Reinforcement Learning Book of Proofs

E. Le Pennec

November 12, 2021

Contents

1	History Dependent or Markov Policies	5
2	Discounted Reward	7
	2.1 Evaluation of a policy	7
	2.2 Optimal Policy	
	2.2.1 Characterization	9
	2.2.2 Policy Improvement and Policy Iteration	12
	2.2.3 Value Iteration	13
	2.2.4 Modifier Policy Iteration	15
	2.3 Asynchronous Dynamic Programming	19
	2.4 Approximate Dynamic Programming	21
3	Finite Horizon	23
4	Non Discounted Total Reward	25
5	Bandits	27
	5.1 Regret	27
	5.2 Concentration of subgaussian random variables	28
	5.3 Explore Then Commit strategy	
	5.4 ϵ -greedy strategy	30
	5.5 UCB strategy	
6	Stochastic Approximation	37
	6.1 Convergence of a mean	37
	6.2 Generic Stochastic Approximation	
	6.3 $TD(\lambda)$ and linear approximation	

1 History Dependent or Markov Policies

Proposition 1.1 Equivalence of History Dependent and Markov Policies

Let π be a stochastic history dependent policy. For each state $s_0 \in S$, there exists a Markov stochastic policy π' such that $V^{\pi'}(s_0) = V^{\pi}(s_0)$.

Proof. Let $\pi'(a_t|s_t) = \mathbb{E}\left[\pi(a_t|H_t)|S_t = s_t, S_0 = s_0\right]$, we can prove by recursion that

$$\mathbb{P}_{\pi'}(S_t = s_t, A_t = a_t | S_0 = s_0) = \mathbb{P}_{\pi}(S_t = s_t, A_t = a_t | S_0 = s_0).$$

This holds by definition for t = 0. Now assume the property is true for $t' \le t - 1$. By construction,

$$\mathbb{P}_{\pi} (S_{t} = s_{t} | S_{0} = s_{0}) = \sum_{s_{t-1}} \sum_{a_{t-1}} p(s_{t} | s_{t-1}, A_{t-1}) \mathbb{P}_{\pi} (S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1} | S_{0} = s_{0})
= \sum_{s_{t-1}} \sum_{a_{t-1}} p(s_{t} | s_{t-1}, a_{t-1}) \mathbb{P}_{\pi'} (S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1} | S_{0} = s_{0})
= \mathbb{P}_{\pi'} (S_{t} = s_{t} | S_{0} = s_{0}).$$

Hence,

$$\mathbb{P}_{\pi'}(S_t = s_t, A_t = a_t | s_0) = \pi'(a_t | s_t) \mathbb{P}_{\pi'}(S_t = s_t | S_0 = s_0)$$

$$= \mathbb{E}_{\pi} \left[\mathbb{P}_{\pi} \left(A_t = a_t | H_t, S_t = s_t, S_0 = s_0 \right) \right] \mathbb{P}_{\pi} \left(S_T = s_t | S_0 = s_0 \right)$$

$$= \mathbb{E}_{\pi} \left[\mathbb{P}_{\pi} \left(S_t = s_t, A_T = a_t, H_t | S_0 = s_0 \right) \right].$$

It suffices then to notice that the quality criterion of π and π' depends on π only through respectively $\mathbb{E}_{\pi}\left[r(S_t, A_t)|S_0 = s_0\right]$ or $\mathbb{E}_{\pi'}\left[r(S_t, A_t)|S_0 = s_0\right]$ which are equals.

2 Discounted Reward

2.1 Evaluation of a policy

Definition 2.1.1

Value Function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{+\infty} \gamma^{t} R_{t+1} \middle| S_{0} = s \right]$$
$$= \sum_{t=0}^{+\infty} \gamma^{t} \mathbb{E}_{\pi} \left[R_{t+1} \middle| S_{0} = s \right]$$

Definition 2.1.2

Bellman Operator

$$\mathcal{T}_{\pi}v(s) = \mathbb{E}_{\pi} [R|s] + \gamma \sum_{s'} \mathbb{P}_{\pi} (s'|s) v(s')$$
$$\mathcal{T}_{\pi}v = r_{\pi} + \gamma P_{\pi}v$$

Proposition 2.1.3

Value Function Characterization

Let π be a stationary Markov policy, if $0<\gamma<1$ then v_π is the only solution of $v=\mathcal{T}_\pi v$,

$$v = r_{\pi} + \gamma P_{\pi} v,$$

and
$$v_{\pi} = (\mathrm{Id} - \gamma P_{\pi})^{-1} r_{\pi}$$

Proof. By definition, if v is a solution of $v = \mathcal{T}_{\pi}v$ then $(\mathrm{Id} - \gamma P_{\pi})v = r_{\pi}$. As P_{π} is a stochastic matrix, $||P_{\pi}|| \le 1$ and thus

$$\sum_{k=0}^{\infty} \gamma^k P_{\pi}^k$$

is well defined. One verify easily that this is an inverse of $I-\gamma P_\pi$ and such a v exists, is unique and equal to

$$\sum_{k=0}^{\infty} \gamma^k P_{\pi}^k r_{\pi}.$$

2 Discounted Reward

Now,

$$v_{\pi}(s) = \sum_{t=0}^{+\infty} \gamma^{t} \mathbb{E}_{\pi} [R_{t+1}|S_{0} = s]$$

$$= \sum_{t=0}^{+\infty} \gamma^{t} \sum_{s'} \mathbb{P}_{\pi} (S_{t} = s'|S_{0} = s) \mathbb{E}_{\pi} [R|S = s']$$

$$= \sum_{t=0}^{+\infty} \gamma^{t} \sum_{s'} (P_{\pi}^{t})_{s,s'} r_{\pi}(s')$$

$$= \sum_{t=0}^{+\infty} \gamma^{t} (P_{\pi}^{t} r_{\pi})(s)$$

and thus $v = v_{\pi}$.

Proposition 2.1.4

Bellman Operator Property

The operator \mathcal{T}_{π} satisfies the following contraction property

$$\|\mathcal{T}_{\pi}v - \mathcal{T}_{\pi}v'\|_{\infty} \le \gamma \|v - v'\|_{\infty}$$

Furthermore, $v \leq v'$ implies $\mathcal{T}_{\pi}v \leq \mathcal{T}_{\pi}v'$ and $\mathcal{T}_{\pi}(v + \delta \mathbb{1}) = \mathcal{T}_{\pi}v + \gamma \delta \mathbb{1}$

Proof. For any s,

$$|\mathcal{T}_{\pi}(v) - \mathcal{T}_{\pi}(v')(s)| = |\gamma P_{\pi}(v - v')(s)|$$

$$< \gamma ||v - v'||_{\infty}$$

because P_{π} is a stochastic matrix.

It suffices to use the positivity of a stochastic matrix and the fact that 1 is a eigenvector for the eigenvalue 1 to obtain the two remaining properties.

Proposition 2.1.5

Policy Prediction

For any v_0 , define $v_{n+1}=\mathcal{T}_{\pi}v_n$ then

$$\lim_{n\to\infty} v_n = v_\pi$$

and

$$||v_n - v_\pi||_{\infty} \le \gamma^n ||v_0 - v_\pi||_{\infty}$$

Furthermore

$$||v_n - v_\pi||_{\infty} \le \frac{\gamma}{1 - \gamma} ||v_n - v_{n-1}||_{\infty}$$

Finally, if $v_0 \geq \mathcal{T}_{\pi} v_0$ (respectively $v_0 \leq \mathcal{T}_{\pi} v_0$) then $v_0 \geq v_{\pi}$ (respectively $v_0 \leq v_{\pi}$) and v_n converges monotonously to v_{π} .

Proof. For the first part of the proposition, we notice that v_{π} is the only fixed point of \mathcal{T}_{π} which is a contraction. Hence, by the fixed point theorem, for any v_0 , the sequence defined by $v_{n+1} = \mathcal{T}_{\pi}v_n$ converges toward v_{π} .

A straightforward computation shows that

$$||v_n - v_\pi||_{\infty} \le \gamma ||v_{n-1} - v_\pi||_{\infty} \le \gamma^n ||v_0 - v_\pi||_{\infty}.$$

Along the same line,

$$||v_{n+k} - v_{n+k+1}||_{\infty} \le \gamma^{k+1} ||v_n - v_{n-1}||_{\infty}.$$

This implies that

$$||v_n - v_\pi||_{\infty} \le \sum_{i=0}^k ||v_{n+i} - v_{n+i+1}||_{\infty} + ||v_{n+k+1} - v_{\infty}||_{\infty}$$

$$\le \frac{\gamma - \gamma^{k+2}}{1 - \gamma} ||v_n - v_{n-1}||_{\infty} + \gamma^{n+k+1} ||v_0 - v_\pi||_{\infty}$$

which yields the result by taking the limit in k.

Finally, note that as

$$v_{n+2} = r_{\pi} + \gamma P_{\pi} v_{n+1}$$

and P_{π} is made of non negative elements, $v_{n+1} \leq v_n$ implies

$$v_{n+2} \le r_{\pi} + \gamma P_{\pi} v_n = v_{n+1}.$$

Thus $v_1 = \mathcal{T}_{\pi} v_0 \leq v_0$ implies that v_n is a decreasing sequence whose limit is v_* , yielding the result. The increasing case is obtained with a similar proof.

2.2 Optimal Policy

2.2.1 Characterization

Definition 2.2.1

Optimal Reward

$$v_{\star}(s) = \max_{\pi} v_{\pi}(s)$$

where the maximum can be taken indifferently in the set of history dependent policies or Markov policies.

