @ Class2

02-

0.2 04 06
PredictorA

162



Example: KNN

k-NN with k=109
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Example: KNN

k-NN with k=117
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Example: KNN

k-NN with k=125
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Example: KNN

k-NN with k=133
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Example: KNN

k-NN with k=141
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Example: KNN

k-NN with k=149
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Example: KNN

k-NN with k=157
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Example: KNN

k-NN with k=165
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Example: KNN

k-NN with k=173
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Example: KNN

k-NN with k=181
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Example: KNN

A Probabilistic Point of View £

k-NN with k=189
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Example: KNN

A Probabilistic Point of View £

k-NN with k=197
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Regression and LOC3| Averaging A Probabilistic Point of View [“

A naive idea
@ E[Y|X] can be approximated by a local average in a neighborhood N (X) of X:

~ 1
Q)= enmoy, 2, 7

@ Heuristic: X;eN(X)
o If X — E[Y]|X] is regular then

E[Y|X] ~ E[E[Y|X] X' € N(X)] = E[Y]X € N(X)]
e Replace an expectation by an empirical average

E[Y|X € N(X)] ~ W >
X, eN(X)

Conditional Density Interpretation

@ Amount to use as in classification,

= 1

"X NN 2

X.eN(X)
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Regression and LOC3| Averaging A Probabilistic Point of View é"“

Neighborhood and Size
@ Most classical choice: N(X) = {X',||X — X'|| < h } where ||.| is a (pseudo) norm
and h a size (bandwidth) parameter.

@ In principle, the norm and h could vary with X, and the norm can be replaced by
a (pseudo) distance.

@ Focus here on a fixed distance with a fixed bandwidth h cased.

.

Bandwidth Heuristic

o A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. ..

e A small bandwidth is thus that the approximation E[Y|X] ~ E[Y|X' € N(X)]
is more accurate (small bias).

.
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Welghted Local Averaging A Probabilistic Point of View [“

Weighted Local Average

@ Replace the neighborhood N (X) by a decaying window function w(X, X').

@ E[Y|X] can be approximated by a weighted local average:
/ .
>iw(X, X5)

@ Most classical choice: w(X,X') =K (K_TX) where h the bandwidth is a scale
parameter.

.

@ Examples:
o Box kernel: K(t) =1 <1 (Neighborhood)
o Triangular kernel: K(t) = max(1 — ||¢|[,0).
o Gaussian kernel: K(t) = e t'/2

@ Rk: K and AK yields the same estimate.

.
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Link with Density Estimation

Density Estimation

How to estimate the density p of X with respect to the Lebesgue measure from
an i.i.d. sample (Xy,...,X,).

Parametric approach: density has a known parameterized shape and estimate
those parameters.

Nonparametric approach: density has a no known parameterized shape and

e Approximate it by a parametric one, whose parameters can be estimated
o Estimate directly the density

Important nonparametric statistic topic!

Used in generative modeling. . .

A Probabilistic Point of View 4
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Llnk Wlth Density Estimation A Probabilistic Point of View /'“

Kernel Density Estimation (Parzen)

@ Choose a positive kernel K such that [ K(x)dx =1

@ Use as an estimate
1 n
==Y K(X-X)
|

o If K= Z%,1||t||§h' easy interpretation as a local empirical density of samples!
@ General K corresponds to a smoothed version.
o Often Kx(t) = 5 K(t/h) and let

Pr(X) = ZKhX X;)
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Llnk Wlth Density Estimation A Probabilistic Point of View [“

Properties

@ Error decomposition:
E|[|p(X) — Ba(X)2] = E[p(X) — pn(X)* + Var [p(X) — Ba(X)]
o Bias:
E[p(X) = Pa(X)] = p(X) — (Kn * p)(X)
@ Variance: if p is upper bounded by pmax then

2 X )ax
Var [p(X) ~ py(x)] < Prod Kel)e

.

Bandwidth choice
@ A small h leads to a small bias but a large variance. ..

@ A large h leads to a small variance but a large bias. ..

@ Theoretical analysis possible!
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A Density Estimation Point Of VIeW? A Probabilistic Point of View é

Nadaraya-Watson Heuristic

@ Provided all the densities exist

X, Y Yp(X, Y)dY
yix ~ PEY) by and E[y|x] = L P& Y)dY
p(X) (X)
@ Replace the unknown densities by their kernel estimates:
1 n
=-) KX-X;
S L KX~ X)

B(X,Y) = ZKX X)K'(Y — Y))
i=1
@ Now if K’ is a kernel such that [ YK'(Y )dY =0 then

/pr Y)dY = - ZKX X,)Y;
/1

169



A Density Estimation Point Of VIeW? A Probabilistic Point of View /

Nadaraya-Watson

@ Resulting estimator of E[Y|X]
o~ " YiKy(X — X,
f(K) _ 21771 h(f 7,)
=1 Kn(X = X;)
@ Same local weighted average estimator!

.

Bandwidth Choice
@ Bandwidth h of K allows to balance between bias and variance.
@ Theoretical analysis of the error is possible.

@ The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!

.

@ Probabilistic approach POV!
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Local Linear Estimation A Probabilistic Point of View [“

Another Point of View on Kernel

@ Nadaraya-Watson estimator:
=1 Kn(X = X;)

@ Can be view as a minimizer of
n

D 1Yi— BPKn(X = X))
i=1
@ Local regression of order 0.

\.

Local Linear Model

e Estimate E[Y|X] by f(X) = ¢(X)" B(X) where ¢ is any function of X and 3(X)
is the minimizer of

|

STV = (Xi) ' BPKa(X — X,).
i=1

A

@ Very similar to a piecewise modeling approach.
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LOESS Local p0|ynomia| regrESSiOn A Probabilistic Point of View /'J:

1D Nonparametric Regression

@ Assume that X € R and let ¢(X) = (1, X,...,X%).
o LOESS estimate: f(X) = _7:0 B(XY) X/ with B(X) minimizing
n d
D=3 BUXIPRNX - X)).
i=1 j=0
@ Most classical kernel used: Tricubic kernel
K(t) = max(1 — |t[?,0)®

@ Most classical degree: 2...

@ Local bandwidth choice such that a proportion of points belongs to the window.
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O Utl Ine A Probabilistic Point of View

© A Probabilistic Point of View

@ Generative Modeling
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FU”y Genel’atlve MOdellng A Probabilistic Point of View /'V“

e Idea: If one knows the law of (X, Y') everything is easy!

Bayes formula

@ With a slight abuse of notation,
P((X,Y))
P(Y|X) = P(X)
_ PX|Y)P(Y)

P(X)

o Generative Modeling:
e Propose a model for (X, Y) (or equivalently X|Y and Y),
e Estimate it as a density estimation problem,
e Plug the estimate in the Bayes formula
e Plug the conditional estimate in the Bayes classifier.
e Rk: Require to estimate (X, Y) rather than only Y|X!

@ Great flexibility in the model design but may lead to complex computation.
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FU”y Genel’atlve MOdellng A Probabilistic Point of View /'V“

@ Simpler setting in classification!

Bayes formula

Binary Bayes classifier (the best solution)
1 ifP(Y=1X)>P(Y=-1X
F(X) = {+ FR(Y =11X) = P(Y = ~11X)

—1 otherwise
Heuristic: Estimate those quantities and plug the estimations.

By using different models/estimators for P(X|Y'), we get different classifiers.
Rk: No need to renormalize by P(X) to take the decision!
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View 44

Discriminant Analysis (Gaussian model)
@ The densities are modeled as multivariate normal, i.e.,
P(X|Y = k) ~ Ny,

@ Discriminant functions: gx(X) = In(P(X|Y = k)) + In(P(Y = k))
1 _
gn(X) = - 5(X - pu) T (X — )
d 1
— 5 In(2) = 5 In(|Zk]) + In(P(Y = k)
@ Quadratic Discrimant Analysis (QDA) (different X4 in each class) and Linear
Discrimant Analysis (LDA) (X4 = X for all k)

o Beware: this model can be false but the methodology remains valid!
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D ISCI'I m | na nt An a |ySIS A Probabilistic Point of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1, Ro

@
i
<
@
e
5
<}
n

@ The regions are separated by decision boundaries
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1,Ra, ..., R¢

@ The regions are separated by decision boundaries

Source: A. Fermin
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View

In practice, we will need to estimate g, Xy and Py :=P(Y = k)

The estimate proportion P(V;k) =% =1sw liy—i

Maximum likelihood estimate of fix and £, (explicit formulas)

DA classifier
fe(X) =

Z +1 if ga(X) = g-1(X)
—1 otherwise
Decision boundaries: quadratic = degree 2 polynomials.

If one imposes X1 = Y1 = X then the decision boundaries is a linear hyperplane.
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View £

£
£
b5
i
<
[
e
5
)
»

Linear Discriminant Analysis
0%, =%, =3

@ The decision boundaries are linear hyperplanes
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D ISCI’I m | na nt An a |ySIS A Probabilistic Point of View

£
£
b5
i
<
[
e
5
)
»

Quadratic Discriminant Analysis

@ X, #FXu,

@ Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.

—
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Example: LDA

A Probabilistic Point of View £

Linear Discrimant Analysis

Decision region Decision boundary
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Example: QDA

A Probabilistic Point of View

Quadratic Discrimant Analysis

Decision region Decision boundary
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N aive Bayes A Probabilistic Point of View X

Naive Bayes

@ Classical algorithm using a crude modeling for P(X]|Y):
e Feature independence assumption:

P(X|Y) = HIP( ‘Y)
e Simple featurewise model: binomial if blnary, multinomial if finite and Gaussian if

continuous

o If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!

