
Reinforcement Learning
Operations Research: Prediction and Planning

Erwan Le Pennec
Erwan.Le-Pennec@polytechnique.edu

M2DS - Reinforcement Learning – Fall 2024
1

RL: What Are We Going To See?
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View

2

Operations Research and MDP
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real-Time Policy

How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.

3

Outline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

4

Markov Decision Process / Operations Research
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP / OR
Known MDP model
Focus on the finite horizon setting

GT
t =

T∑
t′=t+1

Rt′

and the discounted setting:

Gγ
t =

∞∑
t′=t+1

γt′−(t+1)Rt′

We will later consider the other settings.

Fi
ni

te
Ho

riz
on

/
D

isc
ou

nt
ed

5

Policy

Policy
Finite horizon : emphasis on Markovian policies

Πt(At = at) = πt(At = at |St = st) = πt(at |st)
Discounted return: emphasis on stationary Markovian policies

Πt(At = at) = π(At = at |St = st) = π(at |st)

Fi
ni

te
Ho

riz
on

/
D

isc
ou

nt
ed

6

Prediction
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real-Time Policy

Prediction
How to efficently evaluate the quality of a policy

vt,Π(s) = EΠ

 T∑
t′=t+1

γt′−(t+1)Rt′

∣∣∣∣∣∣St = s


when we can ensure that the sum is finite?

vt,Π independent of t in the discounted setting if the policy is stationary.

Fi
ni

te
/

Ep
iso

di
c

/
D

isc
ou

nt
ed

7

Planning

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real-Time Policy

Policy
How to find a policy π such that∑

s,t
µ(s, t)vt,Π(s)

is as large as possible?
Emphasis on µ(s, t) = 0 if t ̸= 0 and µ(s, 0) = P0(S0 = s0).

8

Prediction and Bellman
Equation

Outline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

9

Prediction and Bellman
Equation

Bellman Equation

vt,Π(s) =
∑

a
πt(a|s)

∑
s′,r

p(s ′, r |s, a)
(
r + γvt+1,Π(s ′)

)
=
∑

a
πt(a|s)r(s, a) + γ

∑
s′

∑
a

p(s ′|s, a)πt(a|s)vt+1,Π(s ′)

Bellman Equation
Link between vt,Π and vt+1,Π.
Straightforward consequence of

Gt =
T∑

t′=t+1
γt′−(t+1)Rt′ = Rt+1 + γ

T∑
t′=t+2

γt′−(t+2)Rt′ = Rt+1 + γGt+1

and thus
E[Gt |St = s] = E[Rt+1|St = s] + γE[E[Gt+1|St+1]|St = s]

Fi
ni

te
/

Ep
iso

di
c

/
D

isc
ou

nt
ed

10

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Prediction and Bellman
Equation

Bellman Operator

T πt : R|S| → R|S|

T πt v(s) =
∑

a
πt(a|s)r(s, a)︸ ︷︷ ︸

rπt (s)

+γ
∑
s′

p(s ′|s, a)
∑

a
πt(a|s)︸ ︷︷ ︸

Pπt (s,s′)

v(s ′)

Bellman Operator
Affine operator from the space of state value functions to the space of state value
functions.
By construction,

vt,Π = T πt vt+1,Π

rπt is the vector of average immediate rewards using policy πt while Pπt is the one
step state transition matrix using policy πt .

Fi
ni

te
/

Ep
iso

di
c

/
D

isc
ou

nt
ed

11

Prediction by Dynamic
Programming and
Contraction

Outline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

12

Prediction by Dynamic
Programming and
Contraction

Finite Horizon: Naive Approach

vT
t,Π(s) =

∑
at ,rt+1,st+1,··· ,rT

 T∑
t′=t+1

rt′

PΠ(At = at . . . , RT = rT |St = s)

=
∑

at ,rt+1,st+1,··· ,rT

 T∑
t′=t+1

rt′

 πt(at |s) × · · · × p(sT , rT |sT−1, aT−1)

Finite Horizon: Naive Approach
Exhaustive exploration of the trajectories.
Complexity of order (|A| × |S| × |R|)T−t for the value function at time t.

