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Sequential Decision Setting
In many (most?) settings, not a single decision but a sequence of decisions.
Need to take into account the (not necessarily immediate) consequences of the
sequence of decisions/actions rather than of each decisions.
Different framework than supervised learning (no immediate feedback here) and
unsupervised learning (well defined goal here).
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From Sequential Decision to Reinforcement Learning

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Sequential Decision

MDP Modeling Reinforcement Learning

Sequential Decision
Sequence of action At as a response of an environment St

Feedback through a reward Rt

Actions?
Is my current way of choosing actions good?
How to make it better?
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From Sequential Decision to Reinforcement Learning
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Sequential Decision MDP Modeling

Reinforcement Learning

Markov Decision Process Modeling
Specific modeling of the environment.
Goal as as a (weighted) sum of a scalar reward.

Actions?
Is my current way of choosing actions good?
How to make it better?

5



From Sequential Decision to Reinforcement Learning
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Sequential Decision MDP Modeling Reinforcement Learning

Reinforcement Learning
Same modeling. . .
But no direct knowledge of the MDP.

Actions?
Is my current way of choosing actions good?
How to make it better?
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Sequential Decision Settings

MDP / Reinforcement Learning:

max
π

Eπ

[∑
t

Rt

]
Optimal Control:

min
u

E
[∑

t
C(xt , ut)

]
(Stochastic) Search:

max
θ

E[F (θ, W )]

Online Regret:
max

∑
k

E[F (θk , W )]
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Decision Process and Markov
Decision Process

Environnement

MDP

Env.
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Decision Process and Environment
At time step t ∈ N:

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Focus on the discrete setting, i.e. S finite, A(s) finite and R finite.
Extension: Non finite bounded R: easy / Non finite S: hard / Non finite A:
harder. 9



Decision Process and Markov
Decision Process

Environnement

MDP

Env.

Agent
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Interaction

Stochastic Model
Dynamic defined by:

P
(
St+1 = s ′, Rt+1 = r

∣∣(St′ , At′ , Rt′), t ′ ≤ t
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

where Ht = (Rt , St−1, At−1, Rt−1, St−2, . . . ) is the past and (St , At) the present.
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Decision Process and Markov
Decision Process

Markov Decision Process and Environment
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Markovian Environment
Markovian Dynamic Assumption: St+1 and Rt+1 are independent of the past
Ht = (Rt , St−1, At−1, Rt−1, St−2, . . . ) conditionally to the present (St , At).
Dynamic entirely defined by state-reward transition probabilities

P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)
in the discrete setting.

Informally, this means that St encodes all the information related to the past.
10



Decision Process and Markov
Decision Process

Markov Decision Process and State-Action
State-Reward transition probabilities for a given state-action:

P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)

Induced State-action laws
State transition probabilities for a given state-action:

P
(
St+1 = s ′∣∣St = s, At = a, Ht

)
= P

(
St+1 = s ′∣∣St = s, At = a

)
= p(s ′|s, a) =

∑
r

p(s ′, r |s, a)

Expected reward for a given state-action:
E[Rt+1|St = s, At = a, Ht ] = E[Rt+1|St = s, At = a]

= r(s, a) =
∑

r
r

∑
s′

p(s ′, r |r , a)

From now on, we will always assume that the Markovian property holds for the
environment. 11
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Decision Process and Markov
Decision Process

Decision Process, Agent and Policy
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Agent
Interact with the environment by choose the action given the past.

Policy Π : specification of how to choose the action
General stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = a, At = a, Ht)
General deterministic policy Π = (π0, π1, . . . , πt , . . .) (with as slight abuse of
notation):

Πt(At = a) = 1At=πt(St=a,At=a,Ht)
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Decision Process and Markov
Decision Process

Markov Decision Process, Agent and Policy

Agent
Interact with the environment by choose the action given the past.