@ Very simple learning even in very high dimension!
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Example: Naive Bayes

Naive Bayes with Gaussian model

Decision region
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Example: Naive Bayes

Naive Bayes with kernel density estimates

Decision region
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. . . o 3
Naive Bayes with Density Estimation A Probabilistic pointofVieWX

e

PredictorB

04
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Other |\/|ode|s A Probabilistic Point of View X

@ Other models of the world!

Bayesian Approach
o Generative Model plus prior on the parameters

@ Inference thanks to the Bayes formula

Graphical Models
@ Markov type models on Graphs
o

Gaussian Processes
@ Multivariate Gaussian models
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O Utl Ine Optimization Point of View

e Optimization Point of View
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Probabilistic and Optimization Framework Optimization Paint of View K

How to find a good function f with a small risk
R(f) = E[L(Y, f(X))] 7
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))

Problems
@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X and plug it in any Bayes classifier: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. ..

An Optimization Point of View

Solution: Replace the loss ¢ by an upper bound ¢ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .

.

.
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Three Classical Methods in a Nutshell Optimization Paint of View ¥

Deep Learning

@ Let fp(X) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

1 n
@ Optimize by gradient descent the cross-entropy —— E log (fg(&,)(y’)>
n“
i=1
o Classify using sign(fy)

.

Regularized Logistic Regression
o Let fy(X) = X"5+ 8O with 8 = (8, 3®).

a1 ~Yify(X))
° F|nd9—argm|nn;|og(1+e = )‘f')\”ﬁul

o Classify using sign(f;)

.
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Three Classical Methods in a Nutshell Optimization Paint of View ¥

Support Vector Machine

o Let f(X) = X" B+ BO with 6 = (8, 8).

A 1<

Find 0 = arg min . Z max (1 — Yify(X;),0) + AHBH%
i=1
Classify using sign(f)

Those three methods rely on a similar heuristic: the optimization point of view!

@ Focus on classification, but similar methods for regression: Deep Learning,
Regularized Regrssion, Support Vector Regression. . .
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Emplrical RISk Mlnlmlzatlon Optimization Point of View

@ The best solution * is the one minimizing
f* =argmin R(f) = argmin E[{(Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € ©}
@ One replaces the minimization of the average loss by the minimization of the
average empirical loss

. i
f=f=argmin— ) LY}, fp(X;
5= argmin 3 4(Yi (X))

@ Often tractable for the quadratic loss in regression.

@ Intractable for the 0/1 loss in classification!

P
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Convexification Strategy Optimization Point of View [“

Risk Convexification

@ Replace the loss /(Y fy(X)) by a convex upperbound (Y, fy(X)) (surrogate loss).

@ Minimize the average of the surrogate empirical loss

. 10
f=f=argmin= > (Y fp(X;
. ffeeen,;( (X))

o Use 7 = sign(f)

@ Much easier optimization.

Instantiation

@ Logistic (Revisited)
@ (Deep) Neural Network
@ Support Vector Machine

@ Boosting
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Classification Loss and Convexification Optimization Point of View /)

T
¥y

Convexification

e Replace the loss /2/1(Y, f(X)) by
oY, f(X)) = I(YF(X))
with / a convex function.

e Further mild assumption: / is decreasing, differentiable at 0 and /(0) < 0.
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Classification Loss and Convexification Optimization Paint of View ¥

i a5 0 08 1
¥y

Classical convexification

o Logistic loss: £(Y, (X)) = logy(1 4+ e~ Y (X)) (Logistic / NN)
@ Hinge loss: (Y, f(X)) = (1 - Yf(X))+ (SVM)
@ Exponential loss: /(Y f(X)) = e~ Y (X) (Boosting. . .)
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P roperties Optimization Point of View 4 X

The Target is the Bayes Classifier

@ The minimizer of

E[Z(Y,f(X)) } E[/ (YF(X))]
is the Bayes classifier f* = S|gn(2n(X)

Control of the Excess Risk

@ It exists a convex function W such that
W (E[O/(Y, sign(f(X))] — E[¢/*(Y, £(X)])

E[KY, f(X)] - E[AY, (X))

@ Multi-class generalizations of convexification lead to similar controls, but not
necessarily a direct upper bound of the loss.

e Direct (approximate) optimization of the predictor, but for a single loss.

@ Connection with the probabilistic POV when the (surrogate) loss used is the

opposite of the log-likelihood. 195



LOgIStIC ReV|S|ted Optimization Point of View

@ Ideal solution:

f=argmin=S /Y (Y;, f(X;
i 3200

Logistic regression

Use f(X) = XT3+ BO.
Use the logistic loss £(y, f) = log,(1 + e™*f), i.e. the negative log-likelihood.

Different vision than the statistician but same algorithm!

In regression, a similar approach will be to minimize the least square criterion
without making the Gaussian noise assumption.
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Logistic Revisited

Optimization Point of View

Logistic

Decision region Decision boundary

o
06- ® (
classes ’ g @ classes
0.4-
B classt > ® Class

B ciass2 @ Class2

PredictorB
PredictorB

02 04 06 02 04 06
PredictorA PredictorA
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O Utl Ine Optimization Point of View

e Optimization Point of View
@ (Deep) Neural Networks
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Pe rcept ron Optimization Point of View

inputs  weights

weighted sum step function

P
&

Perceptron (Rosenblatt 1957)

@ Inspired from biology.

@ Very simple (linear) model!

Source: Tikz

@ Physical implementation and proof of concept.

[y
©
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Perceptron

Dendrites

Cell body

o0

Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Optimization Point of View

P

Source: Tikz
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©
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Pe rcept ron Optimization Point of View

inputs  weights

weighted sum step function

P
&

Perceptron (Rosenblatt 1957)

@ Inspired from biology.

@ Very simple (linear) model!

Source: Tikz

@ Physical implementation and proof of concept.
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Pe rce pt ron Optimization Point of View /4 ‘

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!

Source: Avin Calspan Advanced Technology Center

@ Physical implementation and proof of concept.

[y
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Artificial Neuron and Logistic Regression Optimization Paint of View ¥

Activation Neuron Configuration

B1

1= Input
0= Output
B = Bias

12
Activation Fonction

o1

|

Artificial neuron Logistic unit

@ Structure: @ Structure:

® Mix inputs with a weighted sum, o Mix inputs with a weighted sum,

° lf\pplty_a (zoqh'_mear) gelivaten o Apply the logistic function
unction to this sum, o(t) = et /(1 + &),

° POSSIPl.y threshold the result to make o Threshold at 1/2 to make a decision!
a decision.

. S @ Logistic weights learned by minimizing
@ Weights learned by minimizing a loss e Jerelc el

function. ) /
@ Equivalent to linear regression when using a linear activation function!

Source: Unknown
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M u |t| | aye r Pe rce pt ron Optimization Point of View /4

Input Hidden Layer Output

B1 B2
I \
I = Input H1
H= Hidden 2
O = Output H2 01
B = Bias 13 ="
H3

Multilayer Perceptron: cascade of layers of artificial neuron units.

@ Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

@ Construction of a function by composing simple units.

@ MLP corresponds to a specific direct acyclic graph structure.

@ Minimized loss chosen among the classical losses in both classification and
regression.

@ Non convex optimization problem! 201
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Multilayer Perceptron

Optimization Point of View

Neural Network

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 0.4 06
PredictorA PredictorA
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Universal Approximation Theorem Optimization Point of View

Universal Approximation Theorem (Hornik, 1991)

o A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well given enough hidden units.

@ Valid for most activation functions.
@ No bounds on the number of required units. .. (Asymptotic flavor)

@ A single hidden layer is sufficient but more may require less units.
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Deep N eura | N etWOI'k Optimization Point of View

DEEP NEURAL NETWORK

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty. ..

@ But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. ..

@ Use of GPU and a lot of data. ..

@ Very impressive results!
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Deep Neural Network

Optimization Point of View

H20 NN
Decision region Decision boundary
=

06 06- ® ®
Cg classes % ’ @ classes
% 0.4 . Classi % 0.4+, > @ Classi
& B class2 £ © Class2

0.2

02-

02 04 06 02 04 06
PredictorA PredictorA
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Deep Learning

Conv 1: Edge+Blob Convy 3: Texture Conv 5: Object Parts Fe8: Object Classes

Family of Machine Learning algorithm combining:

@ a (deep) multilayered structure,

@ a clever optimization including initialization and regularization.

@ Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. ..
@ Interpretation as a Representation Learning.

@ Transfer learning: use a pretrained net as initialization.

@ Very efficient and still evolving! 206

Source: J. Hays



CO nVOl UtIO na | N etWOI’k Optimization Point of View

PROC. OF THE IEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10
S4: 1. maps 16@5x5
$2:1. maps

6@14x14 r F e £ layer GUTPUT

C1: feature maps
INPUT
[ 6@28x28

| Full conflection ‘ Gaussian connections
c i [ i Ful

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Le Net - Y. LeCun (1989)

@ 6 hidden layer architecture.

@ Drastic reduction of the number of parameters through a translation invariance
principle (convolution).

