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O Utl | ne Motivation, Supervised vs

Unsupervised Learning

e Motivation, Supervised vs Unsupervised
Learning



M Otlvatio n Motivation, Supervised vs

Unsupervised Learning

e Marketing: finding groups of customers with similar behavior given a large
database of customer data containing their properties and past buying records;

@ Biology: classification of plants and animals given their features;

o Libraries: book ordering;

e Insurance: identifying groups of motor insurance policy holders with a high
average claim cost; identifying frauds;

e City-planning: identifying groups of houses according to their house type, value
and geographical location;

@ Internet: document classification; clustering weblog data to discover groups of
similar access patterns.



M a rketl ng Motivation, Supervised vs

Unsupervised Learning

@ Data: Base of customer data containing their properties and past buying records
@ Goal: Use the customers similarities to find groups.

e Two directions:
e Visualization: propose a representation of the customers so that the groups are
visible
o Clustering: propose an explicit grouping of the customers
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DlmenSIOn Red UCtIOﬂ Motivation, Supervised vs

Unsupervised Learning

@ How to view a high-dimensional dataset?
@ High-dimension: dimension larger than 2!

@ Projection in a 2D space.
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Unsupervised Learning

DlmenSIOn Red UCtIOﬂ Motivation, Supervised vs X

@ How to view a high-dimensional dataset?
@ High-dimension: dimension larger than 2!

@ Projection in a 2D space.
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Dimension Reduction

@ How to view a high-dimensional dataset?
@ High-dimension: dimension larger than 2!

@ Projection in a 2D space.

Motivation, Supervised vs
Unsupervised Learning

Source: F. Belardi
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Unsupervised Learning

DlmenSIOn Red UCtIOﬂ Motivation, Supervised vs X

@ How to view a high-dimensional dataset?
@ High-dimension: dimension larger than 2!

@ Projection in a 2D space.
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M aCh i n e Lea rn | ng Motivation, Supervised vs

Unsupervised Learning
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A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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http://www.cs.cmu.edu/~tom/

Supervised Learning Mothation, Supervised v )R

Unsupervised Learning

Experience, Task and Performance measure
e Training data : D = {(X;, Y1),...,(X,, Yan)} (i.id. ~P)
@ Predictor: f : X — ) measurable
@ Cost/Loss function: ¢(f(X), Y) measure how well f(X) predicts Y
@ Risk:
R(F) =E [V, F(X))] = Ex [Ey)x [, F(X))]]

e Often ((f(X),Y) = |f(X)— Y|? or £(f(X),Y) = yr(x)

o Learn a rule to construct a classifier f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.
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Unsupervised Learning Motivation, Supervised vs

Unsupervised Learning

Experience, Task and Performance measure
e Training data: D= {X,,...,X,} (iid. ~DP)
e Task: 777

@ Performance measure: 777

@ No obvious task definition!

Tasks for this lecture

@ Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.

o Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.



DlmenSIOn Red UCtIOﬂ Motivation, Supervised vs

Unsupervised Learning

7

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X =X
X — o(X)

@ Map can be defined only on the dataset.

Motivations
@ Visualization of the data

@ Dimension reduction (or embedding) before further processing
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D | menSIOn Red UCtIOﬂ Motivation, Supervised vs 9 X

Unsupervised Learning

@ Need to control the distortion between D and (D) = {®(X;),...,P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X B

o Control the error between X and its reconstruction ®($(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;) and ®(X})
o Control the difference between those two relations.

@ Leads to different constructions. . ..
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Cl USte rl ng Motivation, Supervised vs

Unsupervised Learning

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

@ Similar to classification except:
e no ground truth (no given labels)
e label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing
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Cl USte rl ng Motivation, Supervised vs

Unsupervised Learning

@ Need to define the quality of the cluster.

@ No obvious measure!

Clustering quality
@ Inner homogeneity: samples in the same group should be similar.

@ Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.

Often based on the distance between the samples.

Example based on the Euclidean distance:

e Inner homogeneity = intra class variance,
e Outer inhomogeneity = inter class variance.

@ Beware: choice of the number of cluster K often complex!
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Bonus Task : Learning Representations Motivation, Supervised vs

Unsupervised Learning

@ General observation: most data do not have a label !

e Example: The number of images on which someone has described the content of
the image is a tiny fraction of the images online.

@ Labeling is very expensive and time consuming

@ A lot of information can be extracted from the structure of the data, before seeing
any label.

How can we leverage the large quantity of un-labeled data?

Learn relevant features (="representations”) in an unsupervised fashion

Use those features to solve a supervised task with a fraction of labeled data.

Semi-supervised framework

% Very useful in practice, for images, time series, text.

18



Sem i—SU perVised Fra m EWOI'k Motivation, Supervised vs

Unsupervised Learning

Data
X1 X2 Label

Partially _| M Supervised 08
Labelled Learning Model

Ml semi-Supervised < i
Learning Model 05 i

[l Unsupervised 04 ‘,'
Learning Model i

i

To
B i Percentage of labeled data

Mostly
Unlabeled |

@ With representation learned in an unsupervised fashion + a simple linear model,
one can achieve the same performance with 10% of data labeled than with a fully
annotated dataset.
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Unsupervised Learning is a Versatile Approach! Motivation, Supervised v
P g pp

Unsupervised Learning

@ A subjective measure of performance

@ Subjective choices for the algorithmic constraints (e.g., the type of transformation
of the data we allow for low-dimensional representation, type of groups in
clustering)

@ = Very difficult or impossible to tell which is the “best” method.