Policy Π: specification of how to choose the action
History dependent stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = s, Ht)
Markovian stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = s) = πt(a|s)
Stationary Markovian stochastic policy Π = (π, π, . . . , π, . . .):

Πt(At = a) = π(At = a|St = s) = π(a|s)

Similar deterministic policy definition.
Partially Observed Markov Decision Process extension: the Agent has only access
to a partial observation Ot at each time step. . . (not the focus of the lectures)

14



Decision Process and Markov
Decision Process

Decision Process and Trajectories

Trajectories
Trajectory (S0, A0, R1, S1, A1, . . .) defined by

an initial distribution P0 for S0,
a policy Π = (π0, π1, . . . , πt , . . .) specifying

Πt(At = a) = πt(At = a|St , Ht)
an environment specifying

P(St+1, Rt+1|St , At , Ht)
15



Decision Process and Markov
Decision Process

Decision Process and Trajectories

Trajectories
Induced probability:

P(S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, . . . St = st , Rt = rt)
= P0(S0 = s0)

× π0(A0 = a0|S0)P(S1, R1|S0, A0) π1(A1 = a1|S1 = s1, H1)
× · · · × P(St = st , Rt = rt |St−1 = st−1, At−1 = an−1, Ht−1)
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Decision Process and Markov
Decision Process

Markov Decision Process and Trajectories

Trajectories
Trajectory (S0, A0, R1, S1, A1, . . .) defined by

an initial distribution P0 for S0,
a policy Π = (π0, π1, . . . , πt , . . .) specifying

Πt(At = a) = πt(At = a|St , Ht)
a Markovian environment specifying

P(St+1, Rt+1|St , At)
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Decision Process and Markov
Decision Process

Markov Decision Process and Trajectories

Trajectories
Induced probability:

P(S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, . . . St = st , Rt = rt)
= P0(S0 = s0)

× π0(A0 = a0|S0)P(S1, R1|S0, A0) π1(A1 = a1|S1 = s1, H1)
× · · · × P(St = st , Rt = rt |St−1 = st−1, At−1 = at−1)
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Decision Process and Markov
Decision Process

Markov Decision Process and Trajectories

Markovian Trajectories only if the policy is Markovian
P(Rt+1, St+1, At+1, Rt+2, St+2, . . . Rt+k , St+k |St , At , Ht)

= P(Rt+1, St+1, At+1, Rt+2, St+2, . . . Rt+k , St+k |St , At)
= P(St+1, Rt+1|St , At) πt+1(At+1|St+1)

× · · · × P(St+k , Rt+k |St+k−1, At+k−1)

Stationary if the policy is stationary. 16
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Returns and Value FunctionsRewards and Total Return
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Rewards and Total Returns
MDP: Rewards Rt encode all the feedbacks!
Quality of a policy Π measured from the remaining total return:

Gt =
∞∑

t′=t+1
Rt′

Expected total return following Π starting from s:

EΠ[Gt |St = s] =
∞∑

t′=t+1
E[Rt′ |St = s]
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Returns and Value FunctionsTotal Return: Issue and Fixes
Issues

Gt is a limiting process and thus may not be defined!
Can diverge to ±∞ and not converge at all.

Fixes?

Finite horizon: GT
t =

T∑
t′=t+1

Rt′

Episodic setting: it exists a random T such that ∀t ′ ≥ R, Rt′ = 0 and E[T ] < ∞

so that Gt =
∞∑

t′=t+1
Rt′ is well defined.

Discounted setting: for 0 < γ < 1, Gγ
t =

∞∑
t′=t+1

γt′−(t+1)Rt′

Average return: G t = lim 1
T

t+T∑
t′=t+1

Rt′

19



Returns and Value FunctionsFinite Horizon

GT
t =

T∑
t ′=t+1

Rt ′

Finite Horizon Setting
Always well defined and easy to interpret.
Loss of Markovianity as we need to know the time step. . .

