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Unsupervised Learning?Learning without Labels?
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What is possible with data without labels?
To group them?
To visualize them in a 2 dimensional space?
To generate more data?
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Unsupervised Learning?Marketing and Groups
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To group them?
Data: Base of customer data containing their properties and past buying records
Goal: Use the customer similarities to find groups.
Clustering: propose an explicit grouping of the customers
Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)
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Unsupervised Learning?Image and Visualization
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To visualize them?
Data: Images of a single object
Goal: Visualize the similarities between images.
Visualization: propose a representation of the images so that similar images are
close.
Clustering: use this representation to cluster the images. (Bonus)
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Unsupervised Learning?Images and Generation
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To generate more data?
Data: Images.
Goal: Generate images similar to the ones in the dataset.
Generative Modeling: propose (and train) a generator.
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Unsupervised Learning?Machine Learning

So
ur

ce
:

Co
un

ci
lo

fE
ur

op
eThe classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Unsupervised Learning?Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function: ℓ(f (X ), Y ) measure how well f (X ) predicts Y
Risk:

R(f ) = E[ℓ(Y , f (X ))] = EX
[
EY |X [ℓ(Y , f (X ))]

]
Often ℓ(f (X ), Y ) = ∥f (X ) − Y ∥2 or ℓ(f (X ), Y ) = 1Y ̸=f (X)

Goal
Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.
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Unsupervised Learning?Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ∼ P)
Task: ???
Performance measure: ???

No obvious task definition!

Tasks for this lecture
Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.
Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
Generative modeling: generate new samples.
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Unsupervised Learning?Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing
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Unsupervised Learning?Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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Unsupervised Learning?Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Unsupervised Learning?Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!

14

Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC



Erwan LE PENNEC





Unsupervised Learning?Generative Modeling

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P).

Generative Modeling
Construct a map G from a randomness source Ω to X

G :Ω → X
ω 7→ X

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(ω) and the law of X .

Most classical choice is the Kullback-Leibler divergence.
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Unsupervised Learning?Generative Modeling

Ingredients
Generator Gθ(ω) and density prob. Pθ(X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 16
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A Glimpse on Unsupervised
Learning

What’s a group?

So
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:
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No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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A Glimpse on Unsupervised
Learning

Prototype Approach
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Prototype Approach
A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning
No need to compare the samples between them! 20
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A Glimpse on Unsupervised
Learning

Contiguity Approach
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Contiguity Approach
A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)

Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 21
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A Glimpse on Unsupervised
Learning

Agglomerative Approach
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Agglomerative Approach
A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

Numerous variations on the merging criterion. . .
Number of groups chosen afterward.
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A Glimpse on Unsupervised
Learning

Choice of the method and of the number of groups

So
ur

ce
:
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it-
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nNo method or number of groups is better than the others. . .

Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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A Glimpse on Unsupervised
Learning

Dimensionality Curse
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DISCLAIMER: Even if they are used everywhere, beware of the usual
distances in high dimension!

Dimensionality Curse
Previous approaches based on distances.
Surprising behavior in high dimension: everything is ((often) as) far away.
Beware of categories. . .

25



A Glimpse on Unsupervised
Learning

Dimensionality Curse
DISCLAIMER: Even if they are used everywhere, beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such that their
coordinates are i.i.d then

d−1/p
(
max ∥X i − X j∥p − min ∥X i − X j∥p

)
= 0 + OP

√ log n
d


min ∥X i − X j∥p

max ∥X i − X j∥p
= 1 + OP

√ log n
d

 .

When d is large, all the points are almost equidistant. . .
Nearest neighbors are meaningless!
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A Glimpse on Unsupervised
Learning

Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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A Glimpse on Unsupervised
Learning

Principal Component Analysis
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Simple formula: X̃ = P(X − m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!
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A Glimpse on Unsupervised
Learning

Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
30
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A Glimpse on Unsupervised
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A Glimpse on Unsupervised
Learning

Relationship Preservation Approaches

Relationship Preservation Approaches
Based on the definition of the relationship notion (in both worlds).
Huge flexibility

Not always yields a formula for new points.
31



A Glimpse on Unsupervised
Learning

Choices of Methods and Dimension
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No Better Choice?
Different criterion for different methods: impossible to use cross-validation.
The larger the dimension the easier is to be faithful!
In visualization, dimension 2 is the only choice.
Heuristic criterion for the dimension choice: elbow criterion (no more gain),
stability. . .

Dimension Reduction is rarely used standalone but rather as a step in a
predictive/prescriptive method.
The dimension becomes a hyperparameter of this method. 32



A Glimpse on Unsupervised
Learning

Representation Learning
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Representation Learning
How to transform arbitrary objects into numerical vectors?
Objects: Categorical variables, Words, Images/Sounds. . .

The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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A Glimpse on Unsupervised
Learning

Generative Modeling
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Generative Modeling
Generate new samples similar to the ones in an original dataset.
Generation may be conditioned by an input.

Key for image generation. . . and chatbot! 35



A Glimpse on Unsupervised
Learning

Density Estimation and Simulation
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Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
How to estimate the density?
How to simulate the estimate density?

Other possibilities?
36



A Glimpse on Unsupervised
Learning

Simple Estimation and Simple Simulation
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Parametric Model, Image and Factorization
Use

a simple parametric model,. . .
or the image of a parametric model (flow),. . .
or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

Estimation by Maximum Likelihood principle.
Recurrent models are used in Large Language Models! 37



A Glimpse on Unsupervised
Learning

Complex Estimation and Simple Simulation
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Latent Variable
Generate first a (low dimensional) latent variable Z from which the result is easy
to sample.
Estimation based on approximate Maximum Likelihood (VAE/ELBO)

The latent variable can be generated by a simple method (or a more complex
one. . . ).

38
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A Glimpse on Unsupervised
Learning

Complex Estimation and Complex Simulation
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Monte Carlo Markov Chain
Rely on much more complex probability model. . .
which can only be simulated numerically.
Often combined with noise injection to stabilize the numerical scheme (Diffusion).

Much more expensive to simulate than with Latent Variable approaches.
39



A Glimpse on Unsupervised
Learning

Complex (non)Estimation and Simple Simulation
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Generative Adversarial Network
Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.
The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.
No explicit density!

Fast simulator but unstable training. . . 40
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More Learning. . .More Than "Supervised or Unsupervised"?
Task Experience Performance Measure

Supervised f : X → Y (Xi , Yi) i.i.d R(f ) = E[ℓ(Y , f (X ))]
X 7→ f (X )

Clustering/DR f : X → Y (Xi) i.i.d R(f ) =???
X 7→ f (X )

Generative G : Ω → X (Xi) i.i.d R(G) =???
ω 7→ G(ω)

Task?
Deterministic or Stochastic? Target space Y? Only for Xi in the dataset?

Experience?
Label? Relation? i.i.d.?

Performance Measure
Average loss? Of samples? Of pairs? 42
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More Learning. . .Task

Deterministic or Stochastic
Deterministic: single (good) answer.
Stochastic: several (good) answers. (Generative modeling?)
Link through the probabilistic framework.

Target Space
Known (given by the dataset) / To be chosen. (Unsupervised?)
Simple (low dimensional) / Complex (Structured?)

Random vs Fixed Design
Defined for any X ∈ X .
Defined only for Xi in the dataset (Classical statistics?)
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More Learning. . .Experience
Labels

Labeled (Supervised?)
Unlabeled / Not always labeled (Unsupervised?/Semi Supervised?)
Incorrect label (Weakly-Supervised?)

Singleton, Pairs and Tuples
Classical pairs (Xi , Yi).
Pairs of pairs ((Xi , Yi), (X ′

i , Y ′
i )) plus side information Zi . (Comparison?)

Tuples ((X k
i , Y k

i )) and side information Zi . (Contrastive?)

Dependency Structure
Independent (Xi , Yi)
Dependent (Xi , Yi) (Spatio-temporal?/ Graph?)
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More Learning. . .Performance Measure

Losses
Instance-wise loss ℓ(Y , f (X ), X )!

Losses or Metrics
Loss: performance is an average.
Metric: any (other) way of measuring the performance.

Singleton, Pairs and Tuples
Performance measured by looking at singleton of pair (X , Y )
Performance measured by looking at more samples simultaneously.
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More Learning. . .. . . -Supervised Learning
Task

Deterministic Stochastic
f (X) G(X , ω)

Labeled (X , Y ) Supervised Generative
Experience Unlabeled (X , ) Unsupervised (Generative)

Not always labeled (X , Y ) or (X , ) Semi-Supervised ?
Not correctly labeled (X , E(Y , ω′)) Weakly-Supervised ?

Some Learning Settings
Supervised: deterministic predictor trained from labeled dataset.
Unsupervised: deterministic predictor trained from unlabeled dataset.
Generative: stochastic predictor trained from labeled dataset.
Semi-supervised: deterministic predictor trained from not always labeled dataset.
Weakly-supervised: deterministic predictor trained from not correctly labeled
dataset.

46
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More Learning. . .Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P).
Same kind of data than for supervised learning if X ̸= ∅.

Generative Modeling
Construct a map G from the product of X and a randomness source Ω to Y

G :X × Ω → Y
(X , ω) 7→ Y

Unconditional model if X = ∅. . .