Definition 2.2.2

Optimal Bellman Operator

$$\mathcal{T}_* v(s) = \max_a \mathbb{E}\left[R|S=s, A=a\right] + \gamma \sum_{s'} \mathbb{P}\left(S'=s'|S=s, A=a\right) v(s')$$
$$= \max_a r(s,a) + \gamma \sum_{s'} p(s'|s,a) v(s')$$

Proposition 2.2.3

Optimal Bellman Operator and Markov Policies

$$\mathcal{T}_*v(s) = \max_{\pi \in \mathcal{S}} \mathcal{T}_\pi v(s)$$

 $\mathcal{T}_*v(s) = \max_{\pi \in \mathcal{S}} \mathcal{T}_\pi v(s)$ or $\mathcal{T}_*v = \max_{\pi \in \mathcal{S}} r_\pi + \gamma P_\pi v$ where \mathcal{S} is the set of deterministic Markov policies and the may is componentwise.

Proof. $\pi_a = e_a$ is such that $\mathcal{T}_{\pi_a}(s) = \mathbb{E}\left[R|s,a\right] + \gamma \sum_{s'} p(s'|s,a)v(s')$ so that $\max_{\pi} \mathcal{T}_{\pi}(s) \geq \sigma(s')$ $\mathcal{T}_*(s)$.

Now, for any π ,

$$\mathcal{T}_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathbb{E}\left[R|S=s, A=a\right] + \gamma \sum_{s'} p(s'|s, a) v(s') \right)$$

$$\leq \max_{a} \mathbb{E}\left[R|S=s, A=a\right] + \gamma \sum_{s'} p(s'|s, a) v(s')$$

$$\leq \mathcal{T}_{*}(s)$$

Proposition 2.2.4

Bellman Operator Property

The operator \mathcal{T}_* satisfies the following contraction property $\|\mathcal{T}_* v - \mathcal{T}_* v'\|_{\infty} \leq \gamma \|v - v'\|_{\infty}$

$$\|\mathcal{T}_* v - \mathcal{T}_* v'\|_{\infty} \le \gamma \|v - v'\|_{\infty}$$

Furthermore, $v \leq v'$ implies $\mathcal{T}_* v \leq \mathcal{T}_* v'$ and $\mathcal{T}_* (v + \delta \mathbb{1}) = \mathcal{T} v + \gamma \delta \mathbb{1}$

Proof. For any s, if $\mathcal{T}_*v(s) \geq \mathcal{T}_*v'(s)$

$$\begin{split} |\mathcal{T}_* v - \mathcal{T}_* v'(s)| &= \mathcal{T}_* v(s) - \mathcal{T}_* v'(s) \\ &= \max_a r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s') - \left(\max_a r(s, a) + \gamma \sum_{s'} p(s'|s, a) v'(s') \right) \\ &\leq \max_a \left(r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s') - \left(r(s, a) + \gamma \sum_{s'} p(s'|s, a) v'(s') \right) \right) \\ &\leq \gamma \max_a \sum_{s'|s, a} p(s'|s, a) (v(s') - v'(s')) \\ &\leq \gamma ||v - v'||_{\infty} \end{split}$$

Now, if $v \leq v'$, for any a'

$$r(s, a') + \gamma \sum_{s'} p(s'|s, a')v(s') \le r(s, a') + \gamma \sum_{s'} p(s'|s, a')v'(s')$$

 $\le \mathcal{T}_* v'(s)$

hence $\mathcal{T}_* v \leq \mathcal{T}_* v'$.

Finally,

$$\mathcal{T}_*(v+\delta\mathbb{1})(s) = \max_a r(s,a) + \gamma \sum_{s'} p(s'|s,a)(v(s')+\delta)$$
$$= \max_a r(s,a) + \gamma \sum_{s'} p(s'|s,a)v(s') + \delta$$
$$= \mathcal{T}_*(v)(s) + \delta.$$

Optimal Reward Characterization

 $\begin{array}{ll} \textbf{Proposition} & \textbf{2.2.5} \\ v_{\star} \text{ is the unique solution of } V = \mathcal{T}_{*}V. \end{array}$

Proof. Assume $v \geq \mathcal{T}_* v$ so that

$$v \ge \max_{\pi} r_{\pi} + \gamma P_{\pi} v.$$

Let $\pi = (\pi_0, \pi_1, \ldots)$ be a sequence of Markov policies.

$$v \ge r_{\pi_0} + \gamma P_{\pi_0} v$$

$$v \ge r_{\pi_0} + \gamma P_{\pi_0} (r_{\pi_1} + \gamma P_{\pi_1} v)$$

$$v \ge \sum_{k=0}^{n} \gamma^k P_{\pi}^t r_{\pi_k} + \gamma^{n+1} P_{\pi}^{n+1} v$$

where $P_{\pi}^k = \prod_{k' < k} P_{\pi_{k'}}$. As $v_{\pi} = \sum_{k=0}^{\infty} \gamma^k P_{\pi}^k r_{\pi_k}$, we verify that

$$v - v_{\pi} \ge \gamma^{n+1} P_{\pi}^{n+1} v - \sum_{k=n+1}^{\infty} \gamma^{k} P_{\pi}^{k} r_{\pi_{k}}.$$

2 Discounted Reward

Taking the limit in k yields $v \geq v_{\pi}$ and thus $v \geq v_{*}$.

Now, if $v \leq \mathcal{T}_* v = \max_{\pi} r_{\pi} + \gamma P_{\pi} v$ then assuming the max is reached at $\tilde{\pi}$

$$v \le r_{\tilde{\pi}} + \gamma P_{\tilde{\pi}} v \le \sum_{k=0}^{n} \gamma^k P_{\tilde{\pi}}^t r_{\tilde{\pi}} + \gamma^{n+1} P_{\tilde{\pi}}^{n+1} v$$

and thus $v \leq v_{\tilde{\pi}} \leq v_*$.

We deduce thus that $v = \mathcal{T}_* v$ implies $v = v_*$. It remains to prove that such a solution exists. This is a direct application of the fixed point theorem for the operator \mathcal{T}_* .

Proposition 2.2.6

Any policy π_* such that $v_{\pi_*} = v_*$ is optimal.

Proof. This is a direct consequence of the previous theorem.

Proposition 2.2.7

Any stationary policy π_* verifying $\pi_* \in \operatorname{argmax} r_\pi + \gamma P_\pi v_*$ is optimal.

Proof. By definition,

$$\mathcal{T}_{\pi_*} v_* = r_{\pi_*} + P_{\pi_*} v_*$$

$$= \max_{\pi} r_{\pi} + P_{\pi} v_*$$

$$= \mathcal{T}_* v_* = v_*.$$

Hence $v_{\pi_*} = v_*$ and the policy is optimal.

2.2.2 Policy Improvement and Policy Iteration

Proposition 2.2.8

One step look-head policy improvement

For any π . π_{\perp} define by

$$\pi_+ \in \operatorname*{argmax}_{\pi'} r_{\pi'} + \gamma P_{\pi'} v_{\pi}$$

satisfies

$$v_{\pi_+} \ge v_{\pi}$$

Proof. By construction,

$$r_{\pi_+} + \gamma P_{\pi_+} v_{\pi} \ge r_{\pi} + \gamma P_{\pi} v_{\pi} = v_{\pi}$$

and thus

$$r_{\pi_{+}} - (I - \gamma P_{\pi_{+}})v_{\pi} \ge 0.$$

It suffices to notice that $v_{\pi_+} = (I - \gamma P_{\pi_+})^{-1} r_{\pi_+}$ so that

$$v_{\pi_{+}} - v_{\pi} = (I - \gamma P_{\pi_{+}})^{-1} (r_{\pi_{+}} - (I - \gamma P_{\pi_{+}})v_{\pi}) \ge 0$$

where we have use the positivity of $(I - \gamma P_{\pi_+})^{-1} = \sum \gamma^k P_{\pi_+}^k$.

Proposition 2.2.9

Let $\Delta = \mathcal{T}_* - \mathrm{Id}$, the policy iteration scheme satisfies

$$v_{n+1} = v_n + \sum_{k=0}^{\infty} \gamma^k P_{\pi_{n+1}}^k \Delta v_n.$$

Proof. As proved before,

$$v_{n+1} = (\mathrm{Id} - \gamma P_{\pi_{n+1}})^{-1} r_{\pi_{n+1}}.$$

Now by construction,

$$\mathcal{T}_* v_n = \mathcal{T}_{\pi_{n+1}} v_n = r_{\pi_{n+1}} + \gamma P_{\pi_{n+1}} v_n$$

and thus

$$r_{\pi_{n+1}} = \Delta v_n + (\operatorname{Id} - \gamma P_{\pi_{n+1}}) v_n.$$

This implies immediately

$$v_{n+1} = v_n + (\text{Id} - \gamma P_{\pi_{n+1}})^{-1} \Delta v_n$$

= $v_n + \sum_{k=0}^{\infty} \gamma^k P_{\pi_{n+1}}^k \Delta v_n$

2.2.3 Value Iteration

Proposition 2.2.10

For any v_0 , define $v_{n+1} = \mathcal{T}_* v_n$ then

$$\lim_{n\to\infty} v_n = v_*$$

and

$$||v_n - v_*||_{\infty} \le \gamma^n ||v_0 - v_*||_{\infty}$$

Furthermore,

$$||v_n - v_*||_{\infty} \le \frac{\gamma}{1 - \gamma} ||v_n - v_{n-1}||_{\infty}$$

Finally, if $v_0 \ge \mathcal{T}_* v_0$ (respectively $v_0 \le \mathcal{T}_* v_0$) then $v_0 \ge v_*$ (respectively $v_0 \le v_*$) and v_n converges monotonously to v_* .

2 Discounted Reward

Proof. For the first part of the proposition, we notice that v_* is the only fixed point of \mathcal{T}_* which is a contraction. Hence, by the fixed point theorem, for any v_0 , the sequence defined by $v_{n+1} = \mathcal{T}_* v_n$ converges toward v_* .

