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1 History Dependent or Markov Policies

Proposition 1.1 Equivalence of History Dependent and Markov Policies

Let w be a stochastic history dependent policy. For each state sy € S, there exists a
Markov stochastic policy ©' such that V™ (sg) = V7™ (s0).

Proof. Let 7'(a¢|st) = E[n(at|H¢)|St = st, So = so|, we can prove by recursion that
P (St = 8¢, At = ar|So = s0) = Pr (St = s1, At = at|So = s0) -

This holds by definition for ¢ = 0. Now assume the property is true for ¢’ <t —1. By
construction,

Pr(Se = s:lS0 = s0) = > > pselsi—1, A-1)Pr(Si—1 = s¢—1, A1 = a-1|S0 = 50)

St—1 at—1

=Y p(selsi—1,a-1)Prs (Si—1 = s1-1, Ae—1 = az_1|So = s0)

St—1 at—1

= Pﬂ-/(st = St‘So = 80) .
Hence,

Pﬂ—/(st = S¢, At = CLt’SO) = ﬂ’(at\st)]P’ﬂl(St = St‘S() = S[))
= Er[Pr(Ar = at|Hy, S; = s¢, S0 = 50)] Pr (ST = 5¢/S0 = 50)
= E;[Pr (St = s¢, Ar = ar, H|So = s0)] -

It suffices then to notice that the quality criterion of © and 7’ depends on 7 only through
respectively Ex[r(St, A¢)|So = so] or Eq/[r(St, At)|So = so] which are equals. O






2 Discounted Reward

2.1 Evaluation of a policy

Definition 2.1.1 Value Function
+o0o
vx(s) = Ex lz Y Rys1|So = S]
t=0
+o0
= > 7'Ex[Ri11]S0 = 5]
t=0
Definition 2.1.2 Bellman Operator

T v(s) = Ex[R|s] + ’YZIP’w (s']s) v(s)

T"v=r;+vPv

Proposition 2.1.3 Value Function Characterization

Let 7 be a stationary Markov policy, if 0 < v < 1 then v, is the only solution of v = T™v,
v =1y +vPv,

and vy = (Id — yP;) " r,.

Proof. By definition, if v is a solution of v = 7™v then (Id — yP;)v = 7. As P; is a
stochastic matrix, || Pr|| < 1 and thus

o0
> A Pk
k=0

is well defined. One verify easily that this is an inverse of I — vP, and such a v exists,
is unique and equal to

o0
Z ’ykijrW.
k=0



2 Discounted Reward

Now,

—+00

Ur(s) = Z’YtEﬂ[RtJrl’SO = s
t=0

400
= thzpw(st - 3/’50 = 8) EW[R’S = 3/]
t=0

S/

+oo
= Z ’Yt Z(P;)S,S’TW(S/>
t=0

8/
—+oc0
_ t/pt
=Y 7' (Plra)(s)
t=0
and thus v = v,. O

Proposition 2.1.4 Bellman Operator Property

The operator T™ satisfies the following contraction property
770 = T oo < 4ll =/l

Furthermore, v < v' implies T™v < T™v" and T™(v 4 01) = T™v + 1

Proof. For any s,
[ T7(v) = T"(')(s)| = [P (v = ')(s)]
<7l = v'llos

because Py is a stochastic matrix.
It suffices to use the positivity of a stochastic matrix and the fact that 1 is a eigenvector
for the eigenvalue 1 to obtain the two remaining properties. O

Proposition 2.1.5 Policy Prediction

For any vg, define v,41 = T v, then

lim v, = v,
n—oo

and

lvn = Vx|l < 7" |lvo = vrlloo

Furthermore,

v

[vn — Vrlloo < v — V100
1

Finally, if vg > T™vq (respectively vg < T™vg) then vy > vy (respectively vy < vy )
and v,, converges monotonously to v.




2.2 Optimal Policy

Proof. For the first part of the proposition, we notice that v, is the only fixed point of
T7™ which is a contraction. Hence, by the fixed point theorem, for any vy, the sequence
defined by vy,4+1 = T v, converges toward v.

A straightforward computation shows that

[vn = Vrlloo < AlVn—1 = Vrlloo <" [lv0 — Vz|lco-
Along the same line,

k+1HUn

V4t — Vngksilloo <Y — V1|0

This implies that

k
[vn = vrlloo < Z [vnti = Untitilloc + [[Un4kt+1 — Voo
=0

_ k42
S’Y Y

1_ lvn — vn—1lloo + ’Vn+k+1HUO — Vrloo

which yields the result by taking the limit in k.
Finally, note that as

Unt2 = T + Y PrUnt1
and Py is made of non negative elements, v, 1 < v, implies
Uny2 < T+ Y Prvp = Upy1.

Thus v1 = T"vg < vg implies that v, is a decreasing sequence whose limit is vy, yielding
the result. The increasing case is obtained with a similar proof. O

2.2 Optimal Policy

2.2.1 Characterization

Definition 2.2.1 Optimal Reward

Vi(8) = max vz ($)

where the maximum can be taken indifferently in the set of history dependent policies or
Markov policies.