@ Yet:
e Extremely important in practice:

@ 90-99% of the data is un-labeled!
o the tasks themselves are fundamental

o Huge success in various fields (Text, Learning Representations, GANS, etc.)

20



Unsupervised Learning is a Versatile Approach! Motiation, Superised vs 2K

Unsupervised Learning

for the two main tasks

@ Discussing possible choices of measures of performance and algorithmic
constraints

@ Understand the correspondences between those choices and a variety of classical
algorithms

@ For the simplest algorithms (PCA, k-means), get a precise mathematical
understanding of the learning process.
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OUtllne A First Glimpse

© A First Glimpse
@ Clustering
@ Dimensionality Curse
o Simplification
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OUtllne A First Glimpse

© A First Glimpse
@ Clustering
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What's a group?

A First Glimpse

[ y X
[q . Cluster A i‘ 5\
o,

Final i
Boundary i

@ No simple or unanimous definition!
@ Require a notion of similarity/difference. . .

Three main approaches

@ A group is a set of samples similar to a prototype.
@ A group is a set of samples that can be linked by contiguity.
@ A group can be obtained by fusing some smaller groups. . .
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PrOtOtype ApproaCh A First Glimpse

Unlabelled Data Labelled Clusters

° 09 e O
o © e o
o ® °
® o e K-means
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L X = Centrold

A group is a set of samples similar to a prototype.

Most classical instance: k-means algorithm.

Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning

No need to compare the samples between them!
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Contiguity Approach A First Glimpse

A group is the set of samples that can be linked by contiguity.

Most classical instance: DBScan

Principle: group samples by contiguity if possible (proximity and density)
Some samples may remain isolated.

Number of groups controlled by the scale parameter.
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DBSCAN: Density-Based Spatial Clustering of Applications with Noise



Agglomerative Approach

A First Glimpse

@ A group can be obtained by fusing some smaller groups. ..

@ Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

@ Numerous variations on the merging criterion. ..
@ Number of groups chosen afterward.
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Choice of the me’ghoﬂ and of the number of groups A First Glimpse

Yy

No methods is better than the other. ..
Criterion not necessarily explicit!
No cross validation possible

Choice of the number of groups: a priori, heuristic, based on the final usage. ..

Source: Scikit-Learn
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OUtllne A First Glimpse

© A First Glimpse

@ Dimensionality Curse

29



o,

Sy

,

0 Aojz' - o 1 ¥ 1 b 058 . [7)
2 b 1 2
o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse

@ Previous approaches based on distances.
@ Surprising behavior in high dimension: everything is ((often) as) far away.
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@ Beware of categories. ..
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Dimensionality Curse A First Glimpse

o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!
High Dimensional Geometry Curse
@ Folks theorem: In high dimension, everyone is alone.

@ Theorem: If X;,..., X, in the hypercube of dimension d such that their
coordinates are i.i.d then

|
4-1/p <maX 1X; — X;llp — min || X; _gjnp) — 0+ Op ( og n)

d
max X — X1, og n
=1 .
mnl X~ X1, TP\ d

@ When d is large, all the points are almost equidistant. ..
@ Nearest neighbors are meaningless!
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OUtllne A First Glimpse

© A First Glimpse

o Simplification

32



HOW to Slm pl Ify? A First Glimpse

A Projection Based Approach

@ Observations: Xj,...,X, € RY
e Simplified version: ®(X;),...,®(X,) € RY with ® an affine projection preserving
the mean ®(X) = P(X —m) +mwith PT =P =P2and m= 1%, X,.

How to choose P?

@ Inertia criterion:
max D lo(X;) — d(X))[P?

@ Reconstruction criterion:
m|nZHX —d(X H27

o Relationship criterion:
min ZI X;—m) = (&(X;) — m) " (S(X;) — m)|*?

@ Rk: Best solution is P = /! Need to reduce the rank of the projection to
d <d... 33
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Inertia criterion A First Glimpse

@ Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia

@ Inertia:
1 » 1 n 5
[ = 202 Z 1 X; —KJH = ;Z | X; — m]|
ij i=1

@ 2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

1

@ Criterion: maxzj: p IPX; — ngﬂz = max — z/: |PX; — m]|?

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of & = 1 3°(X; — m)(X; — m)"

34



FII’St Component Of the PCA A First Glimpse

e X=m+a' (X—m)awith |ja| =1
1 n
Inertia: =" a'(X; — m)(X; —m)'
@ Inertia ni:la( ; )(X; ) a

Principal Component Analysis: optimization of the projection

i=1
@ Explicit optimal choice given by the eigenvector of the largest eigenvalue of X.

-~ 1. 5

@ Maximization of [ = = E a'(X;—m)(X;—m) a=a'Tawith £
o 5

1< 8

Y == E (X; — m)(X; — m)" the empirical covariance matrix. =

n w

w
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PCA A First Glimpse

% d’inertie
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Principal Component Analysis : sequential optimization of the projection

@ Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of ¥.

@ Projected inertia given by the sum of those eigenvalues.

@ Often fast decay of the eigenvalues: some dimensions are much more important
than other.

@ Not exactly the curse of dimensionality setting. . .

@ Yet a lot of small dimension can drive the distance!
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Reconstruction Criterion A First Glimpse

@ Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

o 1 2
e Criterion: mFl’nZi:;HK,-—(P(K m) + m)|]> = mlanH (I-P —m)||

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 37,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Proof (Pythagora):
X = mi? =37 (IPCX; = m)[I2 + 111 = PY(X; = m)|?)