@ Required 3 days of training for 60 000 examples!
@ Tremendous improvement.
@ Representation learned through the task.
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Dee p CO n VOI u t | ona | N etWOF kS Optimization Point of View

2u43' 078 \dense

2038 2048

128

128 Max
Max 5] Max poaling
pooling pooling

Alexnet - A. Krizhevsky, |. Sutskever, G. Hinton (2012)

@ Bigger and deeper layers and thus much more parameters. _
@ Clever intialization scheme, RELU, renormalization and use of GPU. ;9

<
@ 6 days of training for 1.2 millions images. z
@ Tremendous improvement. . . &
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Deep COHVOI Utlon a | N etWOI’kS Optimization Point of View

1
HE
(1

1 FH
I EHHEHTHH
(LR LI Ll H

Yinception 5 (GooglLeNet)

PR T [
:l";“l“l:||“|=’|:=|=ll
18 12 i

11444

P

(TH

o1
Inception 7a

'Going Deaper with Convalutions, [C. Szegedy e |, CVPR 2015)

@ Bigger and bigger networks! (GooglLeNet / Residual Neural Network / $

Transformers. . .) i
@ More computational power to learn better representation. :éf
@ Work in Progess! 3
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ Regularization

210



7

Optimization Point of View

Under-fitting / Over-fitting Issue

9(f + Oz + gzlf

+()_-;.rf;r; + H|.J:_f;r'§

+O0s22x3 + Osaias + ...
OVERFITTING

UNDERFITTING
(high bias) (high variance)

ho(z) = g(0g + bhxy + Oax2) g(0y + 0171 + 212
+0323 + 0423

( g = sigmoid function)
+057122)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

Source: A. Ng
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U nder_fltti ng / Ovel’—flttl ng ISSUC Optimization Point of View

High Bias Low Bias
Low Variance High Variance
S

Prediction Error

Test error
— Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

e Under-fitting: simple model are too simple.

3
3
2
<
=}
[
e
5
)
»

212

@ Over-fitting: complex model are too specific to the training set.




Bias-Variance Dilemma
@ General setting:
F = {measurable functions X — Y}
Best solution: f* = argmin;. » R(f)
Class & C F of functions
Ideal target in S: & = argmin,cs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(Fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

Optimization Point of View /4

Agnostic approach
@ No assumption (so far) on the law of (X, Y).
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U nder_fltti ng / Over_flttl ng ISSU€ Optimization Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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T heoretlcal An a |yS|S Optimization Point of View

Statistical Learning Analysis

@ Error decomposition:
R(fs) — R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

Bound on the approximation term: approximation theory.

Probabilistic bound on the estimation term: probability theory!

Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on ... (Nonparametric Statistics?)
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SI m pl |f|ed M Odels Optimization Point of View /4

Closest fit in population
Realization
[ Closest fit

MODEL
SPACE

 Shrusken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

@ Most complex models may not be the best ones due to the variability of the
estimate.

@ Naive idea: can we simplify our model without loosing too much?
e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?

®
o
3]
s
w
k)
=
o
g
=
<]
%)
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Linear |\/|ode|s Optimization Point of View é"“

@ Setting: Gen. linear model = prediction of Y by h(x'f3).

Model coefficients

@ Model entirely specified by 3.
o Coefficientwise:

o ) =0 means that the ith covariate is not used.
o ) ~ 0 means that the ith covariate as a fow influence. . .

@ If some covariates are useless, better use a simpler model. ..

Submodels

e Simplify (Regularize) the model through a constraint on 3!
@ Examples:
e Support: Impose that () =0 for i & /.
e Support size: Impose that ||S][o = 27:1 1040 < C
e Norm: Impose that ||3||, < C with 1 < p (Often p =2 or p = 1)
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Norms a nd S parsity Optimization Point of View

@ [ is sparse if its number of non-zero coefficients ({p) is small. ..

e Easy interpretation in terms of dimension/complexity.

A

Norm Constraint and Sparsity
@ Sparsest solution obtained by definition with the ¢y norm.

@ No induced sparsity with the ¢ norm. ..

@ Sparsity with the ¢/; norm (can even be proved to be the same as with the ¢
norm under some assumptions).

@ Geometric explanation.

Source: Tibshirani et al

.
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Constraint and Lagrangian Relaxation

Optimization Point of View

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
1~ -
argmin - = > (Y, h(x;' 8))
peRr? |Bll,<C i

Lagrangian Relaxation

| .

@ Choose A\ and compute 3 as

1 /
argmin = " U(Y;, h(x;" 8)) + AlIBI15
Berd Moy
with p’ = p except if p = 0 where p’ = 1.

@ Easier calibration. .. but no explicit model S.

.

e Rk: ||3]| is not scaling invariant if p # 0. ..
@ Initial rescaling issue.

7
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Regularization Optimization Point of View 4 »

Regularized Linear Model

@ Minimization of
n

argmin 1 ZE(Y,-, h(&;—rﬁ)) + reg(5)
BerRd N

where reg(/3) is a (sparsity promoting) regularisation term (regularization penalty).

@ Variable selection if 3 is sparse. )

Classical Regularization Penalties
o AIC: reg(B) = Al|B]lo (non-convex / sparsity)
Ridge: reg(3) = A||B]|3 (convex / no sparsity)

Lasso: reg(f) = Al|5]|1 (convex / sparsity)
e Elastic net: reg(3) = 1|81 + A2l|B]|3 (convex / sparsity)

.

Easy optimization if reg (and the loss) is convex. ..
Need to specify )\ to define an ML method!
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RGgUlaFIZGd Gen Llnear MOdels Optimization Point of View

Classical Examples

Regularized Least Squares

Regularized Logistic Regression
Regularized Maximum Likelihood
SVM

Tree pruning

Sometimes used even if the parameterization is not linear. ..
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Regularization and Cross-Validation Optimization Paint of View K

Practical Selection Methodology

@ Choose a regularization penalty family reg,.
o Compute a CV risk for the regularization penalty reg, for all A € A.
o Determine \ the A minimizing the CV risk.

@ Compute the final model with the regularization penalty regs;.

o CV allows to select a ML method, penalized estimation with a regularization
penalty regs, not a single predictor hence the need of a final reestimation.

Why not using directly a parameter grid?

@ Grid size scales exponentially with the dimension!

o If the regularized minimization is easy, much cheaper to compute the CV risk
for all A € A...

@ CV performs best when the set of candidates is not too big (or is structured. . .)
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ Another Perspectivce on Bias-Variance Tradeoff

223



P

NN and Bias-Variance Tradeoff Optimization Point of View

©
153
=2
o
>
o
['4
;
c
I
£
S
[
)
o
o
5
[}
n

Traditional view NN reality

—— Bias

Total Error .
-4-- Variance

Variance VS

Optimum Model Complexity

Error
Variance
°
>
(=

10° 10t 102 10° 104

Model Complexity Number of hidden units

No Bias-Variance Tradeoff in NN ?

@ Simultaneous decay of the variance and the bias!

@ Contradiction with the bias-variance tradeoff intuition ?
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Bias-Variance Dilemma

Optimization Point of View

@ General setting:

F = {measurable functions X — Y}
Best solution: f* = argming. » R(f)
Class & C F of functions

Ideal target in S: f& = argmingcs R(f)

Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(fs) — R(f*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

225



7

Approximation-Estimation Dilemna? Optimization Point of View

under-parameterized /\ over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

Risk

~ _Training risk:
~ . _interpolation threshold
= = “

Capacity of H

Approximation error and estimation error (# predictor bias-variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error ﬁé;
e can be large if the model is complex, s

e but may be small for complex model if it is easy to find a model having a ¢
performance similar to the best one! ) &

226

@ Small estimation errors scenario seem the most probable scenario in deep learning.



A Refl ned VIeW Optimization Point of View

Traditional view of bias-variance .
R Practical setting

-

biased with .7 unbiased &
some variance ., A
PR % . P
e }\ " \‘ e s low variance
] \ high 1 1 \ -
'\ e | : varilgnce of 1 '\ e | ‘,.\'
N bias ,l ‘\ ,' N ,’ > i
e . N , . -
. : . ’ increasing network
increasing number  ~ e width
of parameters S
Worst-case analysis Measure concentrates
Traditional View Refined View
@ Single good target @ Many good targets
o Difficulty to be close grows with e Difficulty to be close from one may
complexity. decrease with complexity. P
=2
@ Bias-Variance analysis in the predictor @ Bias-Variance analysis in the loss o
space. space. g
y < 3

@ Importance of (cross) validation!

N
N
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ SVM

228



SU pport VeCtOI' M aCh | ne Optimization Point of View /4

f(X)= X8+ 89 with 0=(859)

N 1Z
0 = arg min - > max (1= Yify(X;),0) + Al 8]I3

i=1

Support Vector Machine

e Convexification of the 0/1-loss with the hinge loss:
ly.fx,)<0 < max (1 — Yifp(X;),0)
Regularization by the quadratic norm (Ridge/Tikhonov).

Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.

Original point of view leads to a different optimization algorithm and to some
extensions.
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Ideal Se pa ra ble Case Optimization Point of View /4

®
o
153
<
S
=
=
@
e
5
<}
n

o Linear classifier: sign(X' g+ 5(0)
@ Separable case: 3(3, 8(9), Vi, Yi(X;T 8+ @) >0

How to choose (3, 3(?)) so that the separation is maximal?

@ Strict separation: 3(3, 3),Vi, Yi(X; "8 + 8©) > 1
o Distance between XT3+ 30 =1 and X" 3 + 30 = —1:
2

181l

o Maximizing this distance is equivalent to minimizing 3||3||2.

< 230




Ideal Se pa ra ble Case Optimization Point of View /4

Separable SVM

@ Constrained optimization formulation:

min %Hﬂ”z with Vi, Yi(X;T 8+ B©) > 1

@ Quadratic Programming setting.