2 Discounted Reward

Definition 2.2.2 Optimal Bellman Operator

T v(s) = maxE[R|S = 5, A = d] +7) P(S =5[S=sA=a)v(s)

s

= max r(s,a) + Zp(s'\s, a)v(s')

)

Proposition 2.2.3 Optimal Bellman Operator and Markov Policies

T*v(s) = max T v(s)

TES

or T*v = max,cs rr +vPrv where S is the set of deterministic Markov policies and the
max is componentwise.

Proof. m, = eq is such that 7™ (s) = E[R|s, a]+v Y. p(s']s, a)v(s’) so that max, T™(s) >
T*(s).

Now, for any m,

T™(s) = Zﬂ(a|s) (E[R|S =s,A=a]+ 72p(5’|s,a)v(s')>

a s/

< mgxIE[R\S =s,A=al+7>_ p(s|s,a)v(s)

< T*(s)

Proposition 2.2.4 Bellman Operator Property
The operator T* satisfies the following contraction property

170 = T4 lloe < 2ll0 = ¥l

Furthermore, v < v' implies T*v < T*v" and T*(v + 1) = Tv + 1

10



2.2 Optimal Policy

Proof. For any s, if T*v(s) > T*V/(s)
|T v — T*'(s)| = T v(s) — T*'(s)
— maxr(s, @) + 7 3 pls)s, ao(s') — <mgxr(s,a) ¥ vzp<s'|s,a>v’<s’>>

s’ s’

< max (r(s, a) +7 > _p(s'|s,a)v(s) — (r(s, a) +v > p(s]s, a)v’(s’)))

s’ s’

<ymax Y p(sls, a)(v(s") = v'(s))

s'|s,a

<Allv =l
Now, if v </, for any o’

r(s,a’) + ) p(s']s,a)o(s") < (s, a’) +v) p(s']s,a)v'(s))

s’ s’
S T*U/(S)
hence 7*v < T*v'. O
Finally,
T*(v+81)(s) = maxr(s, @) +7 2 p(s'ls, ) (v(s) + )
s/
= maxr(s,a) + 7Y p(s|s,a)v(s’) + 6
= T*(v)(s) +56.
Proposition 2.2.5 Optimal Reward Characterization

vy is the unique solution of V.= T*V .
Proof. Assume v > T*v so that
v > max r; + yPrv.
™

Let m = (mp, 71, ...) be a sequence of Markov policies,
V2> Tyt FYPN()/U
v > 1y + YPro (rry + 7 Pry0)

n
02 Y A Plrn, 49" By
k=0

where P¥ =T Pr,, - As vr = Y0207 PFre, , we verify that
oo
v — Vg > W”HPJJHU — Z fykafr,rk.

k=n+1

11



2 Discounted Reward

Taking the limit in n yields v > v, and thus v > v..
Now, if v < T*v = max, rp + vP;v then assuming the max is reached at 7

n
v<r7 +vPv < Z AR Plrz + ’ynHP}:HU
k=0

and thus v < vz < v,.
We deduce thus that v = 7*v implies v = v,. It remains to prove that such a solution
exists. This is a direct application of the fixed point theorem for the operator 7*. [J

Proposition 2.2.6

Any policy 7, such that v;, = v, is optimal.
Proof. This is a direct consequence of the previous theorem. ]

Proposition 2.2.7

Any stationary policy m, verifying 7, € argmax rr + vPrv, is optimal.

Proof. By definition,

T™ s = 1r, + Pr,vs

= maxr,; + Pru,
™
*

= T 0 = vs.

Hence v, = v, and the policy is optimal. O

2.2.2 Policy Improvement and Policy Iteration

Proposition 2.2.8 One step look-head policy improvement

For any m, w4 define by

Ty € argmax s + yPrvg
7.r/

satisfies

Ury = Ug

Proof. By construction,
Try +VPr U 2 T + Y Prvgr = vy
and thus

rr. — (I —vPr, )vr > 0.

12



2.2 Optimal Policy

It suffices to notice that vy, = (I — ’me)_err+ so that
Uy — V= (I — 'YPTF+)_1 (rey — (I —7Pr, )vr) 20
where we have used the positivity of (I —vPr,)"! =3 fykP71f+.

Proposition 2.2.9
Let A =7T* —1d, the policy iteration scheme satisfies

o0
k pk
Upal = Up + Z ~ PMHAvn.
k=0

Proof. As proved before,
Upt1 = (Id — ’yPﬂnH)*lrwnﬂ.
Now by construction,
T vp =T vy = a0y +YPr Vn
and thus
Trnsr = Avp + (Id = vPr, . )vn.
This implies immediately

Unt1l = Up + (Id - rYPTrn-;—l)_lAvn

(o]
= v, + Z 'ykaanAvn
k=0

2.2.3 Value lteration

Proposition 2.2.10

For any vq, define v,+1 = T *v,, then
Jim = v,

and

[on = vslloo < 7" [[v0 = Valloo

Furthermore,

on = Valloo < ——[m = Vn_1]loo
1

and v,, converges monotonously to v,.

Finally, if vg > T*vgy (respectively vy < T*vy) then vy > v, (respectively vy < v,)

13



2 Discounted Reward

Proof. For the first part of the proposition, we notice that v, is the only fixed point of
T* which is a contraction. Hence, by the fixed point theorem, for any vy, the sequence
defined by v,4+1 = T *v, converges toward v,.