37



PCA, Reconstruction and Distances A First Glimpse

L

)

Close projection doesn’'t mean close individuals!

@ Same projections but different situations.

@ Quality of the reconstruction measured by the angle with the projection space!
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RelatlonShlp Crlterlon A First Glimpse

@ Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)

L T T 2
o Criterion: min Z |(X; —m) (X; — m) — (P(X;) — m) (P(X;) — m)|
ij
@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 Y°,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Much more involved justification!
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O Utl | ne Dimension Reduction

© Dimension Reduction
@ Reconstruction Error
@ Relationship Preservation
@ Comparing Methods?
@ Words and Word Vectors
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D | menSIOn Red UCtIOﬂ Dimension Reduction

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

o Construct a map ® from the space X into a space X’ of smaller dimension:
o: X X
X — o(X)

Criterion
@ Reconstruction error

@ Relationship preservation

41



O Utl | ne Dimension Reduction

© Dimension Reduction
@ Reconstruction Error

42



Reconstruction Error Approach Dimension Reduction

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X=X
X — o(X)
e Construct ® from X’ to X

e Control the error between X and its reconstruction ®($(X))

@ Canonical example for X € RY: find ¢ and ®in a parametric family that minimize

ii 1X; — ®(P(X,))]]2

43



PrlnCipal Component AnaIySIS Dimension Reduction

X € R? and X' =R
Affine model X ~ m+ 3%, X' v with (V) an orthonormal family.

Equivalent to:

O(X)=V'(X—m) and ®X)=m+ VX
Reconstruction error criterion:

1 n
n Z 1X; = (m+ W (X; — m)|]?
i=1

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d’ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix % n (X —m)(X;—m)".
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Pl’lnCIPal Component AnaIySIS Dimension Reduction

PCA Algorithm

Compute the empirical mean m =137 X;

Compute the empirical covariance matrix 1 37 (X; — m)(X; — m)".
Compute the d’ first eigenvectors of this matrix: V(1) ... v(d)

Set ®(X) = V(X —m)

o Complexity: O(n(d + d?) + d'd?)
@ Interpretation:

o ®(X) = V(X —m): coordinates in the restricted space.

o V(): influence of each original coordinates in the ith new one.
Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Multiple Factor Analysis Dimension Reduction
e PCA assumes X = RYI

@ How to deal with categorical values?

o MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

o Classical redundant dummy coding:
Xef{l,...,V}= P(X) = (1x=1,-.-,1x=v) "

o Compute the mean (i.e. the empirical proportions): P =137, P(X))

@ Renormalize P(X) by 1/\/ - 1)P

X)— P'( X)

]-X—V) — 1K:1 IK:V
- Jv 1P J(v-1Py

(15217 ce
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M u |t| ple FaCtor AnaIySIS Dimension Reduction

e Y2 type distance!

47



M u |tip|e FaCtor AnaIySIS Dimension Reduction

o PCA becomes the minimization of
— ZIIP' (m+ WT(P(X;) = m))|?

/ 2
Ly — (0 4+ X7 VOT(P(X;) — V()

(V - 1)ﬁv

*ZZ

i=1v=1
@ Interpretation:
oem =P
o ®(X) = VT(P"(X)— m): coordinates in the restricted space.
o V() can be interpreted s as a probability profile.

e Complexity: O(n(V + V?) + d'V?)
@ Link with Correspondence Analysis (CA)
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M u |t| ple FaCtOI’ AnaIySIS Dimension Reduction

MFA Algorithm

@ Redundant dummy coding of each categorical variable.

@ Renormalization of each block of dummy variable.

@ Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/x? metric.

Interpretation:
o ®(X) = V(P (X)— m): coordinates in the restricted space.
o V(): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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NOn Llnear PCA Dimension Reduction

PCA Model

o PCA: Linear model assumption

7~m—|—ZX’ VD =m+ vX’

@ with

o V() orthonormal
o X") without constraints.

@ Two directions of extension:

o Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
e PCA on a non linear image of X: kernel-PCA

@ Much more complex algorithm!
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Non Linear PCA

ICA (Independent Component Analysis)

@ Linear model assumption

KNerZX’(’

@ with =1

o V() without constraints.
o X"") independent
NMF (Non Negative Matrix Factorization)

@ (Linear) Model assumption

@ with
o V) non negative
o X"") non negative.

d/
X ~ ZKW) v
1=1

Dimension Reduction

v = myrvx

— W

51



Non Llnear PCA Dimension Reduction

Dictionary
@ (Linear) Model assumption , ‘:>> c_‘
Xem+ Y Xy =myvx
@ with — 12:27 -

o V() without constraints
o X' sparse (with a lot of 0)

kernel PCA

@ Linear model assumption
d/

V(X —m)~> Xy = vx

@ with (X ) ;7 o

o V() orthonormal
o X without constraints.
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AUtO EnCOder Dimension Reduction

Deep Auto Encoder

o Construct a map ® with a NN from the space X into a space X’ of smaller
dimension:

o XX
X — d(X)
Construct ® with a NN from X" to X
Control the error between X and its reconstruction ®(®(X)):

%Z 1X; — (P(X,))]?
i=1

Optimization by gradient descent.

NN can be replaced by another parametric function. ..
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O Utl | ne Dimension Reduction

© Dimension Reduction

@ Relationship Preservation
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PaII’WISG Relatlon Dimension Reduction

@ Different point of view!
@ Focus on pairwise relation R(X;, X;).