@ Efficient solver available. ..

Source: M. Mohri et al.
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NOn Separa ble Case Optimization Point of View /4

@ What about the non separable case?

SVM relaxation

@ Relax the assumptions
Vi, YiX; "B+ B89)>1 to Vi, Yi(X;"8+89)>1-5
with the slack variables s; > 0

@ Keep those slack variables as small as possible by minimizing
1 n
SIBIZ+ €Y
i=1

where C > 0 is the goodness-of-fit strength_

Source: M. Mohri et al.
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Non Separa ble Case Optimization Point of View

o Constrained optimization formulation:
1 5 .
min = + C E s;  with

@ Hinge Loss reformulation:

Vi, iX; T8+ 8@0) > 1 -
Vi, Si > 0

n
iy %Hmﬁ +CY max(0,1- V(X" 8+ B®))
i=1

Hinge Loss

Source: M. Mohri et al.

@ Constrained convex optimization algorithms vs gradient descent algorithms. 231



SVM as a Regularized Convex Relaxation Optimization Paint of View K

@ Convex relaxation:

argmin = ||5|\2+CZmax (1 - Yi(X; T8+ 89),0)
i=1

_argmlanmax (1- ;(K,Tﬁ—l-ﬁ(o ) 0)—1— HﬁH2
i=1
e Prop: Eo/l(Y;,ﬂgn(K,Tﬁ + g0 )) < max(1 — Yi(ﬁiTﬁ + B )7 0)

Regularized convex relaxation (Tikhonov!)

ZWI (Y;,sign(X; "B+ BC ))+**||BH2

i=1

< = Zmax (1 - Yi(X; Tﬁ—l—ﬂ(o)) 0) ‘1' HB||2

@ No straightforward extension to multi-class classification.
@ Extension to regression using ¢(f(X),Y) =Y — X|. 232



SVM

Optimization Point of View

Support Vector Machine

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Constrained Minimization Optimization Point of View é"h

Constrained Minimization

o Goal:

@ or rather with argmin!

.

Different Setting
e f, hj, gi differentiable

e f convex, h; affine and g; convex.

.

Feasibility

e x is feasible if hj(x) =0 and gj(x) < 0.
@ Rk: The set of feasible points may be empty 234




Lagra n gla n Optimization Point of View

Constrained Minimization

o Goal:
hi(x) =0, j=1,...p

* = min f(x) with
PE= i) {g;(X)SO, i=1,..q

o Def: P q
L0, 1) = F(x) + D Ahi(x) + > migi(x)
j=1 i=1

with A € RP and p € (RT)9.
@ The \; and p; are called the dual (or Lagrange) variables.

e Prop: f(x) if x is feasible
400 otherwise

L(x,\, 1) =
AR geye LA 1) {

min max L(x,\, pu) =p*
X XERP, pe(R*)9 ( M) &

\

7
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Lagrangial Dual Optimization Point of View [“

Lagrangian

o Def:
L(x,\, 1) = f(x +Z)\h(x —i—Zu,g,

with A € RP and p € (RT)9.

Lagrangian Dual

@ Lagrangian dual function:
Q(A, p) = min L(x, A, 1)
e Prop:
Q(\, 1) < f(x), for all feasible x

A < in f
AERPT;g(Rﬂq Q) < x fensible (x)
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D ua | Ity Optimization Point of View

@ Primal:
hj(x):O, j=1...p

* = min f(x) with
P x (x) {g,-(x)ﬁO, i=1,...q

m
| ><
\

@ Dual:

q* = ma Q()‘vu)

= X max min L(x, A,
AERP, pe(R+)4 ( ,u)

- AERP, pe(RT)9 X

|

o Always weak duality:

g <p
ma min £(x, \, ) < min ma L(x, A,
AERP, ,uEX(]R*)q X (A ) < X AERP, ueX(]Rﬂq (2 1)

@ Not always strong duality g* = p*.

.

7
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Strong Duallty Optimization Point of View [“

Strong Duality

e Strong duality:

q* _ P*
max min £(x, \ = min max L(x, A
AERP, pe(RF)d X (%A 1) X AERP, pe(R+) (x: A 1)

@ Allow to compute the solution of one problem from the other.

@ Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition

e f convex, h; affine and g; convex.

e Slater’s condition: it exists a feasible point such that hj(x) = 0 for all j and
gi(x) < 0 for all /.

o Sufficient to prove strong duality.

o Rk: If the g; are affine, it suffices to have hj(x) = 0 for all j and gj(x) < 0 for all
i
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K KT Optimization Point of View 7

Karush-Kuhn-Tucker Condition

@ Stationarity:
Vo L(x* A, ) = VF(x*) + Y N Vhi(x*) + Z,u,Vg, ) =0
J
@ Primal admissibility:
hi(x*) =0 and gi(x*) <0
@ Dual admissibility:

@ Complementary slackness:

.

o If f convex, h; affine and g; convex, all are differentiable and strong duality
holds then x* is a solution of the primal problem if and only if the KKT
condition holds 239




SVM a nd Lagra ngl an Optimization Point of View 4 X

o Constrained optimization formulation:

1 4 Vi, Yi(X; " )y >1-s5
mmEHBH2+C;5/ with { I, (—/ B+ﬁ )_ S

Vi,s,- >0

SVM Lagrangian

@ Lagrangian:

1 n
£(8, 89, 5,0,) = SBIF + C Y5
i=1

+3 il = s = Yi(X; B+ B89) =3 s

.

A
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SVM and KKT Optimization Point of View ['

KKT Optimality Conditions

o Stationarity:
VLB, B9, s,0,1) = B =D i YiX; =0
Vﬁ(o)ﬂ(ﬁ, ﬂ(O)v S, 1“) = = Z Qj = 0

Vo L(B,89,s,0,1)=C—a;j—pj=0
@ Primal and dual admissibility:
(1—si—YiX;"8B+89) <0, 5>0, a;>0, andp; >0
o Complementary slackness:
ai(l =5 = Yi(X; B+ 5)) =0 and ps =0

Consequence
o f*=3%;0;YiX;and 0 < a; < C.
o If aj # 0, X; is called a support vector and either
e s, =0 and Y,-(X,-T;B* + /5(0)*) =1 (margin hyperplane),
e or a; = C (outliers).
o B0 =y, — K,Tﬁ* for any support vector with 0 < a; < C.

\

241



SVM Dual Optimization Point of View é"h

SVM Lagrangian Dual

@ Lagrangian Dual:

Q(a, p) = R £(8,89,s,a, )

@ Prop:
o if > .a;Y;#0or3i,a; +p; #C,
Qo p) = —o0
o if > .a;Y;=0and Vi,a; + pj = C,

DEDIIEE SN AP

ij

.

SVM Dual problem

@ Dual problem is a Quadratic Programming problem
max Q(a,pu) < [max Za, Za a;Y;YiX; TX

a>0,u>0 o

@ Involves the X; only through their scalar products. 242




Mercer Theorem Optimization Point of View /'“

Mercer Representation Theorem

@ For any loss 7 and any increasing function ®, the minimizer in 3 of
n

S UYL X8+ BO) + o(|8]12)
i=1

n
is a linear combination of the input points f* = Za?&i.
Minimization problem in o’: =1
n
DAY DX T X+ ) + o([1B]l2)
i=1 J
involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
P(X) = XT3+ 5O = 3" aiX X

1
Transform a problem in dimension dim(X’) in a problem in dimension n.
Direct minimization in 3 can be more efficient. .. 243



The Kernel TriCk Optimization Point of View

2:R? - R
(21,29) 1= (21,22, 23) i= (2}, V2129, 03)
23

X

Z;
-
»e

@ Non linear separation: just replace X by a non linear ®(X)...
o Knowing ¢(X;)" ¢(X;) is sufficient to compute the SVM solution.

e Computing k(X,X') = #(X) #(X') may be easier than computing ¢(X),
#(X') and then the scalar product!

¢ can be specified through its definite positive kernel k.

Examples: Polynomial kernel k(X,X") = (14 X' X')?, Gaussian kernel
k(X X') = e~ IX=XI/2

@ RKHS setting!

Can be used in (logistic) regression and more. ..

3
3
2
<
=}
[
e
5
)
»
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SVM

Optimization Point of View

Support Vector Machine with polynomial kernel

Decision region Decision boundary
w
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SVM

Optimization Point of View

Support Vector Machine with Gaussian kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % classes
% 0.4 . Classi % 0.4~ @ Classi
& B class2 £ @ Class2

=
[}

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Featu re M ap Optimization Point of View 4 X

Feature Engineering
@ Art of creating new features from the existing one X.
@ Example: add monomials (K(j))z, XWxU

@ Adding feature increases the dimension.

.

Feature Map
@ Application ¢ : X — H with H an Hilbert space.

e Linear decision boundary in H: ¢(X)' 5+ 8 = 0 is not an hyperplane
anymore in X.

.