A straightforward computation shows that

$$||v_n - v_*||_{\infty} \le \gamma ||v_{n-1} - v_*||_{\infty} \le \gamma^n ||v_0 - v_*||_{\infty}.$$

Along the same line,

$$||v_{n+k} - v_{n+k+1}||_{\infty} \le \gamma^{k+1} ||v_n - v_{n-1}||_{\infty}.$$

This implies that

$$||v_n - v_*||_{\infty} \le \sum_{i=0}^k ||v_{n+i} - v_{n+i+1}||_{\infty} + ||v_{n+k+1} - v_*||_{\infty}$$

$$\le \frac{\gamma - \gamma^{k+2}}{1 - \gamma} ||v_n - v_{n-1}||_{\infty} + \gamma^{n+k+1} ||v_0 - v_*||_{\infty}$$

which yields the result by taking the limit in k.

Proposition 2.2.11
For any
$$v$$
 and any $\pi \in \operatorname{argmax}_{\pi} \mathcal{T}_{\pi} v$,
$$\|v_{\pi} - v_{*}\|_{\infty} \leq \frac{2\gamma}{1 - \gamma} \|v - v_{*}\|_{\infty}$$
 If $v = \mathcal{T}_{*} v'$ then
$$\|v_{\pi} - v_{*}\|_{\infty} \leq \frac{2\gamma}{1 - \gamma} \|v - v'\|_{\infty}$$

$$||v_{\pi} - v_{*}||_{\infty} \le \frac{2\gamma}{1 - \gamma} ||v - v'||_{\infty}$$

Proof. By definition of π , $\mathcal{T}_{\pi}v = \mathcal{T}_{*}v$, hence

$$||v_{\pi} - v_{*}||_{\infty} \leq ||v_{\pi} - \mathcal{T}_{\pi}v||_{\infty} + ||\mathcal{T}_{*}v - v_{*}||_{\infty}$$

$$\leq ||\mathcal{T}_{\pi}v_{\pi} - \mathcal{T}_{\pi}v||_{\infty} + ||\mathcal{T}_{*}v - \mathcal{T}_{*}v_{*}||_{\infty}$$

$$\leq \gamma ||v_{\pi} - v||_{\infty} + \gamma ||v - v_{*}||_{\infty}$$

$$\leq \gamma ||v_{\pi} - v_{*}||_{\infty} + 2\gamma ||v - v_{*}||_{\infty}$$

and thus

$$||v_{\pi} - v_*||_{\infty} \le \frac{2\gamma}{1 - \gamma} ||v - v_*||_{\infty}$$

For the second inequality,

$$||v_{\pi} - v_{*}||_{\infty} \le ||v_{\pi} - v||_{\infty} + ||v - v_{*}||_{\infty}$$

Now

$$||v_{\pi} - v||_{\infty} \le ||\mathcal{T}_{\pi}v_{\pi} - \mathcal{T}_{\pi}v||_{\infty} + ||\mathcal{T}_{*}v - \mathcal{T}_{*}v'||_{\infty}$$

$$\le \gamma ||v_{\pi} - v||_{\infty} + \gamma ||v - v'||_{\infty}$$

and thus

$$||v_{\pi} - v||_{\infty} \le \frac{\gamma}{1 - \gamma} ||v - v'||_{\infty}$$

Along the same line,

$$||v - v_*||_{\infty} \le ||v - \mathcal{T}_* v||_{\infty} + ||\mathcal{T}_* v - v_*||_{\infty}$$

$$\le ||\mathcal{T}_* v' - \mathcal{T}_* v||_{\infty} + ||\mathcal{T}_* v - \mathcal{T}_* v_*||_{\infty}$$

$$\le \gamma ||v - v'||_{\infty} + \gamma ||v - v_*||_{\infty}$$

and thus

$$||v - v_*||_{\infty} \le \frac{\gamma}{1 - \gamma} ||v - v'||_{\infty}$$

. Combining those two bounds yields the result.

2.2.4 Modifier Policy Iteration

Proposition 2.2.12

MPI

Let v_0 such that $I_*v_0 \leq v_0$, and $\sigma_{n+1} \in \operatorname{argmax} r_\pi + P_\pi v_n$ $v_{n,0} = \mathcal{T}_* v_n = \mathcal{T}_{\pi_{n+1}} v_n$ $v_{n,m} = \mathcal{T}_{\pi_{n+1}} v_{n,m-1}$ $v_{n+1} = v_{m_n}$ then $v_{n+1} \geq v_n$ and At any step,Let v_0 such that $\mathcal{T}_*v_0 \geq v_0$, define for any n and any m_n

$$\lim_{n \to \infty} v_n = v_*.$$

$$||v_{\pi_{n+1}} - v_*||_{\infty} \le \frac{2}{1-\gamma} ||v_n - v_{n,0}||_{\infty}$$

Furthermore,

$$||v_{n+1} - v_*||_{\infty} \le \left(\frac{\gamma - \gamma^{m_n + 1}}{1 - \gamma} |||P_{\pi_{n+1}} - P_{\pi_*}||| + \gamma^{m_n + 1}\right) ||v_n - v_*||_{\infty}$$

Proposition 2.2.13
Let
$$\Delta = \mathcal{T}_* - \operatorname{Id}$$
, let $W_\pi^{(m)} v = \mathcal{T}_\pi^{m+1} v$,
$$W_\pi^{(m)} v = \sum_{k=0}^m \gamma^k P_\pi^k r_\pi + \gamma^{m+1} P_\pi^{m_n+1} v$$
$$= v_n + \sum_{k=0}^m \gamma^k P_\pi^k \Delta v$$

Proof. By definition,

$$\begin{split} W_{\pi}^{(m)}v &= \mathcal{T}_{\pi}^{m_{n}+1}v \\ &= r_{\pi} + \gamma P_{\pi}\mathcal{T}_{\pi}^{m}v \\ &= \sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} r_{\pi} + \gamma^{m+1} P_{\pi}^{m+1}v \\ &= \sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \left(r_{\pi} + \gamma P_{\pi}v - v \right) + v \\ &= v + \sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \Delta v \end{split}$$

Proposition 2.2.14

$$W_*^{(m_n)}v(s) = \max_{\pi} W_{\pi}^{(m_n)}v(s)$$

Proposition 2.2.14
$$Define \ W_*^{(m_n)} \ by$$

$$W_*^{(m_n)}v(s) = \max_{\pi} W_{\pi}^{(m_n)}v(s).$$
 then $W_*^{(m_n)}$ is a contraction:
$$\|W_*^{(m_n)}v - W_*^{(m_n)}v'\|_{\infty} \leq \gamma^{m_n+1}\|v - v'\|_{\infty}.$$
 Furthermore, $W_*^{(m_n)}v_* = v_*$

Proof. Assume without loss of generality that $W_*^{(m_n)}v(s)-W_*^{(m_n)}v'(s)\geq 0$ and let $\tilde{\pi} \in \operatorname{argmax} W_{\pi}^{(m_n)} v(s),$

$$\begin{aligned} W_*^{(m_n)}v(s) - W_*^{(m_n)}v'(s) &= \max_{\pi} W_*^{(m_n)}v(s) - \max_{\pi} W_*^{(m_n)}v'(s) \\ &\leq W_{\tilde{\pi}}^{(m_n)}v(s) - W_{\tilde{\pi}}^{(m_n)}v'(s) \\ &\leq \gamma^{m_n+1}P_{\tilde{\pi}}^{m_n+1}(v-v')(s) \\ &\leq \gamma^{m_n+1}\|v-v'\|_{\infty} \end{aligned}$$

By construction $\Delta v_* = \mathcal{T}_* v_* - v_* = 0$ and thus $W_{\pi}^{(m_n)} v_* = v_*$. We deduce immediately that $W_*^{(m_n)}v_* = \sup_{\pi} W_{\pi}^{(m_n)}v_* = v_*$

Proposition 2.2.13

If $u \geq v$ then for any π , $W^m_* u \geq W^m_\pi v$ If $u \geq v$ and $\Delta u \geq 0$ then for any π $W_\pi u \geq \mathcal{T}_* v$.

If $\Delta u \geq 0$ and π_u such that $\mathcal{T}_* u = \mathcal{T}_{\pi_u} u$ then $W^{(m)}_{\pi_u} u \geq 0$

Proof. By definition,

$$W_*^m u - W_\pi^m v \ge W_\pi^m u - W_\pi^m v \ge W_\pi^m (u - v) \ge \gamma^{m_n + 1} P_\pi^{m_n + 1} (u - v) \ge 0$$

Now,

$$W_{\pi}^{(m)}u = u + \sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \Delta u$$
$$\geq u + \Delta u = \mathcal{T}_{*}u$$
$$\geq \mathcal{T}_{*}v$$

By construction

$$\Delta W_{\pi_u}^{(m)} u = \mathcal{T}_* W_{\pi_u}^{(m)} u - W_{\pi_u}^{(m)} u$$

$$\geq \mathcal{T}_{\pi_u} W_{\pi_u}^{(m)} u - W_{\pi_u}^{(m)} u$$

$$\geq \Delta u - \mathcal{T}_{\pi_u} u + u$$

$$\geq \Delta u + (\gamma P_{\pi_u} - \operatorname{Id}) \left(W_{\pi_u}^{(m)} u - u \right) \qquad \geq \Delta u + (\gamma P_{\pi_u} - \operatorname{Id}) \sum_{k=0}^m \gamma^k P_{\pi_u}^k \Delta u$$

$$\geq \gamma^m P_{\pi_v}^m \Delta u \geq 0$$

Proof of MPI. Let $u_0 = v_0 = w_0$.

By construction $\mathcal{T}_{\pi_{n+1}}v_n = \mathcal{T}_*v_n$ and one verify easily that $v_{n+1} = \mathcal{T}_{\pi_{n+1}}^{m_n+1}v_n =$ $W_{\pi_{n+1}}^{(m_n)}v_n$

Define now, $u_{n+1} = \mathcal{T}_* u_n$ and $w_{n+1} = W_*^{(m_n)} w_n$. We can prove by recursion that $\Delta v_n \ge 0, \ v_{n+1} \ge v_n \text{ and } u_n \le v_n \le w_n.$

By assumption, $\Delta v_0 \geq 0$ so that $v_1 = W_{\pi_1}^{(m_n)} v_0 \geq \mathcal{T}_* v_0 \geq v_0$.