Distance Preservation

@ Construct a map ® from the space X into a space X’ of smaller dimension:
d: X=X
X = &(X) = X’
@ such that
R(Khéj) ~ R/(X%Kj)
@ Most classical version (MDS):
e Scalar product relation: R(X;, X;) = (X; — m)T(Kj —m)
o Linear mapping X' = &(X) = V(X — m).
e Euclidean scalar product matching:
1 n n T 2
S| = m g - m) - (X)X
i=1 j=1
o ® often defined only on D. .. 55



MUltIDlmenSIOnal Scaling Dimension Reduction

@ Match the scalar products:
I v T T
S0 |(Xi = m) (X m) - X/ X
i=1j=1
o Linear method: X' = UT(X — m) with U orthonormal

2

@ Beware: X can be unknown, only the scalar products are required!

@ Resulting criterion: minimization in U'(X; — m) of

1 v T T 2

SIS =m) (X = m) = (X = m)TUUT(X; — m)|
without using explicitly X in the algorithm. ..

@ Explicit solution obtained through the eigendecomposition of the know Gram

matrix (X; — m)T(Kj — m) by keeping only the d’ largest eigenvalues.
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MUltiDlmenSIOnal Scaling Dimension Reduction

@ In this case, MDS yields the same result than the PCA (but with different inputs,

distance between observation vs correlations)!
e Explanation: Same SVD problem up to a transposition:
e MDS o L B
Xy Xy~ Xwy UUT X
e PCA
X(n)X( NU X( X() V)

e Complexity: PCA O((n+ d’)d?) vs MDS O((d + d’)n?). ..
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Genera | |Zed M DS Dimension Reduction

@ Preserving the scalar products amounts to preserve the Euclidean distance.

o Easier generalization if we work in term of distance!

Generalized MDS

o Generalized MDS:
o Distance relation: R(X, X;) = d(X;, X;)
o Linear mapping X' = CD(X) VI(X—m).
e Euclidean matching:
1 n n 5
530 Jd(X, X)) (X, X))
i=1 j=1

@ Strong connection (but no equivalence) with MDS when d(x,y) = ||x — y|/?!

e Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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I S O M A P Dimension Reduction

e MDS: equivalent to PCA (but more expensive) if d(x,y) = ||x — y|/?!

@ ISOMAP: use a localized distance instead to limit the influence of very far point.

@ For each point X;, define a neighborhood N; (either by a distance or a number of
points) and let LgPig

if X; ;
do(X;, Xj) = e 5 . ¢N
| X; — X;||* otherwise
@ Compute the shortest path distance for each pair.
@ Use the MDS algorithm with this distance

PIA
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Ra ndom PI’O_]GCT.IOI’] Dimension Reduction

Random Projection Heuristic

@ Draw at random d’ unit vector (direction) U;.
o Use X' = UT(X —m) withm=21%", X,

e Property: If X lives in a space of dimension d”, then, as soon as, d’ ~ d” log(d"),
d
1X; — X1 ~ ?H& - Xj|1?

@ Do not really use the data!
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t-Stochastic Neighbor Embedding Dimension Reduction

@ From X; € X, construct a set of conditional probability:
o I1Xi=X;1?/207

e s e X207 st
e Find X/ in RY such that the set of conditional probability:
e~ IIXi=XjI?/207
Qi = Qi =0

e o~ 1IX]=X}]12/202

is close from P.
o t-SNE: use a Student-t term (1 + [|X} — X}[|*)~! for X;
Pjli
Qjji

o Minimize the Kullback-Leibler divergence (> P;; log
ij

) by a simple gradient

descent (can be stuck in local minima).
@ Parameters o; such that H(P;) = — Z 1 P; il log P; j|i = cst.
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t-Stochastic Neighbor Embedding Dimension Reduction

@ Very successful/ powerful technique in practice
@ Convergence may be long, unstable, or strongly depending on parameters.

@ See this distill post for many impressive examples

- 0©0 © OOO

Orgnl  perpleniy: 2 Popledty:5  perplext:30  Porplexi: 50

Orignal  perpleuty 2 ey s

Representation depending on t-SNE parameters
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U M A P Dimension Reduction

@ Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection

@ Define a notion of asymmetric scaled local proximity between neighbors:

o Compute the k-neighborhood of X, its diameter o; and the distance p; between X;
and its nearest neighbor.
o Define
e (X X;)=pi)/oi £or X in the k-neighborhood
Wf(Kiafj) = .
0 otherwise
@ Symmetrize into a fuzzy nearest neighbor criterion
w(X;, X;) = wi(X;, X;) + wi( X, X;) — wi( X5, X;)w; (X, X5)
@ Determine the points X/ in a low dimensional space such that
w(X;, X;) (1 - w(X;, X))
X.. X)I Y 1— w(X..X))I N7 TG
2wl X) o8 <W/(x:-,><,'~)> + =l X)) oe ((1 —w (X, X))

@ Can be performed by local gradient descent.
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G ra p h based Dimension Reduction

Graph heuristic

e Construct a graph with weighted edges w;; measuring the proximity of X; and X;
(w;j large if close and 0 if there is no information).

e Find the points X} € RY minimizing

1 1 n n ;

i=1 j=1

@ Need of a constraint on the size of X/. ..

@ Explicit solution through linear algebra: d’ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D — W, where D is a diagonal matrix with
Dii =22 wij.