Source: Unknown

@ Heuristic: Increasing dimension allows to make data almost linearly separable.
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POlynom Ial M a ppl ng Optimization Point of View

®
o
153
<
S
=
=
@
e
5
<}
n

T2 V21122
(-1,1) | LD (11,4222 1) | (1,1,4v2,4+v2,+v2,1)
@ @ ) o

\/5371

@ [
(-1,-1) (1,-1) (1,1, —v2,—v2,+v2,1)

(1,1, —v2,+v2,-v2,1)

Polynomial Mapping of order 2

® ¢ :R2 RS
H(X) = ((K(l))2, (K(2))2, \@K(I)KQ), \ﬁé(l), \@K@)’ 1)

@ Allow to solve the XOR classification problem with the hyperplane XM x®) =

Polynomial Mapping and Scalar Product

o Prop:

N
=
co



SVM Primal and Dual Optimization Point of View /'W

Primal, Lagrandian and Dual

@ Primal:

n . Yl X. T (0) >1_ ,-
min B2+ CY s with Vp (p(X;) B+B)>1~5
i=1 Vi,si >0

Lagrangian:

1 n
ﬁ(ﬁaﬂ(O)vsaanu’) - 5”5”2 + CZSI
=1

+) il — s — Yi(d(X) "B+ B8O) = s

@ Dual:

1 T
ozzn(])inZO Qa, p) & Orgnaagczi: o — 5 zj: ajo Y Yio(X;) ¢(KJ)

Optimal ¢(X)' 8% + SO = 3. ; Yie(X) " o(X;)

Only need to know to compute gb(&)ﬂb(l’) to obtain the solution. 249



From I\/Iap to Kernel Optimization Point of View /"“

e Many algorlthms (e.g. SVM) require only to be able to compute the scalar
product ¢(X) " ¢(X").

@ Any application
k: XxX—>R
is called a kernel over X.

o Computing directly the kernel k(X, X') = ¢(X)" ¢(X’) may be easier than
computing ¢(X), ¢(X’') and then the scalar product.

.

.

@ Here k is defined from ¢.

@ Under some assumption on k, ¢ can be implicitly defined from k!
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P DS Ke rn el Optimization Point of View

Positive Definite Symmetric Kernels

o A kernel k is PDS if and only if

e k is symmetric, i.e.

k(X,X') = k(X', X)
o for any N € N and any (Xi,...,Xy) € XV,
K = [k(X;, Xj)h<ij<n
is positive semi-definite, i.e. Yu € RN
u Ku= Z u(")u(j)k(&,-,ij) >0
1<ij<N
or equivalently all the eigenvalues of K are non-negative.

@ The matrix K is called the Gram matrix associated to (Xi,...,Xp)-
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ReprOdUCIHg Kernel Hllbel’t Space Optimization Point of View /

Moore-Aronsajn Theorem

@ For any PDS kernel k : X x X — R, it exists a Hilbert space H C R with a
scalar product (-, )y such that
e it exists a mapping ¢ : X — H satisfying
K(X, X') = ($(X), p(X)) g
e the reproducing property holds, i.e. for any h € H and any X € X
h(X) = (h, k(X)) -

e By def., H is a reproducing kernel Hilbert space (RKHS).
e H is called the feature space associated to k and ¢ the feature mapping.
@ No unicity in general.
e Rk: if k(X,X') = ¢’(§)T¢’(§’) with ¢/ : X — RP then
o H can be chosen as {X — ¢/(X)' 3,3 € RP} and || X — QS’(K)TBH%H = ||8]I3.
o ¢(X'): X = ¢'(X) ¢'(X).
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Kernel Construction Machinery Optimization Paint of View K

Separable Kernel

e For any function V: X — R, k(X, X") = V(X)¥(X') is PDS.

Kernel Stability
@ For any PDS kernels k; and kp, k1 + ko and kik are PDS kernels.

@ For any sequence of PDS kernels k;,, converging pointwise to a kernel k, k is a
PDS kernel.

@ For any PDS kernel k such that |k| < r and any power series >, a,z" with a, > 0

and a convergence radius larger than r, Z ank" is a PDS kernel.
n

k(X, X')

P

RO KX )

@ For any PDS kernel k, the renormalized kernel k'(X, X') =

a PDS kernel.
e Cauchy-Schwartz for k PDS: k(X, X")? < k(X, X)k(X', X")
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Classical Kernels Optimization Paint of View ¥

PDS Kernels

@ Vanilla kernel:
kX, X)=X"X

Polynomial kernel:
k(X, X') = (14 XTX)k
@ Gaussian RBF kernel:
K(X, X') = exp (—1IX — X'|I?)
@ Tanh kernel:
k(X,X') = tanh(aX " X’ + b)

Most classical is the Gaussian RBF kernel. ..

Lots of freedom to construct kernel for non classical data.

254



Representer Theorem

Representer Theorem
@ Let k be a PDS kernel and H its corresponding RKHS,

for any increasing function ® and any function L : R” — R, the optimization

problem

argmin L(h(X1), -, h(X,)) + ®([[A]])
€
admits only solutions of the form

Za:'k(lh )

Optimization Point of View

@ Examples:
o (kernelized) SVM
o (kernelized) Regularized Logistic Regression (Ridge)
o (kernelized) Regularized Regression (Ridge)
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Kernel ized SVM Optimization Point of View

@ Constrained Optimization:
n

min HfHIZHI—i-CZs; with {

feH,B0) s i1
@ Hinge loss:

Vi, Yi(F(X;)+ B8O)>1—5
Vi, Si Z 0

|yqu s CZmax 0,1 — Yi(F(X;) + BO))

e, P

@ Representer:

min aiaik(X;, X))
o/,3(0) i

+CZmax( Zak )+ 89))

[y
.

e Dual: Za a; i Yik(X;, X;)

7_/

max o, 1) & max o,
oc>0,u,>0Q( ") 0<a<CZ !

7
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SVM

Optimization Point of View

Support Vector Machine with polynomial kernel

Decision region Decision boundary
w
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SVM

Optimization Point of View

Support Vector Machine with Gaussian kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
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& B class2 £ @ Class2

=
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ Tree

259



Classification And Regression Trees Optimization Paint of View

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
@ Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)

@ For a given partition, probabilistic approach and optimization approach yield the
same predictor!

A simple majority vote/averaging in each leaf

Quality of the prediction depends on the tree (the partition).
Intuitively:
e small leaves lead to low bias, but large variance
o large leaves lead to large bias, but low variance. . .
Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:
e a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning) 260



%

CA RT Optimization Point of View /4

{yes }-PredictorB >= 0.2-{no }——

Classi
0.25
58%

PredictorA >=0.13.

Classi
0.22
55%
PredictorA <0.31 PredictorB >= 0.32
ClassT
0.33
28%

PredictorB >= 0.29.

PredictorA < 0.62

Class3 Class?
067 077
429
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B ran Ch i n Optimization Point of View

Greedy top-bottom approach

@ Start from a single region containing all the data

Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch i n Optimization Point of View

Greedy top-bottom approach

@ Start from a single region containing all the data

Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch i n Optimization Point of View

X1<.5?
VAR

Xo < .77

7N

Greedy top-bottom approach

@ Start from a single region containing all the data

Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch i n Optimization Point of View

X1 < .57
VR
X1 < .27 Xo <77

JX X

@ Start from a single region containing all the data

Greedy top-bottom approach

Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Branching Optimization Point of View /'“

Various definition of inhomogeneous

@ CART: empirical loss based criterion (least squares/prediction error)

= Uyny(R)+ > Uy y(R))

K/ER lieﬁ
@ CART: Gini index (Classification)
C(R,R) =D p(R)(1 )+ Y p(R)(1—p(R))
X;ER x,ER

@ C4.5: entropy based criterion (Information Theory)

(R.R)=>_H(R)+ > H(R)

X, ER KIEE

o CART with Gini is probably the most used technique. . .even in the multi-class
setting where the entropy may be more natural.

@ Other criterion based on 2 homogeneity or based on different local predictors
(generalized linear models. . .)
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B ran Ch i n g Optimization Point of View

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)

Choose the split minimizing the criterion

@ Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)

Stopping rules:
e when a leaf/region contains less than a prescribed number of observations,
e when the depth is equal to a prescribed maximum depth,
e when the region is sufficiently homogeneous. ..

May lead to a quite complex tree: over-fitting possible!

Additional pruning often used.
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P runi ng Optimization Point of View /4

e Rl

e Model selection within the (rooted) subtrees of previous tree!
@ Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.
Key idea
@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property
C(T)=)_ (L)
LeT
e Example: AIC / CV.
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P runi ng Optimization Point of View /4

Examples of criterion satisfying this assumptions

@ AIC type criterion:

ZKYHfL +>\|T| Z (ny,,fg —}—)\)

LET \x,EL
e Simple cross—Valldatlon (with (x},y/) a different dataset):

Snatn - (3 o)

LeT \x'eL

@ Limit over-fitting for a single tree.

@ Rk: almost never used when combining several trees. ..
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Pruning and Dynamic Algorithm Optimization Paint of View K

o Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm

@ Compute the individual cost c(L£) of each node (including the leaves)

@ Scan all the nodes in reverse order of depth:
o If the node £ has no child, set its best subtree 7(£) to {£} and its current best
cost ¢’(L) to ¢(L)
o If the children £; and £, are such that ¢/(£1) + ¢’(£2) > ¢(L£), then prune the child
by setting T(£) = {L} and ¢'(£) = ¢(£)
o Otherwise, set T(L£) = T(£1) UT(L2) and ¢'(L) = /(L1) + ¢'(L2)
@ The best subtree is the best subtree T(R) of the root R.

@ Optimization cost proportional to the number of nodes and not the number of
subtrees!
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EXtenSIOnS Optimization Point of View

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

e Recursive construction of a partition

e Use of simple local model on each part of the partition
Examples:

o CART, ID3, C4.5, C5

o MARS (local linear regression models)

o Piecewise polynomial model with a dyadic partition. ..