Complexity can be reduced to (|A| × |S|)T−t by noticing that

vT
t,Π(s) =

∑
at ,st+1,··· ,st−1,at−1

 T∑
t′=t+1

r(st , at)

πt(at |s) × · · · × p(sT |sT−1, aT−1)

Fi
ni

te
Ho

riz
on

13

Prediction by Dynamic
Programming and
Contraction

Finite Horizon: Recursive Prediction

vT
T ,Π = 0

vT
t−1,Π = T πt−1vT

t,Π

Finite Horizon: Recursive Prediction
After time T , the finite horizon return GT

t = 0 hence vT
T ,Π = 0 whatever the

policy.
The Bellman equation yields second equation.
Equivalent rewriting

vT
t−1,Π(s) = rπt−1(s) +

∑
s′

Pπt−1(s, s ′)vT
t

Complexity of order only T × |S|2(|A| + |S|) to compute all the value functions.

Fi
ni

te
Ho

riz
on

14

Prediction by Dynamic
Programming and
Contraction

Finite Horizon: Value Iteration

Finite Horizon: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩ and policy Π
parameter: Horizon T
init: vT

T (s) = 0 ∀ s ∈ S, t = T
repeat

t ← t − 1
for ∀ s ∈ S do

vT
t (s)←

∑
a∈A

πt(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)
end

until t = 0
output: Value functions vT

t

Most classical formulation

Fi
ni

te
Ho

riz
on

15

Erwan LE PENNEC

Erwan LE PENNEC

Prediction by Dynamic
Programming and
Contraction

Discounted: Naive Approach

vγ
t,Π(s) =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s] ≃
T∑

t′=t+1
γtEΠ[Rt′ |St = s] = vγ,T

t,Π (s)

vγ,T
t,Π (s) =

∑
at ,st+1,··· ,st−1,at−1

 T∑
t′=t+1

γt′−(t+1)r(st , at)

πt(at |s) × · · ·

× p(sT |st−1, at−1)

Naive approach
Exhaustive exploration of truncated trajectories.
Back to the finite horizon setting. . .

Prop: Control on the error as
∣∣∣vγ

Π − vγ,T
t,Π

∣∣∣
∞

≤ γT+1−t

1 − γ
max
r∈R

|r |

Relation between the error ϵ ≃ γT−t and the numerical complexity
C = (|A| × |S|)T−t of order C ≃ ϵ−1.

D
isc

ou
nt

ed

16

Prediction by Dynamic
Programming and
Contraction

Discounted: Recursive Prediction with Naive
Initialization

vγ
T ,Π ≃ vγ,T ′

T ,Π = ṽT ,Π

vγ
t−1,Π = T πt−1vγ

t,Π ≃ ṽt−1,Π = T πt−1 ṽt,Π

Recursive Prediction
Requires an initialization at time T with a horizon T ′.
The Bellman equation yields the second equation.
Complexity of order only T × |S|2(|A| + |S|) to compute all the value functions
after the initialization of cost (|A| × |S|)T ′−T .
Prop: If the approximation error between vγ

T ,Π and vγ,T ′

T ,Π is bounded by ϵ then
∥vγ

t,Π − ṽt,Π∥∞ ≤ γT−tϵ, ∀t ≤ T

D
isc

ou
nt

ed

17

Prediction by Dynamic
Programming and
Contraction

Discounted and stationary: Bellman Equation

vΠ = T πvΠ

vΠ(s) =
∑
a

π(a|s)r(s, a) + γ
∑
s ′

∑
a

p(s ′|s, a)π(a|s)vΠ(s ′)

Bellman Equation
Time independent value function vΠ.
Prop: Unique solution of the linear equation vΠ = T πvΠ

Complexity of order (|A| + |S|) × |S|2 to obtain the solution.

D
isc

ou
nt

ed

18

Prediction by Dynamic
Programming and
Contraction

Discounted and stationary: Recursive Implementation

vΠ = T πvΠ

vk+1 = T πvk with arbitrary v0

Bellman Iteration
Prop: Unique fixed point of the Bellman operator v 7→ T πv .
Prop: The iterates vk+1 = T πvk converges toward vΠ and

∥vk − vΠ∥∞ ≤ γk∥v0 − vΠ∥∞

Complexity of order (k + |A|)|S|2 to obtain the kth iterate.
Exponential decay of the error with respect to the complexity.