@ Variation on the definition of the Laplacian. ..
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O Utl | ne Dimension Reduction

© Dimension Reduction

@ Comparing Methods?
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How to Compare Different Dimensionality Reduction  bimension reduction
Methods 7

o Difficult! Once again, the metric is very subjective.

@ Did we preserve a lot of inertia with only a few directions?
@ Do those directions make sense from an expert point of view?
@ Do the low dimension representation preserve some important information?

@ Are we better on subsequent task?
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An EXa m ple M N IST Dimension Reduction

MNIST Dataset

@ Images of 28 x 28 pixels.
@ No label used!

o 4 different embeddings.
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An EXa m ple M N IST Dimension Reduction

PCA autoencoder

MNIST Dataset

@ Images of 28 x 28 pixels.

@ No label used!

o 4 different embeddings.
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An EXa m ple M N IST Dimension Reduction

PCA autoencoder

MNIST Dataset
@ Images of 28 x 28 pixels.

@ No label used!
o 4 different embeddings.

@ Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
@ Only a few labels could have been used.
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Another EXample A 2D Set Dimension Reduction

Cluster Dataset

@ Set of points in 2D.
@ No label used!

o 3 different embeddings.

68



Another EXample A 2D Set Dimension Reduction

Cluster Dataset

@ Set of points in 2D.
@ No label used!

o 3 different embeddings.
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Another EXample A 2D Set Dimension Reduction

#f@
Original

Cluster Dataset

@ Set of points in 2D.

@ No label used!

o 3 different embeddings.

@ Quality evaluated by stability. . .
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O Utl | ne Dimension Reduction

© Dimension Reduction

@ Words and Word Vectors
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WOI’CI VeCtOFS Dimension Reduction

"""" i - countess
: [ o
02 (R ! ;1 empres:
; [ ! y !
[
h I
b
1 neptow

01 | tuncle

“brother

05 -04 03 02 -01 0 01 02 03 04 05

Word Embedding

@ Map from the set of words to RY.
@ Each word is associated to a vector.

@ Hope that the relationship between two vectors is related to the relationship
between the corresponding words!
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WOI’CI And ConteXt Dimension Reduction

Look ! single ’wordHandHits\ context

Word And Context

o ldea: characterize a word w through its relation with words ¢ appearing in its
context. ..
o Probabilistic description:
e Joint distribution: f(w,c) =P (w,c)
e Conditional distribution(s): f(w,c) =P (w|c) or f(w,c) =P (c|w).
e Pointwise mutual information: f(w,c) =P (w,c) /(P (w)P(c))

@ Word w characterized by the vector C,, = (f(w, c))c or Cy, = (log f(w, ¢))e.

@ In practice, C is replaced by an estimate on large corpus.

@ Very high dimensional model!
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A (Naive) SVD Approach Dimension Reduction

Serl| Ve
C ~ | U, | (rxr) (rxnc)

(nwxne) (nwxr)

Truncated SVD Approach
@ Approximate the embedding matrix C using the truncated SVD decomposition
(best low rank approximation).
@ Use as a code
C, = UrwX?,
with o € [0, 1].

@ Variation possible on C.
@ State of the art results but computationally intensive. . . 7



A LeaSt Square ApproaCh Dimension Reduction

@ All the previous models correspond to
—logP (w,c) ~ ClEC! + ay + B

GloVe (Global Vectors)

@ Enforce such a fit through a (weighted) least square formulation:
Zh ) ||—logP (w, c) — (CxCé'+aW+BC)H2

with h a increasmg weight.

e Minimization by alternating least square or stochastic gradient descent. . .

@ Much more efficient than SVD.

@ Similar idea in recommendation system.
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A Learning Approach Dimension Reduction

Supervised Learning Formulation

@ True pairs (w, c) are positive examples.

@ Artificially generate negative examples (w’, ¢’) (for instance by drawing ¢’ and w’
independently in the same corpus.)

@ Model the probability of being a true pair (w, c¢) as a (simple) function of the
codes C/, and C/.

@ Word2vec: logistic modeling

P (1w, c) = C/tcc,:c,/ é" p(cl"’) )

@ State of the art and efficient computation.

e Similar to a factorization of —log(P (w, c) /(P (w)P (c))) but without requiring
the estimation of the probabilities!
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OUtllne Clustering

@ Clustering
@ Prototype Approach

o Contiguity Approaches

@ Agglomerative Approaches
@ Other Approaches

@ Scalability
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ClUSterlng Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
o Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing

@ Several strategies possible!

@ Can use dimension reduction as a preprocessing.
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What's a group?

Clustering

[ y X
[q . Cluster A i‘ 5\
o,

Final i
Boundary i

@ No simple or unanimous definition!
@ Require a notion of similarity/difference. . .

Three main approaches

@ A group is a set of samples similar to a prototype.
@ A group is a set of samples that can be linked by contiguity.
@ A group can be obtained by fusing some smaller groups. . .

©
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Prototype Approach Clustering

Unlabelled Data Labelled Clusters

° 09 e O
o © e o
o ® °
® o e K-means
®
[ ]
[ I )
L X = Centrold

A group is a set of samples similar to a prototype.

Most classical instance: k-means algorithm.

Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning

No need to compare the samples between them!
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Contiguity Approach Clustering

A group is the set of samples that can be linked by contiguity.

Most classical instance: DBScan

Principle: group samples by contiguity if possible (proximity and density)
Some samples may remain isolated.