A straightforward computation shows that

[on = Vxlloo < Al[vn-1 = Vxlloo < 7" [[v0 — vi[loo-
Along the same line,
vn+k — Vntktilloo < 'Yk—HHUn — Vp—1]|oo-

This implies that

k
[vn = villos < Z [vn+i = Untitilloc + [[Un4kt1 — Velloo
i=0
_ k+2
< T lvn = v oo + 7" oo — vl
which yields the result by taking the limit in k. O

Proposition 2.2.11

For any v and any m € argmax, T v,

2y

lor = valloc < 7 llv = vulloo

If v ="T*V then
2y

[[or = vsllo0 < lv = v"llo

Proof. By definition of 7, T™v = T *v, hence

[vr = villoo < [lor = T 0[loo + [[T70 — vi[oo
ST 0r = T 0lloo + 1770 = T il
< Allor = vlloo +Yllv = vulloo
< Allvr = velloo + 27([v = v4lloo

and thus

2
o = vulloo < 77 ll0 = wulls

For the second inequality,

[vr = Villoo < [lvr — vlloo + [V — valloo

14



Now
[vr = vlloo < T70x = T 0]loo + [T = T || oo
< Allvr = vlloo +llv = lloo

and thus

[or = v]|oo < lv = v'lloc

Along the same line,

[v = velloo < flv =T 0|00 + |70 — viloo
<|NT" =T 0lloo + |70 = T il o
<l = Vloe +llv = valloo
and thus

lv ="l

[o = vslloo <

. Combining those two bounds yields the result.

2.2.4 Modified Policy Iteration

Proposition 2.2.12

Let vg such that T *vy > vy, define for any n and any m,,
o Tp+1 € argmaxr, + Prup
o Upo="T%v, =Ty,
* Unm = Tﬂn"—lvn,mfl
® Untl = Unm,
then vy 11 > v, and

lim v, = vs.

2.2 Optimal Policy

MPI

n—oo
At any step,
Vi1 = Valloo < 1— [[vn = vno0llc
Furthermore,
_ Aamp+1
onsr = villoo < (%HIPW ~ Prl+ 7’"’”‘“) o = villo

15



2 Discounted Reward

Proposition 2.2.13
Let A=T* —1d, let W™ = (Tm)"H1y,

m
Wiy = Z ~E Py 4 L printly,
k=0

m
=, + Z 7kP7’fAv
k=0

Proof. By definition,
W#m)v — (Tﬂ)anrlv
=1+ P (TT)"v

m
— Z ”)/kPJ:'f’yr + ")/m+lP77rn+1’U
k=0

m
= Z 7kP7’f (re +vPrv—v) +v
k=0

m
=v+ Z ¥ PEAY
k=0

Proposition 2.2.14
Define W™ by

W*(m")v(s) = max Wma)y(s).

then me") is a contraction:

W™y — W)y g < 4™ |y — |,

Furthermore, W™y, = v,

Proof. Assume without loss of generality that Wim")v(s) — Wy (s) > 0 and let
7 € argmax Wﬂm")fu(s),
Wy (s) — Wy (s) = max Wy (s) — max Wiy (s)
< W™ o(s) = W (s)
< et I (y - o) (s)

<A™ v = vl

16



2.2 Optimal Policy

By construction Av, = T *v,—v4 = 0 and thus W#mn)v* = v,. We deduce immediately
that W*(m”)v* = sup, qum")v* = Uy O

Proposition 2.2.15

If w > v then for any 7, Wu > W™y
If u> v and Au > 0 then for any m Wru > T*v.
If Au > 0 and 7, such that T*u = T ™wu then W%T)u >0

Proof. By definition,

Wy — Wy > Whu — Wy
> W (u - v)
>y Pt (0 — ) > 0

Now,

Wiy =u+ 3" y*PFAu
k=0
>u+ Au="T"u

> T
By construction

AWMy = T W™y — Wiy
> T WM™y — Wiy
>Au—T™u+u

> Au+ (vPr, —1d) (Wg@)u - u) > Au+ (vPr, —1d) Z Y PE Au
k=0
> ’ymPZrZAu >0

O]

Proof of MPI. Let ug = vg = wyg.

By construction 7™+1v,, = T *v, and one verify easily that v, = (7T™+1)mntly, =
Wénmfl)vn.

Define now, u,r1 = T uy, and wypye = W*(m”)wn. We can prove by recursion that
Avy >0, vpa1 > vy and u, < vy < Wy

By assumption, Avg > 0 so that v; = W#Zn")vo > T vy > vg.

Assume the property holds for n — 1 then using the previous lemmas one obtains
immediately Av, > 0 and

_ Mn—1
Up =T Uup—1 < vy = W7$nmn 1)7)71—1 <wp = ﬂg " )wn—l

17



2 Discounted Reward

Finally,

My
Up = Wﬂ(’n " 1)1}”,1

=Up-1+ Z mnfl’ykpﬂ'nAUnfl
k=0

> Up—1.
Now, we have already proved that u, = T *ug tends to v, with
[tn = vxlloo < 7" [lvo — villoo