Assume the property holds for n-1 then using the previous lemmas one obtains immediately $\Delta v_n \geq 0$ and

$$u_n = \mathcal{T}_* u_{n-1} \le v_n = W_{\pi_n}^{(m_{n-1})} v_{n-1} \le w_n = W_*^{(m_{n-1})} w_{n-1}$$

2 Discounted Reward

Finally,

$$v_n = W_{\pi_n}^{(m_{n-1})} v_{n-1}$$

= $v_{n-1} + \sum_{k=0}^{\infty} m_{n-1} \gamma^k P_{\pi_n} \Delta v_{n-1}$
 $\geq v_{n-1}.$

Now, we have already proved that $u_n = \mathcal{T}_* u_0$ tends to v_* with

$$||u_n - v_*||_{\infty} \le \gamma^n ||v_0 - v_*||_{\infty}$$

It suffices now to prove that w_n also converges toward v_* to obtain the convergence of v_n . We verify that

$$||w_{n} - v_{*}||_{\infty} = ||W_{*}^{(m_{n-1})}w_{n-1} - W_{*}^{(m_{n-1})}v_{*}||_{\infty}$$

$$\gamma^{m_{n-1}}||w_{n-1} - v_{*}||_{\infty}$$

$$\gamma^{\sum_{k=0}^{n-1} m_{k}}||v_{0} - v_{*}||_{\infty}$$

which implies the convergence of w_n .

We have

$$||v_{\pi_{n+1}} - v_*||_{\infty} \le ||v_{\pi_{n+1}} - v_n||_{\infty} + ||v_n - v_*||_{\infty}$$

Notice that $v_{n,0} = \mathcal{T}_{\pi_{n+1}} v_n = \mathcal{T}_* v_n$ so that

$$||v_{\pi_{n+1}} - v_n||_{\infty} \le ||v_{\pi_{n+1}} - v_{n,0}||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

$$\le ||\mathcal{T}_{\pi_{n+1}}v_{\pi_{n+1}} - \mathcal{T}_{\pi_{n+1}}v_n||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

$$\le \gamma ||v_{\pi_{n+1}} - v_n||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

Along the same line,

$$||v_* - v_n||_{\infty} \le ||v_* - v_{n,0}||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

$$\le ||\mathcal{T}_* v_* - \mathcal{T}_* v_n||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

$$\le \gamma ||v_* - v_n||_{\infty} + ||v_{n,0} - v_n||_{\infty}$$

Combining those two inequalities yields

$$||v_{\pi_{n+1}} - v_*||_{\infty} \le \frac{2}{1-\gamma} ||v_n - v_{0,n}||_{\infty}$$

As show before,

$$0 \le v_* - v_{n+1} \le v_* - v_n - \sum_{k=0}^{m_n} \gamma^k P_{\pi_{n+1}}^k \Delta v_n$$

Now, let π_* such that $\mathcal{T}_{\pi_*}v_* = Bv_*$,

$$\Delta_n = \Delta v_n - \Delta v_* = \mathcal{T}_* v_n - v_n - (\mathcal{T}_* v_* - v_*)$$

$$\leq \mathcal{T}_{\pi_*} v_n - v_n - (\mathcal{T}_{\pi_*} v_* - v_*)$$

$$\leq (\gamma P_{\pi_*} - \mathrm{Id})(v_n - v_*)$$

Thus

$$0 \leq v_{*} - v_{n+1} \leq v_{*} - v_{n} - \sum_{k=0}^{m_{n}} \gamma^{k} P_{\pi_{n+1}}^{k} (\gamma P_{\pi_{*}} - \operatorname{Id})(v_{n} - v_{*})$$

$$\leq \sum_{k=1}^{m_{n}} \gamma^{k} P_{\pi_{n+1}}^{k} (v_{n} - v_{*}) - \sum_{k=0}^{m_{n}} \gamma^{k+1} P_{\pi_{n+1}} P_{\pi_{*}} (v_{n} - v_{*})$$

$$\leq \sum_{k=0}^{m_{n}} \gamma^{k+1} P_{\pi_{n+1}}^{k} (P_{\pi_{n+1}} - P_{\pi_{*}})(v_{n} - v_{*}) - \gamma^{m_{n}+1} P_{\pi_{n+1}}^{m_{n}+1} (v_{n} - v_{*})$$

$$\leq \sum_{k=0}^{m_{n}} \gamma^{k+1} |||P_{\pi_{n+1}} - P_{\pi_{*}}|||||v_{n} - v_{*}||_{\infty} + \gamma^{m_{n}+1} ||v_{n} - v_{*}||_{\infty}$$

$$\leq \left(\frac{\gamma - \gamma^{m_{n}+1}}{1 - \gamma} |||P_{\pi_{n+1}} - P_{\pi_{*}}||| + \gamma^{m_{n}+1}\right) |||v_{n} - v_{*}||_{\infty}$$

2.3 Asynchronous Dynamic Programming

Proposition 2.3.1

Assume $\mathcal{T}_{\pi_0}v_0 \geq v_0$ and at any step n

- Define a subset S_n of the states and
- Either
 - keep the policy $\pi_{n+1} = \pi_n$ and update the value function following

$$v_{n+1}(s) = \begin{cases} \mathcal{T}_{\pi_n} v_n(s) & \text{if } s \in S_n \\ v_n(s) & \text{otherwise} \end{cases}$$

- keep the value function $s_{n+1}=s_n$ and update the policy following

$$\pi_{n+1}(s) = \begin{cases} \operatorname{argmax}_{a} r(s, a) + \gamma P_{\pi_{a}} v_{n}(s) & \text{if } s \in S_{n} \\ \pi_{n}(s) & \text{otherwise} \end{cases}$$

Assume that for any state s and any n there exist n'>n such that $s\in S_{n'}$ and one performs a value update at step n' and n''>n such that $s\in S_{n''}$ and one performs a policy update at step n'' then s_n tends monotonously to s_* .

Proof. We start by proving by recursion that $\mathcal{T}_{\pi_n} v_n \geq v_n$ implies

$$\mathcal{T}_{\pi_{n+1}}v_{n+1} \ge v_{n+1} \ge v_n$$
 and $\mathcal{T}_{\pi_n}v_n$

Note that that $\mathcal{T}_{\pi_0}v_0 \geq v_0$ is an assumption.

Assume now that $\mathcal{T}_{\pi_n} v_n \geq v_n$, then either at step n we update the value function or the policy.

If we update the value function, $\pi_{n+1} = \pi_n$ and thus

$$v_{n+1}(s) = \begin{cases} \mathcal{T}_{\pi_n} v_n(s) & \text{if } s \in S_n \\ v_n(s) & \text{otherwise} \end{cases}$$

As $\mathcal{T}_{\pi_n}v_n(s) \geq v_n(s)$, we deduce $\mathcal{T}_{\pi_n}v_n \geq v_{n+1} \geq v_n$. It suffices to notice that $v_{n+1} \geq v_n$ implies

$$\mathcal{T}_{\pi_{n+1}}v_{n+1} = \mathcal{T}_{\pi_n}v_{n+1} \ge \mathcal{T}_{\pi_n}v_n$$

to obtain

$$\mathcal{T}_{\pi_{n+1}}v_{n+1} \ge v_{n+1} \ge v_n.$$

Now, if we update the policy, $v_{n+1} = v_n$ and

$$\mathcal{T}_{\pi_{n+1}}v_n(s) = \begin{cases} \mathcal{T}_*v_n(s) & \text{if } s \in S_n \\ \mathcal{T}_{\pi_n}v_n(s) & \text{otherwise} \end{cases}$$

which implies $\mathcal{T}_{\pi_{n+1}}v_n \geq \mathcal{T}_{\pi_n}v_n$ and thus as $v_{n+1} = v_n$

$$\mathcal{T}_{\pi_{n+1}}v_{n+1} \ge \mathcal{T}_{\pi_n}v_n \ge v_n = v_{n+1}.$$

We deduce thus that

$$\mathcal{T}_*^k v_{n+1} \ge \mathcal{T}_{\pi_{n+1}} v_{n+1} \ge v_{n+1} \ge v_n.$$

which implies if we take the limit in k

$$v_* \ge v_{n+1} \ge v_n$$
.

Hence v_n converges toward a limit \tilde{v} satisfying

$$v_n < \tilde{v} < \mathcal{T}_* \tilde{v} < v_*$$
.

Assume now that there exists s such that $\tilde{v}(s) < \mathcal{T}_* \tilde{v}(s)$. By continuity of \mathcal{T}_* , there exists n such that for all $n' \geq n$

$$\tilde{v}(s) < \mathcal{T}_* v_{n'}(s)$$

Let $n' \ge n$ such that one updates the policy of s and n'' the smallest integer larger than n'' where one updates the value of s.

$$v_{n''+1}(s) = \mathcal{T}_{\pi_{n''}} v_{n''}(s)$$

$$\geq \mathcal{T}_{\pi_{n'+1}} v_{n'+1}(s)$$

$$\geq \mathcal{T}_{\pi_{n'+1}} v_{n'}(s)$$

$$\geq \mathcal{T}_{*} v_{n'}(s) > \tilde{v}(s)$$

which is impossible.