Can be put in a classical Markov framework!
Define an absorbing state sabs (a state that cannot be escaped and from which the
reward is always 0).
Extend the state space S to (S × {0, . . . , T}) ∪ {sabs}.
Define an state reward transition probability:

p (s̃ ′, r |s̃, a) =


p(s ′, t|s, a) if s̃ = (s, t), t < T and s̃ ′ = (s ′, t + 1)
1 if s̃ = (s, t), t = T , s̃ ′ = sabs and r = 0
1 if s̃ = sabs , s̃ ′ = sabs and r = 0
0 otherwise
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Returns and Value FunctionsEpisodic Setting

Gt =
∞∑

t ′=t+1
Rt ′

Episodic Setting
Assumption: for any policy Π, the average duration before Rt = 0 is smaller than
a finite horizon H: EΠ

[
min

t,Rt′ =0,∀t′≥t
t
]

≤ H < +∞

Strong assumption. . .
Easy to interpret.

Equivalent def.:
Replace all the states from which Rt remains equal to 0 whatever the policy by a
single absorbing state sabs,
Assumption: for any policy Π, the average duration to reach this state is smaller

than a finite horizon H: EΠ

[
min

t,St =sabs
t
]

≤ H < +∞
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Returns and Value FunctionsDiscounted

Gγ
t =

T∑
t ′=t+1

γt ′−(t+1)Rt ′

Discounted
Always defined but not that easy to interpret.
Easiest theoretical setting!

Equivalent to an episodic setting if one adds an absorbing state sabs and changes
all state-reward transition probabilities to:

p(s ′, r |s, a) =


γp(s ′, r |s, a) if s ′ ̸= sabs, s ̸= sabs

(1 − γ) if s ′ = sabs, r = 0, s ̸= sabs

1 if s ′ = sabs, r = 0, s = sabs

0 otherwise
Horizon H = 1/(1 − γ).
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Returns and Value FunctionsAverage Return Setting

G t = lim 1
T

t+T∑
t ′=t+1

Rt ′

Average Return
Not always defined. (Cesaro Average)
Always equal to 0 in the episodic setting!
Natural definition in a stationary setting. . .
Complex theoretical analysis!

Under a strict stationarity assumption (Rt ∼ Rt′), link with discounted setting as

EΠ[Gγ
t ] =

∞∑
t=0

γtEΠ[Rt+1] = 1
1 − γ

EΠ[Rt ] = 1
1 − γ

EΠ
[
G t

]

Av
er

ag
e
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tu

rn

23



Returns and Value FunctionsState Value Functions
State Value Functions

Return expectation for a policy Π starting from s at time t
Finite horizon setting:

vT
t,Π(s) = EΠ

[
GT

t |St = s
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s]

Episodic setting:
vt,Π(s) = EΠ[Gt |St = s] =

∞∑
t′=t+1

EΠ[Rt′ |St = s]

Discounted:
vγ

t,Π(s) = EΠ[Gγ
t |St = s] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s]

Average return setting:

v t,Π(s) = EΠ
[
G t |St = s

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s]

Depends on t for a history dependent policy!
24



Returns and Value FunctionsMarkovian Policy and State Value Functions
State Value Functions

Return expectation for a Markovian policy Π starting from s at time t.
Finite horizon setting (with time extended state space):

vT
t,Π(s) = EΠ

[
GT

t |St = s
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s]

Episodic setting:
vt,Π(s) = EΠ[Gt |St = s] =

∞∑
t′=t+1

EΠ[Rt′ |St = s]

Discounted:
vγ

t,Π(s) = EΠ[Gγ
t |St = s] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s]

Average return setting:

v t,Π(s) = EΠ
[
G t |St = s

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s]

Becomes independent on t if the policy is stationary and Markovian the generic
case (except in the finite horizon setting). 25



Returns and Value FunctionsState-Action Value Functions
State Value Functions

Return expectation for a policy Π starting from s and an action a at time t.
Finite horizon setting:

qT
t,Π(s, a) = EΠ

[
GT

t |St = s, At = a
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s, At = a]

Episodic setting:
qt,Π(s, a) = EΠ[Gt |St = s, At = a] =

∞∑
t′=t+1

EΠ[Rt′ |St = s, At = a]

Discounted:
qγ

t,Π(s, a) = EΠ[Gγ
t |St = s, At = a] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s, At = a]

Average return setting:

qt,Π(s, a) = EΠ
[
G t |St = s, At = a

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s, At = a]

Different strategy for action at time t than after. . .
Independent of t for a Markovian policy except for the finite horizon setting! 26



Returns and Value FunctionsState Value Function vs State-Action Value Functions

vt,Π(s) = EΠ[Gt |St = s] qt,Π(s, a) = EΠ[Gt |St = s, At = a]

State vs State-Action
Performance measure of a policy Π:

starting from a state s for the state value function,
starting from a state s and an action a (not necessarility related to Π) for the
state-action value function.