Motivation
Generate plausible novel onditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(X , ω) and the law of Y |X .

Most classical choice is the Kullback-Leibler divergence.
47



More Learning. . .Generative Modeling

Ingredients
Generator Gθ(X , ω) and cond. density prob. Pθ(Y |X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 48



More Learning. . .Semi-Supervised Learning and Weakly-Supervised
Learning
Semi-Supervised Learning

Some samples are unlabeled:
(Xi , Yi) or (Xi , ?)

Heuristics:
Regularization using the unlabeled samples.
Auxiliary task defined on unlabeled samples. (Representation Learning?)

Weakly-Supervised Learning
Some samples are mislabeled:

(Xi , Yi) or (Xi , E (Yi , ω))
Heuristic:

Explicit model of the label noise: instance-wise, group-wise. . .
Hard to assess the quality without some good labels. . .
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More Learning. . .Representation Learning and Self-Supervised Learning

Representation Learning
Obtain a representation by learning rather than only feature engineering:

(Xi , Yi) → Φ(Xi)
Heuristics:

Use the results of an arbitrary learning task on the same input.
Use an inner representation obtained by an arbitrary learning on the same input.

Self-Supervised Learning
Build a supervised learning problem without having labels:

Xi → Φ(Xi)
Heuristics:

Use labels that are free (or very cheap) to obtain.
Use labels from another predictor.

50
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More Learning. . .Comparison Learning

Comparison Learning
Feedback through comparison between two outputs Y (1)

i and Y (2)
i for a

given input:
Isℓ(Y (1)

i , Xi) ≥ ℓ(Y (2)
i , Xi) ?

No explicit target or loss!
Heuristic:

Preferences related to an instance-wise loss ℓ that can be learned (ELO. . . )

Human Feedback brick in RLHF (Reinforcement Learning from Human Feedback).
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More Learning. . .Contrastive Learning

Contrastive Learning
Feedback through the proximity ranking between a reference input and
two other ones:

Isd(X ref
i , X (1)

i ) > d(X ref
i , X (2)

i ) ?
Amount to a comparison between two pairs. . .
Heuristics:

A distance can be learned to explain those comparisons.
A representation paired with a simple distance can be learned to explain those
comparisons.
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More Learning. . .Structured Machine Learning
Structured Output

Output Y has a more complex structure than a vector.
Text, graph, spatio-temporal (image, sound, video,. . . ), . . .
Heuristics:

Output a vector representation.
Output a (variable length) code that can be decoded. . .

Structured Dataset
I.i.d. assumption not satisfied as there are dependencies between the
(Xi , Yi).
Nodes on graph, spatio-temporal series (possibly with overlaps!)
Heuristic:

The training part may be kept as is, but the testing/validation one should be
modified.
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More Learning. . .Sequential Decision Learning

Sequential Decision Learning
Success/loss may depend on more than one choice/prediction.
Isolated decision vs strategy!
Heuristics:

Operation Research with Learned Model
Reinforcement Learning
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More Learning. . .. . . Learning

So
ur

ce
s:

Li
tje

n

Many Learning Setting
Most classical setting: Supervised Learning.
Much more variety in the real world: Unsupervised, Generative, Reinforcement. . .
Matching a real-world problem to the right learning task is the main
challenge!
Often, easier to solve the learning task than to identify it!
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MetricsOutline

1 Unsupervised Learning?
2 A Glimpse on Unsupervised Learning

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

3 More Learning. . .
4 Metrics
5 Dimension Reduction

Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

6 Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

7 Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

8 References
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MetricsMetrics and Supervised Learning

What is a good predictor?
R(f ) = E[ℓ(Y , f (X ))] vs Rℓ(f ) = E

[
ℓ(Y , f (X ))

]
vs R(f )

Three Places for Performance Measure (Metric)
Framework: Initial target performance measure (Risk) defined as the expectation
of an individual cost (loss): ℓ0/1, ℓ2. . .
Training: Intermediate performance measure (Optimization goal) defined as an
average of an easier to optimize cost (surrogate loss): -log-likelihood, hinge loss,
ℓ2. . .
Scoring: Final (possibly global) performance measure(s) (score): ℓ0/1, AUC, f 1,
lift, ℓ2. . .

Ideally, the same metric should be used everywhere!
57



MetricsFramework
R(f ) = E[ℓ(Y , f (X ), X )]

Statistical Learning Framework
Loss ℓ(Y , f (X ), X ): Cost of predicting f (X ) at X when the true value is Y .
Risk R(f ): Performance of a predictor f measured by the expectation of the loss.

Learning Goal
Ideal target f ⋆: argmin R(f ).
Learn a predictor f̂ such that E

[
R(f̂ )

]
− R(f ⋆) or P

(
R(f̂ ) − R(f ⋆) > δ

)
is as

small as possible.

Dependency Caveat and (Cross) Validation
If f̂ depends on (Xi , Yi),

E
[

1
n

n∑
i=1

ℓ(Yi , f̂ (Xi), Xi)
]

̸= E
[
R(f̂ )

]
58



MetricsFramework – Classification

f ⋆(X ) = argmin
f

∑
y

ℓ(y , f , X )P(y |X )

Ideal Target (Bayes Predictor)
Straightforward finite optimization given the conditional probabilities P(y |X )!

Classical Losses
0/1 loss: ℓ0/1(Y , f , X ) = 1Y =f

Weighted 0 − 1 loss: ℓ(Y , f , X ) = C(Y , X )1Y =f

Matrix loss covers all possible losses.
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MetricsFramework – Regression

f ⋆(X ) = argmin
f

∫
ℓ(y , f , X )dP(y |X )

Ideal Target (Bayes Predictor)
No guarantee on the existence in general!
Convex setting if ℓ is convex with respect to f .

Classical Losses
Quadratic loss: ℓ2(Y , f , X ) = (Y − f )2

Weighted quadratic loss: ℓ(Y , f , X ) = C(Y , X )(Y − f )2

Much more freedom than in classficiation!

Is the ideal target well defined? Can we describe it?
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MetricsFramework – Regression

Ideal target well defined when ℓ(Y , f , X ) convex with respect to f .

ℓp norms, Quantiles and Expectiles
ℓp norm:

ℓp(Y , f , X ) = |Y − f |p (convex when p ≥ 1)
f ⋆(X ) is the conditional expectation E[Y |X ] for p = 2 and the conditional median
for p = 1.

Quantile loss:
ℓα(Y , f , X ) = (1 − α)|Y − f |1Y −f <0 + α|Y − f |1Y −f ≥0
f ⋆(X ) is the quantile of order α of Y |X .

Expectile loss: ℓα(Y , f , X ) = (1 − α)|Y − f |p1Y −f <0 + α|Y − f |p1Y −f ≥0

|Y − f |p can be replaced by ϕ(Y − f ) with any convex function ϕ.
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MetricsFramework – Regression

Robust Norms
Huber loss:

ℓ(Y , f , X ) =
{

|Y − F |2 if |Y − f | ≤ C
C |Y − F | otherwise

Cosh loss: ℓ(Y , f , X ) = cosh(C(Y − f ))

Weighted and Transformed
Weighted loss: ℓ′(Y , f , X ) = C(Y , X )ℓ(Y , f , X )
Transformed loss: ℓ′(Y , f , X ) = ℓ(ϕ(Y ), ϕ(f ), X ) with Φ non-decreasing.

Difficulty may arise quickly when convexity with respect to f is lost:
|Y − f |p

|Y |p + ϵ
vs 2|Y − f |p

|Y |p + |f |p + 2ϵ
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MetricsTraining

f̂ (X ) = argmin
f

EP̂[ℓ(Y , f , X )|X ] vs argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (Xi), Xi)

Probabilistic Approach
Estimate P(Y |X ) and plug in the Bayes predictor.
How to perform the estimation?

Optimization Approach
Optimize directly the empirical loss. . .
If it is possible. . .
Otherwise, optimize a surrogate risk.
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MetricsProbabilistic Approach – Modeling and Plugin

P̂ = argmin −1
n

n∑
i=1

logP(Yi |Xi)?

Conditional Maximum Likelihood Approach
Parametric modeling for P.
Minimization of the (regularized) empirical negative log-likelihood.

Maximum Likelihood
Parametric model choice:

(Multi/Bi)nomial in classification.
No universal model in regression!

Empirical negative log-likelihood is a performance measure, not explicitly related
to the original risk.

Computing plugin Bayes predictor: easy in classification but may be hard in
regression! 64



MetricsOptimization Approach

argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (Xi), Xi)

Direct Optimization
Parametric set S for f .
Direct optimization of the (regularized) empirical risk.
Most classical algorithm Gradient Descent. . .
But smoothness/convexity requirement.

What to do if this optimization is hard?

Surrogate Optimization
Replacement of the hard optimization by a surrogate (easiest) one such that the
optimal solutions of the two problems are related. . .
Implies a new performance measure (Surrogate Risk). 65



MetricsOptimization – Surrogate

From

X Y
X f (X)

Y

ℓ(Y , f (X))

f

ℓ

to
X Rd Y
X f (X) f (X) = dec(f (X))

enc(Y ) Y

ℓ(enc(Y ), f (X)) ℓ(Y , f (X))

f

ℓ

dec

enc

ℓ

Encoder/Decoder and Surrogate Loss
Y valued predictor f replaced by a real (vector) valued one f .
Prediction requires decoding f (X ) into dec(f (X )) in Y
Optimization of f requires encoding the target Y into enc(Y ) in Rd and a loss ℓ
from Rd × Rd to R.