2.4 Approximate Dynamic Programming

Proposition 2.4.1

If in a Generalized Policy Improvement, for all k

$$||v_k - v_{\pi_k}||_{\infty} \le \epsilon$$

and

$$\|\mathcal{T}_{\pi_{k+1}}v_k - \mathcal{T}_*v_k\|_{\infty} \le \delta$$

then

$$\limsup \max_{s} (v_*(s) - v_{\pi_k}(s)) \le \frac{\delta + 2\gamma \epsilon}{(1 - \gamma)^2}$$

Proof. By construction,

$$\begin{split} v_{\pi_k}(s) - v_{\pi_{k+1}}(s) &= \mathcal{T}_{\pi_k} v_{\pi_k}(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\ &= \mathcal{T}_{\pi_k} v_{\pi_k}(s) - \mathcal{T}_{\pi_k} v_k(s) + \mathcal{T}_{\pi_k} v_k(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\ &\leq \gamma \epsilon + \mathcal{T}_* v_k(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\ &\leq \gamma \epsilon + \mathcal{T}_{\pi_{k+1}} v_k(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} + \delta \\ &\leq \gamma \epsilon + \mathcal{T}_{\pi_{k+1}} v_k(s) + \mathcal{T}_{\pi_{k+1}} v_{\pi_k}(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_k}(s) - \mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} + \delta \\ &\leq 2\gamma \epsilon + \delta + \gamma \max_{s'} \left(v_{\pi_k}(s') - v_{\pi_{k+1}}(s') \right) \end{split}$$

and thus

$$\max_{s'} \left(v_{\pi_k}(s') - v_{\pi_{k+1}}(s') \right) \le \frac{2\gamma\epsilon + \delta}{1 - \gamma}.$$

2 Discounted Reward

Now,

$$v_*(s) - v_{\pi_{k+1}}(s) = v_*(s) - \mathcal{T}_{\pi_{k+1}}v_{\pi_{k+1}}(s)$$

$$= v_*(s) - \mathcal{T}_{\pi_{k+1}}v_{\pi_k}(s) + \mathcal{T}_{\pi_{k+1}}v_{\pi_k}(s) - \mathcal{T}_{\pi_{k+1}}v_{\pi_{k+1}}(s)$$

$$\leq v_*(s) - \mathcal{T}_{\pi_{k+1}}v_{\pi_k}(s) + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

$$\leq v_*(s) - \mathcal{T}_{\pi_{k+1}}v_k(s) + \gamma\epsilon + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

$$\leq v_*(s) - \mathcal{T}_*v_k(s) + \gamma\epsilon + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

$$\leq v_*(s) - \mathcal{T}_*v_k(s) + \gamma\epsilon + \delta + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

$$\leq \mathcal{T}_*v_*(s) - \mathcal{T}_*v_{\pi_k}(s) + 2\gamma\epsilon + \delta + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

$$\leq \gamma \max_{s} (v_*(s) - v_{\pi_k}(s)) + 2\gamma\epsilon + \delta + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$$

thus

$$\max_{s} (v_*(s) - v_{\pi_{k+1}}(s)) \le \gamma \max_{s} (v_*(s) - v_{\pi_k}(s)) + 2\gamma \epsilon + \delta \gamma \frac{2\gamma \epsilon + \delta}{1 - \gamma}$$

and

 $\limsup_{s} \left(v_*(s) - v_{\pi_k}(s) \right) \le \lim\sup_{s} \gamma \max_{s} \left(v_*(s) - v_{\pi_k}(s) \right) + 2\gamma\epsilon + \delta + \gamma \frac{2\gamma\epsilon + \delta}{1 - \gamma}$ which implies

$$\limsup \max_{s} (v_*(s) - v_{\pi_k}(s)) \le \frac{2\gamma\epsilon + \delta}{(1 - \gamma)^2}$$

Finite Horizon

Proposition 3.1

If $v_0=r_{\pi,T-1}$ and $v_n=\mathcal{T}_{\pi,T-n}v_{n-1}=r_{\pi,T-n}+P_{\pi,T-n}v_{n-1}$ then

$$v_n(s) = \mathbb{E}_{\pi} \left[\sum_{t=T-n-1}^{T-1} R_{t+1} | S_{t-n-1} = s \right] = v_{\pi,T-n}(s)$$

$$v_n(s) = \mathbb{E}_{\pi} \left[\sum_{t=T-n-1}^{T-1} R_{t+1} | S_{t-n-1} = s \right] = v_{\pi,T-n}(s)$$
 If $v_0 = r_*$ and $v_{n+1} = \mathcal{T}_* v_n$ then
$$v_n(s) = \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=T-n-1}^{T-1} R_{t+1} | S_{t-n-1} = s \right] = v_{*,T-n}(s)$$

Proof. If n=0 then by definition $v_{\pi,T}(s)=\mathbb{E}_{\pi}\left[R_T|S_{T-1}=s\right]=r_{\pi,T-1}(s)$. Now,

$$v_{\pi,T-n}(s) = \mathbb{E}_{\pi} \left[\sum_{t=T-n-1}^{T-1} R_{t+1} \middle| S_{T-n-1} = s \right]$$

$$= r_{\pi,T-n-1}(s) + \mathbb{E}_{\pi} \left[\sum_{t=T-n}^{T-1} R_{t+1} \middle| S_{T-n-1} = s \right]$$

$$= r_{\pi,T-n-1}(s) + \sum_{a} \sum_{t=T-n} p(s'|s,a) \pi(a|s) \mathbb{E}_{\pi} \left[\sum_{t=T-n}^{T-1} R_{t+1} \middle| S_{t-n} = s' \right]$$

$$= r_{\pi,T-n-1}(s) + P_{\pi,T-n-1} v_{\pi,T-n-1}(s)$$

Along the same line, if n=0 then by definition $v_{*,T}(s) = \max_{\pi} \mathbb{E}_{\pi} [R_T | S_{T-1} = s] =$ $\max_{\pi} v_{\pi,T}(s) = r_*(s).$

3 Finite Horizon

Now,

$$v_{*,T-n}(s) = \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=T-n-1}^{T-1} R_{t+1} \middle| S_{T-n-1} = s \right]$$

$$= \max_{\pi} \left(r_{\pi}(s) + \mathbb{E} \left[\sum_{t=T-n}^{T-1} R_{t+1} \middle| S_{T-n-1} = s \right] \right)$$

$$= \max_{\pi} \left(r_{\pi,T-n-1}(s) + \sum_{t=T-n} \sum_{t=T-n} p(s'|s,a)\pi(a|s)\mathbb{E} \left[\sum_{t=T-n}^{T-1} R_{t+1} \middle| S_{t-n} = s' \right] \right)$$

$$= \max_{\pi} r_{\pi,T-n-1}(s) + P_{\pi,T-n-1} \max_{\pi} v_{\pi,T-n-1}(s)$$

$$= \mathcal{T}_{*}v_{*,T-n-1}(s)$$

Non Discounted Total Reward

Definition 4.1

Let $ilde{s}$ be the absorbing state, we define the expected absorption time starting from s

$$\tau_{\pi}(s) = \mathbb{E}_{\pi} \left[\inf_{S_t = \tilde{s}} t \middle| S_0 = s \right].$$

If τ_{π} is finite, we say that π is proper.

Definition 4.2

We define the maximum expected absorption time starting from s by $au_*(s)$ by

$$\tau_*(s) = \max_{\pi} \tau_{\pi}(s)$$

$$\tau_{\pi} = 1 + P_{\pi} \tau_{\pi} = \mathcal{T}_{\pi} \tau_{\pi}$$

Proposition 4.3 If
$$au_\pi<+\infty$$
 then
$$au_\pi=1+P_\pi\tau_\pi.=\mathcal{T}_\pi\tau_\pi$$
 If $au_*<+\infty$ then
$$au_*=\max_\pi 1+P_\pi\tau_*.=\mathcal{T}\tau_\pi$$

Proof. It suffices to notice that $\tau_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{+\infty} R_{t+1} \right]$ with $R_t = 0$ if $s_t = \tilde{s}$ and 1 otherwise.

 \mathcal{T}_{π} is a contraction of factor $\max \frac{\tau_{\pi}(s)-1}{\tau_{\pi}(s)}$ with respect to the norm $\|\cdot\|_{\infty,1/\tau_{\pi}}$ \mathcal{T}_{π} and \mathcal{T}_{*} are contraction of factor $\max \frac{\tau_{*}(s)-1}{\tau_{*}(s)}$ with respect to the norm $\|\cdot\|_{\infty,1/\tau_{\pi}}$.

4 Non Discounted Total Reward

Proof.

$$|\mathcal{T}_{\pi}v(s) - \mathcal{T}_{\pi}v'(s)| \leq |P_{\pi}(v - v')(s)|$$

$$\leq P_{\pi}(\tau \times \frac{|v - v'|}{\tau})(s)$$

$$\leq P_{\pi}\tau(s)||v - v'||_{\infty, 1/\tau}$$

$$\leq \tau(s)\frac{1 + P_{\pi}\tau(s) - 1}{\tau(s)}||v - v'||_{\infty, 1/\tau}$$

$$\leq \tau(s)\frac{1 + P_{*}\tau(s) - 1}{\tau(s)}||v - v'||_{\infty, 1/\tau}$$

which yields the result for both $\tau = \tau_{\pi}$ and $\tau = \tau_{*}$.

Now, assume without loss of generality that $\mathcal{T}_*v(s) \geq \mathcal{T}_*v'(s)$,

$$|\mathcal{T}_*v(s) - \mathcal{T}_*v'(s)|$$

$$= \max_{\pi} \mathcal{T}_{\pi}v(s) - \max_{\pi} \mathcal{T}_{\pi}v'(s)$$

$$\leq \max_{\pi} \left(\mathcal{T}_{\pi}v(s) - \mathcal{T}_{\pi}v'(s)\right)$$

$$\leq \tau(s) \frac{1 + P_*\tau(s) - 1}{\tau(s)} ||v - v'||_{\infty, 1/\tau}$$

which yields the result for $\tau = \tau_*$.

5 Bandits

5.1 Regret

Definition 5.1.1

A k-armed bandit is defined by a collection of k random variable R(a), $a \in \{1, \ldots, k\}$. The best arm is a_* is such that $\mathbb{E}\left[R(a_*)\right] \geq \max_a \mathbb{E}\left[R(a)\right]$. For any policy π , the regret is defined by

$$r_{T,\pi} = T\mathbb{E}\left[R(a_*)\right] - \mathbb{E}\left[\sum_{t=1}^T R(A_t)\right]$$

where A_t is the arm chosen at time t following the policy π .