D
isc

ou
nt

ed

19

Prediction by Dynamic
Programming and
Contraction

Bellman Operator and Contraction

∥T πv − T πv ′∥∞ ≤ γ∥v − v ′∥∞

Proof
By definition

∥T πv − T πv ′∥∞ = γ∥Pπ(v − v ′)∥∞

It suffices then to notice that Pπ is a transition matrix, so that∑
j

Pπ
i ,j = 1

and thus |
∑

j
Pπ

i ,jzj | ≤ max |zj |

Consequences
Unicity of the solution of T πv = v .
Linear decay γk of the error with the iterates.

D
isc

ou
nt

ed

20

Erwan LE PENNEC

Erwan LE PENNEC

Prediction by Dynamic
Programming and
Contraction

Bellman Operator and Bellman Equation Solution

vΠ =
 ∞∑

k=0
γk (Pπ)k

 rπ

A Closed Formula for the State Value Function
vΠ = T πvΠ ⇔ (I − γPπ) vΠ = rπ

As Pπ is a transition matrix, its eigenvalues are smaller than 1 and thus (I − γPπ)
is invertible of inverse

(I − γPπ)−1 =
∞∑

k=0
γk (Pπ)k

Could have been obtained without the Bellman equation as the
(
(Pπ)k

)
s,s′

is, by
construction, the probability of being at state s ′ at time k starting from s at time
0 and following Π. D

isc
ou

nt
ed

21

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Prediction by Dynamic
Programming and
Contraction

Discounted and stationary: Value Iteration

Discounted: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
for s ∈ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
end

output: Value function ṽ

When to stop?

D
isc

ou
nt

ed

22

Prediction by Dynamic
Programming and
Contraction

Discounted and stationary: Value Iteration
Discounted: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
∆← max (∆, |ṽ(s)− ṽprev(s)|)

end
until ∆ < δ
output: Value function ṽ

Prop: when the algorithms stops
∥ṽ − vΠ∥∞ ≤ γ

1 − γ
δ

D
isc

ou
nt

ed

23

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Prediction by Dynamic
Programming and
Contraction

Discounted and stationary: Value Iteration
Discounted: Prediction by Value Iteration - Gauss-Seidel Version
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

∆← 0
for s ∈ S do

ṽprev ← ṽ(s)

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽ(s ′)

)
∆← max (∆, |ṽ(s)− ṽprev|)

end
until ∆ < δ
output: Value function ṽ

Gauss-Seidel variation mostly used in practice.
No need to store the previous value function.

D
isc

ou
nt

ed

24

Planning, Optimal Policies
and Bellman Equation

Outline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

25

Planning, Optimal Policies
and Bellman Equation

Optimal Policy

Optimal Policy
An optimal policy Π⋆ should be better than any other policies:

∀s, ∀t, vt,Π⋆(s) = sup
Π

vt,Π(s)

Several Questions
Do this policy exists?
Is it unique?
How to characterize it?
How to obtain it?

Even the sup above could be an issue if it is not attained!

26

Erwan LE PENNEC

Planning, Optimal Policies
and Bellman Equation

Finite Horizon and Optimal Policy
Explicit Recursive Solution

After horizon T , any policy leads to a 0 return.
At time T − 1,

the total return GT is the immediate return at time T and thus
vT ,Π⋆(s) = sup

π(a|s)

∑
a

π(a|s)r(a, s) = sup
a

r(a, s)

the optimal policy π⋆
T−1 exists and is determistic.

By recursion,
the total return at time t − 1 is the immediate return at time t plus the total return
at time t − 1 and thus

vt−1,Π⋆(s) = sup
π(a|s)

∑
a

π(a|s)
(

r(a, s) +
∑

s′

p(s ′|s, a)vt,Π⋆

)

= sup
a

(
r(a, s) +

∑
s′

p(s ′|s, a)vt,Π⋆

)
the optimal policy π⋆

t−1 exists and is determistic.