Number of groups controlled by the scale parameter.

o
o
3
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=
[
e
5
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~
©

DBSCAN: Density-Based Spatial Clustering of Applications with Noise



Agglomerative Approach

Clustering

@ A group can be obtained by fusing some smaller groups. ..

@ Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

@ Numerous variations on the merging criterion. ..
@ Number of groups chosen afterward.
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Choice of the method and of the number of groups Clustering

opmics

O

o o o
o 2

No methods is better than the other. ..
Criterion not necessarily explicit!
No cross validation possible

Choice of the number of groups: a priori, heuristic, based on the final usage. ..

Source: Scikit-Learn

[ee]
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OUtllne Clustering

@ Clustering
@ Prototype Approach
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Partition Based Clustering

Partition Heuristic
o Clustering is defined by a partition in K classes. . .

@ that minimizes a homogeneity criterion.

o Cluster k defined by a center pu.

@ Each sample is associated to the closest center.

n
o Centers defined as the minimizer of Z mkin I1X; — 1)
i=1
e lterative scheme (Loyd):
Start by a (pseudo) random choice for the centers 4
Assign each samples to its nearby center

Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Partition Based

Clustering

K-means, step 0 - 4
25-

20-

Petal.Width

4
Petal.Length

(=]
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Partltlon based Clustering

@ Other schemes:
e McQueen: modify the mean each time a sample is assigned to a new cluster.
e Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.
@ A good initialization is crucial!
e Initialize by samples.
e k-Mean-++: try to take them as separated as possible.
e No guarantee to converge to a global optimum: repeat and keep the best result!

@ Complexity : O(n x K x T) where T is the number of steps in the algorithm.
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Partltlon based . = -~ Clustering

@ k-Medoid: use a sample as a center
o PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
e Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.
o Complexity:
e PAM: O(n? x T) in the worst case!

o Approximate medoid: O(n x K x T) where T is the number of steps in the
algorithm.

@ Remark: Any distance can be used. .. but the complexity of computing the
centers can be very different.
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Clustering

K-Means

oo
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Model Based G ) Clustering

Model Heuristic
@ Use a generative model of the data:
K -

P(X)= > mbPo, (XIK)

k=1
where 7 are proportions and Py (X|k) are parametric probability models.

o Estimate those parameters (often by a ML principle).

@ Assign each observations to the class maximizing the a posteriori probability
(obtained by Bayes formula)
7Py, (XIK)

S 1wy (XIK)

@ Link with Generative model in supervised classification!
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MOdel Based Clustering

Responsibilities
r
00 02 04 06 08 1.0

Responsibilities

00 02 04 06 08 1.0
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Model Based Clustering

A two class example

o A mixture m1f(X) + mfh(X)
e and the posterior probability m;f;(X)/(m1f(X) + mf(X))

o Natural class assignment!
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Model Based Clustering

Sub-population estimation

o A mixture w1 (X) + mh(X)
e Two populations with a parametric distribution f;.

e Most classical choice: Gaussian distribution

Gaussian Setting

e X;,...,X, independent
o X; ~ N(u1,0?) with probability 71 or X; ~ N(u2,03) with probability m>
o We don't know the parameters pu;, o;, m;.

e We don't know from which distribution each X; has been drawn.
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Model Based Clustering

Maximum Likelihood

o Density: m (X, p1,07) + mP(X, 12, 03)
o log-likelihood: .
L(0) = log (m®(X;, i1, 07) + ma®(X;, 112, 03))
=i

e No straightforward way to optimize the parameters!
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Model Based Clustering

What if algorithm

e Assume we know from which distribution each sample has been sampled: Z; = 1 if from
f; and Z; = 0 otherwise.

o log-likelihood: Z Zilog q)(K,',,LLl,U%) + (1 _ Z,-) log ‘D(K,-,uz, 0%)
i=1

e Easy optimization. .. but the Z; are unknown!
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Model Based Clustering

What if algorithm

e Assume we know from which distribution each sample has been sampled: Z; = 1 if from
fi and Z; = 0 otherwise.

. . . n
o log-likelihood: S Zilog O(X; 1, 02) + (1 - Z))log ®(Xs 1z, 03)

i=1

e Easy optimization. .. but the Z; are unknown!

Bootstrapping ldea

e Replace Z; by its expectation given the current estimate.
o E[Z] =P(Z = 1]0) (A posteriori probability)
e and iterate. ..

Can be proved to be good idea!
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Model Based Clustering

EM Algorithm

o (Random) initialization: p9, o?, 7.

o Repeat:
@ Expectation (Current a posteriori probability):

(X, 1, (01)?)
T O(X;, pf, (07)?) + w5 (X, 1, (95)?)

E:[Z]=P(Z =1/¢") =
o Maximization of

> Ee[Z]log &(X;, 1, 0%) +Ee [1 = Z]log ®(X;, 12, 0%)

=1

t+1 7l'-t+1 )

i L]

to obtain ™, o
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MOdel Based Clustering

@ Large choice of parametric models. m

Gaussian Mixture Model

e Use

Py, (XIk) ~ N (s, )
with NV (i, X) the Gaussian law of mean u and covariance matrix X.

e Efficient optimization algorithm available (EM)

@ Often some constraint on the covariance matrices: identical, with a similar
structure. ..

@ Strong connection with K-means when the covariance matrices are assumed to be
the same multiple of the identity.
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Model Based

Clustering

Probabilistic latent semantic analysis (PLSA)

@ Documents described by their word counts w

o Model:
K

P(w) =Y mPy, (wlk)
k=1
with k the (hidden) topic, m, a topic probability and Py, (w|k) a multinomial law
for a given topic.