It suffices now to prove that w, also converges toward v, to obtain the convergence of
vp. We verify that

wn = vulloo = W™ D,y — W] o
Y [ wn—1 = Vsl oo

n—1
720 ™ g — v

which implies the convergence of w,.
We have

van+1 = Uxlloo < vanﬂ — Unlloo + [[vn — Vil 0o

Notice that v, o = T™+v, = T v, so that

Hvﬂn+1 — Upfloo < ||U7rn+1 - Un,OHoo + ||Un,0 — Unlloo
< ||7-7rn+1U7Tn+1 - Tﬂn““n”oo + an,O - UnHoo

< fyH,Uﬂ'n«kl - Un”oo + ”Un,O - 'UnHoo

Along the same line,

[[vs = vnlloo < [Jvx = vn0lloo + 1Un,0 = vnlloo
é HT*U* - T*UnHOO + ||Un,0 - Un”oo

< ylJvs = vnlloo + ||Un,0 — Up|loo

Combining those two inequalities yields

[V 1 = Vslloo < 7= llvn = vonllo

As show before,

Mn
k pk
0 < vy —Vng1 S v — vy — ny PMHA%
k=0

18



2.3 Asynchronous Dynamic Programming

Now, let 7, such that 7™v, = Bus,

Ay = Avy — Ave = T vp — v — (T 0s — v4)
< T™ 0, — v — (T™ 0 — vy)
< (vPr. —1d)(vn — v4)

Thus

0 <ve —vpy1 < vx— Z fykPk —1d) (v, — vs)

7Tn+1

Mn
< Zv k(O —v) = Y AP P (v, — )
k=0

| /\

Z ,Yk+1P7]:n+1 Tn4+1 Pﬂ'*)(vn - U*) - ’ymn—i_lP’f?l:Zi—l‘rl ('Un - U*)

| /\

Z 7k+1|||P7fn+1 - PTF*
k=0

< (P W, -

mn+1 an

_U*Hoo

[on = velloo +

+ ’Ymn+1> [[[vn — Vsl oo

2.3 Asynchronous Dynamic Programming
Proposition 2.3.1
Assume T™vg > vg and at any step n
o Define a subset S,, of the states and

e FEither

— keep the policy m,+1 = 7, and update the value function following

onsn(s) = {T”"vn(s) ifs € Sy

Un(s) otherwise
— keep the value function sy,+1 = s, and update the policy following

(s) argmax, r(s,a) + yPr,vn(s) ifs € Sy
TT. =
s Tn($) otherwise

Assume that for any state s and any n there exist n’ > n such that s € S, and one
performs a value update at step n’ and n” > n such that s € S,,» and one performs a
policy update at step n” then s, tends monotonously to s..

19



2 Discounted Reward

Proof. We start by proving by recursion that 7™ v, > v, implies
Tﬂ-nJrlUn—i-l > Upy1 = vy and T™ vy

Note that that 7™wvy > vy is an assumption.

Assume now that 7™uwv, > v,, then either at step n we update the value function or
the policy.

If we update the value function, 7,41 = 7, and thus

(s) T™op(s) ifse S,
Unt1(s) =
i Un(8) otherwise

As T™un(s) > wvp(s), we deduce T™uv, > vpt1 > v,. It suffices to notice that
Up+1 > Uy implies

T g =T opgr 2 T "oy,
to obtain
T 01 > Upg1 > Upe
Now, if we update the policy, v,+1 = v, and
T, (s) = {T*vn(s) if s Sn
T™uv,(s) otherwise
which implies 7™+1y,, > T™v,, and thus as v,11 = v,
T g1 > T ™Mo > Uy = Upgl.
We deduce thus that
T Vg1 = T 041 > Vg1 > U
which implies if we take the limit in &
Vs 2 Upt1 = Up.
Hence v,, converges toward a limit ¢ satisfying
vy, <0< TH0 < v,

Assume now that there exists s such that 9(s) < 7*0(s). By continuity of 7%, there
exists n such that for all n’ > n

0(s) < T vp(s)

Let n’ > n such that one updates the policy of s and n” the smallest integer larger than
n” where one updates the value of s.

Un//+1(8) == Tﬂ"” Un//(s)
> Tty (s)
> Tﬂ-"/"'l’l)n/(s)
> T v (s) > 0(s)

which is impossible. O

20



2.4 Approximate Dynamic Programming

2.4 Approximate Dynamic Programming

Proposition 2.4.1

If in a Generalized Policy Improvement, for all k
[k = vmylloo <€
and
[T+ g — T 0p)|oo <0
then

‘ 0 + 2ve
1 #(8) —vm () = 77— 33
im sup max (vi(s) — v, () (1—9)2

Proof. By construction,

Ury, (5) — Untpp1 (s) = T ™ g, (s) — Tﬂk+lv7rk+1
=T vm,(s) = T™ok(s) + T rok(s) = T g,
< ye+ Trop(s) — T g, .
<ve+ T p(s) = T v +0
<ye+ T g(s) + T vg, (s) — T4 g, (s) — T ™ oy, +0
<2ve+d+ 7 max (Ve (8) = Vs (57))

and thus
2ve+ 0
11—y~

In;,ix (Uﬂk (3/) - vﬁk+1 (S/)) —=
Now,

U*(S) - Uﬂ'k+1(8) = U*(S) - TﬂkHUﬂkH (5)

= U*(S) - Tﬂkﬂvﬂ'k (5) + Tmﬂvﬂ'k(s) - TWkHUﬂ'kH(S)