Fi
ni

te
Ho

riz
on

27

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning, Optimal Policies
and Bellman Equation

Discounted Setting and Optimal Stationary Policy

Heuristic
Optimal policy: vΠ⋆(s) = supπ vΠ(s)
Stationary solution:

vΠ⋆(s) = sup
π

(T πvΠ⋆) (s)

= sup
πt(···|s)

∑
a

π(a|s)
(

r(a, s) + γ
∑
s′

p(s ′|s, a)vΠ⋆(s ′)
)

= sup
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)vΠ⋆(s ′)
)

Optimal deterministic policy: π⋆(s) ∈ argmax (r(a, s) + γ
∑

s′ p(s ′|s, a)vΠ⋆(s ′)).

Is everything well defined? Yes but one has to be more cautious!

D
isc

ou
nt

ed

28

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning, Optimal Policies
and Bellman Equation

Optimal Value Function and Bellman Operator

Optimal Value Function
Optimal value function: v⋆(s) = supΠ vΠ(s)
Defined state by state so that it is not necessarily attained by a single Π⋆

Optimal Bellman operator
Similar to the Bellman operator but do not depend on a policy:

T ⋆v(s) = sup
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v(s ′)
)

Link between the two
v ≥ T ⋆v implies v ≥ v⋆.
v ≤ T ⋆v implies v ≤ v⋆.

D
isc

ou
nt

ed

29

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning, Optimal Policies
and Bellman Equation

Optimal Value Function and Bellman Operator

Bellman Operator and Fixed Point
Prop: T ⋆ is a γ-contraction for the sup-norm and thus it exists a unique v⋆⋆ such
that v⋆⋆ = T ⋆v⋆⋆.

Fixed Point and Optimal Value Function
Prop: : v⋆ = v⋆⋆ and is thus the unique fixed point of T ⋆.
Proof: v⋆⋆ = T ⋆v⋆⋆ and thus v⋆⋆ = v⋆ according the link between the optimal
value function and the Bellman operator.

Does this mean something about policies?

D
isc

ou
nt

ed

30

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning, Optimal Policies
and Bellman Equation

Optimal Policy and Bellman Operator

Bellman Operator and Policy
Prop: For any v , any policy πv satisfying

πv (s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v(s ′)
)

is such that T ⋆v(s) = supπ T πv(s) = T πv v(s)

Bellman Operator and Optimal Policy
Prop: Any stationary policy π⋆ satisfying

π⋆(s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v⋆(s ′)
)

is optimal.
Proof: Indeed by construction, T ⋆v⋆ = T π⋆v⋆ and thus, as T ⋆v⋆ = v⋆, vπ⋆ = v⋆.

D
isc

ou
nt

ed

31

Planning, Optimal Policies
and Bellman Equation

Optimal Policy and Bellman Operator

Summary
It exists a unique v⋆ such that T ⋆v⋆ = v⋆

∀s, v⋆(s) = supπ vπ(s)
Any policy π⋆ satisfying:

∀s, π⋆(s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v⋆(s ′)
)

is optimal as ∀s, vπ⋆(s) = v⋆(s) = supπ vπ(s)

Existence result but not (yet) a constructive algorithm!

D
isc

ou
nt

ed

32

Linear ProgrammingOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

33

Linear ProgrammingLinear System and Linear Programming

vπ = T πvπ v⋆ = T ⋆v⋆

Explicit Resolution of the Equations?
Prediction:

Simple linear system for vπ.
Already mentionned before. . .
Complexity of order (|A| + |S|)|S|2.

Planning:
More complex linear programming system for v⋆ due to the max operator.
Optimal policy easily deduced from v⋆.
Complexity of order (|A||S|)3.

D
isc

ou
nt

ed

34

Linear ProgrammingLinear Programming

From ∀s, v(s) = sup
a

r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

to minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Different formulations but same solution
Using v ≥ T ⋆v ⇔ v ≥ v⋆, the condition implies v ≥ v⋆

Now for any µ satisfying µ(s) > 0,
∑

s µ(s)v(s) ≥
∑

s µ(s)v⋆(s) as soon as the
condition is satisfied, hence v⋆ is a solution.
If for any state v(s) > v⋆(s) then

∑
s µ(s)v(s) >

∑
s µ(s)v⋆(s) and thus v⋆ is the

unique minimizer.

