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O Utl | ne Unsupervised Learning?

@ Unsupervised Learning?
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What is possible with data without labels?

@ To group them?

@ To visualize them in a 2 dimensional space?

@ To generate more data?
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M a I’ketl n g an d G rou pS Unsupervised Learning?
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To group them?

o Data: Base of customer data containing their properties and past buying records
@ Goal: Use the customer similarities to find groups.
o Clustering: propose an explicit grouping of the customers

@ Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)

Source: Unknown
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Image and Vlsuallzathn Unsupervised Learning?
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To visualize them?

o Data: Images of a single object
o Goal: Visualize the similarities between images.

o Visualization: propose a representation of the images so that similar images are
close.
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o Clustering: use this representation to cluster the images. (Bonus)

=]



ImageS and Generatlon Unsupervised Learning?

Timeline of images generated by artificial intelligenc

2015 2016

2017 201@ 2019

2020

To generate more data?

o Data: Images.

@ Goal: Generate images similar to the ones in the dataset.

e Generative Modeling: propose (and train) a generator.
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Machine Learnlng Unsupervised Learning?

Rules / Models Rules / Models

Expert Machine
Data system - Results Data Learning Results

The classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

Source: Council of Europe
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SuperVised Learnlng Unsupervised Learning?

Experience, Task and Performance measure

e Training data : D = {(X;, Y1),...,(X,, Yan)} (i.id. ~P)

@ Predictor: f : X — ) measurable

@ Cost/Loss function: ¢(f(X), Y) measure how well f(X) predicts Y
o Risk:

R(F) = E[L(Y, F(X))] = Ex[Eyix[((Y, F(X))]]

Often £(f(X), Y) = [|f(X) — Y|[? or £(f(X), Y) = 1y_r(x)

Learn a rule to construct a predictor f € F from the training data D,, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.
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UI"ISU perV|Sed Leal’nlng Unsupervised Learning?

Experience, Task and Performance measure

e Training data: D ={X;,...,X,,} (i.id. ~P)
e Task: 777

@ Performance measure: 777

@ No obvious task definition!

Tasks for this lecture

o Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.

@ Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.

o Generative modeling: generate new samples.

10



DlmenSIOn Red UCtIOﬂ Unsupervised Learning?

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X =X
X — o(X)

@ Map can be defined only on the dataset.

Motivations

@ Visualization of the data

@ Dimension reduction (or embedding) before further processing

11



D | menSIOn Red UCtIOﬂ Unsupervised Learning?

@ Need to control the distortion between D and ®(D) = {P(X;),...,P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X B

o Control the error between X and its reconstruction ®($(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;) and ®(X})
o Control the difference between those two relations.

@ Lead to different constructions. ...

12



Cl USte rl ng Unsupervised Learning?

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Latent groups?

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:

fr Xk

@ Similar to classification except:
e no ground truth (no given labels)
e label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing

13



Cl USte rl ng Unsupervised Learning?

4

‘A
@ Need to define the quality of the cluster. \ ,
@ No obvious measure! ' A

Clustering quality

@ Inner homogeneity: samples in the same group should be similar.

@ Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.

Often based on the distance between the samples.

Example based on the Euclidean distance:

e Inner homogeneity = intra-class variance,
e Outer inhomogeneity = inter-class variance.

@ Beware: choice of the number of clusters K often complex!

14
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Genel’atlve MOdel | ng Unsupervised Learning?

@ Training data: D ={X,...,X,} € X" (i.id. ~P).

Generative Modeling

@ Construct a map G from a randomness source  to X
G Q- X

wi— X

@ Generate plausible novel con@b&dnal samples based on a given dataset.

Sample Quality
@ Related to the proximity between the law of G(w) and the law of X.

@ Most classical choice is the Kullback-Leibler divergence.

15
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Generative Modeling

Ingredients

Unsupervised Learning?

@ Generator Gyp(w) and density prob. Py(X) (Explicit vs implicit link)

@ Simple / Complex / Approximate estimation. ..

v

Some Possible Choices

Probabilistic model Generator Estimation
Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)
Factorization | Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) | Complex (ML /score/discrim.)
Diffusion Continuous noise Implicit (MCMCQ) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)
GAN Implicit Explicit Complex (Discrimination)

\.

@ SOTA: Diffusion based approach!

ML: Maximum Likelihood /VAE: Variational AutoEncoder/EBM: Energy Based Model /MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial

Network




O Utl | ne A Glimpse on Unsupervised

Learning

© A Glimpse on Unsupervised Learning
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O Utl | ne A Glimpse on Unsupervised

Learning

© A Glimpse on Unsupervised Learning
@ Clustering

18



What's a group?
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@ No simple or unanimous definition!
@ Require a notion of similarity/difference. ..

Three main approaches

@ A group is a set of samples similar to a prototype.
@ A group is a set of samples that can be linked by contiguity.
@ A group can be obtained by fusing some smaller groups. . .

A Glimpse on Unsupervised
Learning
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Prototype ApproaCh A Glimpse on Unsupervised

Learning
Unlabelled Data Labelled Clusters .._-:'- ..‘
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A group is a set of samples similar to a prototype.

@ Most classical instance: k-means algorithm.

@ Principle: alternate prototype choice for the current groups and group update
based on those prototypes.
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Number of groups fixed at the beginning
No need to compare the samples between them!
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COntigUity ApprOaCh A Glimpse on Unsupervised

Learning

Contiguity Approach
@ A group is the set of samples that can be linked by contiguity.
@ Most classical instance: DBScan
@ Principle: group samples by contiguity if possible (proximity and density) f:%
@ Some samples may remain isolated. z
@ Number of groups controlled by the scale parameter. 8

N
[y

DBSCAN: Density-Based Spatial Clustering of Applications with Noise
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Agglomerative Approach

A Glimpse on Unsupervised /4
Learning

Agglomerative Approach

@ A group can be obtained by fusing some smaller groups. ..

@ Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

@ Numerous variations on the merging criterion. ..
@ Number of groups chosen afterward.

Source: upGrad
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Choice of the method and of the number of roups —  cimse on Unsipenisst X

Learning  J...

Meanshift viard

©0eoe

8.7 %20

@ Criterion not necessarily explicit!

@ No cross validation possible
@ Choice of the number of groups: a priori, heuristic, based on the final usage. . .

Source: Scikit-Learn
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O Utl | ne A Glimpse on Unsupervised

Learning

© A Glimpse on Unsupervised Learning

@ Dimensionality Curse

24



DlmenSIOnallty CUI’SG A Glimpse on Unsupervised

Learning
2
E q& ]
e o s
0 0.2 1 0.45 1

o DISCLAIMER: Even if they are used everywhere, beware of the usual
distances in high dimension!

Dimensionality Curse

@ Previous approaches based on distances.
@ Surprising behavior in high dimension: everything is ((often) as) far away.

Source: Vision Dummy

@ Beware of categories. ..
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DlmenSIOnallty CUI’SG A Glimpse on Unsupervised /

Learning [

o DISCLAIMER: Even if they are used everywhere, beware of the usual

distances in high dimension! H

High Dimensional Geometry Curse

@ Folks theorem: In high dimension, everyone is alone.

@ Theorem: If X;,..., X, in the hypercube of dimension d such that their
coordinates are i.i.d then

|
4-1/p <max 1X; — X;llp — min[|X; — Kjllp) — 0+ 0p ( og n)

d
minllX, Xl _y g, ( flosn)
max || X; *Kj”p d
4
@ When d is large, all the points are almost equidistant. .. Q"" e
@ Nearest neighbors are meaningless! ’d_ ol

m< 2 26
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O Utl | ne A Glimpse on Unsupervised

Learning

© A Glimpse on Unsupervised Learning

@ Dimension Reduction

27



Vlsuallzatlon and DlmenSiOI"I RedUCtIOn A Glimpse on Unsupervised

Learning

Visualization and Dimension Reduction

@ How to view a dataset in high dimension !
@ High dimension: dimension larger than 2!

@ Projection onto a 2D space.
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Visualizatlon and DlmenSion RedUCtlon A Glimpse on Unsupervised

Learning

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

Source: F. Belardi

@ Projection onto a 2D space.

N
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Vlsuallzathn and DlmenSiOI"I RedUCtlon A Glimpse on Unsupervised

Learning

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

Source: F. Belardi

@ Projection onto a 2D space.
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Visualizatlon and DlmenSion RedUCtlon A Glimpse on Unsupervised

Learning

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

Source: F. Belardi

@ Projection onto a 2D space.
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PI’II"ICIpal Component AnaIySIS A Glimpse on Unsupervised

Learning

ssssssssssss

e Simple formula: X = P(X — m)

How to chose P?

@ Maximising the dispersion of the points?
o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

Source: J. Silge

N
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PI’II"ICIpal Component AnaIySIS A Glimpse on Unsupervised

Learning

ssssssssssss

e Simple formula: X = P(X — m)

How to chose P?
@ Maximising the dispersion of the points?

o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

Source: J. Silge

@ The 3 approaches yield the same solution!

N
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Reconstruction Approaches A Glimpse on Unsupervised

Learning

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.

30



Reconstruction Approaches A Giimpse on Unsupervised 2K

Learning

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.
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RCCOnStI’UCtiOH ApproaCheS A Glimpse on Unsupervised

Learning

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.

30



Relationship Preservation Approaches A Glimpse on Unsupervised

Learning

Relationship Preservation Approaches

@ Based on the definition of the relationship notion (in both worlds).

@ Huge flexibility

@ Not always yields a formula for new points.
31
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ChOICeS Of MethOdS and DlmenSIOn A Glimpse on Unsupervised

Learning o
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No Better Choice?

@ Different criterion for different methods: impossible to use cross-validation.

@ The larger the dimension the easier is to be faithful!

@ In visualization, dimension 2 is the only choice. 2

@ Heuristic criterion for the dimension choice: elbow criterion (no more gain), :
stability. . . ) :

@ Dimension Reduction is rarely used standalone but rather as a step in a §
predictive/prescriptive method. 7

@ The dimension becomes a hyperparameter of this method. 32



Re presentation Lea rn | ng A Glimpse on Unsupervised /4

Learning

Word2Vec

MaleFemale

! /stronger
luncle  jwoman / .

et . ~Bearst
a0 T Sofor

- 2 Sof

92804 — — - — —pnaheim

Representation Learning

@ How to transform arbitrary objects into numerical vectors?

@ Objects: Categorical variables, Words, Images/Sounds. . .

@ The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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O Utl | ne A Glimpse on Unsupervised

Learning

© A Glimpse on Unsupervised Learning

@ Generative Modeling
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Generatlve MOdellng A Glimpse on Unsupervised

Learning

rated by artificial intelligence m
e generated by artfcilintelgence

Timeline of i
These people don't ex

2014
sampiing
Training data
2017
el Vil
M
N One pixel of an observation,
E with RGB value (136, 141, 78)
=1 .