Proposition 5.1.2

Let $T_t(a) = \sum_{s=1}^t \mathbf{1}_{A_s=i}$ and $\Delta(a) = \mathbb{E}\left[R(a_*)\right] - \mathbb{E}\left[R(a)\right]$ then

$$r_{n,\pi} = \sum_{a=1}^{k} \Delta(a) \mathbb{E} \left[T_t(a) \right]$$

Proof. By definition,

$$r_{T,\pi} = n\mathbb{E}\left[R(a_*)\right] - \mathbb{E}\left[\sum_{t=1}^T R(A_t)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T \left(\mathbb{E}\left[R(a_*)\right] - R(A_t)\right)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T \sum_{a=1}^k \mathbf{1} A_t = a\left(\mathbb{E}\left[R(a_*)\right] - R(a)\right)\right]$$

$$= \sum_{a=1}^k \mathbb{E}\left[\sum_{t=1}^T \mathbf{1} A_t = a\left(\mathbb{E}\left[R(a_*)\right] - R(a)\right)\right]$$

$$= \sum_{a=1}^k \mathbb{E}\left[\sum_{t=1}^T \mathbf{1} A_t = a\Delta(a)\right]$$

$$= \sum_{a=1}^k \mathbb{E}\left[T_t(a)\right] \Delta(a)$$

5.2 Concentration of subgaussian random variables

Definition 5.2.1

A random variable X is said to be $\sigma ext{-subgaussian}$ if

$$\mathbb{E}\left[\exp \lambda X\right] \le \exp(\lambda^2 \sigma^2 / 2)$$

If X is σ -subgaussian then for any $\epsilon>0$ $\mathbb{P}\left(X>\epsilon\right)$

$$\mathbb{P}\left(X \ge \epsilon\right) \le \exp\left(\frac{-\epsilon^2}{2\sigma^2}\right)$$

Proof.

$$\mathbb{P}(X \ge \epsilon) = \mathbb{P}(\exp(\lambda X) \ge \exp(\lambda \epsilon))$$

$$\le \frac{\mathbb{E}[\exp(\lambda X)]}{\exp(\lambda \epsilon)}$$

$$\le \exp(\lambda^2 \sigma^2 / 2 - \lambda \epsilon)$$

$$\le \exp\left(\frac{-\epsilon^2}{2\sigma^2}\right)$$

where the last inequality is obtained by optimizing in λ .

Proposition 5.2.3

If X is σ -subgaussian and Y is σ' -subgaussian conditionnaly to X then $\mathbb{E}\left[X\right] = 0 \text{ and } \mathbb{V}\mathrm{ar}\left[X\right] \leq \sigma^2$ • cX is $|c|\sigma$ -subgaussian.
• X + Y is $\sqrt{\sigma^2 + (\sigma')^2}$ -subgaussian.

Proof.

$$\mathbb{E}\left[\exp \lambda X\right] = \sum_{k} \frac{\lambda^{k}}{k!} \mathbb{E}\left[X^{k}\right]$$

while

$$\exp(\lambda^2 \sigma^2 / 2) = \sum_{k} \frac{\lambda^{2k} \sigma^{2k}}{2^k k!}$$

By looking at the term in front of λ^1 and λ^2 , we obtain

$$\lambda \mathbb{E}\left[X\right] \leq 0 \quad \text{and} \quad \frac{\lambda^2}{2!} \mathbb{E}\left[X^2\right] \leq \frac{\lambda^2 \sigma^2}{2 \times 1!}$$

which implies

$$\mathbb{E}[X] = 0$$
 and \mathbb{V} ar $[X] \le \sigma^2$.

By definition,

$$\mathbb{E}\left[\exp(\lambda cX)\right] \le \exp(\lambda^2 c^2 \sigma^2 / 2)$$

hence the $|c|\sigma$ -subgaussianity of cX.

Now,

$$\mathbb{E}\left[\exp(\lambda(X+Y))\right] \leq \mathbb{E}\left[\mathbb{E}\left[\exp(\lambda(X+Y))|X\right]\right]$$

$$\leq \mathbb{E}\left[\mathbb{E}\left[\exp(\lambda X)\exp(\lambda Y))|X\right]\right]$$

$$\leq Esp\exp(\lambda X)\exp(\lambda^2(\sigma')^2/2)$$

$$\leq \exp\left(\lambda^2(\sigma^2+(\sigma')^2)/2\right)$$

If
$$X_i - \mu$$
 are iid σ -subgaussian variable,
$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \geq \mu + \epsilon\right) \leq \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right) \quad \text{and} \quad \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \leq \mu - \epsilon\right) \leq \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$$

Proof. It suffices to notice that $\frac{1}{n}\sum_{i=1}^n X_i - \mu$ and $\mu - \frac{1}{n}\sum_{i=1}^n X_i$ are σ/\sqrt{n} -subgaussian.

5.3 Explore Then Commit strategy

Definition 5.3.1

The simple current mean estimate $Q_t(a)$ is defined by

$$Q_t(a) = \frac{1}{T_t(a)} \sum_{s=1}^{t} \mathbf{1}_{A_s = a} R_s(a)$$

Proposition 5.3.2

Assume we play the arm successively during Km steps and then play the arm which maximize the current mean estimate $Q_t(a)$ then if the $R(a) - \mathbb{E}[R(a)]$ is 1-subgaussian

$$r_{T,\pi} \le \min(m, T/K) \sum_{a=1}^k \Delta(a) + \max(T - mK, 0) \sum_{a=1}^k \Delta(a) \exp(-m\Delta(a)^2/4)$$

Furthermore,

$$\mathbb{P}(a_T = a_*) \ge 1 - \sum_{a \ne a_*} \exp(-m\Delta(a)^2/4)$$

Proof. We have

$$r_{T,\pi} = \sum_{a=1}^{k} \Delta(a) \mathbb{E} \left[T_T(a) \right],$$

we can thus focus on $\mathbb{E}[T_T(a)]$.

Now

$$\mathbb{E} [T_T(a)] \leq \min(m, n/K) + \max(n - mK, 0) \mathbb{P} (a_{mK+1} = a)$$

$$\leq \min(m, n/K) + \max(n - mK, 0) \mathbb{P} \left(Q_t(a) \geq \max_{a' \neq a} Q_t(a') \right)$$

$$\leq \min(m, n/K) + \max(n - mK, 0) \mathbb{P} (a_{mK+1} = a)$$

$$\leq \min(m, n/K) + \max(n - mK, 0) \mathbb{P} (Q_m(a) \geq Q_m(a_*))$$

$$\leq \min(m, n/K) + \max(n - mK, 0) \mathbb{P} (Q_{mK+1}(a) - \mathbb{E} [R(a)] - (Q_{mK+1}(a_*) - \mathbb{E} [R(a_*)]) \geq \Delta(a_*)$$

It suffices then to notice that $Q_{mK+1}(a) - \mathbb{E}[R(a)] - (Q_{mK+1}(a_*) - \mathbb{E}[R(a_*)])$ is $\sqrt{2/m}$ -subgaussian to obtain

$$\mathbb{E}[T_T(a)] \le \min(m, n/K) + \max(n - mK, 0) \mathbb{P}(Q_{mK+1}(a) \ge Q_{mK+1}(a_*))$$

$$\le \min(m, n/K) + \max(n - mK, 0) \exp(-m\Delta(a)^2/4)$$

Now

$$\mathbb{P}(a_T = a_*) = 1 - \sum_{a \neq a_*} a \neq a_* \mathbb{P}(a_T = a)$$

$$\leq 1 - \sum_{a \neq a_*} \exp(-m\Delta(a)^2/4)$$

5.4 ϵ -greedy strategy

Proposition 5.4.1

Let π be an ϵ_t -greedy strategy,

$$r_{T,\pi} \ge \sum_{t=1}^{T} \frac{\epsilon_t}{k} \sum_{a=1}^{k} \Delta(a)$$

Proof. By definition of an ϵ -greedy strategy

$$\mathbb{E}\left[T_t(a)\right] \ge \sum_{t=1}^T \frac{\epsilon_t}{k}$$

hence the first result.

Proposition 5.4.2

Let π be an ϵ_t -greedy strategy,

$$\mathbb{P}(A_T = a_*) \ge 1 - \epsilon_T - \Sigma_t \exp(-\Sigma_T/(6k)) - \sum_{a \ne a_*} \frac{4}{\Delta(a)^2} e^{-\Delta(a)^2 \Sigma_T/(4k)}$$

$$\mathbb{P}(a_* = \operatorname{argmax} Q_{T,a}) \ge 1 - \Sigma_t \exp(-\Sigma_T/(6k)) - \sum_{a \ne a_*} \frac{4}{\Delta(a)^2} e^{-\Delta(a)^2 \Sigma_T/(4k)}$$

$$r_{T,\pi} \le \sum_{a \ne a_*} \left(\Delta(a) \left(c \frac{\log(T) + 1}{k} + C \right) + \frac{4}{\Delta(a)} C' \right)$$

as soon as c/(6k)>1 and $c\min_{a\neq a_*}\Delta(a)/4k<1$. If $\epsilon_t=c\log(t)/t$ then

$$r_{T,\pi} \le \sum_{a \ne a_*} \left(\Delta(a) \left(c \frac{\log(T)(\log(T) + 1)}{k} + C \right) + \frac{4}{\Delta(a)} C' \right)$$

Proof. By definition of π ,

$$\mathbb{P}\left(A_T = a\right) \le \frac{\epsilon_t}{k} + \left(1 - \frac{\epsilon_t}{k} \mathbb{P}\left(Q_T(a) \ge Q_T(a_*)\right)\right)$$

and

$$\mathbb{P}\left(Q_T(a) \geq Q_T(a_*)\right) \leq \mathbb{P}\left(Q_T(a) \geq \mu(a) + \Delta(a)/2\right) + \mathbb{P}\left(Q_T(a_*) \leq \mu(a_*) - \Delta(a)/2\right).$$