D
isc

ou
nt

ed

35

Erwan LE PENNEC

Linear ProgrammingPrimal Problem

Primal: minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Some properties
Can be solved with a linear programming solver.
Unicity of solution (and thus independence with respect to µ) can be proved
without using v⋆.

Proof: let v1 a solution for µ1 and v2 a solution for µ2 then min(v1, v2) satifies the
constraints. Furthermore if exists v2(s) < v1(s) then min(v1, v2) is a strictly better
solution for µ2 which is impossible.

Ep
iso

di
c

/
D

isc
ou

nt
ed

36

Linear ProgrammingDual Problem

Primal: minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Dual: max
λ(s,a)≥0

∑
s,a

λ(s, a)r(s, a)

such that ∀s,
∑
a

λ(s, a) = µ(s) + γ
∑
s ′,a

p(s|s ′, a)λ(s ′, a)

Derivation
Usual derivation through the Lagrangian:

L(v , λ) =
∑

s
µ(s)v(s) +

∑
s,a

λ(s, a)

r(s, a) + γ
∑
s′,a

p(s|s ′, a)v(s ′) − v(s)


Strong duality as Slater condition holds when γ < 1 with v = 1+ϵ

1−γ maxs,a r(s, a).

D
isc

ou
nt

ed

37

Linear ProgrammingDual and Interpretation

Dual: max
λ(s,a)≥0

∑
s,a

λ(s, a)r(s, a)

such that ∀s,
∑
a

λ(s, a) = µ(s) + γ
∑
s ′,a

p(s|s ′, a)λ(s ′, a)

Interpretation : max
π

∞∑
k=0

γk ∑
s,a

P(St = a, At = a|S0 ∼ µ, π) r(s, a)

Interpretation in terms of policy
For any feasible λ, define u(s) =

∑
a λ(s, a) and the policy π(a|s) = λ(s, a)/u(s).

Prop: u = (Id − γPπ)µ =
∑∞

k=0 γk (Pπ)k µ.
Prop: λ(s, a) = π(a|s)u(s) =

∑∞
k=0 γkP(St = a, At = a|S0 ∼ µ, π)

Conversely for any π they is a feasible λ.
Any optimal λ⋆ (and thus policy) satisfies λ⋆(s, a) = 0 if
v⋆(s) > r(s, a) + γ

∑
s′ p(s ′|s, a)v⋆(s ′) (optimal policy support)

D
isc

ou
nt

ed

38

Planning by Value IterationOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

39

Planning by Value IterationFinite Horizon
Finite Horizon: Planning by Value Iteration
input: MDP model ⟨(S,A,R), P⟩
parameter: Horizon T
init: vT

T (s) = 0 ∀ s ∈ S, t = T
repeat

t ← t − 1
for s ∈ S do

vT
t (s)← max

a∈A

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)
end

until t = 0

output: Deterministic policy πt(s) ∈ argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)

Algorithm used to prove the existence of an optimal policy.
No necessarily unique as argmax may not be unique.

Fi
ni

te
Ho

riz
on

40

Planning by Value IterationOptimal Value Function, Fixed Point and Contraction

v⋆ = T ⋆v⋆ and ∥T ⋆v − T ⋆v ′∥∞ ≤ γ∥v − v ′∥∞

=⇒ vk+1 = T ⋆vk → v⋆

Bellman Operator
Properties of Optimal Bellman Operator:

v⋆ is a fixed point of T ⋆.
T ⋆ is a γ-contraction for the ∥ · ∥∞ norm.

Classical fixed point theorem setting.
Practical algorithm to approximate v⋆.

D
isc

ou
nt

ed

41

Planning by Value IterationValue Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ
output: Value function ṽ

Same convergence criterion (and similar proof) than in the planning case.
Which policy? D

isc
ou

nt
ed

42

Planning by Value IterationValue Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ

output: Deterministic policy π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽ(s ′)

Natural idea: define a policy using the argmax of the existence proof.
Do we have a convergence guarantee on the resulting policy?