Generative Modeling
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@ Generate new samples similar to the ones in an original dataset.

@ Generation may be conditioned by an input.

Sources::

@ Key for image generation. .. and chatbot!
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DenSIty EStlmatiOI"I and SImU|at|0n A Glimpse on Unsupervised

Learning
Density Estimation Sample Generation
W b
o >
S
Input samples Generated samples

samples ® -
Training data ~ Pyqeq () Generated ~ Poger (x)

How can we learn Pppger(x) similar to Pygiq (x)?

e Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
@ How to estimate the density?

@ How to simulate the estimate density?

Source: Pipe Galera

@ Other possibilities?

w
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Slmple EStImatlon and Slmple SImUIatlon A Glimpse on Unsupervised

Learning

Radial

K=2 K=10
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Parametric Model, Image and Factorization

o Use

e a simple parametric model,. . .
e or the image of a parametric model (flow),. ..
e or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

Source: Rezende et al.

@ Estimation by Maximum Likelihood principle.
@ Recurrent models are used in Large Language Models!
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Complex EStlmatlon and Slmple SImUIatlon A Glimpse on Unsupervised

Learning
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Sample Generation

Generation Space
<&

(a) - Representation Inference

Latent Variable

@ Generate first a (low dimensional) latent variable Z from which the result is easy
to sample.

e Estimation based on approximate Maximum Likelihood (VAE/ELBO)

@ The latent variable can be generated by a simple method (or a more complex
one...).
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COmpleX EStlmatlon and CompleX SImU|at|0n A Glimpse on Unsupervised

Learning

10\71) pla- 1\1/ JL/"HI p( Tl‘—l\«TJ‘)

o-Rol -l

N T N TN

q(w1]x0) q(welze-1) q(@e1]Te) q(xrler-y)

Monte Carlo Markov Chain

@ Rely on much more complex probability model. . .

@ which can only be simulated numerically.

@ Often combined with noise injection to stabilize the numerical scheme (Diffusion).
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@ Much more expensive to simulate than with Latent Variable approaches.
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Complex (non)Estimation and Simple Simulation

A Glimpse on Unsupervised
Learning

Real examples

Judges which
Discriminator images are
real/fake

Fake images/noise

=

Generative Adversarial Network

Fake generated
example

@ Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.

@ The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.

@ No explicit density!

@ Fast simulator but unstable training. ..
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OUtllne More Learning. ..

© More Learning. ..

41



More Than "Supervised or Unsupervised"? More Learnin; .

Task Experience  Performance Measure
Supervised  f: X — ) (X, Yi) iiid  R(f) =E[((Y, f(X))]
X — f(X) . P
Clustering/DR f: X — )Y (X;) i.id R(f) =777
X—fX) ]
Generative (X:) i.i.d R(G) =777

e Deterministic or Stochastic? Target space )7 Only for X; in the dataset?

Experience?

o Label? Relation? i.i.d.?

Performance Measure

o Average loss? Of samples? Of pairs?
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TaS k More Learning. ..

Deterministic or Stochastic

@ Deterministic: single (good) answer.

@ Stochastic: several (good) answers. (Generative modeling?)

@ Link through the probabilistic framework.

.

Target Space
e Known (given by the dataset) / To be chosen. (Unsupervised?)

@ Simple (low dimensional) / Complex (Structured?)

Random vs Fixed Design

@ Defined for any X € X.
@ Defined only for X; in the dataset (Classical statistics?)
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EXperIenCG More Learning. ..

@ Labeled (Supervised?)
@ Unlabeled / Not always labeled (Unsupervised?/Semi Supervised?)
@ Incorrect label (Weakly-Supervised?)

Singleton, Pairs and Tuples

e Classical pairs (X, Y;).
e Pairs of pairs ((Xj, Y;), (X, Y/)) plus side information Z;. (Comparison?)
o Tuples ((Xf, Y/)) and side information Z;. (Contrastive?)

&

Dependency Structure
@ Independent (X, Y;)
@ Dependent (X, Y;) (Spatio-temporal?/ Graph?)

A
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Performance Measure More Learning. .

@ Instance-wise loss /(Y f(X), X)!

Losses or Metrics

@ Loss: performance is an average.

@ Metric: any (other) way of measuring the performance.

Singleton, Pairs and Tuples

@ Performance measured by looking at singleton of pair (X, Y)

@ Performance measured by looking at more samples simultaneously.
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X. -Stpervised Learning

More Learning. ..

Task
Deterministic Stochastic
£(X) G(X,w)
Labeled X, v) Supervised Generative
Experience Unlabeled (X)) Unsupervised (Generative)
Not always labeled  (x,v)or(x,) | Semi-Supervised ?
Not correctly labeled  (x, £y, | Weakly-Supervised ?

Some Learning Settings

@ Supervised: deterministic predictor trained from labeled dataset.

@ Unsupervised: deterministic predictor trained from unlabeled dataset.

o Generative: stochastic predictor trained from labeled dataset.

o Semi-supervised: deterministic predictor trained from not always labeled dataset.

@ Weakly-supervised: deterministic predictor trained from not correctly labeled

dataset.
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Generative Modeling More Learnin; .

e Training data: D = {(Xy,Y),....(X,, Y,)} € (X xY)" (iid. ~P).
@ Same kind of data than for supervised learning if X' # ().

Generative Modeling
@ Construct a map G from the product of X and a randomness source €2 to )
GAxQ—=)Y

(X,w) =Y

@ Unconditional model if X = 0. ..

@ Generate plausible novel onditional samples based on a given dataset.

Sample Quality
@ Related to the proximity between the law of G(X,w) and the law of Y|X.

@ Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients

More Learning. ..

@ Generator Gyp(X,w) and cond. density prob. Py(Y|X) (Explicit vs implicit link)

@ Simple / Complex / Approximate estimation. ..

v

Some Possible Choices

Probabilistic model Generator Estimation
Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)
Factorization | Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) | Complex (ML /score/discrim.)
Diffusion Continuous noise Implicit (MCMCQ) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)
GAN Implicit Explicit Complex (Discrimination)

\.

@ SOTA: Diffusion based approach!

ML: Maximum Likelihood /VAE: Variational AutoEncoder/EBM: Energy Based Model /MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial

Network
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Semi-Supervised Learning and Weakly-Supervised
Learning

More Learning. ..

Semi-Supervised Learning
@ Some samples are unlabeled:
(Xi, Yi) or (Xi,?)
@ Heuristics:

o Regularization using the unlabeled samples.
o Auxiliary task defined on unlabeled samples. (Representation Learning?)

\.

Weakly-Supervised Learning
@ Some samples are mislabeled:

(Xi, Yi) or (Xi, E(Yi,w))
@ Heuristic:

e Explicit model of the label noise: instance-wise, group-wise. . .

@ Hard to assess the quality without some good labels. . .

\.
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Representation Learning and Self-Supervised Learning e tearming .

Representation Learning
e Obtain a representation by learning rather than only feature engineering:
(Xi, Yi) = (X)) YA 8(\(}
@ Heuristics: Ya 5( d)(x\)

e Use the results of an arbitrary learning task on the same input.
e Use an inner representation obtained by an arbitrary learning on the same input.

Self-Supervised Learning
@ Build a supervised learning problem without having labels:
X,' — q)(X,)
@ Heuristics:

o Use labels that are free (or very cheap) to obtain.
e Use labels from another predictor.

\.
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Compal’lson Learnlng More Learning. ..

Comparison Learning

o Feedback through comparison between two outputs Y,-(l) and Y,-(2) for a
given input:

1 gz A74900
@ No explicit target or loss! Z Z( Z ZL(‘C)/X.)

@ Heuristic:
o Preferences related to an instance-wise loss ¢ that can be learned (ELO...)

v,

@ Human Feedback brick in RLHF (Reinforcement Learning from Human Feedback).
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Contrastlve Learnlng More Learning. ..

Contrastive Learning

@ Feedback through the proximity ranking between a reference input and
two other ones:
IS M(X,'mf,x,'(l)) > d(Xiref,X,-(2)) ?
@ Amount to a comparison between two pairs. ..
@ Heuristics:

e A distance can be learned to explain those comparisons.
o A representation paired with a simple distance can be learned to explain those
comparisons.
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Structured Machine Learning More Learning. .

Structured Output
@ Output Y has a more complex structure than a vector.
@ Text, graph, spatio-temporal (image, sound, video,...), ...
@ Heuristics:

e Output a vector representation.
o Output a (variable length) code that can be decoded. . .

.

Structured Dataset
@ l.i.d. assumption not satisfied as there are dependencies between the
(Xi, Yi).
@ Nodes on graph, spatio-temporal series (possibly with overlaps!)
@ Heuristic:

e The training part may be kept as is, but the testing/validation one should be
modified.

.
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Sequential DeCISlon Learnlng More Learning. ..

Sequential Decision Learning

@ Success/loss may depend on more than one choice/prediction.

@ Isolated decision vs strategy!
@ Heuristics:

o Operation Research with Learned Model
e Reinforcement Learning
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[ Leal’nlng More Learning. ..

CENTRAL ILLUSTRATION: Flowchart of Imaging Modalities, Algorithms,
% TR

Litiens, G. et al. J Am Coll Cardiol Img. 2019;12(8):1549-65.

Many Learning Setting

@ Most classical setting: Supervised Learning.

@ Much more variety in the real world: Unsupervised, Generative, Reinforcement. . .

@ Matching a real-world problem to the right learning task is the main
challenge!

Sources: Litjen

o Often, easier to solve the learning task than to identify it!

o1
o1



OUtllne Metrics

Q Metrics
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Metrics and Supervised Learning Metrics

What is a good predictor?
R(F)=E[((Y,f(X))] vs Ri(f)=E[(Y,f(X))] vs R(f)

Three Places for Performance Measure (Metric)
e Framework: Initial target performance measure (Risk) defined as the expectation
of an individual cost (loss): ¢9/1 (2. ..

e Training: Intermediate performance measure (Optimization goal) defined as an
average of an easier to optimize cost (surrogate loss): -log-likelihood, hinge loss,
2

e Scoring: Final (possibly global) performance measure(s) (score): ¢%/1, AUC, f1,
lift, ¢2...

@ ldeally, the same metric should be used everywhere!
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Framework Metrics
R(f) = E[(Y, f(X), X)]

?

Statistical Learning Framework
@ Loss 4(Y, f(X), X): Cost of predicting f(X) at X when the true value is Y.

@ Risk R(f): Performance of a predictor f measured by the expectation of the loss.

Learning Goal
o Ideal target f*: argmin R(f).
e Learn a predictor  such that E[R(?)] — R(f*) or IP’(R(?) —R(f*) > 5) is as
small as possible.

.

Dependency Caveat and (Cross) Validation

e If f depends on (Xi, Vi),
|13 uv 000, %) | # E[R()
i=1
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Framework — Classification Metrics

(X) = arg;nin Zf(y, £, X)P(y|X)

|deal Target (Bayes Predictor)

@ Straightforward finite optimization given the conditional probabilities P(y|X)!