State value function at time t from state-action value function:
vt,Π(s) =

∑
a

Πt(a)qt(s, a)

27



Returns and Value FunctionsDo We Really Need The History Dependent Policies?

Equivalent Markovian policy in terms of value function
Thm: For any policy Π and any initial distribution P0(S0), it exists a Markovian
policy Π̃ such that

∀t, ∀s, vt,Π(s) = vt,Π̃(s).

Relies on the Markovian environment.
Possible choice:

π̃t {At = at |St = st} = EP,P0 [πt(At = at |St = st , Ht)|St = st , S0]
No need to consider non Markovian policy if the goal is entirely defined in
terms of value functions.
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Prediction and PlanningGoals
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Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

Prediction
What is the performance of a given
policy?

Planning
What is the best policy?

Planning is harder than predicting.
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Prediction and PlanningPrediction
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

Prediction
What is the performance of a given policy?
Compute/Approximate/Estimate

vt,Π(s) = EΠ[Gt |St = s]
Well defined provided the expectation exists.
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Prediction and PlanningPlanning
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

Planning
What is the best policy?
A possible definition: argmax

Π

∑
s,t

µ(s, t)vt,Π(s)

Not necessarily well defined. . .
Several choices for µ!
More realistic goal: find a good policy. . .
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Operations Research and
Reinforcement Learning
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Operations Research and
Reinforcement Learning

What Do We Know?
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model
Able to use the MDP transition
probabilities.
Markov Decision Process / Operations
Research.
Probability world.

Only Observations
No access to the MDP transition
probabilities.
Reinforcement Learning.
Statistic world.

Reinforcement Learning is harder than Markov Decision Process / Operations
Research.
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Operations Research and
Reinforcement Learning

Markov Decision Process / Operations Research

MDP

Env.

Agent

P
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Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

MDP / OR
Stochastic setting in which the world is known.
MDP model assumption.
Probability world / Idealized setting. . .
Lots of insight for the RL problem.
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Operations Research and
Reinforcement Learning

Reinforcement Learning

MDP
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Agent
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Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real Time Policy

RL
Stochastic setting in which the world is observed through interactions.
Still MDP model assumption.
More realistic setting?
More difficult theoretical analysis.
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ControlMDP vs Discrete Control

MDP
State s and action a
Dynamic model:

P
(
s ′|s, a

)
Reward r defined by P(r |s ′, s, a).
Policy Π: at = πt(St , Ht)
Goal:

maxEΠ

[∑
t

Rt

]

Discrete Control
State x and control u
Dynamic model:

x ′ = f (x , u, W )
with W a stochastic perturbation.
Cost: C(x , u, W ).
Control strategy U: ut = u(xt , Ht)
Goal:

min
U

EU

[∑
t

C(xt , ut , Wt)
]

Almost the same setting but with a different vocabulary!
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SurveyRL: What Are We Going To See?

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real Time Policy

Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
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SurveyOperations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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SurveyReinforcement Learning and Interactions
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How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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SurveyMore Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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SurveyReinforcement and Approximation of Value Functions
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How to Deal with a Large/Infinite states/action space?
How to approximate value functions?
How to estimate good approximation of value functions?

Finite action space setting.
Stochastic algorithm (Deep Q Learning. . . ).
Policy deduced by a statewise optimization of the value function over the actions.
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SurveyActor/Critic: a Policy Point of View

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction Replay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

Could We Directly Parameterized the Policy?
How to parameterize a policy?
How to optimize this policy?
Can we combine parametric policy and approximated value function?

State Of The Art Algorithms (DPG,PPO, SAC. . . )
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