D
isc

ou
nt

ed

43

Planning by Value IterationValue and argmax Policy

π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s ′

p(s ′|s, a)ṽ(s ′)

=⇒ ∥vπ̃ − v⋆∥∞ ≤ 2γ

1 − γ
∥ṽ − v⋆∥∞

Value and argmax Policy
Bound on the loss of the final policy!
Rely on the fact that, by construction, T π̃ ṽ = T ⋆ṽ
Proof:

∥vπ̃ − v⋆∥∞ = ∥T π̃vπ̃ − T π̃ ṽ + T ⋆ṽ − T ⋆v⋆∥∞

≤ ∥T π̃vπ̃ − T π̃ ṽ∥∞ + ∥T ⋆ṽ − T ⋆v⋆∥∞

≤ γ∥vπ̃ − ṽ∥∞ + γ∥ṽ − v⋆∥∞

≤ γ∥vπ̃ − v⋆∥∞ + 2γ∥ṽ − v⋆∥∞

D
isc

ou
nt

ed

44

Planning by Value IterationValue Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ

output: Deterministic policy π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽ(s ′)

Prop: ∥vπ̃ − v⋆∥∞ ≤ 2γ

1 − γ
δ

D
isc

ou
nt

ed

45

Planning by Value IterationFrom State Value to State-Action Value Functions

vπ(s) = Eπ

[∑
k

γkRt |S0 = s

]

T πv(s) =
∑

a

π(a|s)

(
r(s, a) + γ

∑
s′

p(s ′|s, a)v(s ′)

)
T ⋆v(s) = max

a
r(s, a) + γ

∑
s′

p(s ′|s, a)v(s ′)

qπ(s, a) = Eπ

[∑
k

γkRt |S0 = s, A0 = a

]

T πq(s, a) = r(s, a) +
∑

s′

p(s ′|s, a)
∑

a

π(a|s ′)q(s ′, a)

T ⋆q(s, a) = r(s, a) + γ
∑

s′

p(s ′|s, a) max
a

q(s ′, a)

Two equivalent point of view?
Everything could have been defined using the state-action point of view.
Knowing vπ is equivalent to knowing qπ as

vπ(s) =
∑

a
π(s|a)qπ(s, a) and qπ(s, a) = r(s, a) + γ

∑
s′

p(s ′|s, a)vπ(s ′).

Ep
iso

di
c

/
D

isc
ou

nt
ed

46

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning by Value IterationState-Action Bellman Operators

T πq(s, a) = r(s, a) + γ
∑
s′

p(s ′|s, a)
∑

a
π(a|s ′)q(s ′, a)

T ⋆q(s, a) = r(s, a) + γ
∑
s′

p(s ′|s, a) max
a

q(s ′, a)

Properties
Prop: T π and T ⋆ are γ contractions for the ∥ · ∥∞ norm.
Prop: qπ is the unique solution of T πq = q
Prop: q⋆ defined q⋆(s, a) = supπ qπ(s, a) is the unique solution of q = T ⋆q and is
attained for any policy π⋆ satisfying π⋆(s) ∈ argmax q⋆(s, a).
Prop: Any such policy satisfies: vπ⋆(s) = qπ⋆(s, π⋆(s)) = v⋆(s). D

isc
ou

nt
ed

47

Planning by Value IterationState-Action Value Iteration Algorithm
Discounted: Planning by State-Action Value Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: q̃(s, a)∀ (s, a) ∈ S ×A
repeat

q̃prev ← q̃
∆← 0
for s ∈ S do

for a ∈ A do

q̃(s, a)←

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a) max
a′

q̃prev(s ′, a′)

)
∆← max (∆, |q̃(s, a)− q̃prev(s, a)|)

end
end

until ∆ < δ
output: Deterministic policy π̃(s) ∈ argmax

a
q̃(s, a)

Same complexity but more storage than with state value function. . .
but will be useful later!

D
isc

ou
nt

ed

48

Planning by Policy IterationOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

49

Erwan LE PENNEC

Planning by Policy IterationValue Fonction vs Policy Point of View

v , q −→ Π or Π −→ v , q?