Classical Losses

0 0/1 loss: (Y, f, X) = Lygs £
@ Weighted 0 — 1 loss: g(Y, f,X) = C(Y,X)ly;!f Y C(},#)
@ Matrix loss covers all possible losses.
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Framework — Regression Metrics

£*(X) = argmin /e(y, £, X)dP(y|X)

|deal Target (Bayes Predictor)
@ No guarantee on the existence in general!

o Convex setting if £ is convex with respect to f.

Classical Losses

e Quadratic loss: £2(Y,f,X) = (Y — f)?
@ Weighted quadratic loss: £(Y,f,X) = C(Y,X)(Y — f)?
@ Much more freedom than in classficiation!

.

N

@ Is the ideal target well defined? Can we describe it?
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Framework — Regression Metrics

o Ideal target well defined when ¢(Y, f, X) convex with respect to .

(P norms, Quantiles and Expectiles

@ /P norm:
o (P(Y,f,X)=1Y — f|P (convex when p > 1)
o f*(X) is the conditional expectation E[Y|X] for p = 2 and the conditional median
for p=1.
@ Quantile loss:
o lo(Y,f,X)=(1—-a)]Y —flly_rco+alY — flly_r>0
o f*(X) is the quantile of order o of Y|X.

o Expectile loss: £o(Y,f,X)=(1—a)|Y —flPly_reo+ Y — f|Ply_f>0

@ |Y — f|P can be replaced by ¢(Y — f) with any convex function ¢.
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Framework — Regression Metrics

Robust Norms

e Huber loss:
Y-FP? if|ly—-fl<C
RAS I "y - fl<
C|Y — F| otherwise

@ Cosh loss: ¢(Y,f,X) = cosh(C(Y — f))

Weighted and Transformed

e Weighted loss: ¢/(Y,f,X) = C(Y,X)(Y,f,X)
@ Transformed loss: ¢/(Y,f, X) = £(p(Y), d(f), X) with ® non-decreasing.

o Difficulty may arise quickly when convexity with respect to f is lost:
Y — f|P 2|lY — f|P
Vs
Y|P+ e Y|P+ |f|P+2¢
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Training Metrics

f(X) = argmin Es[e(Y,f,X)|X] vs argmin E ZE(Y;, f(Xi), Xi)
f fes n =1

Probabilistic Approach

@ Estimate P(Y|X) and plug in the Bayes predictor.

@ How to perform the estimation?

Optimization Approach

@ Optimize directly the empirical loss. ..
o If it is possible. ..

o Otherwise, optimize a surrogate risk.
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Probabilistic Approach — Modeling and Plugin Metrics

A 1.2
P = argmin —= ) "log P(Y;|X;)?
n

i=1

Conditional Maximum Likelihood Approach

e Parametric modeling for P.

@ Minimization of the (regularized) empirical negative log-likelihood.

Maximum Likelihood

@ Parametric model choice:
o (Multi/Bi)nomial in classification.
e No universal model in regression!
@ Empirical negative log-likelihood is a performance measure, not explicitly related
to the original risk.

@ Computing plugin Bayes predictor: easy in classification but may be hard in
regression! 64



Optimization Approach Metrics

1 n
argmin — ZK(Y,-, f(X), X)

fes N3

Direct Optimization

@ Parametric set S for f.

@ Direct optimization of the (regularized) empirical risk.
@ Most classical algorithm Gradient Descent. . .
°

But smoothness/convexity requirement.

@ What to do if this optimization is hard?

Surrogate Optimization

@ Replacement of the hard optimization by a surrogate (easiest) one such that the
optimal solutions of the two problems are related. . .

@ Implies a new performance measure (Surrogate Risk).
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Optimization — Surrogate

v fq? Fign 5M—eti’r’|c;{
e oINS
X ——m—m)y X —f R h%
From X ) x. F(X) =5 F(X) = dec(F(X))

Encoder/Decoder and Surrogate Loss

@ Y valued predictor f replaced by a real (vector) valued one f.
@ Prediction requires decoding f(X) into dec(f(X)) in Y

e Optimization of f requires encoding the target Y into enc(Y) in R9 and a loss ¢
from R x R9 to R.

@ RY can be replaced by an arbitrary Hilbert space.
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Optimization — Surrogate Metrcs

n 1 A = ~ 1M _
F F=argmin =3 U(Y;, £(X)) to f=dec(f) with f = argmin= > Y:), F(X;
rom arg;mn p o (Xi)) to ec(f) wi argmin - l(enc(Y;), F(Xi))

i=1 f i=1

Surrogate Assumptions

e Optimization with respect to f should be easy. ..

@ and there should be a link between the to solution! )

Fisher Consistency and Calibration

e Fisher consistency: dec (argminE {K(enc(Y),f)D = argmin E[((Y;, f)] = f*
7 F

o Calibration:

E[(Y;, )] - B(Y;, )] < W (E[Zenc(Y), F)| — E[&enc(Y), F)])

.
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Optimization — Surrogate Examples Metrics

Binary Classification

@ enc(Y) = +1/—1 and dec(f(X)) = sign(f(X)).
o Classical surrogate loss: convex upper bound of the £%/! |oss!

o Flexible setting: justification of the use of an £? loss in classification! )

e enc(Y) = ey (dummy coding) and dec(f(X)) = argmax, (f(X))®)
o Classical surrogate loss:
o Cross entropy (amounts to a log-likelihood of a multinomial model):
I(enc(Y), f(X)) = —enc(Y) " log(f(X)).
o Square loss: £(enc(Y), f(X)) = [lenc(Y) — f(X)]%.
o Hinge loss: Z(enc(Y), f(X)) = supy(1 — enc(Y) + F(X))® — £(X) enc(Y) (Not
always consistent!)

.

@ Less interest in regression, except for a convexification of a loss. ..
68



SCOfI n g Metrics

R(F) =E[(Y,f(X),X)] vs Ri(f)=F(f,P),..., R (f)

Scoring

@ Beyond a single average loss. . .
@ Risk (or interest) evaluated by
e several different risks,
e a quantity that is not an average (Precision/Recall...),
e a quantity that is only measured empirically (real world experiment,
speed/cost. .. )...

V.

@ Depending on the score, a better score may correspond to a larger (1) or a smaller
(J) value.
@ Often no way to optimize the score directly. .. except if it is a classical risk!

@ May be related to an idea of tradeoff. ..
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Scoring — Classification Metrcs

Truth
1]--- | K Truth
1 0 1
Prediction | - i 0 | True Negative | False Negative
: Gk Prediction 1 | False Positive True Positive
K

Confusion Matrix
@ Matrix C summarizing the classification performance
ijk = |{’7(Ylv f(Xl)) = (kv./)}|
@ Renormalized version with percentage!

\.

Binary Confusion Matrix
@ Positive (1) vs Negative (0)

@ Detection setting. . .

.
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Scoring — Binary Classification

Metrics

Truth

0

1

Prediction

0 | True Negative

False Negative

1 | False Positive

True Positive

Binary Classification Scores

@ True Positive Rate/Recall/Sensitivity (1):

Ui TP
R FP+ TP
. ) FN
@ False Negative Rate ({): N TP @ False Discovery Rate ({): %’DTP
- . FP
@ False Positive Rate/Type 1 Error ({): TNLFP O (Bl Oriastan Reie (1) -,—NF_{_VFN
TN
@ True N ive R ifici = TN
rue Negative Rate/Specificity (1) TN + FP @ Negative Predictive Value (1): TN EN
_ TP P +
@ Lift (1) ——/——
TP+FN' P+ N
(A -

Positive Predictive Value/Precision (1):

@ Those scores have trivial optimum:

always predict either 0 or 1!
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Scoring — Binary Classification Metrics

Precision — TP Recall — TP
recision = FP T TP ecall = FN T TP
Tradeoff
2 2TP

o F1 : =
score (1): Recall T+ Precision T~ 2TP £ FP+ FN

Precision x Recall
F3 score (1): (1+ ?) recision X Reca

B32Precision + Recall
Fowlkes—Mallows index (1): Recall'/? x Precision

1/2

Many other creative scores. . .

but they are hard to interpret (and to optimize directly)!
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Scoring — Binary Classification Metrics

Perfect
classifier ROC curve
10e

7
7
,
A
,\

Worse

.
.
oy
5@
’ %C.J
&
&

0.5
.
S
. ;Qb"
2k
a

True positive rate

v
0.0 0.5 1.0
False positive rate

Receiving Operator Curve (ROC)
@ Threshold choice in binary classification (probability/surrogate predictor).

@ Transition between the two trivial predictors: always answer 0 and always answer
1.

@ ROC: visualization of this tradeoff by showing the True Positive Rate with respect
to the False Positive Rate.

0
o
53
o
2
o
g
=
<]
%)

@ Each point correspond to a choice for the threshold and thus a different predictor.)

@ This curve is convex for the ideal Bayes predictor, but may not be convex for a 3



Scoring — Binary Classification Metrics

Perfect
classifier ROC curve
10e

7
7
B
A
,\

Worse

.
P
PES
@

0.5
R

True positive rate

v
0.0 0.5 1.0
False positive rate

Area Under the Curve (AUC)

@ AUC (Area Under the (RO) Curve) (1):global performance measure for the family
of predictors and not of a single predictor!

@ AUC =1 for a family of perfect predictors vs .5 for a family of random ones
@ Variations: Localization to a FPR/TPR band, other tradeoff curve. ..

@ Probabilistic interpretation of the AUC :
IP)(7(X0) < 7(X1)‘Y0 =0,Y1= 1)
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o
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Scoring — Multiclass Classification Metrcs

Truth

Prediction
Cjk

Multiclass Extension
@ No straightforward extension of the binary criterion.
@ Heuristic: Look at the multiclass classification as K binary classification problems.

@ Macro approach:
e Compute (weighted) average criterion over all problems.

Micro approach:
o Define the TP/FP/FN as the total number of true positive/false positive/false
negative in the K binary classification number and let TN =0
e Compute the score using the formula for binary classification. . .

@ No natural unique score in multiclass. ..
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Scoring — Regression Metrcs

Classical scores

@ Classical losses. . .
@ True (weighted) /P norm (RMSE for p = 2/MAR for p = 1):

(S willY - Fx)]P) 7?

e Same optimization than without the p root, but easier comparison between norms.
o Losses that were complex to optimize but easy to compute:

(YL F.X) =2 = FO1P/(IYIP + 1F(X)]P)....
o Variance/Moments/Quantiles of a loss.

o ...
v

@ Lots of flexibility in the design!

@ Allow to have different views on the same predictor.
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Metrics — More settings. . . Metrics

Multi-step time-series
@ Metric obtained as average over several time-steps

Permutation/Ranking

@ Relaxation of the optimization with optimal transport (surrogate predictor target).