< vi(8) — T vy, (s) + 721’76—;5

< wuls) ~ T 0us) 4 e 47 20

< vu(s) = Trop(s) +ye+ 6+ 72¥E_+75

< T () — T omy (8) + 276 + 6 + 7236_—:(5

2ve+ 6
L=

< ymax (v«(s) — vr, (s)) +27€+ 0+

21



2 Discounted Reward

thus

2ve+ 9
1—

max (V4(8) = Vmyp i (5)) < 7 max (v4(8) — v, (8)) + 27v€ + 0y

and

2ve 49
L=y

lim sup max (v4(s) — vr (5)) < limsupry max (Vi(8) — U, (5)) +2ve+ 5+
which implies

2ve+46
. _ < —
lim sup max (vs(8) = vm () < (1 —~)2

22



3 Finite Horizon

Proposition 3.1

Ifvg =ryr_1 and v, = Ty, 1 = T, T—n + PrT—nVn—1 then

T-1

Un(s) =Ex |: Z Rt+1|St7nfl = 5] = vﬂ',T*TL(S)

t=T—n—1
If vg = ry and vy = T *v, then

T—1
Z Rit1]St—n—1=5| = vi1r—n(9)

Up(s) = maxE,
" t=T-n—1

Proof. If n = 0 then by definition v, 7(s) = Ex[Rr|S7—1 = 8| = rx7-1(5).

Now,

T-1
Uﬂ,T*’n(S) =E, Z Riq1|St—n-1= 3]

t=T—-n—1
[ -1
= T‘7|-7T,n,1(8) + Eﬂ Z Rt+1 STfnfl =S
t=T—-n

T-1
= rar-—n-1(8) + Z Zp(s’|s, a)m(a|s)Ex { Z Ry

t=T—n

St—n = 5/]

Along the same line, if n = 0 then by definition v, 7(s) = max; Ex[Rr|S7—1 = s] =
maxy Ur,7(s) = r«(s).

= TW,T—n—l(S) + Pﬂ,T—n—lvﬁ,T—n—l(s)

23



3 Finite Horizon

Now,
T-1
Vi, T-n(8) = max By [ > Re|Sr—n-1 = 8]
t=T—-—n—1
T-1
= mfrix (T‘W(S) +E Z Rt+1 ST—n—l = S])
t=T—n

T-1

= max (rmT_n_l(s) +> ) p(s'|s,a)w(als)E [ > Ry

t=T—n

]

= max g n1(5) + Prgono1 maxver_y1(s)

=T v 1—n-1(5)

24



4 Non Discounted Total Reward

Definition 4.1
Let s,ps be the absorbing state, we define the expected absorption time starting from s
7'7r(3> by

7—71'(5) =E, {Sltnfgt

Sozs}.

If T is finite, we say that w is proper.

Definition 4.2

We define the maximum expected absorption time starting from s by T.(s) by

T«(8) = max Tr(8)

Proposition 4.3
If T < 400 then

Ta =14 FPpTr. =T "7
If T < 400 then

T =max 1+ Prry. = Ty
™

Proof. 1t suffices to notice that 7.(s) = E, [Zfzog Rt+1] with Ry = 0if s; = § and 1
otherwise. O

Proposition 4.4

TT™ is a contraction of factor max %()51 with respect to the norm || - || 1/,

T™ and T* are contraction of factor max %&51 with respect to the norm || - ||og 1 /r, -
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4 Non Discounted Total Reward

Proof.

[T™0(s) = T (s)] < |Pr(v = v)(s)]

o
SPW(TXM

—2)s)

< Prer(s)[lo = vlloo,1/r

1+ Prr(s) —1

ST(S) 7'(8) HU_U/HOO,l/T
1+ P.71(s)—1

< BT =L

7(s)

which yields the result for both 7 = 7, and 7 = 7.
Now, assume without loss of generality that 7*v(s) > T*v/(s),

[T v(s) = Tv'(s)]

which yields the result for 7 = 7.

26
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5 Bandits

5.1 Regret
Definition 5.1.1

The best arm is a is such that E[R(a.)] > max, E[R(a)].
For any policy 7, the regret is defined by

T
r7.r = TE[R(as)] — E lz R(At)]
t=1
where A; is the arm chosen at time t following the policy .

Proposition 5.1.2
Let Ty(a) = 34 _114,—; and A(a) = E[R(as)] — E[R(a)] then

k
Tnm = Z A(a)E[Ti(a)]
a=1

Proof. By definition,

t=1a=1
k T

= E lz 1a,—a (E[R(a.)] — R(a))]
a=1 t=1

1
M?r
=
M=
[y
=
Il
=}
%
&

a=1 t=1
k
= > E[Ti(a)] A(a)
a=1

A k-armed bandit is defined by a collection of k random variable R(a), a € {1,...,k}.

27



5 Bandits

5.2 Concentration of subgaussian random variables

Definition 5.2.1

A random variable X is said to be o-subgaussian if

Elexp AX] < exp(A\26?%/2)

Proposition 5.2.2

If X is o-subgaussian then for any € > 0

2
P(X >¢€) < _
0 zo0(32)

Proof.

P(X > ¢) = P(exp(AX) > exp(Ae))
< Elexp(AX)]
—  exp(Xe)
< exp()\202/2 — Xe)

—e2
< -
= &Xp 202
where the last inequality is obtained by optimizing in A.