5 Bandits

By symmetry, it suffices to bound

$$\mathbb{P}(Q_{T}(a) \ge \mu(a) + \Delta/2) \le \sum_{t=1}^{T} \mathbb{P}(T_{t}(a) = t, Q_{T}(a) \ge \mu(a) + \Delta/2)$$

$$\le \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a) = t, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \ge \mu(a) + \Delta/2\right)$$

$$\le \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a) = t \middle| \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \ge \mu(a) + \Delta/2\right) \mathbb{P}\left(\frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \ge \mu(a) + \Delta/2\right)$$

$$\le \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a) = t \middle| \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \ge \mu(a) + \Delta/2\right) e^{-\Delta^{2}t/2}$$

$$\le \sum_{t=1}^{T_{0}} \mathbb{P}\left(T_{T}(a) = t \middle| \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \ge \mu(a) + \Delta/2\right) + \sum_{t=T_{0}+1}^{T} e^{-\Delta^{2}t/2}$$

Let $T_T^R(a)$ be the number of time the arm a has been chosen at random before time T

$$\leq \sum_{t=1}^{T_0} \mathbb{P}\left(T_T^R(a) \leq t \middle| \frac{1}{t} \sum_{k=1}^t R_k(a) \geq \mu(a) + \Delta/2\right) + \frac{2}{\Delta^2} e^{-\Delta^2 T_0/2}$$

$$\leq \sum_{t=1}^{T_0} \mathbb{P}\left(T_T^R(a) \leq t\right) + \frac{2}{\Delta^2} e^{-\Delta^2 T_0/2}$$

Now the Bernstein inequality yields

$$\mathbb{P}\left(T_t^R(a) \leq \mathbb{E}\left[T_t^R(a)\right] - \lambda\right) \leq \exp\left(-\frac{\lambda^2/2}{\mathbb{V}\mathrm{ar}\left[T_t^R(a)\right] + \lambda/2}\right)$$

with

$$\mathbb{E}\left[T_t^R(a)\right] = \sum_{s=1}^t \frac{\epsilon_s}{k}$$

$$\mathbb{V}\operatorname{ar}\left[T_t^R(a)\right] = \sum_{s=1}^t \frac{\epsilon_s}{k} (1 - \frac{\epsilon_s}{k})$$

$$\leq \sum_{s=1}^t \frac{\epsilon_s}{k},$$

. Choosing
$$T_0 = \frac{1}{2} \frac{\Sigma_T}{k} = \frac{1}{2} \sum_{s=1}^T \frac{\epsilon_s}{k} = \frac{1}{2} \mathbb{E} \left[T_T^R(a) \right] \le \frac{1}{2} \operatorname{Var} \left[T_T^R(a) \right] \text{ leads}$$

$$\mathbb{P} \left(T_T^R(a) \le T_0 \right) = \mathbb{P} \left(T_T^R(a) \le 2T_0 - T_0 \right)$$

$$\le \exp \left(-\frac{T_0^2/2}{\sigma^2 + T_0/2} \right)$$

$$\le \exp \left(-\frac{T_0^2/2}{T_0 + T_0/2} \right)$$

$$\le \exp(-T_o/3)$$

which implies

$$\mathbb{P}(Q_T(a) \ge \mu(a) + \Delta/2) \le T_0 \exp(-T_o/3) + \frac{2}{\Delta^2} e^{-\Delta^2 T_0/2}$$

and thus

$$\mathbb{P}\left(a = \operatorname{argmax} Q_{T}(a)\right) \leq 2(1 - \frac{\epsilon_{T}}{k}) \left(\Sigma_{T}/(2k) \exp(-\Sigma_{T}/(6k)) + \frac{2}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T}/4}\right)$$

$$\leq \frac{\epsilon_{T}}{k} + \frac{\Sigma_{T}}{k} \exp(-\Sigma_{T}/(6k) + \frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T}/(4k)}$$

with $\Sigma_T = \sum_{s=1}^T \epsilon_s$ which goes to 0 as soon as Σ_T tends to $+\infty$ We deduce then that

$$\mathbb{P}\left(A_T = a\right) \le \frac{\epsilon_T}{k} + \frac{\epsilon_T}{k} + \frac{\Sigma_T}{k} \exp(-\Sigma_T/(6k) + \frac{4}{\Delta(a)^2} e^{-\Delta(a)^2 \Sigma_T/(4k)})$$

which goes to 0 if furthermore ϵ_T tends to 0

Finally,

$$\mathbb{E}\left[T_T(a)\right] = \sum_{t=1}^T \mathbb{P}\left(A_t = a\right)$$

$$\leq \sum_{t=1}^T \left(\frac{\epsilon_t}{k} + \frac{\Sigma_t}{k} \exp(-\Sigma_t/(6k) + \frac{4}{\Delta(a)^2} e^{-\Delta(a)^2 \Sigma_t/(4k)}\right)$$

Hence

$$r_{T,\pi} \leq \sum_{a \neq a_*} \left(\Delta(a) \left(\frac{\Sigma_T}{k} + \sum_{t=1}^T \frac{\Sigma_t}{k} e^{-\Sigma_t/(6k)} \right) + \frac{4}{\Delta(a)} \sum_{t=1}^T e^{-\Delta(a)^2 \Sigma_t/(4k)} \right)$$

Assume that $\epsilon_t = c/t$ so that $\Sigma_t \leq c(\ln(t) + 1)$ then the previous inequality becomes

$$\begin{split} r_{T,\pi} & \leq \sum_{a \neq a_*} \left(\Delta(a) \left(c \frac{\log(T) + 1}{k} + \sum_{t=1}^T c \frac{\log(t) + 1}{k} e^{-c(\log(t) + 1)/(6k)} \right) + \frac{4}{\Delta(a)} \sum_{t=1}^T e^{-\Delta(a)^2 c(\log(t) + 1)/(4k)} \right) \\ & \leq \sum_{a \neq a_*} \left(\Delta(a) \left(c \frac{\log(T) + 1}{k} + C \right) + \frac{4}{\Delta(a)} C' \right) \end{split}$$

5 Bandits

as soon as c/(6k) > 1 and $c \min_{a \neq a_*} \Delta(a)/4k < 1$.

If $\epsilon_t = c \log(t)/t$ then

$$r_{T,\pi} \le \sum_{a \ne a_*} \left(\Delta(a) \left(c \frac{\log(T)(\log(T) + 1)}{k} + C \right) + \frac{4}{\Delta(a)} C' \right)$$

5.5 UCB strategy

Assume we use a UCB strategy with a variance term $\sqrt{rac{c \log t}{T_t(a)}}$ then

$$r_n(t) \le C_c \sum_a \Delta(a) + \sum_a \frac{4c \ln t}{\Delta(a)}.$$

with $C_c<+\infty$ as soon as c>3/2 Furthermore $\mathbb{P}\left(A_t=a_*\right)\geq 1-2kt^{-2c+2}$ as soon as $t\geq \max_a \frac{4c\ln t}{\Delta(a)^2}.$

$$\mathbb{P}(A_t = a_*) \ge 1 - 2kt^{-2c+2}$$

Proof. By construction,

$$\begin{split} T_t(a) &= \sum_{s=1}^t \mathbf{1}_{A_s = a} \\ &\leq \sum_{s=1}^t \mathbf{1}_{Q_s(a) + c_s(a) = \max Q_s(a') + c_s(a')} \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \mathbf{1}_{Q_s(a) + c_s(a) = \max Q_s(a') + c_s(a'), T_t(a) \geq T_0(a)} \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \mathbf{1}_{\max_{T_0(a) \leq s'' \leq t} \frac{1}{s''}} \sum_{j=1^{s''}} T_s(a) \geq T_0(a) \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \mathbf{1}_{\max_{T_0(a) \leq s'' \leq t} \frac{1}{s''}} \sum_{j=1^{s''}} T_s(a)_{(j)} + \sqrt{\frac{c \ln s}{s''}} \geq \min_{s' \leq t} \frac{1}{s'} \sum_{j=1^{s'}} T_s(a_s)_{(j)} + \sqrt{\frac{c \ln s}{s''}} \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \sum_{s'=1}^{s-1} \sum_{s''=T_0(a)}^{s-1} \mathbf{1}_{\frac{1}{s''}} \sum_{j=1^{s''}} T_s(a)_{(j)} + \sqrt{\frac{c \ln s}{s''}} \geq \frac{1}{s'} \sum_{j=1^{s''}} T_s(a_s)_{(j)} + \sqrt{\frac{c \ln s}{s''}} \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \sum_{s'=1}^{s-1} \sum_{s''=T_0(a)}^{s-1} \mathbf{1}_{\mu(a_s) \leq \mu(a) + 2\sqrt{\frac{c \ln s}{s''}}} + \mathbf{1}_{\frac{1}{s''}} \sum_{j=1^{s''}} T_s(a)_{(j)} \geq \mu(a) + \sqrt{\frac{c \ln s}{s''}} \\ &\leq T_0(a) + \sum_{s=T_0+1}^t \sum_{s'=1}^{s-1} \sum_{s''=T_0(a)}^{s-1} \mathbf{1}_{\mu(a_s) \leq \mu(a) + 2\sqrt{\frac{c \ln s}{s''}}} + 2e^{-2c \ln s} \\ &\mathbb{E}\left[T_t(a)\right] \leq T_0(a) + \sum_{s=T_0+1}^t \sum_{s'=1}^{s-1} \sum_{s''=T_0(a)}^{s-1} \mathbf{1}_{\Delta(a) \leq 2\sqrt{\frac{2c \ln t}{s''}}} + 2s^{-2c} \\ & \text{choosing } T_0(a) = \frac{4c \ln t}{\Delta(a)^2} \\ &\leq \frac{4c \ln t}{\Delta(a)^2} + \sum_{s=T_0+1}^t 2s^{-2c+2} \\ &\leq \frac{4c \ln t}{\Delta(a)^2} + C_c \end{split}$$

as soon as c > 3/2.