@ Book: Recursive Partitioning and Applications by Zhang and Singer
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CART

Optimization Point of View

CART
Decision region Decision boundary
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CA RT P ros a nd COHS Optimization Point of View /4

@ Leads to an easily interpretable model o Greedy optimization
@ Fast computation of the prediction @ Hard decision boundaries
o Easily deals with categorical features @ Lack of stability

(and missing values)
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Ensem ble methOdS Optimization Point of View

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction

@ Construct several trees from bootstrapped samples and average the responses
(Bagging)
@ Add more randomness in the tree construction (Random Forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods

Optimization Point of View

Bagging
Decision region Decision boundary
w
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Ensemble methods

Optimization Point of View

Random Forest

Decision region Decision boundary
0.6 06-
Cg classes % classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

273



Ensemble methods

Optimization Point of View

AdaBoost
Decision region Decision boundary
=
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O Utl | ne Ensemble Methods

e Ensemble Methods
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Ensem ble M ethOdS Ensemble Methods

Ensemble Methods
Averaging: combine several models by averaging (bagging, random forests,. . .)

e Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost, Histogram Gradient Boosting from scikit-learn)

Stacking: use the outputs of several models as features (tpot...)

Loss of interpretability but gain in performance

Beware of overfitting with stacking: the second learning step should be done with
fresh data.

No end to end optimization as in deep learning!
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O Utl | ne Ensemble Methods

0 Ensemble Methods
@ Bagging and Random Forests
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O Utl | ne Ensemble Methods

0 Ensemble Methods
@ Bagging and Random Forests
@ Bootstrap and Bagging
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Independent Average Ensemble Methods

Stability through averaging

@ Very simple idea to obtain a more stable estimator.

e Vote/average of B predictors fi,. .., fg obtained with independent datasets of

size n!
B

1
fagr = sign (B Z fb> or fog = Z fp

Regression: E[fog(x)] = E[fs(x)] and Var [fog(x)] = w

Prediction: slightly more complex analysis

Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!
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Bagging and Bootstrap

Strategy proposed by Breiman in 1994.

Stability through bootstrapping

Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).

Rk: On average, a fraction of (1 — 1/e) ~ .63 examples are unique among each
drawn dataset. ..

The f, are still identically distributed but not independent anymore.

Price for the non independence: E[f,g(x)] = E[fp(x)] and

Var lfor() = 2 (1 2 ot

with p(x) = Cov [fp(x), fy (x)] < Var [fp(x)] with b # b'.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . .

280



O Utl | ne Ensemble Methods

0 Ensemble Methods
@ Bagging and Random Forests

@ Randomized Rules and Random Forests
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Ra n d om |Zed P red ICtOFS Ensemble Methods

@ Correlation leads to less variance reduction:

Var g ()] = T (12 23 0

with p(x) = Cov [fp(x), fr (x)] with b # b'.

@ ldea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors

@ Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.

@ This reduces the correlation between the estimates and thus the variance. . .

e But may modify heavily the estimates themselves!

e Performance gain not obvious from theory. ..
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Ra ndom FOI’eSt Ensemble Methods

@ Example of randomized predictors based on trees proposed by Breiman in 2001. ..

Random Forest

@ Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)

@ For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:

e if it is too large then we are back to bagging
e if it is too small the mean of the predictors is probably not a good predictor. ..

@ Recommendation:

o Classification: use a proportion of 1/,/p
o Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. ..
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EXt ra TreeS Ensemble Methods

Extremely randomized trees!

Variation of random forests.

Instead of trying all possible cuts, try only K cuts at random for each variable.

No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.

Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!

284



Error Estimate and Variable Ranking Ensemble Methods

Out Of the Box Estimate
@ For each sample x;, a prediction can be made using only the resampled datasets
not containing Xx;. ..

@ The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. ..

@ Good proxy nevertheless.

.

Forests and Variable Ranking
@ Importance: Number of time used or criterion gain at each split can be used to
rank the variables.

e Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

.

@ Up to OOB error, the permutation technique is not specific to trees.
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O Utl | ne Ensemble Methods

0 Ensemble Methods

@ Boosting
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O Utl | ne Ensemble Methods

0 Ensemble Methods

@ Boosting
@ AdaBoost as a Greedy Scheme
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BOOStI ng Ensemble Methods

Boosting

@ Construct a sequence of predictors h; and weights «;; so that the weighted sum
fe = fe1+ aihy
is better and better (at least on the training set!).

@ Simple idea but no straightforward instanciation!
@ First boosting algorithm: AdaBoost by Schapire and Freund in 1997.

®
o
©
<
S
=
@
g
5
[}
n
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Ad a BOOSt Ensemble Methods

o ldea: learn a predictor in a sequential manner by training a correction term at
each step with weighted dataset with weights depending on the error so far.

lterative scheme proposed by Schapire and Freud

® Setwy;=1/n; t=0and f =0
@ Fort=1tot=T
o hy = argmingcyy Sor we il% (v, h(x;))
o Seter =)0, Wt,igo/l(yiv h:(xi)) and o = % log l%ft
Wtyiefary,-hr(ﬁ,»)

o let wiiq,; = — T where Z;.1 is a renormalization constant such that

Do e, =1
o f = f+atht

@ Use f =S, a;h; or rather its sign.

@ Intuition: w;; measures the difficulty of learning the sample / up to step t and
thus the importance of being good at this step. ..
@ Prop: The resulting predictor can be proved to have a training risk of at most

2T Iy Ver(l — ). 289



Ad a BOOSt Ensemble Methods

AdaBoost Intuition
@ h; obtained by minimizing a weighted loss
n
h; = argmin Z WL,-EO/l(y,-, h(x;))
heH i=1
@ Update the current estimate with
ft = fr_1+ azhy

Source: Mohri et al.
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Ad a BOOSt Ensemble Methods

AdaBoost Intuition

@ Weight w; ; should be large if x; is not well-fitted at step t — 1 and small
otherwise.

o Use a weight proportional to e ¥ife-1(x/) so that it can be recursively updated by £
e—at}/iht(é,-) =

Wil = Wej X ———— g

t+1,i t,i Zt ch;
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Ad a BOOSt Ensemble Methods

.
e . °
. pated
% of Velehs
° .
t=1 t=2 t=3

AdaBoost Intuition

@ Set «; such that
Yoo W= Y Wiy
yihe(xi)=1 yiht(xi)=—1
or equivalently

®
o
o
<
S
=
o
g
5
[}
n

E Wt i e %t = g Wt i e

yihe(xi)=1 yihe(xi)=—1 290




Ad a BOOSt Ensemble Methods

AdaBoost Intuition

@ Using
€t = Z Wt i
yihe(xi)=-1
leads to ]
ay = — | — and Zt =2 Et(]. — Gt)
2 €t )

®
o
o
<
S
=
o
g
5
[}
n
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Ad a BOOSt Ensemble Methods

Exponential Stagewise Additive Modeling

@ Sett=0and f =0.

@ Fort=1to T,
o (ht,ar) = argming 27:1 e
-] f = f—’—atht

Use f = Z;l athy or rather its sign.

v

Greedy optimization of a classifier as a linear combination of T classifiers for the
exponential loss.

Additive Modeling can be traced back to the 70’s.
AdaBoost and Exponential Stagewise Additive Modeling are exactly the same!
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ReVISIted Ad a BOOSt Ensemble Methods

@ Sett=0and f =0.

@ Fort=1to T,
o (hy,ar) = argminy, , 27:1 e~ Yi(f(x,)+ah(x,))
o f=1f+ah

@ Use f = Z;r:;l athy or rather its sign.

o Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of steps T.

@ In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. ..
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O Utl | ne Ensemble Methods

0 Ensemble Methods
@ Boosting

@ Boosting
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Weak Lea I’nerS Ensemble Methods

Weak Learner
@ Simple predictor belonging to a set H.
@ Easy to learn.

@ Need to be only slightly better than a constant predictor.

.

Weak Learner Examples
@ Decision Tree with few splits.

@ Stump decision tree with one split.

o (Generalized) Linear Regression with few variables.

.

Boosting

@ Sequential Linear Combination of Weak Learner

@ Attempt to minimize a loss.

.

@ Example of ensemble method.
@ Link with Generalized Additive Modeling. 294



Generic Boosting

o Greedy optim. yielding a linear combination of weak learners.

Generic Boosting

@ Algorithm:
e Sett=0and f =0.
e Fort=1to T,
o (ht,on) = argmin, . > Uyi, f(xi) + ah(x))
o f=1Ff+aih:
o Use f =1 avh,
o AKA as Forward Stagewise Additive Modeling
AdaBoost with /(y, h) = e™¥"
LogitBoost with £(y, h) = log,(1 + e™")
L,Boost with £(y, h) = (y — h)?> (Matching pursuit)
L;Boost with £(y, h) = |y — h|
HuberBoost with #(y, h) = |y — h[*1),_pj<c + (2ely — h| — €)1}y_p>e

Ensemble Methods

@ Extension to multi-class classification through surrogate losses.
@ No easy numerical scheme except for AdaBoost and L,Boost. ..
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G rad |e nt BOOStI n g Ensemble Methods

@ Issue: At each boosting step, one need to solve
n
(h¢, ar) = argmin Zg(y,-, f(xi) + ah(x;)) = L(y, f + ah)
ho =1
o ldea: Replace the function by a first order approximation
L(y,f +ah) ~ L(y,f) + o(VL(y,f), h)

Gradient Boosting

@ Replace the minimization step by a gradient descent step:

e Choose h; as the best possible descent direction in 7 according to the approximation
o Choose o that minimizes L(y, f + ah;) (line search)

@ Rk: Exact gradient direction often not possible!