Rd can be replaced by an arbitrary Hilbert space.
66
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MetricsOptimization – Surrogate

From f̂ = argmin
f

1
n

n∑
i=1

ℓ(Yi , f (Xi)) to f̂ = dec(f̂ ) with f̂ = argmin
f

1
n

n∑
i=1

ℓ(enc(Yi), f (Xi))

Surrogate Assumptions
Optimization with respect to f should be easy. . .
and there should be a link between the to solution!

Fisher Consistency and Calibration

Fisher consistency: dec
(

argmin
f

E
[
ℓ(enc(Y ), f )

])
= argmin

f
E[ℓ(Yi , f )] = f ⋆

Calibration:
E[ℓ(Yi , f )] − E[ℓ(Yi , f ⋆)] ≤ Ψ

(
E
[
ℓ(enc(Y ), f )

]
− E

[
ℓ(enc(Y ), f ⋆)

])
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MetricsOptimization – Surrogate Examples
Binary Classification

enc(Y ) = +1/ − 1 and dec(f (X )) = sign(f (X )).
Classical surrogate loss: convex upper bound of the ℓ0/1 loss!
Flexible setting: justification of the use of an ℓ2 loss in classification!

Classification
enc(Y ) = eY (dummy coding) and dec(f (X )) = argmaxk(f (X ))(k)

Classical surrogate loss:
Cross entropy (amounts to a log-likelihood of a multinomial model):
ℓ(enc(Y ), f (X )) = −enc(Y )⊤ log(f (X )).
Square loss: ℓ(enc(Y ), f (X )) = ∥enc(Y ) − f (X )∥2.
Hinge loss: ℓ(enc(Y ), f (X )) = supk(1 − enc(Y ) + f (X ))(k) − f (X )⊤enc(Y ) (Not
always consistent!)

Less interest in regression, except for a convexification of a loss. . .
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MetricsScoring

R(f ) = E[ℓ(Y , f (X ), X )] vs R1(f ) = F1(f ,P), . . . , Rr(f )

Scoring
Beyond a single average loss. . .
Risk (or interest) evaluated by

several different risks,
a quantity that is not an average (Precision/Recall. . . ),
a quantity that is only measured empirically (real world experiment,
speed/cost. . . ). . .

Depending on the score, a better score may correspond to a larger (↑) or a smaller
(↓) value.
Often no way to optimize the score directly. . . except if it is a classical risk!
May be related to an idea of tradeoff. . .
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MetricsScoring – Classification
Truth

1 · · · K

Prediction
1
... cj,k

K

Truth
0 1

Prediction 0 True Negative False Negative
1 False Positive True Positive

Confusion Matrix
Matrix C summarizing the classification performance

Cj,k = |{i , (Yi , f (Xi)) = (k, j)}|
Renormalized version with percentage!

Binary Confusion Matrix
Positive (1) vs Negative (0)
Detection setting. . .
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MetricsScoring – Binary Classification
Truth

0 1

Prediction 0 True Negative False Negative
1 False Positive True Positive

Binary Classification Scores

True Positive Rate/Recall/Sensitivity (↑):
TP

FN + TP

False Negative Rate (↓):
FN

FN + TP

False Positive Rate/Type 1 Error (↓):
FP

TN + FP

True Negative Rate/Specificity (↑):
TN

TN + FP

Lift (↑):
TP

TP + FN
/

P
P + N

Positive Predictive Value/Precision (↑):
TP

FP + TP

False Discovery Rate (↓): FP
FP + TP

False Omission Rate (↓): FN
TN + FN

Negative Predictive Value (↑): TN
TN + FN

Those scores have trivial optimum: always predict either 0 or 1!
71
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MetricsScoring – Binary Classification

Precision = TP
FP + TP Recall = TP

FN + TP

Tradeoff

F1 score (↑): 2
Recall−1 + Precision−1 = 2TP

2TP + FP + FN

Fβ score (↑): (1 + β2) Precision × Recall
β2Precision + Recall

Fowlkes–Mallows index (↑): Recall1/2 × Precision1/2

Many other creative scores. . .
but they are hard to interpret (and to optimize directly)!
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MetricsScoring – Binary Classification

So
ur

ce
:

W
ik
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ed

ia

Receiving Operator Curve (ROC)
Threshold choice in binary classification (probability/surrogate predictor).
Transition between the two trivial predictors: always answer 0 and always answer
1.
ROC: visualization of this tradeoff by showing the True Positive Rate with respect
to the False Positive Rate.
Each point correspond to a choice for the threshold and thus a different predictor.

This curve is convex for the ideal Bayes predictor, but may not be convex for a
trained one.
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MetricsScoring – Binary Classification

So
ur

ce
:

W
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Area Under the Curve (AUC)
AUC (Area Under the (RO) Curve) (↑):global performance measure for the family
of predictors and not of a single predictor!
AUC = 1 for a family of perfect predictors vs .5 for a family of random ones
Variations: Localization to a FPR/TPR band, other tradeoff curve. . .

Probabilistic interpretation of the AUC :
P
(
f (X0) ≤ f (X1)

∣∣∣Y0 = 0, Y1 = 1
)
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MetricsScoring – Multiclass Classification
Truth

1 · · · K

Prediction
1
... cj,k

K

Multiclass Extension
No straightforward extension of the binary criterion.
Heuristic: Look at the multiclass classification as K binary classification problems.
Macro approach:

Compute (weighted) average criterion over all problems.
Micro approach:

Define the TP/FP/FN as the total number of true positive/false positive/false
negative in the K binary classification number and let TN = 0
Compute the score using the formula for binary classification. . .

No natural unique score in multiclass. . .
74



MetricsScoring – Regression

Classical scores
Classical losses. . .
True (weighted) ℓp norm (RMSE for p = 2/MAR for p = 1):(∑

wi∥Yi − f (Xi)∥p
)1/p

Same optimization than without the p root, but easier comparison between norms.
Losses that were complex to optimize but easy to compute:
ℓ(Y , f , X ) = 2∥Y − f (X )∥p/(∥Y ∥p + ∥f (X )∥p),. . .
Variance/Moments/Quantiles of a loss.
. . .

Lots of flexibility in the design!
Allow to have different views on the same predictor.
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MetricsMetrics – More settings. . .

Multi-step time-series
Metric obtained as average over several time-steps

Permutation/Ranking
Relaxation of the optimization with optimal transport (surrogate predictor target).

Segmentation
Specific score: Jacard/IOU: ℓ(Y , f (X )) = |Y ∩ f (X )|/(Y ∪ f (X ))|
Lovász-Softmax (convex) relaxation and direct optimization. . .

. . .
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MetricsBonus – Calibration

So
ur

ce
:

Sc
ik

it
Le

ar
n

Can we believe the probabilities given by a classifier or build them?

Probability Calibration
Learn a mapping P from the raw probability or the surrogate predictor to a better
probability prediction
Target:

Ideal calibration: P(f (X )) = P(Y = 1|X )
Perfect calibration: P(f (X )) = P

(
Y = 1|f̄ (X )

)
Averaged (empirical) criterion: average conditional likelihood, average L2 loss
(Brier).
Shape for P: sigmoid (Platt), isotonic (non decreasing),. . . 77



MetricsMetrics and Not-Supervised Learning

Metrics are everywhere!
Much harder to define outside the supervised setting!

Clustering/Dimension Reduction
Almost as many metrics as algorithms. . .
Hard to relate universal metrics to the use case.
Better use global task-oriented metrics than clustering/DS-task ones!

Generative
How to assess the quality?
Fidelity or quality?
Importance of human-based metrics!
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Dimension ReductionOutline

1 Unsupervised Learning?
2 A Glimpse on Unsupervised Learning

Clustering
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Other Approaches
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7 Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

8 References
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Dimension ReductionDimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing
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Dimension ReductionDimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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Dimension ReductionOutline

1 Unsupervised Learning?
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Contiguity Approaches
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8 References
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Dimension ReductionHow to Simplify?
A Projection Based Approach

Observations: X 1, . . . , Xn ∈ Rd

Simplified version: Φ(X 1), . . . , Φ(Xn) ∈ Rd with Φ an affine projection preserving
the mean Φ(X ) = P(X − m) + m with P⊤ = P = P2 and m = 1

n
∑

i X i .

How to choose P?
Inertia criterion: max

P

∑
i ,j

∥Φ(X i) − Φ(X j)∥2?

Reconstruction criterion:
min

P

∑
i

∥X i − Φ(X i)∥2?

Relationship criterion:
min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2?

Rk: Best solution is P = I! Need to reduce the rank of the projection to
d ′ < d . . . 83



Dimension ReductionInertia criterion
Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia
Inertia:

I = 1
2n2

∑
i ,j

∥X i − X j∥2 = 1
n

n∑
i=1

∥X i − m∥2

2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

Criterion: max
P

∑
i ,j

1
2n2 ∥PX i − PX j∥2 = max

P

1
n
∑

i
∥PX i − m∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤
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Dimension ReductionFirst Component of the PCA
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X̃ = m + a⊤(X − m)a with ∥a∥ = 1

Inertia: 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a

Principal Component Analysis: optimization of the projection

Maximization of Ĩ = 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a = a⊤Σa with

Σ = 1
n

n∑
i=1

(X i − m)(X i − m)⊤ the empirical covariance matrix.

Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ.
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Dimension ReductionPCA
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Principal Component Analysis : sequential optimization of the projection
Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of Σ.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are much more important
than others.
Not exactly the curse of dimensionality setting. . .
Yet a lot of small dimension can drive the distance!
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Dimension ReductionReconstruction Criterion

Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

Criterion: min
P

∑
i

1
n∥X i − (P(X i − m) + m)∥2 = min

P

1
n
∑

i
∥(I − P)(X i − m)∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Proof (Pythagora):∑

i
∥X i − m∥2 =

∑
i

(
∥P(X i − m)∥2 + ∥(I − P)(X i − m)∥2

)
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Dimension ReductionPCA, Reconstruction and Distances
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Individu 2
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Close projection doesn’t mean close individuals!
Same projections but different situations.
Quality of the reconstruction measured by the angle with the projection space!
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Dimension ReductionRelationship Criterion

Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)
Criterion: min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Much more involved justification!
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Dimension ReductionLink with SVD
PCA model: X − m ≃ P(X − m)
Prop: P = VV ⊤ with V an orthormal family in dimension d of size d ′.
PCA model with V : X − m ≃ VV ⊤(X − m) where X̃ = V ⊤(X − m) ∈ Rd ′

Row vector rewriting: X⊤ − m⊤ ≃ X̃⊤V ⊤

Matrix Rewriting and Low Rank Factorization
Matrix rewriting

X 1
⊤ − m⊤

...

...
Xn

⊤ − m⊤

(n×d)

≃

X̃ 1
⊤

...

...
X̃n

⊤

(n×d ′)

V⊤

(d ′×d)

Low rank matrix factorization! (Truncated SVD solution. . . )
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Dimension ReductionSVD

SVD Decomposition
Any matrix n × d matrix A can be decomposed as

A

(n×d)

= U

(n×n)

D

(n×d)

W⊤

(d×d)

with U and W two orthonormal matrices and D a diagonal matrix with decreasing
values.
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Dimension ReductionSVD
Low Rank Approximation

The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

(n×d)

≃ Ur

(n×r)

Dr ,r
(r×r)

Wr
⊤

(r×d)

for both the operator norm and the Frobenius norm!
PCA: Low rank approximation with Frobenius norm, d ′ = r and

X 1
⊤ − m⊤

...

...
Xn

⊤ − m⊤

 ↔ A,


X̃ 1

⊤

...

...
X̃n

⊤

 ↔ UrDr ,r , V⊤ ↔ W⊤
r
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Dimension ReductionSVD

SVD Decompositions
Recentered data:

R =


X 1

⊤ − m⊤

...
Xn

⊤ − m⊤

 = UDW ⊤

Covariance matrix:
Σ = R⊤R = WD⊤DW

with D⊤D diagonal.
Gram matrix (matrix of scalar products):

G = RR⊤ = UDD⊤U
with DD⊤ diagonal.

Those are the same U, W and D, hence the link between all the approaches.
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Dimension ReductionReconstruction Error Approach

Goal
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Canonical example for X ∈ Rd : find Φ and Φ̃ in a parametric family that minimize
1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2
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Dimension ReductionPrincipal Component Analysis

X ∈ Rd and X ′ = Rd ′

Affine model X ∼ m +
∑d ′

l=1 X ′(l)V (l) with (V (l)) an orthonormal family.
Equivalent to:

Φ(X ) = V ⊤(X − m) and Φ̃(X ′) = m + V X ′

Reconstruction error criterion:
1
n

n∑
i=1

∥X i − (m + VV ⊤(X i − m)∥2

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d ′ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix 1

n
∑n

i=1(X i − m)(X i − m)⊤.
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Dimension ReductionPrincipal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
∑n

i=1 X i

Compute the empirical covariance matrix 1
n
∑n

i=1(X i − m)(X i − m)⊤.
Compute the d ′ first eigenvectors of this matrix: V (1), . . . , V (d ′)

Set Φ(X ) = V ⊤(X − m)

Complexity: O(n(d + d2) + d ′d2)
Interpretation:

Φ(X ) = V ⊤(X − m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Dimension ReductionDecathlon
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Dimension ReductionSwiss Roll
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Dimension ReductionPrincipal Component Analysis

Decathlon Decathlon Swiss Roll
Renormalized
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Dimension ReductionMultiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X ∈ {1, . . . , V } 7→ P(X ) =
(
1X=1, . . . , 1X=V

)⊤
Compute the mean (i.e. the empirical proportions): P = 1

n
∑n

i=1 P(X i)

Renormalize P(X ) by 1/
√

(V − 1)P:

P(X ) =
(
1X=1, . . . 1X=V

)
7→

 1X=1√
(V − 1)P1

, . . . ,
1X=V√

(V − 1)PV
= Pr (X )


χ2 type distance!
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Dimension ReductionMultiple Factor Analysis

PCA becomes the minimization of
1
n

n∑
i=1

∥Pr (X i) − (m + VV ⊤(Pr (X i) − m))∥2

= 1
n

n∑
i=1

V∑
v=1

∣∣∣1X i =v − (m′ +
∑d ′

l=1 V (l)⊤(P(X i) − m′)V (l ,v))
∣∣∣2

(V − 1)Pv

Interpretation:
m′ = P
Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ′V 2)
Link with Correspondence Analysis (CA)
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Dimension ReductionMultiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/χ2 metric.
Interpretation:

Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Dimension ReductionMultiple Factor Analysis
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Dimension ReductionNon Linear PCA

PCA Model
PCA: Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) orthonormal
X ′,(l) without constraints.

Two directions of extension:
Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
PCA on a non-linear image of X : kernel-PCA

Much more complex algorithm!
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Dimension ReductionNon Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints.
X ′,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) non-negative
X ′,(l) non-negative.
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Dimension ReductionNon Linear PCA
Dictionary

(Linear) Model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints
X ′ sparse (with a lot of 0)

kernel PCA
Linear model assumption

Ψ(X − m) ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) orthonormal
X ′

l without constraints.
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Dimension ReductionNon Linear PCA

Decathlon

Swiss Roll

ICA NMF Kernel PCA
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Dimension ReductionAuto Encoder

Deep Auto Encoder
Construct a map Φ with a NN from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ with a NN from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X )):

1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2

Optimization by gradient descent.
NN can be replaced by another parametric function. . .
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Dimension ReductionDeep Auto Encoder

Shallow Auto Encoder Deep Auto Encoder
(PCA)
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Dimension ReductionPairwise Relation
Different point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X ) = X ′

such that
R(X i , X j) ∼ R′(X ′

i , X ′
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i − m)⊤(X j − m)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean scalar product matching:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − X ′
i
⊤X ′

j

∣∣∣2
Φ often defined only on D. . . 112



Dimension ReductionMultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − X i
′⊤X ′

j

∣∣∣2
Linear method: X ′ = U⊤(X − m) with U orthonormal

Beware: X can be unknown, only the scalar products are required!
Resulting criterion: minimization in U⊤(X i − m) of

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − (X i − m)⊤UU⊤(X j − m)
∣∣∣2

without using explicitly X in the algorithm. . .
Explicit solution obtained through the eigendecomposition of the know Gram
matrix (X i − m)⊤(X j − m) by keeping only the d ′ largest eigenvalues.
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Dimension ReductionMultiDimensional Scaling

In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

⊤X (n) ∼ X (n)
⊤UU⊤X (n)

PCA
X (n)X (n)

⊤ ∼ U⊤X (n)X (n)
⊤U

Complexity: PCA O((n + d ′)d2) vs MDS O((d + d ′)n2). . .
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Dimension ReductionMultiDimensional Scaling

Decathlon

Swiss Roll

PCA MDS
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Dimension ReductionGeneralized MDS

Preserving the scalar products amounts to preserve the Euclidean distance.
Easier generalization if we work in terms of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean matching:

1
n2

n∑
i=1

n∑
j=1

∣∣d(X i , X j) − d ′(X ′
i , X ′

j)
∣∣2

Strong connection (but no equivalence) with MDS when d(x , y) = ∥x − y∥2!
Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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Dimension ReductionISOMAP

MDS: equivalent to PCA (but more expensive) if d(x , y) = ∥x − y∥2!
ISOMAP: use a localized distance instead to limit the influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a distance or a number of
points) and let

d0(X i , X j) =
{

+∞ if X j /∈ Ni

∥X i − X j∥2 otherwise
Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance
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Dimension ReductionISOMAP

Decathlon Swiss Roll
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Dimension ReductionRandom Projection

Random Projection Heuristic
Draw at random d ′ unit vector (direction) Ui .
Use X ′ = U⊤(X − m) with m = 1

n
∑n

i=1 X i

Property: If X lives in a space of dimension d ′′, then, as soon as, d ′ ∼ d ′′ log(d ′′),

∥X i − X j∥2 ∼ d
d ′ ∥X ′

i − X ′
j∥2

Do not really use the data!
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Dimension ReductionRandom Projection

Decathlon Swiss Roll
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Dimension Reductiont-Stochastic Neighbor Embedding
SNE heuristic

From X i ∈ X , construct a set of conditional probability:

Pj|i = e−∥X i −X j ∥2/2σ2
i∑

k ̸=i e−∥X i −Xk∥2/2σ2
i

Pi |i = 0

Find X ′
i in Rd ′ such that the set of conditional probability:

Qj|i = e−∥X ′
i −X ′

j ∥2/2σ2
i∑

k ̸=i e−∥X ′
i −X ′

k∥2/2σ2
i

Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ∥X ′
i − X ′

j∥2)−1 for X ′
i

Minimize the Kullback-Leibler divergence (
∑
i ,j

Pj|i log
Pj|i
Qj|i

) by a simple gradient

descent (can be stuck in local minima).
Parameters σi such that H(Pi) = −

∑n
j=1 Pj|i log Pj|i = cst.