One deduce thus

$$r_n(t) \le C_c \sum_a \Delta(a) + \sum_a \frac{4c \ln t}{\Delta(a)}.$$

Note that we have shown

$$\mathbb{P}\left(A_t = a\right) \le 2t^{-2c}$$

Bandits

as soon as $t \ge \frac{4c \ln t}{\Delta(a)^2}$. Thus

$$\mathbb{P}\left(A_t = a_*\right) \ge 1 - 2kt^{-2c+2}$$

as soon as
$$t \ge \max_a \frac{4c \ln t}{\Delta(a)^2}$$
.

Stochastic Approximation

6.1 Convergence of a mean

Proposition 6.1.1

Assume X_i are i.i.d. such that $\mathbb{E}\left[X_i|\mathcal{F}_{i-1}\right]=\mu$ and $\mathbb{V}\mathrm{ar}\left[X_i|\mathcal{F}_{i-1}\right]\leq\sigma^2$, let

$$M_n = M_{n-1} + \alpha_n (X_n - M_{n-1})$$

- $M_n = M_{n-1} + \alpha_n (X_n M_{n-1})$ with $1 \geq \alpha_i \geq 0$ then $\bullet \ \ \text{if } \sum_{i=1}^n \alpha_i \to +\infty \ \text{and } \sum_{i=1}^n \alpha_i^2 < +\infty, \ M_n \to \mu \ \text{in quadratic norm}.$ $\bullet \ \ \alpha_i = \alpha \ \ \text{then } \limsup \|M_n \mu\|^2 \leq \alpha \sigma^2$

Proof. By definition,

$$M_n = M_{n-1} + \alpha_n (X_n - M_{n-1})$$

$$= (1 - \alpha_n) M_{n-1} + \alpha_n X_n$$

$$= \prod_{i=1}^n (1 - \alpha_i) M_0 + \sum_{k=1}^n \prod_{i=k+1}^n (1 - \alpha_i) \alpha_k X_k$$

thus

$$\mathbb{E}\left[\|M_n - \mu\|^2\right] = \prod_{i=1}^{n} (1 - \alpha_i) \|M_0 - \mu\|^2 + \sum_{k=1}^{n} \prod_{i=k+1}^{n} (1 - \alpha_i)^2 \alpha_k^2 \sigma^2$$

Thus it suffices to prove that

$$\prod_{i=1}^{n} (1 - \alpha_i) \to 0$$
 and $\sum_{k=1}^{n} \prod_{i=k+1}^{n} (1 - \alpha_i)^2 \alpha_k^2 \to 0$

For the first part, we use $(1-x) \le e^{-x}$ for $0 \le x \le 1$ to obtain

$$\prod_{i=1} (1 - \alpha_i) \le e^{-\sum_{i=1}^n \alpha_i}$$

which goes to 0 if $\sum_{i=1}^{n} \alpha_i \to +\infty$.

6 Stochastic Approximation

For the second one,

$$\begin{split} \sum_{k=1}^{n} \prod_{i=k+1}^{n} (1-\alpha_{i})^{2} \alpha_{k}^{2} &\leq \sum_{k=1}^{m} \prod_{i=k+1}^{n} (1-\alpha_{i})^{2} \alpha_{k}^{2} + \sum_{k=m+1}^{n} \prod_{i=k+1}^{n} (1-\alpha_{i})^{2} \alpha_{k}^{2} \\ &\leq \sum_{k=1}^{m} \prod_{i=m}^{n} (1-\alpha_{i})^{2} \alpha_{k}^{2} + \max_{k \geq m+1} \alpha_{k} \sum_{k=m+1}^{n} \left(\prod_{i=k+1}^{n} (1-\alpha_{i}) - \prod_{i=k}^{n} (1-\alpha_{i}) \right) \\ &\leq e^{-2 \sum_{k=m}^{n} \alpha_{i}} \sum_{k=1}^{m} \alpha_{k}^{2} + \max_{k \geq m+1} \alpha_{k} \left(1 - \prod_{i=m+1}^{n} (1-\alpha_{i}) \right) \\ &\leq e^{-2 \sum_{k=m}^{n} \alpha_{i}} \sum_{k=1}^{m} \alpha_{k}^{2} + \max_{k \geq m+1} \alpha_{k} \end{split}$$

Choosing m = n/2 yields

$$\mathbb{E}\left[\|M_n - \mu\|^2\right] \le e^{-\sum_{i=1}^n \alpha_i} \|M_0 - \mu\|^2 + e^{-2\sum_{k=n/2}^n \alpha_i} \sum_{k=1}^{n/2} \alpha_k^2 \sigma^2 + \max_{k \ge n/2} \alpha_k \sigma^2$$

If we assume that $\sum_{k=1}^{n} \alpha_i \to +\infty$ and $\sum_{k=1}^{m} \alpha_k^2 < +\infty$ then all the term in the right hand side goes to 0.

If we assume $\alpha_k = \alpha$ then

$$\mathbb{E}\left[\|M_n - \mu\|^2\right] \le e^{-n\alpha}\|M_0 - \mu\|^2 + ne^{-n\alpha}\alpha^2\sigma^2 + \alpha\sigma^2$$

which is yields the result.

6.2 Generic Stochastic Approximation

Definition 6.2.1

Generic Stochastic Algorithm

Let H_t be a sequence of approximation of an operator h, let $\alpha_i(t)$ be a set of non negative sequences, for any initial value X_0 , we define the following iterative scheme

$$X_{t+1,i} = X_{t,i} + \alpha_i(t)H_t(X_t)_i.$$

Definition 6.2.2

h and $H_{ au}$ are compatible if

$$H_t(x) = h(x) + \epsilon_t(x) + \delta_t(x)$$

with

$$\mathbb{E}\left[\epsilon_t(x)|\mathcal{F}_t\right] = 0$$
 and $\mathbb{V}\mathrm{ar}\left[\epsilon_t(x)|\mathcal{F}_t\right] \leq c_0(1 + \|x\|^2)$

and with probability 1

$$\|\delta_n(x)\|^2 \le c_n(1+\|x\|)^2$$

with $c_n \to 0$ and either

• it exists a non negative V C^1 with L-Lipschitz gradient satisfying

$$\langle \nabla V(x), h(x) \rangle \le -c \|\nabla V(x)\|^2$$
$$\mathbb{E}\left[\|H_t(x)\|^2\right] \le c_0'(1 + \|\nabla V(x)\|^2),$$

ullet or h is a contraction for the norm considered.

Proposition 6.2.3

Generic Stochastic Approximation

Assume that for any i, we have almost surely

$$\sum_{i=1}^T \alpha_i \to +\infty \quad \text{and} \quad \sum_{i=1}^T \alpha_i^2 < +\infty$$

Then providing h and H_t are compatible,

$$h(X_n) \to 0.$$

Proof. See Neuro-Dynamic programming from Bertsekas and Tsitsiklis.

6.3 TD(λ) and linear approximation

Proposition 6.3.1

Provided there is a unique stationary distribution μ on the states, that the basis function are linearily independent and

$$\sum_{i=1}^T \alpha \to +\infty \quad \text{and} \quad \sum_{i=1}^T \alpha^2 < +\infty$$

For any $\lambda \in (0,1)$, the $TD(\lambda)$ algorithm with linear approximation converges with probability one. The limit $w_{*,\lambda}$ is the unique solution of

$$\Pi_{\mu} \mathcal{T}_{\pi}^{(\lambda)} \mathbb{X} \boldsymbol{w}_{*,\lambda} = \mathbb{X} \boldsymbol{w}_{*,\lambda}.$$

Furthermore,

$$\|\mathbb{X}\boldsymbol{w}_{*,\lambda} - v_{\pi}\|_{2,\mu} \le \frac{1 - \lambda \gamma}{1 - \gamma} \|\Pi_{\mu}v_{\pi} - v_{\pi}\|_{2,\mu}$$

Proof. See Tsitsiklis and Van Roy.

Proof. Assume A is invertible and let $w_{TD} = A^{-1}b$

$$\mathbb{E}\left[\boldsymbol{w}_{t+1} - \boldsymbol{w}_{TD} | \boldsymbol{w}_{t}\right] = \boldsymbol{w}_{t} + \alpha(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{w}_{t}) - \boldsymbol{w}_{TD}$$
$$= (\mathrm{Id} - \alpha \boldsymbol{A})(\boldsymbol{w}_{t} - \boldsymbol{w}_{TD})$$

If we prove that A is positive definite then A will be invertible and the asymptotic algorithm will converge provided α is small enough.

In the continuous task setting,

$$\mathbf{A} = \sum_{s} \mu(s) \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) \mathbf{x}(s) (\mathbf{x}(s) - \gamma \mathbf{x}(s'))^{t}$$

$$= \sum_{s} \mu(s) \sum_{a} \pi(a|s) \sum_{s'} p_{\pi}(s'|s) \mathbf{x}(s) (\mathbf{x}(s) - \gamma \mathbf{x}(s'))^{t}$$

$$= \sum_{s} \mu(s) \mathbf{x}(s) \left(\mathbf{x}(s) - \gamma \sum_{s'} p_{\pi}(s'|s) \mathbf{x}(s') \right)^{t}$$

$$= \mathbf{X}^{t} \mathbf{D} (\operatorname{Id} - \gamma P_{\pi}) \mathbf{X}$$

where D is a diagonal matrix having $\mu(s)$ on the diagonal.

As P_{π} is a stochastic matrix, the row sums of $\mathbf{D}(\mathrm{Id} - \gamma P_{\pi})$ are non negative. Recall that μ is such that $\mu^t P_{\pi} = \mu^t$ and thus

$$\mathbf{1}^{t} \mathbf{D} (\operatorname{Id} - \gamma P_{\pi}) = \mu^{t} (\operatorname{Id} - \gamma P_{\pi})$$
$$= \mu^{t} - \gamma \mu^{t} P_{\pi}$$
$$= (1 - \gamma) \mu^{t} > 0$$