Segmentation

@ Specific score: Jacard/IOU: £(Y,f(X)) =Y N F(X)|/(Y U (X))
@ Lovasz-Softmax (convex) relaxation and direct optimization. ..
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Bonus — Calibration Metrics

@ Can we believe the probabilities given by a classifier or build them?

Probability Calibration
@ Learn a mapping P from the raw probability or the surrogate predictor to a better
probability prediction
@ Target:
o Ideal calibration: P(f(X)) =P(Y = 1|X)_
o Perfect calibration: P(f(X)) =P(Y = 1|f(X))
o Averaged (empirical) criterion: average conditional likelihood, average L2 loss
(Brier).
@ Shape for P: sigmoid (Platt), isotonic (non decreasing),. ..

£
&
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Metrics and Not-Supervised Learning Metrcs

Metrics are everywhere!
@ Much harder to define outside the supervised setting!

Clustering/Dimension Reduction
@ Almost as many metrics as algorithms. ..
@ Hard to relate universal metrics to the use case.

@ Better use global task-oriented metrics than clustering/DS-task ones!

\.

Generative

@ How to assess the quality?
o Fidelity or quality?

@ Importance of human-based metrics!

.
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O Utl | ne Dimension Reduction

@ Dimension Reduction
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DlmenSIOn Red UCtIOﬂ Dimension Reduction

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X =X
X — o(X)

@ Map can be defined only on the dataset.

Motivations

@ Visualization of the data

@ Dimension reduction (or embedding) before further processing
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D | menSIOn Red UCtIOﬂ Dimension Reduction

@ Need to control the distortion between D and ®(D) = {P(X;),...,P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X B

o Control the error between X and its reconstruction ®($(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;) and ®(X})
o Control the difference between those two relations.

@ Lead to different constructions. ...
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O Utl | ne Dimension Reduction

@ Dimension Reduction
@ Simplification
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H OW tO S | m pl |fy? Dimension Reduction

A Projection Based Approach

@ Observations: Xj,...,X, € RY
e Simplified version: ®(X;),...,®(X,) € RY with ® an affine projection preserving
the mean ®(X) = P(X —m) +mwith PT =P =P2and m= 1%, X,.
V.

How to choose P?

@ Inertia criterion:
max D lo(X;) — d(X))[P?

@ Reconstruction criterion:
m|nZHX —d(X H27

o Relationship criterion:
min ZI ) (X — m) = (D(X;) = m) " (&(X)) — m)[*?

@ Rk: Best solution is P = /! Need to reduce the rank of the projection to
d <d...
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Inertla Cl’ltel’lon Dimension Reduction

@ Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia

@ Inertia:
1 » 1 n 5
[ = 202 Z 1 X; —KJH = ;Z | X; — m]|
ij i=1

@ 2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

1

@ Criterion: maxzj: p IPX; — ngﬂz = max — z/: |PX; — m]|?

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of & = 1 3°(X; — m)(X; — m)"
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FII’St Component Of the PCA Dimension Reduction

e X=m+a' (X—m)awith |ja| =1
1 n
Inertia: =" a'(X; — m)(X; —m)'
@ Inertia ni:la( ; )(X; ) a

Principal Component Analysis: optimization of the projection

i=1
@ Explicit optimal choice given by the eigenvector of the largest eigenvalue of X.

-~ 1. 5

@ Maximization of [ = = E a'(X;—m)(X;—m) a=a'Tawith £
o 5

1< 8

Y == E (X; — m)(X; — m)" the empirical covariance matrix. =

n w

o)
o1



PCA Dimension Reduction

% d’inertie

(=)

<

(=3

o

(=

N

= H\

- DDDDD::
1234 -

Principal Component Analysis : sequential optimization of the projection

@ Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of ¥.

@ Projected inertia given by the sum of those eigenvalues.

@ Often fast decay of the eigenvalues: some dimensions are much more important
than others.

@ Not exactly the curse of dimensionality setting. . .

@ Yet a lot of small dimension can drive the distance!
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RGCOHStrUCtIOH Crlterlon Dimension Reduction

@ Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

o 1 2
o Criterion: mFl’nZi:;HK,-—(P(K m) + m)|]> = mlanH (I = P)(X; — m)]

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 37,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Proof (Pythagora):
X = mi? =37 (IPCX; = m)[I2 + 111 = PY(X; = m)|?)
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PCA, Reconstruction and Distances Dimension Reduction

L

Close projection doesn’'t mean close individuals!

@ Same projections but different situations.

@ Quality of the reconstruction measured by the angle with the projection space!
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RelatlonShlp Criterlon Dimension Reduction

@ Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)

L T T 2
o Criterion: min Z |(X; —m) (X; — m) — (P(X;) — m) (P(X;) — m)|
ij
@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 Y°,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Much more involved justification!
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I_l n k Wlth SVD Dimension Reduction

e PCA model: X — m~ P(X — m)
e Prop: P = VVT with V an orthormal family in dimension d of size d’.
@ PCA model with V: X —m ~ VW T (X — m) where X = VT (X — m) e RY

. ST
@ Row vector rewriting: KT —m' ~ X vl

Matrix Rewriting and Low Rank Factorization

e Matrix rewriting

X, —m'| | X,

vT

12

(d'xd)

Kn—l— - mT x’n—l—
(nxd) (nxd")
@ Low rank matrix factorization! (Truncated SVD solution. .. )
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SVD Dimension Reduction

SVD Decomposition

@ Any matrix n X d matrix A can be decomposed as

A = U D ||WT
(dxd)
(nxd) (nxn)  (nxd)
with U and W two orthonormal matrices and D a diagonal matrix with decreasing

values. y
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SVD Dimension Reduction

Low Rank Approximation

@ The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

12

Ue| DA W T
(rxr) (rxd)

(nxd) (nxr)
for both the operator norm and the Frobenius norm!

@ PCA: Low rank approximation with Frobenius norm, d’ = r and
X, —m' XIT

A | |euDd, View
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SVD Dimension Reduction

SVD Decompositions

@ Recentered data:

R= : = Ubw'’

@ Covariance matrix:
Yy =R'R=wWD"DW
with DT D diagonal.

e Gram matrix (matrix of scalar products):
G=RR" =UDD"U

with DD diagonal.

@ Those are the same U, W and D, hence the link between all the approaches.
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O Utl | ne Dimension Reduction

@ Dimension Reduction

@ Reconstruction Error
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RGCOHStrUCtIOH EI’FOI’ ApproaCh Dimension Reduction

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X=X
X — o(X)
Construct ® from X’ to X

Control the error between X and its reconstruction 5(<D(K))

V.

@ Canonical example for X € RY: find ¢ and ®in a parametric family that minimize

,172: 1X; — ®(P(X,))]]2
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PrlnCipal Component AnaIySIS Dimension Reduction

X € R? and X' =R
Affine model X ~ m+ 3%, X' v with (V) an orthonormal family.

Equivalent to:

O(X)=V'(X—m) and ®X)=m+ VX
Reconstruction error criterion:

1 n
n Z 1X; = (m+ W (X; — m)|]?
i=1

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d’ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix % n (X —m)(X;—m)".
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Pl’lnCIPal Component AnaIySIS Dimension Reduction

PCA Algorithm

@ Compute the empirical mean m = %E,’-’:l X;

o Compute the empirical covariance matrix + 37, (X; — m)(X; — m)"
o Compute the d’ first eigenvectors of this matrix: V1), ... V()

o Set ®(X)= V(X —m)

o Complexity: O(n(d + d?) + d'd?)
@ Interpretation:
o ®(X) = V(X —m): coordinates in the restricted space.
o V(): influence of each original coordinates in the ith new one.
@ Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Dimension Reduction

Swiss Roll
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Principal Component Analysis
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MUltlple FaCtOI’ AnaIySIS Dimension Reduction
@ PCA assumes X = R9!

@ How to deal with categorical values?

o MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

@ Classical redundant dummy coding:
X e {]_,,V}'—} P(K): (1521,... ]-X \/)—r

e Compute the mean (i.e. the empirical proportions): P = 1 i1 P(X))

@ Renormalize P by 1/\/(‘/_71
1x-1 1x—v
P(X) = (1x=1,...1x=v) — =
- Jov—op ﬁ

e \? type distance!
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M u |tip|e FaCtor AnaIySIS Dimension Reduction

o PCA becomes the minimization of
— ZIIP' (m+ WT(P(X;) = m))|?

/ 2
Ly — (0 4+ X7 VOT(P(X;) — V()

(V - 1)ﬁv

*ZZ

i=1v=1
@ Interpretation:
oem =P
o ®(X) = VT(P"(X)— m): coordinates in the restricted space.
o V() can be interpreted s as a probability profile.

e Complexity: O(n(V + V?) + d'V?)
@ Link with Correspondence Analysis (CA)
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M u |t| ple FaCtOI’ AnaIySIS Dimension Reduction

MFA Algorithm

@ Redundant dummy coding of each categorical variable.

@ Renormalization of each block of dummy variable.

@ Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/x? metric.

Interpretation:
o ®(X) = V(P (X)— m): coordinates in the restricted space.
o V(): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Multiple Factor Analysis

Dim 2 (12.35%)
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Dimension Reduction
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NOn Llnear PCA Dimension Reduction

PCA Model

o PCA: Linear model assumption

7~m—|—ZX’ VD =m+ vX’

@ with

o V() orthonormal
o X") without constraints.

@ Two directions of extension:

o Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
e PCA on a non-linear image of X: kernel-PCA

@ Much more complex algorithm!
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Non Llnear PCA Dimension Reduction

ICA (Independent Component Analysis)

@ Linear model assumption

g~m+ZX’(’ Vv =m+ vX’

@ with =1

o V) without constraints.
o X"") independent

\.

NMF (Non Negative Matrix Factorization)
@ (Linear) Model assumption

dl
X~ S xDy — yx!
o with e K X

o V) non-negative
o X") non-negative.

.
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Non Llnear PCA Dimension Reduction

@ (Linear) Model assumption

d/
X=m+ > X0V =myvx
=1

@ with

o V() without constraints
o X' sparse (with a lot of 0)

kernel PCA

@ Linear model assumption

A

d/
V(X —m)~Y xOvh = vx
=1

@ with

o V() orthonormal
o X without constraints.

A
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Non Linear PCA
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AUtO EnCOder Dimension Reduction

Deep Auto Encoder

o Construct a map ® with a NN from the space X into a space X’ of smaller
dimension:

o XX
X — d(X)
Construct ® with a NN from X" to X
Control the error between X and its reconstruction ®(®(X)):

%Z 1X; — (P(X,))]?
i=1

Optimization by gradient descent.