121



Dimension Reductiont-Stochastic Neighbor Embedding

Decathlon Swiss Roll
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Dimension Reductiont-Stochastic Neighbor Embedding

Very successful/ powerful technique in practice
Convergence may be long, unstable, or strongly depending on parameters.
See this distill post for many impressive examples
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Representation depending on t-SNE parameters
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Dimension ReductionUMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymmetric scaled local proximity between neighbors:

Compute the k-neighborhood of X i , its diameter σi and the distance ρi between X i
and its nearest neighbor.
Define

wi(X i , X j) =
{

e−(d(X i ,X j )−ρi )/σi for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i) − wi(X i , X j)wj(X j , X i)

Determine the points X ′
i in a low dimensional space such that∑

i ̸=j
w(X i , X j) log

(
w(X i , X j)
w ′(X ′

i , X ′
j)

)
+ (1 − w(X i , X j)) log

(
(1 − w(X i , X j))
(1 − w ′(X ′

i , X ′
j))

)

Can be performed by local gradient descent. 124



Dimension ReductionUMAP

Decathlon Swiss Roll
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Dimension ReductionGraph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the proximity of X i and X j
(wi ,j large if close and 0 if there is no information).
Find the points X ′

i ∈ Rd ′ minimizing
1
n

1
n

n∑
i=1

n∑
j=1

wi ,j∥X ′
i − X ′

j∥2

Need of a constraint on the size of X ′
i . . .

Explicit solution through linear algebra: d ′ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D − W , where D is a diagonal matrix with
Di ,i =

∑
j wi ,j .

Variation on the definition of the Laplacian. . .
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Dimension ReductionGraph

Decathlon Swiss Roll
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Dimension ReductionHow to Compare Different Dimensionality Reduction
Methods ?

Difficult! Once again, the metric is very subjective.

However, a few possible attempts
Did we preserve a lot of inertia with only a few directions?
Do those directions make sense from an expert point of view?
Do the low dimension representation preserve some important information?
Are we better on subsequent task?
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Dimension ReductionA Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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Dimension ReductionA Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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Dimension ReductionA Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used. 130



Dimension ReductionA Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Dimension ReductionA Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Dimension ReductionA Simpler Example: A 2D Set

Original PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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ClusteringClustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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ClusteringClustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!
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ClusteringPartition Based
Partition Heuristic

Clustering is defined by a partition in K classes. . .
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
n∑

i=1
min

k
∥X i − µk∥2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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ClusteringPartition Based
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ClusteringPartition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to a new cluster.
Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and keep the best result!

Complexity : O(n × K × T ) where T is the number of steps in the algorithm.
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ClusteringPartition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

Complexity
PAM: O(n2 × T ) in the worst case!
Approximate medoid: O(n × K × T ) where T is the number of steps in the
algorithm.

Remark: Any distance can be used. . . but the complexity of computing the
centers can be very different.
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ClusteringK-Means

k = 4 k = 10 k = 10
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ClusteringModel Based

Model Heuristic
Use a generative model of the data:

P(X ) =
K∑

k=1
πkPθk (X |k)

where πk are proportions and Pθ(X |k) are parametric probability models.
Estimate those parameters (often by a ML principle).
Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)

π̂kPθ̂k
(X |k)∑K

k′=1 π̂k′P
θ̂k′

(X |k ′)

Link with Generative model in supervised classification!
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ClusteringModel Based

A two class example
A mixture π1f1(X ) + π2f2(X )

and the posterior probability πi fi(X )/(π1f1(X ) + π2f2(X ))

Natural class assignment!
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ClusteringModel Based

Sub-population estimation
A mixture π1f1(X ) + π2f2(X )

Two populations with a parametric distribution fi .

Most classical choice: Gaussian distribution

Gaussian Setting
X 1, . . . , X n independent

X i ∼ N(µ1, σ2
1) with probability π1 or X i ∼ N(µ2, σ2

2) with probability π2

We don’t know the parameters µi , σi , πi .

We don’t know from which distribution each X i has been drawn.
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ClusteringModel Based

Maximum Likelihood
Density: π1Φ(X , µ1, σ2

1) + π2Φ(X , µ2, σ2
2)

log-likelihood: L(θ) =
n∑

i=1
log
(
π1Φ(X i , µ1, σ2

1) + π2Φ(X i , µ2, σ2
2)
)

No straightforward way to optimize the parameters!

What if algorithm
Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood:
n∑

i=1
Zi log Φ(X i , µ1, σ2

1) + (1 − Zi) log Φ(X i , µ2, σ2
2)

Easy optimization. . . but the Zi are unknown!
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ClusteringModel Based

What if algorithm
Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood:
n∑

i=1
Zi log Φ(X i , µ1, σ2

1) + (1 − Zi) log Φ(X i , µ2, σ2
2)

Easy optimization. . . but the Zi are unknown!

Bootstrapping Idea
Replace Zi by its expectation given the current estimate.

E[Zi ] = P(Zi = 1|θ) (A posteriori probability)

and iterate. . .

Can be proved to be good idea!
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ClusteringModel Based

EM Algorithm
(Random) initialization: µ0

i , σ0
i , π0

i .
Repeat:

Expectation (Current a posteriori probability):

Et [Zi ] = P
(
Zi = 1|θt) = πt

1Φ(X i , µt
1, (σt

1)2)
πt

1Φ(X i , µt
1, (σt

1)2) + πt
2Φ(X i , µt

2, (σt
2)2)

Maximization of
n∑

i=1

Et [Zi ] log Φ(X i , µ1, σ2
1) + Et [1 − Zi ] log Φ(X i , µ2, σ2

2)

to obtain µt+1
i , σt+1

i , πt+1
i .
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ClusteringModel Based

Large choice of parametric models.

Gaussian Mixture Model
Use

Pθk

(
X⃗ |k

)
∼ N(µk , Σk)

with N(µ, Σ) the Gaussian law of mean µ and covariance matrix Σ.

Efficient optimization algorithm available (EM)
Often some constraints on the covariance matrices: identical, with a similar
structure. . .
Strong connection with K -means when the covariance matrices are assumed to be
the same multiple of the identity.
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ClusteringModel Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P(w) =
K∑

k=1
πkPθk (w |k)

with k the (hidden) topic, πk a topic probability and Pθk (w |k) a multinomial law
for a given topic.
Clustering according to

P(k|w) =
π̂kPθ̂k

(w |k)∑
k′ π̂k′P

θ̂k′
(w |k ′)

Same idea than GMM!
Bayesian variant called LDA.
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ClusteringModel Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies. . .
Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K . . . ):

AIC / BIC / MDL penalization
Cross Validation is also possible!

Complexity: O(n × K × T )
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ClusteringGaussian Mixture Models

k = 4 k = 10 k = 10
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Clustering(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density.

Density estimation:
Classical kernel density estimators. . .

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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Clustering(Non Parametric) Density Based

Concepts

2 paramètres:
� Eps: rayon maximum de voisinage

� MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans

son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  

appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 

n’existe pas

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples
DBSCAN: link point of high densities using a very simple kernel.

PdfCLuster: find connected zone of high density.

Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

Complexity: O(n2 × T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in a tree structure
(n-body problem type approximation).
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ClusteringDBSCAN

ϵ = .45 ϵ = .2 ϵ = .1
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ClusteringAgglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters. . .
according to some greedy criterion ∆.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choices for the merging criterion. . .
Examples:

Minimum Linkage: merge the closest cluster in term of the usual distance
Ward’s criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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ClusteringAgglomerative Clustering
Algorithm

Start with (C(0)
i ) = ({X i}) the collection of all singletons.