@ Need to find efficiently this best possible direction. ..

296



BeSt D | reCtiOI"I Ensemble Methods

@ Gradient direction:

VLi(y,f) with V;L(y,f) dfa (Z(y,, Xjr )

Best Direction within H

@ Direct formulation:
Ly Tl i) (_ (VL. )

h: € argmin
[[All

LS i [h(xi) P

e Equivalent (least-squares) formulation: h; = —S:h} with

(B, Hy) € argmin 3" [Vil(y, f) — Bh(x)P (= |VL - 8h|]?)

(B,h)ERXH j—1

@ Choice of the formulation will depend on H. ..
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Gradient Boosting of Classifiers Ensemble Methods
@ Assumptions:
e his a binary classifier, h(x) = £1 and thus | h||* = n.
o Uy, f(x)) = I(yf(x)) so that V;L(y, ) = yil'(yif(x;)).
@ Best direction h; in H using the first formulation

hy = argmanV L(y, f)h(x;)
heH i

AdaBoost Type Minimization

@ Best direction rewrltmg
t _argman/ y: XI y: X,)

heH i
= argmin (=) (yif (x))(2£" (v, h(x:) — 1)
heH f
e AdaBoost type weighted loss minimization as soon as (—/")(yif(x;) > 0:
he = argmin > _(=1")(vif (x)) €% (v, h(x:))
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Gradient Boosting of Classifiers Ensemble Methods

Gradient Boosting

o (Gradient) AdaBoost: /(y, f) = exp(—yf)
o I(x) = exp(—x) and thus (—/")(yif(x;)) = e™¥fx) >0
e h; is the same as in AdaBoost
e « also. .. (explicit computation)
e LogitBoost: /(y,f) = log,(1 4 ™)
—yif(xi)
e > 0

I(x) = logy(1 4+ e ) and thus (=/")(yif(x;)) = D) ey 2
o Less weight on misclassified samples than in AdaBoost. . .
e No explicit formula for cv; (line search)
o Different path than with the (non-computable) classical boosting!
e SoftBoost: /(y, ) = max(1 — yf,0)
o /(x) = max(1l —x,0) and (=/")(yif(x;)) = 1y,¢(x)<1 > 0
e Do not use the samples that are sufficiently well classified!
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Gradient Boosting and Least Squares Ensemble Methods

@ Least squares formulation is preferred when |h| # 1.

Least Squares Gradient Boosting

e Find ht = —/Bth; with

n

(Be, hy) € argmin Y |Vil(y,f) — Bh(x)[?
(B,h)ERXH =il

o Classical least squares if H is a finite dimensional vector space!

@ Not a usual least squares in general but a classical regression problem!

@ Numerical scheme depends on the loss. ..
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Gradient Boosting and Least Squares Ensemble Methods

@ Gradient [,Boost:
o Uy,f)=ly—f|*and ViL(y;, f(x;)) = —2(y; — f(x)):

n

(Be, ht) € argmin 2\2%—2(( i) = B/2h(x))?

(B;h)ERXH =

o ar = —f/2
e Equivalent to classical L,-Boosting

o Gradient L;Boost:
o Uy, f)=|y—f|and ViL(yi, f(x;)) = —sign(y; — f(x;)):
(B Hy) € argmin 3| — sign(yi — F(x)) — B

(B,h)ERXH

o Robust to outliers. . . )

o Classical choice for H: Linear Model in which each h depends on a small subset of
variables.
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Gradient Boosting and Least Squares Ensemble Methods

@ Least squares formulation can also be used in classification!

@ Assumption:
o U(y,f(x)) = I(yf(x)) so that ViL(yi, f(x;)) = yil' (vif (x;))

Least Squares Gradient Boosting for Classifiers

@ Least Squares formulation:
n

(Be, hy) € argmin > |yl (vif (i) — Bh(xi)|?

(B:h)ERXH j—1

@ Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .

@ Most classical optimization choice nowadays!

@ Also true for the extensions to multi-class classification.

302



Boosting Variations Ensemble Methods

Stochastic Boosting

o ldea: change the learning set at each step.

@ Two possible reasons:

e Optimization over all examples too costly
e Add variability to use an averaged solution

@ Two different samplings:
e Use sub-sampling, if you need to reduce the complexity
e Use re-sampling, if you add variability. . .

@ Stochastic Gradient name mainly used for the first case. ..

Second Order Boosting

@ Replace the first order approximation by a second order one and avoid the line
search. ..
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XG BOOSt Ensemble Methods

@ Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting

e Gradient boosting for a (regularized) smooth loss using a second order
approximation and the least squares approximation.

@ Reduced stepsize with a shrinkage of the optimal parameter.

@ Feature subsampling.

@ Weak learners:

o Trees: limited depth, penalized size and parameters, fast approximate best split.
e Linear model: elastic-net regularization.

@ Excellent baseline for tabular data (and time series)!

@ Lightgbm, CatBoost, and Histogram Gradient Boosting from scikit-learn are
also excellent similar choices!
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O Utl Ine Empirical Risk Minimization

@ Empirical Risk Minimization
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization
@ Empirical Risk Minimization
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Emplrical RISk Mlnlmlzatlon Empirical Risk Minimization /'V“

Empirical Risk Minimizer (ERM)
@ For any loss ¢ and function class S,
~ 17
f = argmin — Z((Yi, f(X;)) = argmin R,(f)
fes N4 fes
o Key property:

Ra(F) < Ra(f),Vf €S

@ Minimization not always tractable in practice!

@ Focus on the %/! case:

e only algorithm is to try all the functions,
e not feasible is there are many functions
e but interesting hindsight!
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O Utl Ine Empirical Risk Minimization

@ Empirical Risk Minimization

@ ERM and PAC Analysis
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ERM and PAC Analysis

@ Theoretical control of the random (error estimation) term:
R(f) = R(f5)

Probably Almost Correct Analysis

o Theoretical guarantee that
P(R(F) - R(f) < es(6)) >1-0
for a suitable es(9) > 0.
@ Implies:
. P(R(?) —R(F*) < R(£E) — R(F*) + 65(5)) >1-4

5 E[R(?) —R(fg)} < /O+OO 3s(€)de

@ The result should hold without any assumption on the law P!
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A Genel’al Decom pOSItIOﬂ Empirical Risk Minimization 4

@ By construction:
R(F) = R(f5) =R

S
Four possible upperbounds

R(f) = R(f§) < sup (R(f) = R(f5)) — (Ra(f) = Ran(f$)))

o R(F) = R(f§) < sup (R(f) — Ra(f)) + (Ra(fF) — R(fZ))

fes
o R(f) — R(f%) < sup (R(f) — Ra(f)) + sup (Rn(f) — R(f))
fes fes
o R(f) — R(f§) < 2sup |R(f) — Rau(F)|
fes
v
@ Supremum of centered random variables!

Key: Concentration of each variable. ..
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RISk BOU ndS Empirical Risk Minimization

@ By construction, for any ' € S,
R(f') = Ra(f') + (R(f') = Ra(f"))

A uniform upper bound for the risk

@ Simultaneously V' € S,

R(f') < Ra(f') + sup (R(f) — Ra(f))

@ Supremum of centered random variables!
e Key: Concentration of each variable. ..

@ Can be interpreted as a justification of the ERM!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ Hoeffding and Finite Class
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Concentration Of the Empirical LOSS Empirical Risk Minimization /"“

@ Empirical loss:

Rolf) = 23" (¥, £(X)
i=1

Properties

o O/1(Y; f(X;)) are i.i.d. random variables in [0, 1].

Concentration

)
P(Ra(f) —R(f) <e)>1-— o—2né?
P(|Rn(f) — R(f)

@ Concentration of sum of bounded independent variables!
@ Hoeffding theorem.
o Equiv. to P(R(f) — Rn(f) < /log(1/3)/(2n)) > 1 — 6 313



HOefFCI | ng Empirical Risk Minimization 7,

@ Let Z; be a sequence of ind. centered r.v. supported in [a;, b;] then
262

n - ¢
P(Z VA 6) <e 2imtima?
i=1

@ Proof ingredients:
e Chernov bounds:

Z" E[e* Y0, Z] [17, E[e*]

P I_IZ"Z€>S6/\; S’T
. A2(b;—3))?

e Exponential moment bounds: E[eAZf] <e @

e Optimization in A

e Prop:

n AT (bi—ap)?
B[S 2] < o =

314



HOefFCI | ng I neq ua | Ity Empirical Risk Minimization

@ Let Z; be a sequence of independent centered random variables supported in
[ai, bi] then

262
1l

n — 2
i=1

z =1 (B[O/(Y F(X))] - 1Y F(X,))
E[Z] =0and Z € [X (E[C4(Y,£(X))| — 1), LE @1 (Y, £(X))]]
Concentration:

P(R(f) — Ra(f) > €) < e72
e By symmetry,
P(Ra(f) — R(f) > €) < €72
Combining the two yields
P(IRn(f) — R(f)| > €) < 272"
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Fl n |te ClaSS Case Empirical Risk Minimization 4

Concentration

e If S is finite of cardinality |S|,

P (sup(n(f) — Ra(F)) < \/ HEl L b 5)) >1-6

f

P (sup RalF) = R(F)| < \/ log |51 + log(1/ ‘”) >1-25
f

2n

@ Control of the supremum by a quantity depending on the cardinality and the
probability parameter 4.