NN can be replaced by another parametric function. ..
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Deep Auto Encoder

190 o
2
Lorenzo
1 BOURGUIGNON Karlivans ’ ®
Uidal ° ae Warners
o Jue
>0 MARTINEAU g Barras® Hernu
LN
HERNU” Torek M&AU%EN Bemard
B Smith
Korkizoglou clayy
Parkhomenko/‘ Zsivoczky &M
2 YURKOV lacey
Casarsa \
2
p 5 5 :
x

Shallow Auto Encoder
(PCA)

Karpov
/

Sebrle

Dimension Reduction

Sebrle
Clay

Macey

Karpov

Deep Auto Encoder

110



O Utl | ne Dimension Reduction

@ Dimension Reduction

@ Relationship Preservation
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PaII’WISG Relatlon Dimension Reduction

@ Different point of view!
@ Focus on pairwise relation R(X;, X;).

Distance Preservation

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X - X
X (X) = X'
@ such that

R(Kn KJ) ~ R/(Xiv Kj)

@ Most classical version (MDS):
e Scalar product relation: R(X;, X;) = (X; — m)T(Kj —m)
o Linear mapping X' = &(X) = V(X — m).
e Euclidean scalar product matching:
1 n n T T 2
S| - m TG - m - XX
i=1 j=1
o ® often defined only on D. ..
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MUltIDlmenSIOnal Scaling Dimension Reduction

Match the scalar products:
I v T T
S0 |(Xi = m) (X m) - X/ X
i=1j=1
o Linear method: X' = UT(X — m) with U orthonormal

2

@ Beware: X can be unknown, only the scalar products are required!

@ Resulting criterion: minimization in U'(X; — m) of

1 v T T 2

SIS =m) (X = m) = (X = m)TUUT(X; — m)|
without using explicitly X in the algorithm. ..

@ Explicit solution obtained through the eigendecomposition of the know Gram

matrix (X; — m)T(Kj — m) by keeping only the d’ largest eigenvalues.

113



MUltiDlmenSIOnal Scaling Dimension Reduction

@ In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
@ Explanation: Same SVD problem up to a transposition:

e MDS . .
o .
X(n) K(n) ~ Xy UU Xy
o PCA
XX ~ U XyXm U

e Complexity: PCA O((n+ d’)d?) vs MDS O((d + d’)n?). ..
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MUltiDimenSionaI Scaling Dimension Reduction
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Genera | |Zed M DS Dimension Reduction

@ Preserving the scalar products amounts to preserve the Euclidean distance.

o Easier generalization if we work in terms of distance!

Generalized MDS

o Generalized MDS:
o Distance relation: R(X, X;) = d(X;, X;)
o Linear mapping X’ —CD(X) VI(X—m).
e Euclidean matching:

1 - —
=22 ldX;. X)) - d' (X}, X))|°
i=1 j=1

@ Strong connection (but no equivalence) with MDS when d(x,y) = ||x — y|/?!

e Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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I S O M A P Dimension Reduction

e MDS: equivalent to PCA (but more expensive) if d(x,y) = ||x — y|/?!

@ ISOMAP: use a localized distance instead to limit the influence of very far point.

@ For each point X;, define a neighborhood A/; (either by a distance or a number of
points) and let

if X; ¢ N;

do(K”KJ) = +OO 2 I —J ¢N

| X; — XJH otherwise

@ Compute the shortest path distance for each pair.
@ Use the MDS algorithm with this distance
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Ra ndom PI’O_]GCT.IOI’] Dimension Reduction

Random Projection Heuristic

@ Draw at random d’ unit vector (direction) U;.
o Use X' = UT(X —m) withm=21%", X,

e Property: If X lives in a space of dimension d”, then, as soon as, d’ ~ d” log(d"),
d
1X; — X1 ~ ?H& - Xj|1?

@ Do not really use the data!
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Random Projection
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t-Stochastic Neighbor Embedding Dimension Reduction

@ From X; € X, construct a set of conditional probability:
o I1Xi=X;1?/207

e s e X207 st
e Find X/ in RY such that the set of conditional probability:
e~ IIXi=XjI?/207
Qi = Qi =0

e o~ 1IX]=X}]12/202

is close from P.

o t-SNE: use a Student-t term (1 + [|X} — X}[|*)~! for X;
Pii
Qjji

o Minimize the Kullback-Leibler divergence (> P;; log
ij

) by a simple gradient

descent (can be stuck in local minima).
@ Parameters o; such that H(P;) = — Z 1 P; il log P; j|i = cst.
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t-Stochastic Neighbor Embedding
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t-Stochastic Neighbor Embedding Dimension Reduction

@ Very successful/ powerful technique in practice
@ Convergence may be long, unstable, or strongly depending on parameters.

@ See this distill post for many impressive examples
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https://distill.pub/2016/misread-tsne/
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U M A P Dimension Reduction

@ Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
@ Define a notion of asymmetric scaled local proximity between neighbors:

o Compute the k-neighborhood of X, its diameter o; and the distance p; between X;

and its nearest neighbor.
o Define
wi(X ) = {e(d(x"’xf)p')/a’ for X in the k-neighborhood

Ao 0 otherwise
@ Symmetrize into a fuzzy nearest neighbor criterion
w(Xj, X;) = wi(X;, Xj) + wi(X;, X;) — wi( X, Xj)w;( X, X;)
@ Determine the points X/ in a low dimensional space such that
w(X;, X;) (1 - w(X;, X))
X, X)log [ —==4” 1—w(X, X)) log | =70
2 wiX;, X;)log <W/(x:-,><,'~)> + i X))lee ((1 —w/(X}, X))

i#j

@ Can be performed by local gradient descent.
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G ra p h based Dimension Reduction

Graph heuristic

e Construct a graph with weighted edges w; ; measuring the proximity of X; and X;
(w;j large if close and 0 if there is no information).

o Find the points X: € RY minimizing

1 1 n n ;

i=1 j=1

@ Need of a constraint on the size of X/. ..

@ Explicit solution through linear algebra: d’ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D — W, where D is a diagonal matrix with
Dii =22 wij.

@ Variation on the definition of the Laplacian. ..
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O Utl | ne Dimension Reduction

@ Dimension Reduction

@ Comparing Methods?
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How to Compare Different Dimensionality Reduction  bimension reduction
Methods 7

Difficult! Once again, the metric is very subjective.

Did we preserve a lot of inertia with only a few directions?

Do those directions make sense from an expert point of view?

Do the low dimension representation preserve some important information?

Are we better on subsequent task?
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A Challenging Example: MNIST Dimension Reduction

MNIST Dataset

@ Images of 28 x 28 pixels.

@ No label used!

o 4 different embeddings.
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A Challenging Example: MNIST Dimension Reduction

PCA autoencoder

MNIST Dataset

@ Images of 28 x 28 pixels.

@ No label used!

o 4 different embeddings.
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A Cha”englng Example MN'ST Dimension Reduction

PCA autoencoder

MNIST Dataset
@ Images of 28 x 28 pixels.

@ No label used!
o 4 different embeddings.

@ Quality evaluated by visualizing the true labels not used to obtain the
embeddings.

@ Only a few labels could have been used. 130



A Slmpler Example A 2D Set Dimension Reduction

Cluster Dataset

@ Set of points in 2D.

@ No label used!

o 3 different embeddings.
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A Slmpler Example A 2D Set Dimension Reduction

Cluster Dataset
@ Set of points in 2D.

@ No label used!

o 3 different embeddings.
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A Simpler Example: A 2D Set

Original PCA

Cluster Dataset

Dimension Reduction

Set of points in 2D.
@ No label used!
3 different embeddings.

Quality evaluated by stability. . .
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OUtllne Clustering

@ Clustering
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ClUSterlng Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Latent groups?

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:

fr Xk

@ Similar to classification except:
e no ground truth (no given labels)
e label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing
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ClUSterlng Clustering

@ Need to define the quality of the cluster.

@ No obvious measure!

Clustering quality

@ Inner homogeneity: samples in the same group should be similar.

@ Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.

Often based on the distance between the samples.

Example based on the Euclidean distance:

e Inner homogeneity = intra-class variance,
e Outer inhomogeneity = inter-class variance.

@ Beware: choice of the number of clusters K often complex!
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OUtllne Clustering

@ Clustering
@ Prototype Approaches
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Partition Based Clustering

Partition Heuristic
o Clustering is defined by a partition in K classes. . .

@ that minimizes a homogeneity criterion.

.

o Cluster k defined by a center pu.

@ Each sample is associated to the closest center.

n
@ Centers defined as the minimizer of Z mkin 1X; — g2
i=1

.

e lterative scheme (Loyd):

Start by a (pseudo) random choice for the centers 4

Assign each samples to its nearby center

Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Partition Based

Clustering

K-means, step 0 - 4
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Partltlon based Clustering

@ Other schemes:

e McQueen: modify the mean each time a sample is assigned to a new cluster.
e Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!

@ Initialize by samples.
@ k-Mean+-+: try to take them as separated as possible.

@ No guarantee to converge to a global optimum: repeat and keep the best result!

e Complexity : O(n x K x T) where T is the number of steps in the algorithm.
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Partltlon based Clustering

@ k-Medoid: use a sample as a center
e PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
e Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

e PAM: O(n? x T) in the worst case!

@ Approximate medoid: O(n x K x T) where T is the number of steps in the
algorithm.

@ Remark: Any distance can be used. .. but the complexity of computing the
centers can be very different.

139



Clustering

K-Means
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Model Based

Clustering

Model Heuristic

@ Use a generative model of the data:

K
P(X) =) mPo, (X[k)
k=1
where 7 are proportions and Py(X|k) are parametric probability models.

o Estimate those parameters (often by a ML principle).

@ Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)
7Py, (X]K)

S TPy (XIK)

@ Link with Generative model in supervised classification!
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MOdel Based Clustering

00 02 04 06 08 10

00 02 04 06 08 10

A two class example

o A mixture m1f(X) + maf(X)
o and the posterior probability 7;f(X)/(m1f(X) + m2fh(X))

o Natural class assignment!
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Model Based Clustering

Sub-population estimation

o A mixture 71 (X) + mfh(X)

e Two populations with a parametric distribution f;.

e Most classical choice: Gaussian distribution

.

Gaussian Setting
e X;,...,X, independent
o X; ~ N(u1,0?) with probability 71 or X; ~ N(u2,03) with probability 7
o We don't know the parameters u;, o;, m;.

e We don't know from which distribution each X; has been drawn.

.
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Model Based

Clustering

Maximum Likelihood

o Density: m®(X, p1,0%) + mP(X, p2, 03)

o log-likelihood: £(6) = Zlog (m®(X;, p1,07) + m®(X;, pi2, 03))
i=1

e No straightforward way to optimize the parameters!