At step s, we have n − s clusters (C(s)
i ):

Find the two most similar clusters according to a criterion ∆:
(i , i ′) = argmin

(j,j′)
∆(C(s)

j , C(s)
j′ )

Merge C(s)
i and C(s)

i′ into C(s+1)
i

Keep the n − s − 2 other clusters C(s+1)
i′′ = C(s)

i′′

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given cluster,
for the most classical distances by maintaining a nearest neighbors list.
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ClusteringAgglomerative Clustering
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Merging criterion based on the distance between points
Minimum linkage:

∆(Ci , Cj) = min
X i ∈Ci

min
X∈Cj

d(X i , X j)

Maximum linkage:
∆(Ci , Cj) = max

X i ∈Ci
max
X∈Cj

d(X i , X j)

Average linkage:
∆(Ci , Cj) = 1

|Ci ||Cj |
∑

X i ∈Ci

∑
X∈Cj

d(X i , X j)

Clustering based on the proximity. . .
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ClusteringAgglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

∆(Ci , Cj) =
∑

X i ∈Ci

(
d2(X i , µCi ∪Cj ) − d2(X i , µCi )

)
+
∑

X j ∈Cj

(
d2(X j , µCi ∪Cj ) − d2(X j , µCj )

)
If d is the Euclidean distance:

∆(Ci , Cj) = 2|Ci ||Cj |
|Ci | + |Cj |

d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy optimization.
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ClusteringAgglomerative Clustering

Single

Complete

Ward

Dendogram k = 4 k = 10 k = 20 160
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ClusteringGrid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type
assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)
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ClusteringOthers

Graph based
Graph of nodes (Xi) with edges strength related to d(Xi , Xj).
Several variations:

Spectral clustering: dimension reduction based on the Laplacian of the graph +
k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.
. . .

Kohonen Map (incorporating some spatial information),
. . .
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ClusteringScalability

Large dataset issue
When n is large, a O(nα log n) with α > 1 is not acceptable!
How to deal with such a situation?

Beware: Computing all the pairwise distance requires O(n2) operations!

Ideas
Sampling
Online processing
Simplification
Parallelization
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ClusteringSampling

Sampling heuristic
Use only a subsample to construct the clustering.
Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . . )
Often repetition and choice of the best clustering
Example:

CLARA: K-medoid with sampling and repetition
Two-steps algorithm:

Generate a large number n′ of clusters using a fast algorithm (with n′ ≪ n)
Cluster the clusters with a more accurate algorithm.
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ClusteringOnline

Online heuristic
Modify the current clusters according to the value of a single observation.

Requires compactly described clusters.
Examples:

Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
Stochastic descent gradient (GMM)

May leads to far from optimal clustering.
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ClusteringSimplification

Simplification heuristic
Simplify the algorithm to be more efficient at the cost of some precision.

Algorithm dependent!
Examples:

Replace groups of observation (preliminary cluster) by the (approximate) statistics.
Approximate the distances by cheaper ones.
Use n-body type techniques.
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ClusteringParallelization

Parallelization heuristic
Split the computation on several computers.

Algorithm dependent!
Examples:

Distance computation in k-means, parameter gradient in model based clustering
Grid density estimation, Space splitting strategies

Classical batch sampling not easy to perform as partitions are not easily merged. . .
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Generative ModelingGenerative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P).
Same kind of data than for supervised learning if X ̸= ∅.

Generative Modeling
Construct a map G from the product of X and a randomness source Ω to Y

G :X × Ω → Y
(X , ω) 7→ Y

Unconditional model if X = ∅. . .

Motivation
Generate plausible novel onditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(X , ω) and the law of Y |X .

Most classical choice is the Kullback-Leibler divergence.
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Generative ModelingGenerative Modeling

Ingredients
Generator Gθ(X , ω) and cond. density prob. Pθ(Y |X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 172



Generative ModelingGenerators

Ỹ = G(X , ω) ?

Small abuse of notations. . .
More an algorithm than a map!

Generators
One step: ω ∼ Q̃(·|X ) and Ỹ = G(X , ω).
Several steps:

ω0 ∼ Q̃0(·|X ) and X̃0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1(·|X , Ỹt) and Ỹt+1 = Gt+1(X , Ỹy , ωt+1)

Fixed or variable number of steps.
Fixed or variable dimension for Ỹt and ωt . . .

Q̃ (or Q̃t) should be easy to sample.
Most of the time, parametric representations for Q̃ (or Q̃t) and G (or Gt). 173
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Generative ModelingWarmup: Density Estimation and Generative
Modeling

X ∼ P with dP(x) = p(x)dλ −→ X̃ ∼ P̃ with dP̃(x) = p̃(x)dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample X1, . . . , Xn.
Simulate X̃ having a law P̃.

By construction, if p̃ is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Generative ModelingWarmup: Parametric Density Estimation

X ∼ P(·) with dP(x) = p(x)dλ −→ X̃ ∼ P̃θ̃ with dP̃θ̃(x) = p̃θ̃(x)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample X1, . . . , Xn.

Simulate X̃ having a law P̃
θ̃
.

By construction, if p̃
θ̃

is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
Which family P̃?
How to simulate P̃

θ̃
? Parametric? Iterative?

Corresponds to ω ∼ P̃
θ̃

and X̃ = G(ω) = ω
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Generative ModelingConditional Density Est. and Generative Modeling

Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample (X1, Y1), . . . , (Xn, Yn).
Simulate Ỹ |X having a law P̃(·|X ).

By construction, if p̃ is close from p, the law of Ỹ |X will be close from the law of
Y |X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Generative ModelingParametric Conditional Density Estimation
Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃
θ̃(X) with dP̃θ(X)(y) = p̃θ(X)(y)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample

(X1, Y1), . . . , (Xn, Yn) where θ̃ is now a function of X .
Simulate Ỹ |X having a law P̃

θ̃(X)

If p̃
θ̃

is close from p, the law of Ỹ |X will be close from the law of Y |X .

Issue: How to do it?
Which family P̃? Which function family for θ̃?
How to simulate P̃

θ̃(Y )? Parametric? Iterative?

Corresponds to ω ∼ Q̃(·|X ) = P̃
θ̃(X) and Ỹ = G(X , ω) = ω 178



Generative ModelingDirect Parametric Conditional Density Estimation

ω ∼ Q̃θ̃(X ) ∼ q̃θ̃(X )(y)dλ and Ỹ |X = G(X , ω) = ω

Estimation
By construction,

dP(Ỹ |X ) = q̃θ̃(X)(y)dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(Yi)

Simulation
P̃ has been chosen so that this distribution is easy to sample. . .

Possible families: Gaussian, Multinomial, Exponential model. . .
Possible parametrizations for θ̃: linear, neural network. . .
Limited expressivity! 179



Generative ModelingInvertible Transform

ω ∼ Q̃
θ̃(X) ∼ q̃

θ̃(X)(y)dλ and Ỹ |X = G(ω) with G invertible.

Estimation
By construction,

dP̃
(
G−1(Ỹ )|X

)
= q̃θ̃(X)(G

−1(y))dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(G
−1(Yi))

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Possible transform G : Change of basis, known transform. . .
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Generative ModelingFlow
ω ∼ Q̃

θ̃(X) = q̃
θ̃(X)(y)dλ and Ỹ |X = G

θ̃G (X)(ω) with Gθ invertible.

Estimation
By construction,

dP̃
(
Ỹ |X

)
= |JacG−1

θ̃G (X)
(y)|q̃θ̃(X)(G

−1
θ̃G (X)

(y))dλ

where JacG−1
θG (X)(y) is the Jacobian of G−1

θG (X) at y
Maximum Likelihood approach:

θ̃, θ̃G = argmax
θ,θG

n∑
i=1

(
log |JacG−1

θG (Xi )(Yi)| + log q̃θ(Xi )(G
−1
θG (Xi )(Yi))

)

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Often, in practice, θ̃(X ) is independent of X . . .
Main issue: Gθ, its inverse and its Jacobian should be easy to compute.
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Generative ModelingPossible Flows
Gθ?

Main issue: Gθ, its inverse and its Jacobian should be easy to compute.

Flow Models
Composition

Gθ = GθT ◦ GθT−1 ◦ Gθ1 ◦ Gθ0

|JacG−1
θ | =

∏
|JacG−1

θi
|

Real NVP

Gθ(y) =



y1
...

yd ′

yd ′+1esd′+1(y1,...,d′ ) + td(y1,...,d ′)
...

ydesd (y1,...,d′ + td(y1,...,d ′)


→ G−1

θ (y) =



y1
...

yd ′

(yd ′+1 − td(y1,...,d ′))e−sd′+1(y1,...,d′ )+
...

(yd − td(y1,...,d ′))e−sd (y1,...,d′ )


→ |JacG(y)−1| =

d∏
d ′′=d ′+1

e−sd′′ (y1,...,d′ )

Combined with permutation along dimension or invertible transform across
dimension.

Not that much flexibility. . . 182



Generative ModelingFactorization
ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(ω0)
ωt+1 ∼ Q̃t+1

(
·|X , (Ỹl)l≤t

)
and Ỹt+1 = Gt+1(X , (Ỹl)l≤t , ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Factorization
Amounts to use a factorized representation

P̃
(
Ỹ |X

)
=

∏
0≤t<d

P̃
(
Ỹt |X , (Ỹl)l<t

)
Q̃t and Gt can be chosen as in the plain conditional density estimation case as the
Yt,i are observed.

Estimation
d generative models to estimate instead of one.

Simple generator by construction.
Can be combined with a final transform. 183



Generative ModelingSequence and Markov Model

ωt+1 ∼ Q̃
(
·|X , (Ỹl)t≥l≥t−o

)
and Ỹt+1 = G(X , (Ỹl)t≥l≥t−o, ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Sequence and Markov Models
Sequence: sequence of similar objects with a translation invariant structure.
Translation invariant probability model of finite order (memory) o.
Requires an initial padding of the sequence.