Proposition 5.2.3

If X is o-subgaussian and Y is o’-subgaussian conditionnaly to X then
o E[X] =0 and Var [X] < o2
o ¢X is |c|o-subgaussian.

e X +Y is/o?+ (0')%-subgaussian.

Proof.
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5.3 Explore Then Commit strategy

while
)\2k02k
eXp(A202/2) = Z Tk"
% :

By looking at the term in front of A! and A2, we obtain

e <5

<
AE[X] <0 and 5 < oxT

which implies
E[X]=0 and Var[X]< o>
By definition,
Elexp(AcX)] < exp(A\2c?0?/2)

hence the |c|o-subgaussianity of c¢X.
Now,
Elexp(A(X +Y))] < E[E[exp(MX +Y))|X]]
< E[E[exp(AX) exp(AY)) | X]]
< Bspexp(AX) exp(X3(c")2/2)

exp (X(02 + (')%)/2)

IN

Proposition 5.2.4

If X; — p are iid o-subgaussian variable,

1& ne2 1 & ne?
P EZXZ-EM—I—G < exp 552 and P EZXig,u—e < exp ~5g2

i=1 i=1

Proof. It suffices to notice that % " Xi—pand p—1 35" | X; are 0/\/n-subgaussian.
O

5.3 Explore Then Commit strategy

Definition 5.3.1

The simple current mean estimate QQ¢(a) is defined by

1

Qt(a) = Tt(a) ; 1A5=aRs(a)
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5 Bandits

Proposition 5.3.2

Assume we play the arm successively during K'm steps and then play the arm which
maximize the current mean estimate Q;(a) then if the R(a) — E[R(a)] is 1-subgaussian

k k
r7x < min(m,T/K) Z A(a) + max(T — mK,0) Z A(a) exp(—mA(a)?/4)

Furthermore,

Proof. We have

k
A Z A(a)E[Tr(a
a=1
we can thus focus on E[Tr(a)].
Now

+ max(n — mK,0)P(amx+1 = a)

< min(m,n/K) + max n—mKO]P’( ()>maXQt( )>

+ max(n — mK,0)P(Qm(a) > Qm(ax))

) ( )
) ( )
in(m,n/K) 4+ max(n — mK,0)P(amrxt1 = a)
) ( )
) + max(n — mK,0)P

IA INIA
=g &
=)

3
£l
=

It suffices then to notice that Qi +1(a) —E[R(a)] — (Qmr+1(as) —E[R(a.)]) is \/2/m-
subgaussian to obtain

E[Tr(a)] < min(m,n/K) + max(n — mK,0)P(Qmr+1(a) > Qmr+i(ax))
< min(m, n/K) 4+ max(n — mK,0) exp(—mA(a)?/4)

Now
Plar =as) =1— Za # a,Plap = a)

<1- Z exp(—mA(a)?/4)
aFax

5.4 c-greedy strategy

30
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5.4 e-greedy strategy

Proposition 5.4.1
Let w be an €,-greedy strategy,

™M

k
T > Z Et Z A(a)

t=1 a=1

Proof. By definition of an e-greedy strategy

T t
ZZE

t=1

™

hence the first result. O

Proposition 5.4.2
Let w be an €,-greedy strategy,

P(Ar = a,) > 1— e — %y exp(—Sr/(6k)) A A Er /(40
aFax
with X7 = ST €.
Furthermore,
P(as = argmax Qr,) > 1 — X, exp(—X7/(6k)) A (a)?Sr/(4k)
aFax

Ifet = C/t,

as soon as c¢/(6k) > 1 and cming 4, A(a)/4k < 1.
If ¢, = clog(t)/t then

log(T)(log(T) + 1) 4
T < Ala) ¢ +C )+ ——C
e 3 (a0 (5 )+ 5@°)

Proof. By definition of m,

P(Ar=a) < —+(1— *P(QT( ) > Qr(ax))

k:

and

P(Qr(a) > Qr(a.) < P(Qr(a) > p(a) + Aa)/2) + B(Qr(a,) < plas) — Ala)/2).
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5 Bandits

By symmetry, it suffices to bound

M=

P(Qr(a) = pla) + A/2) < ) P(Ti(a) =t,Qr(a) = pla) + A/2)

i
!

gé[@(TT ZRk > p(a +A/2>
Sil@(TT(a):tZRk +A/2>[P>< ZRk +A/2>
séwz(ma):tiim +A/2> a2
< TO]}D(]’T(Q):tZRk +A/2>+ Y e A

t=1 t=To+1

Let TR (a) be the number of time the arm a has been chosen at random before time T

To
2

< ZP(TT ZRk —|—A/2> A267A2T0/2
t=1
T

<y P(Tf(a) < t) IS O

= a A?