What if algorithm

e Assume we know from which distribution each sample has been sampled: Z; = 1 if from
fi and Z; = 0 otherwise.

o log-likelihood: Y Zilog &(X;, p1,0%) + (1 — Z;) log ®(X;, 12, 03)
i=1

e Easy optimization. .. but the Z; are unknown!
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Model Based Clustering

What if algorithm

e Assume we know from which distribution each sample has been sampled: Z; = 1 if from
fi and Z; = 0 otherwise.

o log-likelihood: Y Zilog &(X;, pu1,0%) + (1 — Z;) log ®(X;, 12, 03)
i=1

e Easy optimization. .. but the Z; are unknown! )

Bootstrapping ldea

e Replace Z; by its expectation given the current estimate.

o E[Z] =P(Z = 1|0) (A posteriori probability)

e and iterate. ..

e Can be proved to be good idea!

.
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Model Based Clustering

EM Algorithm

o (Random) initialization: p?, o9, 79.
o Repeat:
@ Expectation (Current a posteriori probability):

mP(X; i, (01)°)
X155 (01)?) + m(X;, 15, (03)?)

E:[Z] =P(Z = 1/6) = —_—

o Maximization of

Z ]Et[Z’] |Og (D(&i? M1, U%) + ]Et[l - Z’] lOg ¢(Ki7 2, Ug)

i=1

to obtain pf™, ottt 7t
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MOdel Based Clustering

@ Large choice of parametric models.

Gaussian Mixture Model

o Use
Py, (K’k) ~ N(Mka Zk)
with N(u, X) the Gaussian law of mean p and covariance matrix X.

e Efficient optimization algorithm available (EM)

@ Often some constraints on the covariance matrices: identical, with a similar
structure. ..

@ Strong connection with K-means when the covariance matrices are assumed to be
the same multiple of the identity.
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Model Based Clustering

Probabilistic latent semantic analysis (PLSA)
@ Documents described by their word counts w

o Model:
K

P(w) =) miPo, (w|k)
k=1
with k the (hidden) topic, 7, a topic probability and Py, (w|k) a multinomial law
for a given topic.

@ Clustering according to
TPy (w|k)

Xk TPy~ (wlk')
k/

P(K|w) =

@ Same idea than GMM!

@ Bayesian variant called LDA.
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MOdel Based Clustering

Parametric Density Estimation Principle
@ Assign a probability of membership.
@ Lots of theoretical studies. ..

@ Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K...):
e AIC / BIC / MDL penalization
e Cross Validation is also possible!

e Complexity: O(nx K x T)
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Gaussian Mixture Models

Clustering
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OUtllne Clustering

@ Clustering

o Contiguity Approaches
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(Non Parametric) Density Based Clustering

Density Heuristic

Cluster are connected dense zone separated by low density zone.

Not all points belong to a cluster.

@ Basic bricks:
e Estimate the density.
e Find points with high densities.
o Gather those points according to the density.

@ Density estimation:
o Classical kernel density estimators. . .
e Gathering:

e Link points of high density and use the resulted component.
e Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(Non Parametric) Density Based Clustering

DBSCAN: link point of high densities using a very simple kernel.

PdfCLuster: find connected zone of high density.

Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

Complexity: O(n? x T) in the worst case.

Can be reduced to O(nlog(n)T) if samples can be encoded in a tree structure
(n-body problem type approximation).
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Clustering

DBSCAN

oo

1
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OUtllne Clustering

@ Clustering

@ Agglomerative Approaches
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Agglomerative Clustering Clustering

Agglomerative Clustering Heuristic

e Start with very small clusters (a sample by cluster?)

Sequential merging of the most similar clusters. . .

@ according to some greedy criterion A.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choices for the merging criterion. ..

Examples:

e Minimum Linkage: merge the closest cluster in term of the usual distance
e Ward's criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomerative Clustering Clustering

Algorithm

e Start with (C,-(O)) = ({X;}) the collection of all singletons.

At step s, we have n — s clusters (Cfs)):
e Find the two most similar clusters according to a criterion A:
(i,i") = argmin A(C(s C °) )
GJ")
o Merge C*) and ) into c**V)

o Keep the n — s — 2 other clusters C( st Cf,s/)

Repeat until there is only one cluster.

Complexity: O(n®) in general.
Can be reduced to O(n?)

e if only a bounded number of merging is possible for a given cluster,
e for the most classical distances by maintaining a nearest neighbors list.

157



Agglomerative Clustering Clustering

Merging criterion based on the distance between points

@ Minimum linkage:

@ Maximum linkage:

A(Ci,Cy) = e e d(X;, X;)

@ Average linkage:

A(C:,C))

T, D

ol \ Xt 1,

3
o
)
i

[}

N
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©
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@

e
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n

@ Clustering based on the proximity. . .
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Agglomerative Clustering Clustering

Merging criterion based on the inertia (distance to the mean)

@ Ward's criterion:

ACLC) = > (X newe) — 4 (X ;)
K,‘eci

T Z (d2(ij,uciucj) - dQ(Kﬁ/“‘Cj))
KJ—GCJ‘

o If d is the Euclidean distance: el
2 . .

A(C,C) = L dP(ue., pe,

( J) |Cl|+|c_]| (:U’C: :U’Cj)

@ Same criterion than in the k-means algorithm but greedy optimization.
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Agglomerative Clustering

Ward

Single
Complete.

Dendogram



OUtllne Clustering

@ Clustering

@ Other Approaches
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Grid based Clustering

@ Split the space in pieces

@ Group those of high density according to their proximity

@ Similar to density based estimate (with partition based initial clustering)

@ Space splitting can be fixed or adaptive to the data.
@ Examples:
o STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
o AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type

assignment from high density leaves.
o CLIQUE: Tensorial grid and 1D detection.

@ Linked to Divisive clustering (DIANA)
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OtherS Clustering

Graph based

@ Graph of nodes (X;) with edges strength related to d(Xj, X;).
@ Several variations:
e Spectral clustering: dimension reduction based on the Laplacian of the graph +
k-means.
o Message passing: iterative local algorithm.

o Graph cut: min/max flow.
O coo

@ Kohonen Map (incorporating some spatial information),
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OUtllne Clustering

@ Clustering

@ Scalability
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Scalablllty Clustering

Large dataset issue

@ When n is large, a O(n“log n) with & > 1 is not acceptable!

@ How to deal with such a situation?

e Beware: Computing all the pairwise distance requires O(n?) operations!

e Sampling

@ Online processing
e Simplification

@ Parallelization
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Sampllng Clustering

Sampling heuristic

@ Use only a subsample to construct the clustering.

@ Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . .)

Often repetition and choice of the best clustering

Example:
o CLARA: K-medoid with sampling and repetition

Two-steps algorithm:

o Generate a large number n’ of clusters using a fast algorithm (with n” < n)
o Cluster the clusters with a more accurate algorithm.
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O n I | ne Clustering

Online heuristic
@ Modify the current clusters according to the value of a single observation.

@ Requires compactly described clusters.

@ Examples:

e Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
e Stochastic descent gradient (GMM)

@ May leads to far from optimal clustering.
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Slmpllflcatlon Clustering

Simplification heuristic

@ Simplify the algorithm to be more efficient at the cost of some precision.

@ Algorithm dependent!
@ Examples:

o Replace groups of observation (preliminary cluster) by the (approximate) statistics.
e Approximate the distances by cheaper ones.
e Use n-body type techniques.
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Para”ellzatlon Clustering

Parallelization heuristic
@ Split the computation on several computers.

@ Algorithm dependent!

@ Examples:

e Distance computation in k-means, parameter gradient in model based clustering
e Grid density estimation, Space splitting strategies

o Classical batch sampling not easy to perform as partitions are not easily merged. ..
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O Utl | ne Generative Modeling

@ Generative Modeling
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Genel’atlve MOdellng Generative Modeling

e Training data: D = {(Xy,Y),....(X,, Y,)} € (X xY)" (iid. ~P).
@ Same kind of data than for supervised learning if X' # ().

Generative Modeling
@ Construct a map G from the product of X and a randomness source €2 to )
GAxQ—=)Y

(X,w) =Y

@ Unconditional model if X = 0. ..

@ Generate plausible novel onditional samples based on a given dataset.

Sample Quality
@ Related to the proximity between the law of G(X,w) and the law of Y|X.

@ Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients

Generative Modeling

@ Generator Gyp(X,w) and cond. density prob. Py(Y|X) (Explicit vs implicit link)

@ Simple / Complex / Approximate estimation. ..

v

Some Possible Choices

Probabilistic model Generator Estimation
Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)
Factorization | Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) | Complex (ML /score/discrim.)
Diffusion Continuous noise Implicit (MCMCQ) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)
GAN Implicit Explicit Complex (Discrimination)

\.

@ SOTA: Diffusion based approach!

ML: Maximum Likelihood /VAE: Variational AutoEncoder/EBM: Energy Based Model /MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial

Network
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Generators Generative Modeling

Y =G6(X,w) ?

@ Small abuse of notations. ..
@ More an algorithm than a map!

@ One step: w ~ Q(:|X) and Y = G(X,w).
@ Several steps:
o Wo Qo£|X) and 3(0 = GoiX,wo) _
o Wiy ~ Qey1(+|X, Ye) and Yiy1 = Geya(X, Yy, wign)

Fixed or variable number of steps.

@ Fixed or variable dimension for Y; and w;. ..

Q (or @) should be easy to sample. B B
Most of the time, parametric representations for Q (or Q;) and G (or G;). 173



O Utl | ne Generative Modeling

@ Generative Modeling
@ (Plain) Parametric Density Estimation
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Warmup: Density Estimation and Generative Generative Modeling
Modeling

X ~ P with dP(x) = p(x)d\ — X ~ P with dP(x) = p(x)d\

@ Estimate p by p from an i.i.d. sample Xi, ..., X,.

e Simulate X having a law P.

@ By construction, if p is close from p, the law of X will be close from the law of X.

Issue: How to do it?

@ How to estimate p? Parametric, non-parametric? Maximum likelihood? Other
criteria?

e How to simulate P? Parametric? One-step? Multi-step? lterative?
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Warmup: Parametric Density Estimation Generative Modeling

X ~ P() with dP(x) = p(x)d\ — X ~ P; with dP;(x) = pj(x)d\

Maximum Likelihood Approach

@ Select a family P and estimate p by ﬁavfrom an i.i.d. sample Xi, ..., Xp.

e Simulate X having a law .55.

@ By construction, if ﬁg is close from p, the law of X will be close from the law of X.

Issue: How to do it?

o Which family P?

@ How to simulate va? Parametric? lterative?

e Corresponds to w ~ ﬁg and X = G(w) =w
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Conditional Density Est. and Generative Modeling Generative Modeling

Y|X ~ P(:|X) with dP(y|X) = p(y|X)dA
— Y|X ~ P(:|X) with dP(y|X) = p(y|X)dA

e Estimate p by p from an i.i.d. sample (X1, Y1),...,(Xn, Yn).
e Simulate Y|X having a law P(-|X).

@ By construction, if p is close from p, the law of \~/]X will be close from the law of
Y|X.

Issue: How to do it?