Faster training as the parameters are shared for all t.
Model used in Text Generation!
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Generative ModelingLarge Language Model

Large Language Model (Encoder Only)
Sequence Model for tokens (rather than words) using a finite order (context).
Huge deep learning model (using transformers).
Trained on a huge corpus (dataset) to predict the next token. . .

Plain vanilla generative model?

Alignement
Stochastic parrot issue:

Pure imitation is not necessarily the best choice to generate good text.
Need also to avoid problematic prediction (even if they are the most probable given
the corpus)

Further finetuning on the model based on the quality of the output measured by
human through comparison of version on tailored input (RLHF).
Key for better quality.

RLHF: Reinforcement Learning by Human Feedback 185
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Generative ModelingLatent Variable

ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(X , ω0)
ω1 ∼ Q̃1

(
·|X , Ỹ0

)
and Ỹ1 = G1(X , ω0)

Ỹ = Ỹ1
Most classical example:

Gaussian Mixture Model with Ỹ0 = ω0 ∼ M(π) and Ỹ = ω1 ∼ N(µỸ0
, ΣỸ0

).

Estimation
Still a factorized representation

P̃
(
Ỹ1, Ỹ0|X

)
= P̃0

(
Ỹ0|X

)
P̃1
(
Ỹ1|X , Ỹ0

)
but only Ỹ1 is observed.
Much more complex estimation!

Simple generator by construction provided that the Q̃t are easy to simulate.
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Generative ModelingLog Likelihood and ELBO

log p̃(Ỹ |X ) = logEP̃
(

Ỹ0|X ,Ỹ
)[p̃(Ỹ , Ỹ0|X )

]
= sup

R(·|X ,Ỹ ])
ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

ELBO

Need to integrate over Ỹ0 using the conditional law P̃
(
Ỹ0|X , Ỹ

)
, which may be

hard to compute.

Evidence Lower BOund
Using log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log
(
p̃(Ỹ , Ỹ0|X )/p̃(Ỹ0|X , Ỹ )

)]
,

log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
− KLỸ0

(R(Ỹ0|X , Ỹ ), P̃
(
Ỹ0|X , Ỹ

)
)

ELBO is a lower bound with equality when R(·|X , Ỹ ) = P̃
(
Ỹ0|X , Ỹ

)
.

Maximization over P̃ and R instead of only over P̃. . . 188



Generative ModelingELBO and Stochastic Gradient Descent

sup
P̃

EX ,Ỹ

[
log p̃(Ỹ |X )

]
= sup

P̃,R
EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
= sup

P̃,R
EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ |X , Ỹ0)

]
+ EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

E
X ,Ỹ[KL(R(·|X ,Ỹ ),P̃(Ỹ0|X))]

Parametric models for P̃(Ỹ0|X ), P̃(X̃ |X , Ỹ0) and R(Ỹ0|X , Ỹ ).

Stochastic Gradient Descent
Sampling on (X , Ỹ , Ỹ0 ∼ R) for EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
∇ log p̃(Ỹ |X , Ỹ0)

]
Sampling on (X , Y ) for EX ,Ỹ

[
∇ KL(R(·|X , Ỹ ), P̃(·|X ))

]
if closed formula.

Reparametrization trick for the second term otherwise. . .
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Generative ModelingReparametrization Trick
∇EZ [F (Z )]?

Z = G(ω) with ω ∼ Q(·) fixed −→∇EZ [F (Z )] = ∇Eω[F (G(ω))] = Eω[∇(F ◦ G)(ω)]

Reparametrization Trick
Define a random variable Z as the image by a parametric map G of a random
variable ω of fixed distribution Q.
Most classical case: Gaussian. . .
Allow to compute the derivative the expectation of a function of Z through a
sampling of ω.

Application for ELBO:
Ỹ0 = GR(X , X̃ , ωR) with ωR ∼ Q(·|X , Ỹ ) a fixed probability law.
Sampling on ω to approximate:
∇EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
= EX ,Ỹ ,ωR ∼Q(·|X ,Ỹ )

[
∇ log p̃(GR(X , Ỹ , ωR)|X ) − ∇ log r(GR(X , Ỹ , ωR)|X , Ỹ )

]
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Generative ModelingVariational Auto Encoder

Generation: Ỹ0 ∼ P̃(·|X ) decoder−−−−→ Ỹ ∼ P̃(·|X , Ỹ0))

Training: Y ∼ P(·|X ) encoder−−−−→ Y0 ∼ R(·|X , Y ) decoder−−−−→ X̃ ∼ P̃(·|X , Y0)

Variational Auto Encoder
Training structure similar to classical autoencoder. . . but matching on distributions
rather than samples.
Encoder interpretation of the approximate posterior R(·|X , Y ).
Implicit low dimension for Y0.
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Generative ModelingLatent Variables

ω0 ∼ Q̃0(·|Y ) and Ỹ0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1

(
·|X , Ỹt

)
and Ỹt+1 = Gt+1(X , Ỹt , ωt+1)

Ỹ = ỸT

Latent Variables
Deeper hierachy is possible. . .
ELBO scheme still applicable using decoders Ri

Ri(Ỹi |X , Ỹi+1) ≃ P̃
(
Ỹi |X , Ỹi+1

)
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Generative ModelingEnergy Based Model and MCMC Simulator

dP̃
(
Ỹ |X

)
∝eu(Ỹ ,X )dλ

−→ ωt+1 ∼ Q̃u
(
·|X , Ỹt

)
and Ỹt+1 = Gu(Y , Ỹt , ωt+1)

Ỹ ≃ lim Ỹt
Explicit conditional density model up to normalizing constant

Z (u, X ) =
∫

eu(X ,y)dλ(y)

Simulation
Several MCMC schemes to simulate the law without knowing Z (u, X )

Estimation
Not so easy as Z (u, X ) depends a lot on u.

MCMC: Monte Carlo Markov Chain 194



Generative ModelingMCMC Simulation - Metropolis-Hastings

ωt+1/2 ∼ Q̃u
(
·|Y , X̃t

)
X̃t+1/2 = ωt+1/2

ωt+1 =
{

1 with proba αt

0 with proba 1 − αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)Q̃u

(
Ỹt |X , Ỹt+1/2

)
eu(X ,Ỹt)Q̃u

(
Ỹt+1/2|X , Ỹt

)


Metropolis Hastings
Most classical algorithm.
Convergence guarantee under reversibility of the proposal.
Main issue is the choice of this proposal Q̃.

Many enhanced versions exist!
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Generative ModelingMCMC Simulation - Langevin

ωt+1/2 ∼ N(0, 1) Ỹt+1/2 = Yt + γt∇Ỹ u(X , Ỹt) +
√

2γtωt

ωt+1 =
{

1 with proba αt

0 with proba 1 − αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)e−∥Ỹt−Ỹt+1/2−γt∇

Ỹ
u(X ,Ỹt+1/2)∥2/γ2

t

eu(X ,Ỹt)e−∥Ỹt+1/2−Ỹt−γt∇
Ỹ

u(X ,Ỹt)∥2/γ2
t


Langevin

If γt = γ, Metropolis-Hasting algorithm.
With Ỹt+1 = Ỹt+1/2, convergence toward an approximation of the law.
Connection with SGD with decaying αt

Connection with a SDE: dỸ
dt = ∇Ỹ u(X , Ỹ ) +

√
2dBt where Bt is a Brownian

Motion. 196



Generative ModelingEBM Estimation

Y |X ∼ P(·|X ) −→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ ∝ eu(X ,y)dλ

Intractable log-likelihood:
log p̃(ỹ |X ) = u(X , ỹ) − log Z (u, X )

Estimation
Contrastive: simulate some P̃ at each step and use

∇ log p̃(ỹ |X ) = ∇u(X , ỹ) − ∇ log Z (X , u) = ∇u(X , ỹ) − EP̃

[
∇u(X , Ỹ )

]
Noise contrastive: learn to discriminate W = Y from
W = Y ′ ∼ R(·|X ) ∼ er(X ,y)dλ with the parametric approximation

P(W = Y |X ) ≃ eu(X ,y)

eu(X ,y) + Z̃ (u, X )er(X ,y)

Score based: learn directly s(·|X ) = ∇Ỹ u(X , ·) = ∇Y log p(·|X ).

197



Generative ModelingScore Based Method

E
[
∥∇Y log p(Y |X ) − s(Y |X )∥2

]
= E

[1
2∥s(Y |X )∥2 + tr ∇Y s(Y |X )

]
+ cst.

Score Based Method
Non trivial formula based on partial integration.
Hard to use in high dimension

Yσ = Y + σϵ −→E
[
∥∇Y log pσ(Yσ|X ) − sσ(Y |Xσ)∥2

]
= E

[
∥|∇Y log pσ(Yσ|X , Y ) − sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Connection to denoising through Tweedie formula for ϵ = N(0, 1)

E[Y |Yσ] = Yσ + σ2∇Y log pσ(Yσ|X , Y ) and thus sσ(Y |Xσ) ≃ E[Y |Yσ] − Yσ

σ2 198



Generative ModelingBetter Exploration with Annealing and Noisy Score

Ỹ ∼ eu(X ,Y )dλ −→ỸT ∼ e 1
T u(X ,Y )

Annealing
Simulate a sequence of ỸT starting with T large and decaying to 1.