@ Simple combination of Hoeffding and a union bound.
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Finite Class Case Empirical Risk Minimization [“

PAC Bounds
o If S is finite of cardinality |S|, with proba greater than 1 — 26

R(?) _R(R) < \/Iog\S! + log(1/6) N \/Iog(l/é)

2n 2n

_ 2\/Iong + log(1/5)
- 2n

e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
Vf' e S,

R(F) < Ro(F) + \/ o8 + log(1/9)

< Rl ) + \/ ogldl \/ og(1/9)
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Fl n |te ClaSS Case Empirical Risk Minimization 4

PAC Bounds
e If S is finite of cardinality |S|, with proba greater than 1 — 26

R(?) _R(R) < \/Ioi,];ﬂ n \/2|og(1/5)

n
e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
V' e S,

R(F) < Rolf') + ¢ sls] | \/ (1)

v

@ Risk increases with the cardinality of S.
@ Similar issue in cross-validation!

@ No direct extension for an infinite S. ..
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ McDiarmid and Rademacher Complexity
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Concentration of the Supremum of Empirical Losses  emprcal sk inimization ¥

@ Supremum of Empirical losses:
An(S)(Klv KR 7&n) = ?ug R(f) - Rn(f)
€

= sup (E [y )] - SO, f(x,-»)

fes i=1

Properties

@ Bounded difference:
IAL(S)( Xy, Xy X)) — An(S)(Xq, .- Xy X)) < 1)/n

Concentration

|

P(An(S) —E[An(S)] <€) >1— e 2"

.

@ Concentration of bounded difference function.

@ Generalization of Hoeffding theorem: McDiarmid Theorem.
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MCDiarmid Inequality Empirical Risk Minimization [“

Bounded difference function

@ g: X" — R is a bounded difference function if it exist ¢; such that
Y(Xi)io1, (X))o € R,

—I

|g(Klv"'aKi>"'7Kn)_g(ll"'wéi'v"wlnn S Ci

o If g is a bounded difference function and X; are independent random variables

then
—262
IP)(g(ll’ 000 7Kn) T E[g(éla coo axn)] Z 6) S eZi:lclz
—262
P(Eg(X1, .- X,)] — 8(X1,.... Xp) > €) < e2ima ¥

@ Proof ingredients:
e Chernov bounds
e Martingale decomposition. . .
321



M C Dial’m |d I neq ua | |ty Empirical Risk Minimization

@ If g is a bounded difference function and X; are independent random variables
then

—2¢2

P(g(Xy,-..,X,) —E[g(X1,...,X,))] =€) < ey %

y=n

@ Using g = A,(S) for which ¢; = 1/n yields immediately
—2e
P(An(S) —E[An(S)] > €) < e2uim1 ¥ = e 2n¢

o We derive then

P(An(S) > E[An(S)] +¢€) < e2im1 G = e=20¢
@ It remains to upperbound

IE[An] =E [SUPR(f) - 7?'n(f)‘|
fes
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Rademacher Complexity

Empirical Risk Minimization

@ Let o; be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E [sup (R(f) — Ra(f))| <2E
fes

sup 1 Zn: ol (Y, f(Xi))]

fes n i=1

Rademacher complexity

@ Let B C R”, the Rademacher complexity of B is defined as

R.(B)=E [sup E iaibi]

beB N7

.

@ Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set

Ba(S) = {(¢H (Y1, F(X))))iey, f € S}
@ Back to finite setting: This set is at most of cardinality 2".

7
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Flnlte Set RademaCher CompleXIty Bound Empirical Risk Minimization /

o If B is finite and such that Vb € B, 1||b||3 < M?, then

1 2M2 log |B|
Ra(B) =E|sup = > oib| </—=—
(B) lz:gn’;ab] ﬁ

o If B=B,(S) = {({%(Y;,f(X,)),,f €S}, we have M =1 and thus

Ro(B) < 2log |Bn(S)|
n
@ We obtain immediately
]E[sup(R(f)—R,,(f))} <E 8'°g|8"(5)|] .
fesS n
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Finite Set Rademacher Complexity Bound it sk Minimizason K

e With probability greater than 1 — 29,

e [ \/8|og|sn(8)|‘ . \/mog(l/é)

n

o With probability greater than 1 — §, simultaneously Vf' € S

/8|og|8n(8)|\ . [lo8(1/3)
n 2n

@ This is a direct consequence of the previous bound.

R(f') < Ru(f') + E

325



Flnlte Set RademaCher CompleXIty Bound Empirical Risk Minimization l

Corollary
o If S is finite then with probability greater than 1 — 29

R(F) - R(f) < | 2oEISL, [20sl1/0)

n
@ If S is finite then with probability greater than 1 — ¢, simultaneously Vf’ € S

R(f") < Ra(f") + \/8 'Oi 5] + \/log;/é)

@ It suffices to notice that
|Ba(S)] = (/1 (Y;, F(X;)))iey . f € SH < IS
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Flnlte Set RademaCher CompleXIty Bound Empirical Risk Minimization /

@ Same result with Hoeffding but with better constants!

R(F) — R(f§) < \/ 'Oil,S’ * % 2 logﬁl/é)

log |S] ¢ log(1/9)
2n

R(f) < R (f) + \/ T

@ Difference due to the crude upperbound of
E [sup (R(f) - Rn(f))]
fes

@ Why bother?: We do not have to assume that S is finite!
|Ba(S)| < 27

327



O Utl Ine Empirical Risk Minimization

@ Empirical Risk Minimization

@ VC Dimension
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Back to the Bound Empirical Risk Minimization / 

E [sup (R(f) — Ra(f))
fes

o Key quantity: E{ 8Ioan(8)|]

n

@ Hard to control due to its structure!

A first data dependent upperbound

IE[ 8|0g’fn(3) <\/8qu1[£[’\78,,(5')\] (Jensen)

@ Depends on the unknown P!
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Shattering Coefficient Empirical Risk Minimization /"“

Shattering Coefficient (or Growth Function)

@ The shattering coefficient of the class S, s(S, n), is defined as
s(S,n) = sup  |{(£71(Y;, F(X)))ie1, € S}
(X1, Y1) (X, Ya) JE(X X {—1,1})"

@ By construction, |B,(S)| < s(S, n) < min(2",|S]).

A data independent upperbound

E[\/8|0g|8n(8)]‘ _ \/8|ogs(8,n)
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Sh atte rl ng Coeﬂ:ICIGHt Empirical Risk Minimization 4

e With probability greater than 1 — 29,

R(f) = R(f§) < \/

@ With probability greater than 1 — §, simultaneously V' € S,

R(f,)SRn(f,)_i_\/8Iogs(8,n)+\/log(1/6)

n 2n

8logs(S, n) N \/2 log(1/0)

n n

@ Depends only on the class S!
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Vapnlk—Chel’VOﬂenkIS DlmenSIOn Empirical Risk Minimization /'V“

VC Dimension

@ The VC dimension d\¢ of S is defined as the largest integer d such that
s(S,d) =2¢

@ The VC dimension can be infinite!

VC Dimension and Dimension

@ Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dy¢ < d.

@ VC dimension similar to the usual dimension.
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VC DlmenSIOn and Sauer’S Lemma Empirical Risk Minimization /'V“

Sauer's Lemma
o If the VC dimension dy¢ of S is finite

2" if n < d\/c

dvc
en :
(d\/c) if n> dyc

s(S,n) S{

@ Cor.: logs(S,n) < dyclog (de—\fc) if n> dyc.
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VC Dimension and PAC Bounds Empirical Risk Minimization /"“

PAC Bounds
@ If S is of VC dimension dy then if n > d\¢
e With probability greater than 1 — 29,

8dvc log () L [21oe(1/9)
n n

R(F) = R(f§) < J

e With probability greater than 1 — §, simultaneously V' € S,

R(F) < Ralf') + J S0 08 ). ), og(L/0)

@ Rk: If dy¢c = +o0 no uniform PAC bounds exists!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ Structural Risk Minimization
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Countable Collection and Non Uniform PAC BOUI"ICIS Empirical Risk Minimization [‘“"

PAC Bounds

@ Let m¢ > O such that } rcsmr =1
e With proba greater than 1 — 29,

R(F) — R(fL) < ¢ log(1/m¢) | \/ 2log(1/9)

2n n
@ With proba greater than 1 — §, simultaneously Vf’ € S,
log(1/m¢) | [log(1/6)
/ < !
R(f") _R,,(f)+\/ o aF on

@ Very similar proof than the uniform one!

@ Much more interesting idea when combined with several models. ..
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Models, Non Uniform Risk Bounds and SRM

@ Assume we have a countable collection of set (Spm)mem and let mp, be such that
ZmGM Tm — 1
Non Uniform Risk Bound
@ With probability 1 — §, simultaneously for all m € M and all f € S,

8|og|Bn(sm)|] ) \/log(l/wm) ) Vlog(l/é)
n 2n 2n

R(f) < Rn(f)+E

Structural Risk Minimization

@ Choose f as the minimizer over m € M and f € S,, of

8log |Bn(Sm)| log(1/7m)

Rn(f) +E p o

.

@ Mimics the minimization of the integrated risk!
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SRM and PAC Bound Empirical Risk Minimization z"::

PAC Bound

o If f is the SRM minimizer then with probability 1—29,
meM feSy

@ The SRM minimizer balances the risk R(f) and the upper bound on the
estimation error {\/Slogw"(‘sf“)} + \/l°g(;/ﬂm)_

R(f) < inf inf ( )+E

n n

° E{ Egk’g“i"(s’")l} can be replaced by an upper bound (for instance a VC based
one)...
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