@ How to estimate p? Parametric, non-parametric? Maximum likelihood? Other
criteria?

o How to simulate P? Parametric? One-step? Multi-step? lterative?
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Parametric Conditional Density Estimation Generative Modeling

YIX ~ P(|X) with dP(y|X) = p(y|X)d\
— yyx Q(X) with d/59(x)()/) = Po(x)(y)dA

Maximum Likelihood Approach

@ Select a family P and estimate p by p; from an i.i.d. sample
(X1, Y1), ..., (Xn, Yn) where 6 is now a function of X.

e Simulate \N’]X having a law ﬁg(x)

o If p; is close from p, the law of Y|X will be close from the law of Y|X.

Issue: How to do it?

@ Which family P? Which function family for 6?

@ How to simulate P+, .7 Parametric? Iterative?

oY)

e Corresponds to w ~ Q(:|X) = IS@(X) and Y = G(X,w) =w 178




Direct Parametric Conditional Density Estimation Generative Modeling

W~ Qi) ~ Gjpo(¥)dA and  Y[X = G(X,w) = w

@ By construction,
dP(Y|X) = Ggx)(y)dA
@ Maximum Likelihood approach:

o= arg?ax Z log flg(xf)(\/i)
i=1

v

o P has been chosen so that this distribution is easy to sample. ..

@ Possible families: Gaussian, Multinomial, Exponential model. . .
@ Possible parametrizations for 0: linear, neural network. . .
o Limited expressivity! 179




Invertible Transform Generative Modeling

w ~ Q) ~ Gy (y)dA  and Y|X = G(w) with G invertible.

@ By construction,
dP(GH(Y)IX) = G (G (y))dA

@ Maximum Likelihood approach:

0= AT > log d5ix) (G ()
i=1

4

o Q has been chosen so that this distribution is easy to sample. ..

@ Possible transform G: Change of basis, known transform. ..
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FIOW _ - Generative Modeling
W~ va(x) = ?yg(x)(y)d/\ and Y|X = GZJG(X)(W) with Gy invertible.

e By construction,
bV _ —il ~ il
dP(Y1X) = [acGs (1)l (G5, (v))dA
where JacGQ*Gl(X)(y) is the Jacobian of G;GI(X) at y
@ Maximum Likelihood approach:
n
0,0g = argropaxz (log [ac G T, (Y1)l + Iog @) Gy (Y1)

e =1

4

o Q has been chosen so that this distribution is easy to sample. ..

e Often, in practice, A(X) is independent of X. ..
@ Main issue: Gy, its inverse and its Jacobian should be easy to compute.
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POSSI ble FlOWS Generative Modeling
Gy?

@ Main issue: Gy, its inverse and its Jacobian should be easy to compute.

Flow Models

o Composition
Gy = Gy © Gpr_, © Gy, o Gy,
-1 _ il
[JacG, " | = H\JacGei |
@ Real NVP
7! 21
YLi’ 1 }’;1/ 1 d ( )
@ = G = ., , JacG(y) | = —Sa"W1,....d"
(7‘(}’) }/d/+lesd,ﬂ(y1"”d,)+td(y1,...,d’) = & (Y) (,Vd’+1*td(y1,....d/))e a1 (71, ..d)+ *)‘ ac (Y) I dul_dlurle
}’desd(yl"""’thd(}/l vvvvv d’) (}’d*td(}/l vvv d,))efsd(h ..... )
@ Combined with permutation along dimension or invertible transform across
dimension.

@ Not that much flexibility. . . 182



Factorization Generative Modeling
wo ~ Qo(-|X) and Yo = Go(wyo)
wert ~ Qe (1X, (V)iee) and Yeur = Geaa (X, (Vi)ises wea)
Y =(Yo,..., Y1)

@ Amounts to use a factorized representation
'D(Y’X> - H P(Yt‘Xa(Yl)l<t>
o<t<d
° @t and G; can be chosen as in the plain conditional density estimation case as the
Y:,i are observed.

v

@ d generative models to estimate instead of one.

@ Simple generator by construction.
@ Can be combined with a final transform.
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Seq uence a nd M arkOV MOdel Generative Modeling

weer ~ Q(IX, (V)ezize-o) and Yey1 = G(X, (V)ezrze o, wes1)
SV/ — (Sv/o,..., Sv/d_l)

Sequence and Markov Models

@ Sequence: sequence of similar objects with a translation invariant structure.
@ Translation invariant probability model of finite order (memory) o.

@ Requires an initial padding of the sequence.

Faster training as the parameters are shared for all t.

@ Model used in Text Generation!
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Large Language Model Generative Modeling

Large Language Model (Encoder Only)

@ Sequence Model for tokens (rather than words) using a finite order (context).
@ Huge deep learning model (using transformers).

@ Trained on a huge corpus (dataset) to predict the next token. ..

@ Plain vanilla generative model?

Alignement

@ Stochastic parrot issue:
e Pure imitation is not necessarily the best choice to generate good text.
o Need also to avoid problematic prediction (even if they are the most probable given
the corpus)
@ Further finetuning on the model based on the quality of the output measured by
human through comparison of version on tailored input (RLHF).

o Key for better quality.

185
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O Utl | ne Generative Modeling

@ Generative Modeling

@ Latent Variables
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Latent Va ria ble Generative Modeling

Wo ~~ @0(|X) and \N/o = Go(X,(.do)
w1 @1 (|)<7 Y/O) and \71 = Gl(X,wO)
Y=Y

@ Most classical example: N N
e Gaussian Mixture Model with Yy = wg ~ M(7) and Y = w; ~ N(,u%, r

%)

@ Still a factorized representation

P( V1, YolX) = Po(YolX) Pr(ValX, Yo)
but only Y, is observed.

@ Much more complex estimation!

@ Simple generator by construction provided that the Q: are easy to simulate.
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Log Likelihood and ELBO Generative Modeling

log p(Y'|X) = log Ep(voix.v) [73(\77 570|X)}

= sup E

3 log B(Y, Yo|X) — log r(Yo| X, ¥)|
R(-[X,Y])

R(-1X,Y)

ELBO

@ Need to integrate over Yo using the conditional law .E’(%\X, ?) which may be
hard to compute.

Evidence Lower BOund
o Using log p(Y|X) = Ep , 7, [10g (B(Y, YolX)/B(YalX, V))].

10g B(Y|X) = Ep 1 7,108 B(Y, Yo|X) — log r(Yo|X, V)]

— KLT/O(R(SV/()’X, Sv/), IB(SV/O‘Xa \7))

e ELBO is a lower bound with equality when R(-|X,Y) = IS(\N/O|X, \N’)

e Maximization over P and R instead of only over P... 188



ELBO and Stochastic Gradient Descent Generative Modeling

supE, ¢ [Iog ﬁ(?’|X)} =supE
P P.R

XY Yo~R(|X, Y){Iogp(Y Yol X) — log r(YolX, \N/)]

= sup Ey 3 7oriix.7) 108 B(YIX, Vo))

T By ¥ %omr(1X,7) DOg p( Yol X) — log r( Yol X, ?)]

E, 7[KL(RCIX.Y).P(YolX))]

e Parametric models for P(Yo|X), P(X|X, Yo) and R(Yo|X, Y).

Stochastic Gradient Descent

e Sampling on (X, Y, Yy ~ R) for E {V log (Y| X, \70)}

X,Y Xo~R(|X,Y)
o Sampling on (X, Y) for E, ¢ {V KL(R(-|X, Y), ﬁ(]X))} if closed formula.

@ Reparametrization trick for the second term otherwise. . .
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Reparametrization Trick Generative Modeling
VEZ[F(2)]?
Z = G(w) with w ~ Q() fixed —VEZ[F(Z)] = VEL[F(G(w))] = Eu[V(F o G)(w)]

Reparametrization Trick

@ Define a random variable Z as the image by a parametric map G of a random
variable w of fixed distribution Q.

@ Most classical case: Gaussian. . .

@ Allow to compute the derivative the expectation of a function of Z through a
sampling of w.

@ Application for ELBO: N
o Yo = Ggr(X,X,wgr) with wg ~ Q(:|X,Y) a fixed probability law.
e Sampling on w to approximate:

VE, 3 %o x7) {mgﬁ(vo\X) —log r(Yo X, Y)

=Ey ¥ om0l X5 [v log B(Gr(X, Y, wr)|X) — V log r(Gr(X, Y, wg)|X, ?)}

190



Val’latIOnal AUtO Encoder Generative Modeling

Generation: Yo ~ P(|X) L2 v B(-[X, Vo))
Training: Y ~ P(X) 2229 vy o R(-|X, Y) 2228 X P(|X, Yo)

Variational Auto Encoder

@ Training structure similar to classical autoencoder. .. but matching on distributions
rather than samples.

@ Encoder interpretation of the approximate posterior R(-|X, Y).

o Implicit Jow dimension for Yj.
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Latent Va ria bleS Generative Modeling

Wo ~~ Qo(“/) and \N/o = Go(X,wo)
Wi41 ™~ @t+1 ('|X7 ?t> and )N/t+1 = Gt+1(X7 ?tathrl)
Y- v,

Latent Variables

@ Deeper hierachy is possible. ..

@ ELBO scheme still applicable using decoders R;
RI(YIX, Yiza) = P(ViIX, Viga)
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O Utl | ne Generative Modeling

@ Generative Modeling

@ Approximate Simulation
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Energy Based MOdel and MCMC SII’T]UlatOF Generative Modeling

dP(Y|X) oce’YX)dx
— Wyl Qu("Xa Yt) and Yep1 = Gu(Y, Ye, wig1)
Y ~ lim Vt
@ Explicit conditional density model up to normalizing constant
Z(u, X) = / e’ d\(y)

@ Several MCMC schemes to simulate the law without knowing Z(u, X)

@ Not so easy as Z(u, X) depends a lot on u.

MCMC: Monte Carlo Markov Chain 194




MCMC SImU|at|0n - MetrOpO“S—HastlngS Generative Modeling

Wig1/2 ™ éu('|y7)~<t) )~<t+1/2 = Wtt1/2
ey — 1 with proba ay \~/t+1 _ ?t+1/2 if wp =1
0 with proba 1 — a; Y otherwise

eu(X,yt+1/2) éu (Vt|X’ ?1.‘4—1/2)
eu(X.¥0) Q, (Vt+1/2|X’ T/f>

with a; = min | 1,

Metropolis Hastings

@ Most classical algorithm.
@ Convergence guarantee under reversibility of the proposal.

@ Main issue is the choice of this proposal Q.