Yσ = Y + σϵ −→E
[
∥∇Y log pσ(Yσ|X ) − sσ(Y |Xσ)∥2

]
= E

[
∥|∇Y log pσ(Yσ|X , Y ) − sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Simulate a noisy sequence of Ỹσ with σ decaying to 0.
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Generative ModelingNoisy Model: Generation and Corruption

Generation: Ỹ0 ∼ N(0, s2
0 ) → ωt ∼ N(0, 1) and Ỹt+1 = Ỹt + γtss2

t
(Ỹt |X ) +

√
2γtωt

Corruption: ωt ∼ N(0, 1) and Yt−1 = Yt + σtωt → Yt |YT ∼ N(YT , s2
t =

∑
t′≥t

σ2
t′)

Noisy Model
Approximate sequential Langevin approach to obtain Ỹ = ỸT ∼ P̃(Y |X ) from
Ỹ0 ∼ N(0, s2

T ).
Reverse construction is a sequence of noisy version Yt (corruption).
Each Yt is easily sampled from Y0 so that the scores us2

t
can be estimated.

Lot of approximations everywhere.
Dependency on X removed from now on for sake of simplicity.
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Generative ModelingDiffusion with a Forward Point of View
Forward: ωt ∼ N(0, 1) and Yt+δt = (1 + αtδt)Yt +

√
2βtδtωt

−→dY (t) = α(t)Y (t)dt +
√

2β(t)dB(t)

Forward diffusion from Ỹ (0) ∼ X to Ỹ (T )
Generalization of noisy model:

Y (t)|Y (0) = N
(

Y (0) exp
∫ t

0
α(u)du,

∫ t

0
2β(u) exp

(∫ t

u
α(v)dvdu

))
Reverse: dY (t) = (−2β(t)∇Y log P(Y , t) − α(t)Y (t)) dt +

√
2β(t)dB(t)

−→ ωt ∼ N(0, 1) and Yt−δt = (1 − αtδt)Yt + 2βt∇Y log p(Y , t)δt +
√

2βtδtωt

Reverse diffusion: from Ỹ (T )to Ỹ (0) ∼ X
Allow to sample back in time Yt |YT .
Quite involved derivation. . . but Langevin type scheme starting from YT .
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Generative ModelingNoise Conditioned Score and Denoising Diffusion

αt = 0 → Y (t)|Y (0) = N
(

Y (0), 2
∫ t

0
β(u)du

)
Noise Conditioned Score (Variance Exploding)

Direct extension of noisy model.
Better numerical scheme but numerical explosion for Y (t).

(1 + αtδt) =
√

1 − 2βtδt ≃ 1 − βtδt

−→ Y (t)|Y (0) = N
(

Y (0)e−
∫ t

0 β(u)du, 2
(

1 − e−
∫ t

0 β(u)
))

Denoising Diffusion Probabilistic Model (Variance Preserving)
Explicit decay of the dependency on P(Y ) and control on the variance.
Better numerical results.

Scores ∇Y log p(Y , t) estimated using the denoising trick as Y (t)|Y (0) is explicit.
Choice of β(t) has a numerical impact. 203



Generative ModelingNumerical Diffusion and Simulation

YT ∼ N(0, σ2
T )

→ ωt ∼ N(0, 1) and Yt−δt = (1 − αtδt)Yt + 2βts(x , t)δt +
√

2βtδtωt

→ Ỹ = Y0

Reverse indexing with respect to VAE. . .

Numerical Diffusion and Simulation
Start with a centered Gaussian approximation of XT .
Apply a discretized backward diffusion with the estimated score
s(x , t) ≃ ∇Y log p(Y , t)
Use Y0 as a generated sample.

Very efficient in practice.
Better sampling scheme may be possible.
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Generative ModelingA Possible Shortcut ?

Forward (SDE): dY (t) = α(t)Y (t)dt +
√

2β(t)dBt

Backward (ODE): dY (t) = (−2β(t)∇Y log P(Y , t) − α(t)Y (t)) dt

Deterministic Reverse Equation
If Y (T ) is initialized with the law resulting from the forward distribution, the
marginal of the reverse diffusion are the right ones.
No claim on the trajectories. . . but irrelevant in the generative setting.
Much faster numerical scheme. . . but less stable.

Stability results on the score estimation error and the numerical scheme exist for
both the stochastic and deterministic case.
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Generative ModelingConnection between Diffusion and VAE

Y ∼ P
R(Y1|Y )

GGGGGGGGGGGBFGGGGGGGGGGG

P(Y |Y1)
Y1

R(Y2|Y1)
GGGGGGGGGGGGBFGGGGGGGGGGGG

P(Y1|Y2)
Y2 . . .

R(Yt+1|Yt)
GGGGGGGGGGGGGBFGGGGGGGGGGGGG

P(Yt |Yt+1)
. . . YT−1

R(YT |YT−1)
GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

P(YT−1|YT )
YT ∼ PT

Gen. of Y from YT using P(Yt |Yt+1) with an encoder/forward diff. R(Yt+1|Yt).

Variational Auto-Encoder
PT is chosen as Gaussian.
Both generative P(Yt |Yt+1) and encoder R(Yt+1|Yt) have to be learned.

Approximated Diffusion Model
R(Yt+1|Yt) is known and PT is approximately Gaussian.
Generative P(Yt |Yt+1) has to be learned.
Same algorithm than with Diffusion but different (more flexible?) heuristic.

Denoising trick ≃ an ELBO starting from R(Yt+1|Yt) = R(Yt+1|Yt , Y ). . .
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Generative ModelingAnother Formula for the Score

∇Y logP(Y |X ) = ∇Y logP(X |Y ) − ∇Y logP(Y )

Classifier version of the score
Classifier: knowledge of P(X |Y ) (reverse problem)
Bayes formula:

P(Y |X ) = P(X |Y )P(Y )
P(X )

Consequence:
∇Y logP(Y |X ) = ∇Y logP(X |Y ) + ∇Y logP(Y )

Leads to
∇Y logP(Y |X ) → (1 − θ)∇Y logP(Y |X ) + θ (∇Y logP(X |Y ) + ∇Y logP(Y ))

Issue: Require two more probabilistic models P(X |Y ) and P(Y ) for the same
goal!

207



Generative ModelingGuidance

From ∇Y logP(Y |X ) to

γ∇Y logP(X |Y ) + ∇Y logP(Y ) (guidance)

γ∇Y logP(Y |X ) + (1 − γ)∇Y logP(Y ) (classifier-free guidance)

Guidance
Replace the score by

θY |X ∇Y logP(Y |X ) + θX |Y ∇Y logP(X |Y ) + θY ∇Y logP(Y )
Amount to sample from
P(Y |X )θY |X P(X |Y )θX |Y P(Y )θY /Z (X ) = P(X |Y )θX |Y +θY |X P(Y )θY +θY |X /Z ′(X )

Classical choices given above correspond to sample from
P(X |Y )γ P(Y ) /Z (X ) = P(X |Y )γ P(Y ) /Z ′(X )

Better visual result for images for γ > 1!
Raise the question of the target in generative modeling!
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Generative ModelingGenerative Adversarial Network

ω ∼ Q̃(·|X ) and Ỹ = G(X , ω)
Non density based approach

Can we optimize G without thinking in term of density (or score)?

(X , Y , Z ) =
(X , Y , 1) with proba 1/2

(G(X , ω), Y , 0) otherwise
GAN Approach

Can we guess Z with a discriminator D(X , X ) ?
No if G is perfect!
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Generative ModelingGAN Program

max
G

min
D

EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
min

D

(1
2EX ,Y [ℓ(D(X , Y ), 1)] + 1

2Eω[ℓ(D(X , G(Y , ω)), 0)]
)

Discrimination
Similar idea than the noise contrastive approach in EBM.
If ℓ is a convexification of the ℓ0/1 loss then the optimal classifier is given by

D(X , Y ) =
{

1 if p(Y |X ) > p̃(Y |X )
0 otherwise.

If ℓ is the log-likelihood
max

G
min

D
EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
log2 −EX

[
JKL1/2(p(·|X ), p̃(·|X ))

]
Direct (approximate) optimization using only samples (with the reparametrization
trick). 211



Generative ModelingExtensions to f Divergences

Df (P, Q) =
∫

f
(p(y)

q(y)

)
q(y)

= supTEY ∼P [T (Y )] − EG∼Q[f ⋆(T (G))]

f -GAN
Optimization of

min
G

sup
T

(EX ,Y [T (Y )] − Eω,X [f ⋆(T (G(X , ω)))])

Direct (approximate) optimization using only samples (with the reparametrization
trick).

Direct extension of the previous scheme.
T is not a discriminator, but there is an explicit link when f (u) = log(u).
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Generative ModelingWasserstein GAN

W (P, Q) = inf
ξ∈π(P,Q)

E(p,q)∼ξ[∥p − q∥]

= 1
K sup∥f ∥L≤KEY ∼P [f (Y )] − EG∼Q[f (G))]

Wasserstein GAN
Optimization of

min
G

sup
∥f ∥L≤1

EX ,Y [f (Y )] − Eω,X [f (G(ω, X ))]

Direct (approximate) optimization using only samples (with the reparametrization
trick).

More stability but hard to optimize on all the 1-Lipschitz functions.
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