Now the Bernstein inequality yields
P(TE(a) < E|TE A < /2
( i (a) [ il )} ) =P " Var [TF(a)] + /2

with
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5.4 e-greedy strategy

. Choosing Ty =

< 12/2
S exp 0_2 + T0/2
T2/2
exX —
=P\ 12

which implies

P(Qr(a) > u(a) + A/2) < Tyexp(—T,/3) + ée—AQTO/Q

and thus

P(a = argmax Qr(a)) < 2(1 — ?) (ZJT/(Qk) exp(—S7/(6k)) + A(Za)QeA(a)zzTM)

S 4 2
At » k —A(a)*Sr/(4k)
k: L . exp( 7/(6k) + A(a)2e
with Xp = ZST:1 €s which goes to 0 as soon as X7 tends to +00 We deduce then that
P(Ar=a) < L+ L 4 Ir exp(—X7/(6k) + LN O D)
- k: k k Ala)?
which goes to 0 if furthermore er tends to 0
Finally,
T
E[Tr(a)] =) P(A; = a)
t=1
(S 4 Aw2n/k)
< — - _E k — a Et 4k )
_;(k + k: exp(—3;/(6k) + A(a)Qe

Hence

b DIV 4 L 2
T < Z (A(a) < kT + Z t Zt/(ﬁk)) + mze Ala) Zt/(4kz)>

a7 ax t=1

Assume that ¢, = ¢/t so that ¥; < ¢(In(¢) + 1) then the previous inequality becomes

T
rra< S (A(a) <clog(T)+1 Ly cwlg“e—caog(tm)/(ﬁk))

. T A
) (a0 (PR o)+ L)

33
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5 Bandits

as soon as ¢/(6k) > 1 and cming,, Aa)/4k < 1.

If ¢, = clog(t)/t then

T < Z (A(a) ( .

aFax

5.5 UCB strategy

Proposition 5.5.1
Assume we use a UCB strategy with a variance term %‘zi)t then
4cint

rn(t) < C’CZA(a) + Z Aa)

with C. < 400 as soon as ¢ > 3/2

Furthermore
P(A; = ay) > 1 — 2kt 22

as soon as t > max, 2‘3&1“)5.
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Proof. By construction,

t
== Z ]-As:a

< Z 1Q.(a)+es(a)=max Qu(a)+es(a’)

t

<To(@)+ Y 1Qu(a)tes(a)—max @ (@) +es(a!).Ts (@) >To (a)

s=Tp+1
t

< TO + Z 1Q a)+cs( )>Qs(a*)+cs(a*) Tt( )>T0(a)

s= To+1

< Tp(a) + .
ola Z maxyy ()<<t 37 2 J=1%"

S= TU+1

B+ Y Y S

s=To+1s'=1s"= TO

<To+zzz

s=To+1s'=1s"=Ty(a

t
ST+ Y Y Z
s=To+1s'=1s"= TO

t

E[Ti(a)] < To(a) + > Z Z

s=To+1s'=1s"= TO

4clnt

choosing Tp(a) = Afa)?

4c Int

) + Z 2Sf2c+2

s=Tp+1

4cint

< -
S Aa)? + Ce

as soon as ¢ > 3/2.
One deduce thus

]_
// Z] 1"

plas)<p(a

wlasx)<p(a

—2c
1 §2 /2,;31/7“5 + 2s

£) < C. > Aa)

Note that we have shown

P(A; = a) < 2t72¢

5.5 UCB strategy

a)(])—h /< 5‘,3 >min o<t o Zj 1R a*)(])—i- Clns

R+ TS 351 Ria) gy /T

1
\/@‘F 2 3 i=1°" R(a) (jy 2 p(a)++ /B

+ ]-L ZjZIS/R(a*)(J‘)SH(a‘*)_

clns
S/

—2clns
/clna + 26
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5 Bandits

4clnt
as soon as t > Aa)? Thus

P(A; = ay) > 1 — 2kt 22

1
as soon as t > max, 20(;);
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6 Stochastic Approximation

6.1 Convergence of a mean

Proposition 6.1.1

Assume X; are i.i.d. such that E[X;|F;_1] = p and Var [X;|F;_1] < o2, let

Mn = Mn—l + an(Xn - Mn—l)
with 1 > o; > 0 then

o ifY " oy — 400 and Y, a? < +o00, My, — u in quadratic norm.

e «a; = « then limsup || M,, — p|* < ao?

Proof. By definition,

M, =M, 1+ an(Xn - Mn—l)
= (1 - an)Mnfl + o Xy

= ﬁ(l — a;) Moy + zn: ﬁ (1 — ai)ogp Xy
=1

k=1i=k-+1
thus

=1

n n
E[[[M, - 2] = TT(1 = )| Mo — pl?+ 3 T] (1 - i)%afo?
k=1i=k+1
Thus it suffices to prove that

n n n
H(l —a;) =0 and Z H (1—a;)%ai =0
i=1 k=1i=k-+1
For the first part, we use (1 —z) < e™? for 0 < z <1 to obtain
[1(1— i) < e 2
i=1

which goes to 0 if >~ ; oy — +o0.
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6 Stochastic Approximation

For the second one,

ZH (1fai)2az§Z‘H (lfai)Qaer Z H (1fozi)2az

+1 k=m+1i=k+1

=k
m n n n n
§Z H(l—ai)Qai+ max oy Z H (1—0@)—1_[(1—04)
; k>m+1 . :
k=1i=m k=m+1 \i=k+1 1=k

m n
< o2 Zak + max ag (11— H (1— )
k=1 i=m+1
N
< —2 o O 2
<e k Zak +kgln%§1 o
k=1
Choosing m = n/2 yields
. n n/2
E [HMn - MHZ} < e 2= Y| My — pl? + e~ 2 2ukmny2 % > ajpo® 4+ max ago’
P k>n/2