@ Many enhanced versions exist!
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MCMC SImU|at|0n - LangeV|n Generative Modeling

wes1/2 ~ N(O,1) Yerrjo = Ye+7Vgu(X, Ye) + V27w
1 with proba « ~ Y, ifwp=1
We+1 = . i ‘ Yit1 = b ‘ .
0 with proba 1 — a4 Y: otherwise

eu(X,\N/tH/Q)e—llYt—Yt+1/2—“/tV;U(X,Yt+1/2)|\2/’73
with ay = min | 1, — — = = .
eu(X,Ye) g I1Yer1/2=Yemre Vo u(X, Vo) 12/

Langevin

@ If v = v, Metropolis-Hasting algorithm.
o With \N’Hl = \~/t+1/2, convergence toward an approximation of the law.
@ Connection with SGD with decaying o
o dy S . .
o Connection with a SDE: —— = Vo u(X,Y) + V2dB; where B is a Brownian

) dt
Motion. 196




E B M EStI m atIO n Generative Modeling

Y|X ~ P(-|X) — Y|X ~ P(:|X) with dP(y|X) = B(y|X)d\ o e“*)d)

@ Intractable log-likelihood:
|Og5(?|X) = U(Xay) o |OgZ(U7X)

o Contrastive: simulate some P at each step and use
Vlog B(7|X) = Vu(X,¥) — Vlog Z(X, u) = Vu(X,7) — Bz Vu(X, ¥)|
o Noise contrastive: learn to discriminate W = Y from
W =Y’ ~ R(:|X) ~ e"X¥)d with the parametric approximation
eu(Xr}’)
eu(Xy) 4 Z(U,X)er(XvV)
@ Score based: learn directly s(:|X) = Vg u(X,-) = Vy log p(-|X).

P(W = Y|X) ~
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Score Based Method Generative Modeling

EU\VY log p(Y|X) — s(Y\X)Hz} =E BHS(Y\X)H2 +tr Vys(Y|X)| + cst.

Score Based Method

@ Non trivial formula based on partial integration.

@ Hard to use in high dimension

Y, =Y + o€ —>E“|Vy log p, (Y5 | X) — s(,(Y|XJ)H2}
= E[HIVY log po (Y5 | X, Y) — sU(YU\X)Hﬂ + cst.

@ Connection to denoising through Tweedie formula for € = N(0, 1)

E[Y|Y,] = Yy 4+ 0?Vy log ps( Y| X, Y) and thus s,(Y|X,) ~

E[Y|Y,] — Yo
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Better Exploration with Annealing and Noisy Score Generative Modeling

Y ~ XY\ — Yy ~ eTU(XY)

Annealing
@ Simulate a sequence of Yr starting with T large and decaying to 1.

Y, =Y +0e —E[|[Vy log p,(Ys|X) = s,(Y|X,)|?]
= E[[[|Vy log po(Y,|X, ¥) = 5,(Ya|X)|[2] +cst.

@ Simulate a noisy sequence of Y, with o decaying to 0.
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O Utl | ne Generative Modeling

@ Generative Modeling

@ Diffusion Model
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Noisy Model: Generation and Corruption Generative Modeling

Generation: Y ~ N(0,s3) — w: ~ N(0,1) and Yiii =Y, + %Ssg(?t!X) + 1/ 27wt
Corruption: w; ~ N(0,1) and Yi_1 = Y;: + 0w — Yi| Y7 ~ N(Y7,57 = Z o2)

t'>t

Noisy Model

@ Approximate sequential Langevin approach to obtain Y=Yy~ ﬁ(Y|X) from
Yo R N(O, S%—)

Reverse construction is a sequence of noisy version Y; (corruption).

Each Y; is easily sampled from Yj so that the scores v can be estimated.

Lot of approximations everywhere.

Dependency on X removed from now on for sake of simplicity.
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Diffusion with a Forward Point of View Generative Modeling

FOrWard wt [ N(O, 1) and Yt+6t — (1 + O{t(st)Yt + 2/8t5twt
—dY(t) = a(t)Y(t)dt + /25(t)dB(t)

Forward diffusion from Y (0) ~ X to Y(T)

@ Generalization of noisy model:
Y(t)|Y(0) =N (Y(O) exp/o oz(u)du,/0 28(u) exp (/u a(v)dvdu))
Reverse: dY(t) = (—28(t)Vylog P(Y,t) —a(t)Y(t))dt + /23(t)dB(t)
—> w; ~ N(0,1) and Yi_s, = (1 — a;0:) Y + 26:Vy log p( Y, t)d; + \/25:0:w;

Reverse diffusion: from Y(T)to Y(0) ~ X

@ Allow to sample back in time Y;|Y7.

@ Quite involved derivation. . . but Langevin type scheme starting from Y. oo




Noise Conditioned Score and Denoising Diffusion Generative Modeling

e =0 = Y(8)|Y(0) = N (Y(O),2/Ot6(u)du)

Noise Conditioned Score (Variance Exploding)

@ Direct extension of noisy model.

@ Better numerical scheme but numerical explosion for Y(t).

(1 —+ Oétét) =1/ 1 - 2/61‘51.' ~ ]. - ﬁtét

— Y(8)[Y(0) =N <Y(0)e£ﬁ(”)du, 2 <1 - ejgﬁ(“))>

Denoising Diffusion Probabilistic Model (Variance Preserving)

e Explicit decay of the dependency on P(Y) and control on the variance.

@ Better numerical results.

@ Scores Vy log p(Y,t) estimated using the denoising trick as Y(t)|Y(0) is explicit.
@ Choice of A(t) has a numerical impact.
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Numerlcal DIfFUSiOﬂ and SImU|at|0n Generative Modeling

Y7 ~ N(0,0%)
— Wg ~ N(O, 1) and thgt = (1 — atdt)Yt + 26t5(X, t)ét -+ v 25t(5twt
— ?/ = YO

@ Reverse indexing with respect to VAE. ..

Numerical Diffusion and Simulation

@ Start with a centered Gaussian approximation of X7.

@ Apply a discretized backward diffusion with the estimated score
S(X’ t) ~Vy |ng(Y, t)

@ Use Yj as a generated sample.

@ Very efficient in practice.
@ Better sampling scheme may be possible.

204



A POSSible ShOftCUt ? Generative Modeling

Forward (SDE):  dY(t) = a(t)Y(t)dt + 25(t)dB;
Backward (ODE): dY(t) = (—25(t)Vy log P(Y, t) — a(t)Y(t)) dt

Deterministic Reverse Equation

o If Y(T) is initialized with the law resulting from the forward distribution, the
marginal of the reverse diffusion are the right ones.

@ No claim on the trajectories. . . but irrelevant in the generative setting.

@ Much faster numerical scheme. . . but less stable.

@ Stability results on the score estimation error and the numerical scheme exist for
both the stochastic and deterministic case.
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ConneCtion betWeen Dlﬂ:USiOI"I and VAE Generative Modeling

R(Y1]Y) R(Y2|Y1) R(Yei1|Ye) R(YT|YT-1)
= T-1

~ 2..

P(Y|Y1) P(Y1]Y2) O OP(YYen) P(Yr_1|Y7)
@ Gen. of Y from Y7 using P(Y:|Yt+1) with an encoder/forward diff. R(Yit1|Y?).

Variational Auto-Encoder

@ Pt is chosen as Gaussian.
@ Both generative P(Y¢|Y:+1) and encoder R(Yiy1|Y:) have to be learned.

Approximated Diffusion Model

@ R(Y:41]Y:) is known and Pt is approximately Gaussian.
@ Generative P(Y¢|Y:+1) has to be learned.

@ Same algorithm than with Diffusion but different (more flexible?) heuristic.

@ Denoising trick >~ an ELBO starting from R(Y:11|Y:) = R(Yex1|Ye, Y). ..

Yr ~ Pt
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Another FOFmU|a 'FOF the SCOre Generative Modeling

VylogP(Y|X) = VylogP(X|Y)— VylogP(Y)

Classifier version of the score
o Classifier: knowledge of P(X|Y) (reverse problem)

@ Bayes formula:
P(X]Y)P(Y)
P(Y|X) = =i
o Consequence:
VylogP(Y|X) = VylogP(X|Y)+ Vy logP(Y)
@ Leads to
VylogP(Y|X) = (1 =0)VylogP(Y|X)+60(VylogP(X|Y)+ VylogP(Y))

V.

@ Issue: Require two more probabilistic models P(X|Y') and P(Y) for the same
goal!
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G u |d ance Generative Modeling

YVy logP(X|Y) + Vy log P(Y) (guidance)
vV log ]P)(Y‘X) + (1 - ’y)Vy log ]P(Y) (classifier-free guidance)

@ Replace the score by
OyixVy log P(Y|X) + 0x|y Vy log P(X|Y) + 0y Vy log P(Y)
@ Amount to sample from
P(Y[X)XB(X| V)XY B(Y)™ /Z(X) = B(X| V)XY O p(y)Pr+ovix /7 (X)
@ Classical choices given above correspond to sample from
P(X|Y)'P(Y)/Z(X) =P(X|Y)"P(Y)/Z'(X)

From Vy log P(Y|X) to {

@ Better visual result for images for v > 1!

@ Raise the question of the target in generative modeling!
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@ Generative Modeling

@ Generative Adversarial Network
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Genel’atlve Adversarlal Network Generative Modeling

w~ Q(-|X) and Y = G(X,w)

Non density based approach

e Can we optimize G without thinking in term of density (or score)?

(X,Y,Z) = (X,Y,1) with proba 1/2
o (G(X,w),Y,0) otherwise

GAN Approach

e Can we guess Z with a discriminator D(X, X) ?
e No if G is perfect!
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GAN PrOgra m Generative Modeling

maxminE, [E(D(X, Y), Z)]

= max min (;]E”[e(D(x, Y),1)] + ;EW[E(D(X, G(Y,w)), 0)])

Discrimination
@ Similar idea than the noise contrastive approach in EBM.

e If £ is a convexification of the %/ loss then the optimal classifier is given by
— 1 if p(Y|X) > p(Y|X
D(X,Y):{ f p(V1X) > B(Y1X)

0 otherwise.
o If / is the log-likelihood
maxmin E, 3 [((D(X, Y), Z)| = max log, ~Ex [JKL1a(p(-1X), B(-|X))]

V.

@ Direct (approximate) optimization using only samples (with the reparametrization
trick). 211



EXtenSIOnS tO f Dlvergences Generative Modeling

pi(P.@) = [ £(44) atn)

=suptEyp[T(Y)] — Ecol[f*(T(G))]

@ Optimization of

mGin sn;p (Ex,y[T(Y)] — Eu, x[f*(T(G(X,w)))])

@ Direct (approximate) optimization using only samples (with the reparametrization
trick).

@ Direct extension of the previous scheme.

e T is not a discriminator, but there is an explicit link when f(u) = log(u).
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WaSSGI’StGI n GAN Generative Modeling

W(P,Q) = inf Egeorellp—
(P, Q) it o Ete) elllp — qll]
1
= Rsup”fHLSK]EYNP[f(Y)] — Ecqlf(G))]

Woasserstein GAN

e Optimization of

mén sup Ex y[f(Y)] — Eu, x[f(G(w, X))]
Ifll.<1

@ Direct (approximate) optimization using only samples (with the reparametrization
trick).

@ More stability but hard to optimize on all the 1-Lipschitz functions.
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