@ Clustering according to
TPy (wlk)

2k TPy~ (w]k')
k/

P (k|lw) =

@ Same idea than GMM!

@ Bayesian variant called LDA.
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Model Based Clustering

Parametric Density Estimation Principle

@ Assign a probability of membership.
@ Lots of theoretical studies. . .

@ Model selection principle can be used to select K the number of class:

e AIC / BIC / MDL penalization
e Cross Validation is also possible!

e Complexity: O(nx K x T)
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Gaussian Mixture Models

Clustering
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OUtllne Clustering

@ Clustering

o Contiguity Approaches
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(Non Parametric) Density Based Clustering

Density Heuristic

@ Cluster are connected dense zone separated by low density zone.

@ Not all points belong to a cluster.

@ Basic bricks:

e Estimate the density.
e Find points with high densities.
o Gather those points according to the density

@ Density estimation:
o Classical kernel density estimate. . .
e Gathering:

e Link points of high density and use the resulted component.
e Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(Non Parametric) Density Based Clustering

@ Examples:

e DBSCAN: link point of high densities using a very simple kernel.

e PdfCLuster: find connected zone of high density.

e Mean-shift: move points toward top of density hill following an evolving kernel
density estimate.

e Complexity: O(n? x T) in the worst case.

@ Can be reduced to O(nlog(n)T) if samples can be encoded in a tree structure
(n-body problem type approximation).
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Clustering

DBSCAN

oo

1
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OUtllne Clustering

@ Clustering

@ Agglomerative Approaches
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Agglomerative Clustering Clustering

Agglomerative Clustering Heuristic

e Start with very small clusters (a sample by cluster?)

Sequential merging of the most similar clusters. . .

@ according to some greedy criterion A.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choice for the merging criterion. ..

Examples:

e Minimum Linkage: merge the closest cluster in term of the usual distance
e Ward's criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomerative Clustering Clustering

Algorithm

e Start with (C,-(O)) = ({X;}) the collection of all singletons.

@ At step s, we have n — s clusters (Cfs)):
e Find the two most similar clusters according to a criterion A:
(i,i") = argmin A(C(s C °) )
GJ")
o Merge C*) and ) into c**V)

o Keep the n — s — 2 other clusters C( s+ Cf,s/)
@ Repeat until there is only one cluster.
o Complexity: O(n®) in general.
e Can be reduced to O(n?)

e if only a bounded number of merging is possible for a given cluster,
e for the most classical distances by maintaining a nearest neighbors list.
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Agglomerative Clustering Clustering

< c

Merging criterion based on the distance between points

@ Minimum linkage:
A(C,C) = gégigelg d(X;, X;)
@ Maximum linkage:

A(Ci,Cj) = max max d(X;, X;)
lE g

@ Average linkage:
AN, ()
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Agglomerative Clustering Clustering

@ Clustering based on the proximity. ..
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Agglomerative Clustering Clustering

Merging criterion based on the inertia (distance to the mean)

@ Ward's criterion:

ACLC) = > (X newe) — 4 (X ;)
K,‘eci

T Z (d2(Kj,Mciucj) - dQ(KJ‘?”CJ‘))
KJ‘GCJ

o If d is the Euclidean distance: el
2 . .

A(C,C) = L dP(ue., pe,

( J) |Cl|+|c_]| (:U’C: :U’Cj)

@ Same criterion than in the k-means algorithm but greedy optimization.
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Agglomerative Clustering

Single
Complete

Dendogram



OUtllne Clustering

@ Clustering

@ Other Approaches
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Gl’ld based Clustering

@ Split the space in pieces

@ Group those of high density according to their proximity

@ Similar to density based estimate (with partition based initial clustering)

@ Space splitting can be fixed or adaptive to the data.
@ Examples:
o STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
o AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type

assignment from high density leaves.
o CLIQUE: Tensorial grid and 1D detection.

@ Linked to Divisive clustering (DIANA)
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OtherS Clustering

Graph based

@ Spectral clustering: dimension reduction + k-means.
@ Message passing: iterative local algorithm.

@ Graph cut: min/max flow.

Kohonen Map,
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OUtllne Clustering

@ Clustering

@ Scalability
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Scalablllty Clustering

Large dataset issue

@ When nis large, a O(n“log n) with « > 1 is not acceptable!

@ How to deal with such a situation?

e Beware: Computing all the pairwise distance requires O(n?) operations!

e Sampling
@ Online processing
e Simplification

@ Parallelization



Sampllng Clustering

Sampling heuristic

@ Use only a subsample to construct the clustering.

@ Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . .)

Often repetition and choice of the best clustering

Example:
o CLARA: K-medoid with sampling and repetition

Two step algorithm:

o Generate a large number n’ of clusters using a fast algorithm (with n” < n)
o Cluster the clusters with a more accurate algorithm.

116



O n I | ne Clustering

Online heuristic
@ Modify the current clusters according to the value of a single observation.

v

@ Requires compactly described clusters.
@ Examples:

e Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
e Stochastic descent gradient (GMM)

@ May leads to far from optimal clustering.
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Slmpllflcatlon Clustering

Simplification heuristic
@ Simplify the algorithm to be more efficient at the cost of some precision.