If we assume that 37_; a; — +oo and Y_j-; af < +oc then all the term in the right
hand side goes to 0.
If we assume aj, = « then

E|[|M, - 2] < e[ Mo - plf? + ne*a%0? + ao?

which is yields the result. O

6.2 Generic Stochastic Approximation

Definition 6.2.1 Generic Stochastic Algorithm

Let H; be a sequence of approximation of an operator h, let a;(t) be a set of non negative
sequences, for any initial value X, we define the following iterative scheme

X1, = Xpi + oi(t) He (Xe)s

Definition 6.2.2
h and H; are compatible if

Hi(z) = h(z) + e(z) + 6 ()

with

Ele:(z)|F:] =0 and  Var [e(x)|Fi] < co(1 + ||z]?)
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6.2 Generic Stochastic Approximation

and with probability 1

160 (2)[1* < en(1 + fla]))?

with ¢, — 0 and either

e it exists a non negative V. C' with L-Lipschitz gradient satisfying

(VV (@), h(z)) < —e|VV ()|
E[||Hi(2)]?] < ch(1+ [VV (@)IP?),

e or h is a contraction for the norm considered.

Proposition 6.2.3

Generic Stochastic Approximation
Assume that for any i, we have almost surely

T T
Zai%qLoo and Za? < 400
i=1 i=1

Then providing h and H; are compatible,

h(Xy) — 0.

Proof. See Neuro-Dynamic programming from Bertsekas and Tsitsiklis.

Lemma 6.2.4

From 0p11 = 0 + arhi(0r)
do ~
to — = H(0
o — (9)

with  h(0) = H(0) + e + np
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6 Stochastic Approximation

Sketch. o Difference between 6 and a solution of the ODE with é(tk) =0k at tgay:

O(tiss) = B(ts) = | (0w - (W) du
k+l 1 tk’+1 .
= 3 ) (HO0) + et e — HEw) du
k+l 1 tk’+1 )
/ ) — H(B(u))) du
k+l—1 k+1—-1

+ Z Q€ + Z Qg Mk
k'=k k'=k

e The last two term are going to be small by construction. ..

o Difference between 6 and a solution of the ODE with é(tk) =0k at tgpap:
k+l 1

Oth ) — Oti ) = / Y () - HO(W)) du

k+l—1 k+1-1

+ Z o €y + Z Qg Mie!
k'=k k'=k

e The last two term are going to be small by construction:

k+1-1 k+1-1 k+i-1
El Z ak/ekll =0 and Var [ Z o€ | < 0’2 Z Oz%/ —0
k'=k K=k
k41-1
1Y apm |l < (b1 — te) sup an'”
k'=k

which is small if we assume that ;1 — t < A.

e We can now use a Lipchitz assumption on H to obtain:

[ (10w - HOW))

3%

" 0(tw) - 0(u)|du

3%

< Lak/HG(tk/) — tk/ ’ + L/ H9 tk/ - é(u)duH

< Loy [|0(tw) — 0(tw) || + LI H || sc0

e Combinining all the results leads to
k+1—1

10(tkrt) = Otes) | S L Y onl|O(tir) — Ot |
K=k
k-1 k-1 k+1—1
+L|Hlow > aipr++| D awew||+ > awllnwl
k'=k k'=k k'=k
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6.3 TD(\) and linear approximation

l_l l//71
 Using a discrete Gronwall Lemma, VI < 1",z < L Z apzp+A = 2 < A =0
'=0
we obtain that if 5 —tp <A
_ oo k+1—1
16(tk1) = 0(trs)|l < | LIHlloo D @l +sup|| D awew | + Lsup [l | -2
k' =k USU|| =g k'>k

—0 when k—o0

6.3 TD()\) and linear approximation

Proposition 6.3.1

Provided there is a unique stationary distribution 11 on the states, that the basis function
are linearily independent and

T T
Za—>—|—oo and Za2<+oo
i=1 i=1

For any A\ € (0,1), the TD(\) algorithm with linear approximation converges with
probability one. The limit w, ) is the unique solution of

11, 7™M Xw, \ = Xw, ).

Furthermore,

1— Xy
2,0 < ﬁ”ﬂuvﬂ — Uz

HX'I.U*,)\ — Un 2u

Proof. See Tsitsiklis and Van Roy. O

Proof. Assume A is invertible and let wrp = A~'b

E[wi41 — wrp|w] = wy + a(b — Aw;) — wrp
= (Id — ¢A)(w; — wrp)

If we prove that A is positive definite then A will be invertible and the asymptotic
algorithm will converge provided « is small enough.
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6 Stochastic Approximation

In the continuous task setting,
A=) u(s)) mlals) Y p(r, s, a)a(s)(z(s) — ya(s)
=Y uls)Y_m(als) Y pa(s's)z(s)(@(s) — ya(s))"

= Zu(s)x(s) <x(8) - ’szw(slls)x(sl)>
= X'D(Id — yP,)X

where D is a diagonal matrix having u(s) on the diagonal.
As P is a stochastic matrix, the row sums of D(Id — vP;) are non negative. Recall
that p is such that pu!P, = p! and thus
1'D(Id — yPx) = p*(I1d — 7 Py)
= p' —yu' Pr
=1 =y)u" >0
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