@ Algorithm dependent!
@ Examples:

o Replace groups of observation (preliminary cluster) by the (approximate) statistics.
e Approximate the distances by cheaper ones.
e Use n-body type techniques.
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Para”ellzatlon Clustering

Parallelization heuristic
@ Split the computation on several computers.

v

@ Algorithm dependent!
@ Examples:

e Distance computation in k-means, parameter gradient in model based clustering
e Grid density estimation, Space splitting strategies

o Classical batch sampling not easy to perform as partitions are not easily merged. ..
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O Utl | ne Generative Adversarial

Network

© Generative Adversarial Network
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Generative Modeling and Density Estimation

Generative Model
@ Probabilistic model of the world.
o Allow to generate samples that mimics X.

o Classical approaches are based on likelihood:

o Parametric model,
e Bayesian model.

Generative Algorithm

@ Computational probabilistic model of the world.
@ Allow to generate samples G(Z) that mimic X from

e a randomness source Z,
e a computable function G.

@ No explicit form of the likelihood!

@ How to learn G?

Generative Adversarial
Network
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A Clever Idea Generative Adversarial

Network

@ From estimation to. ..
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A Clever Idea Generative Adversarial
Network
®(G(2)) ~ (X)?
@ From estimation to. .. discrimination
Discriminator (Goodfellow 14)
o Let

(X, Y) = (X,1) with probability 1/2
=7 (6(2),0)  with probability 1/2
@ Can we guess from X whether it comes from X or G(Z)?

@ Discriminator loss = Classifier loss:
L(D, G) =1/2Ex [~ log D(X)] + 1/2E¢(z) [ log(1 — D(G(Z)))]

@ One can learn a discriminator from the data for a fixed G.

@ The ideal generator is such that this problem is hard!
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A Clever Idea Generative Adversarial

Network

Best Discriminator

@ Bayes Discriminator D*:

(%) =P (¥ = 11%) = )
A)= T 1/26(X) + 1/2f62)(X)
e Optimal loss: x(X)
L(D*,G) =1/2Ex [— log1/2 + —log 1/2f(X) i 1/2fG(Z)(X)]
+1/2E¢g [— log1/2+ —log 1/25((Gf)GErG1)/2fG(G)1

= —1/2KL(fK, 1/212—1— 1/2fG(Z))
= —JKLy5(fx, fo(z)) + log 2
@ Adversarial minimization:

argmax min £(D, G) = argmin JKL, »(x, f5(z))
G b G = 123



Generatlve Ad versa rl al Network Generative Adversarial

Network

G* = argmin max [1/2Ex [log D(X)] + 1/2E(z) [log(1 — D(G(2)))]]

Generative Adversarial Network
@ Replace the set of all possible G and D by a set of parametric functions, for
instance some deep neural networks
@ Replace the expectations by some empirical means.

@ Alternate a maximization on D and a minimization on G.

e Zis often U[—1,1] or N(0,1).

@ Not that easy to train:

hard to achieve Nash equilibrium (no guaranteed convergence)
mode collapse (restart required)

support issue of KL like divergence (add noise)

adding feature matching helps!

124



GAN and f—divergence ﬁenera:ve Adversarial
pi(P.@) = [ £ (227) at)
= supTExp[T(X)] — Ec~q[f*(T(G))]

f-divergence and dual representation

@ Defines a divergence for any convex f.

@ Dual representation with 7*(x) = sup,(x, u) — f(uv)

m(gn supExp[T(X)] —Ez[f*(T(G(2))]
T

@ Replace the set of all possible G and T by a set of parametric functions, for
instance some deep neural networks

@ Replace the expectations by some empirical means.

@ Alternate a maximization on D and a minimization on G. 125



Classical GAN and 7-GAN Generative Adversaria

Network

JKL(P, Q) = suprExp [T(X)] ~ Eg-q [~ log(2 — exp T(G))]

Classical GAN as a f-GAN

o JKL-divergence is a f divergence with f(u) = —(u + 1) log 1£“ + ulog u.

o Parameterize T by log2 — log(1+ e~ ") so that
JKL(P, Q) =supEx-p [log2 — log(1+ e~ 7")]
—Eg~o [Iog(2 -2/(1+ e*T/)]
=2log2+ S;J_PEKNP {Iog(l/(l + e_T,))}
+Ecog [|og(1 —1/(1+e 7))

@ GAN formulation up to the parameterlzatlon of
mén max Ex [Iog(l/ (1+e )}
(

+Egz) [|0g(1 —1/(1+e T Z))))} 126



GAN a nd WaSSGI’Stel n Generative Adversarial

Network

W(’D7 Q) inf E(p,q)w{ [Hp - qH]

" ten(P,Q)

= %SUPH’(HLSKEKNP [f(é)] - IE:GNQ [f(G))]

mGin sup Exp [f(X)] —Ez[f(G(Z))]
Ifll.<1

@ Replace the set of all possible G and f by a set of parametric functions, for
instance some deep neural networks

@ Replace the expectations by some empirical means.

@ Alternate a maximization on D and a minimization on G.

@ Constraint on the Lipschitz norm is the most complex part:
e clip on the network weights
e or penalization of the gradient norm

@ Rk: More a case of integral probability metric than optimal transport. ..
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G A N Generative Adversarial

Network

Generative Adversarial
Network

Samples
Latent

T

—|_\A D <D
E i . Correct?
H Discriminato

G

Generated
Generator Fake
- Samples

Noise

Fine Tune Training

Generative Adversial Network
@ Clever idea combined with state of the art NN architecture.

@ Impressive results!

@ Can it be used to perform clustering in the latent space?
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