Planning
Focus so far on value-fonction point of view!
Heuristic: find a good approximation of the optimal value function and deduce a
good policy.
Can we work directly on the policy itself?

For prediction, only the policy point of view makes sense!

50

Planning by Policy IterationToward Policy Improvement

∀s, π+(s) ∈ argmax
a

qπ(s, a) =⇒ ∀vπ+(s) ≥ vπ(s)

Classical Policy Improvement Lemma
Prop: Given a policy π and its q value-function, one can obtain a better policy
with the argmax operator.
Prop: If no improvement is possible, it means that π is already optimal.
Proof: Use T π+vπ = T ⋆vπ ≥ T πvπ = vπ to prove (T π+)k vπ ≥ vπ which implies
the result by letting k goes to +∞.

Leads to a sequential improvement algorith. . .

Ep
iso

di
c

/
D

isc
ou

nt
ed

51

Planning by Policy IterationPolicy Improvement Lemma

E[vπ′(S0)] − E[vπ(S0)] =
∞∑

k=0
γkEπ′

[∑
a

π′(a|St) (qπ(St , a) − vπ(St))
]

=
∞∑

k=0
γkEπ′

[∑
a

(π′(a|St) − π(a|St)) qπ(St , a)
]

A Generic Improvement Lemma
No assumptions on π and π′!
Easy proof.
Imply the previous lemma as maxa Qπ(s, a) − vπ(s) ≥ 0.
Show that improvement choices are possible.

Will prove to be useful later. . . Ep
iso

di
c

/
D

isc
ou

nt
ed

52

Erwan LE PENNEC

Planning by Policy IterationPolicy Iteration
Discounted: Planning by Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial policy π̃
repeat

Compute qπ̃.
for s ∈ S do

for a ∈ A do
p̃ol(s)← argmax qπ̃(s, a)

end
end

output: Deterministic policy π̃.

Some issues
How to obtain qπ?
When to stop?

Ep
iso

di
c

/
D

isc
ou

nt
ed

53

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning by Policy IterationPolicy Iteration
Discounted: Planning by Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial policy π̃
repeat

stable ← 0
Compute qπ̃.
for s ∈ S do

old − action← π̃(s)
π̃(s)← argmax qπ̃(s, a)
if π̃(s) ̸= old − action then

stable ← 0
end

end
until stable ==1
output: Deterministic policy π̃.

Finite Setting
Finite set of action-states implies a finite set of policy.
Convergence of the algorithm in finite time!

Ep
iso

di
c

/
D

isc
ou

nt
ed

54

Planning by Policy IterationPolicy Iteration
Convergence Rate

Crude analysis:
Bound after k steps of the algorithm

∥vπk − v⋆∥∞ ≤ γ∥vπk−1 − v⋆∥∞ ≤ γk∥vπ0 − v⋆∥∞

∥vπk − v⋆∥∞ ≤ γ

1 − γ
∥vπk − vπk−1∥∞

Not much better than value iteration but much higher complexity as qπk is obtained
by solving the Bellman equation!

Much faster in practice. . .
Clever analysis (Putterman):

Under some mild assumptions and provided ∥Pπk − P⋆∥ ≤ K∥vπk − v⋆∥∞ then

∥vπk − v⋆∥∞ ≤ Kγ

1 − γ
∥vπk−1 − v⋆∥2

∞

May explain the better convergence in practice!

D
isc

ou
nt

ed

55

Optimization InterpretationOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

56

Optimization InterpretationValue Iteration: (Relaxed) First Order Method

Value Iteration
Iteration:

vk = T ⋆vk−1

= vk−1 + (T ⋆ − Id) vk−1

Relaxation
vk = vk−1 − α (Id − T ⋆) vk−1

can be proved to converge for any α < 2
1+γ .

Can be interpreted as a first order method with pseudo-gradient (T ⋆ − Id) vk−1.
No function corresponding to this gradient!

Is there a better choice for α than α = 1?
No as the resulting operator is a contraction of constant

|1 − α| + αγ ≥ γ

Ep
iso

di
c

/
D

isc
ou

nt
ed

57

Optimization InterpretationPolicy Iteration: Newton-Raphson Method
Policy Iteration

Explicit iteration:
Solve vπk−1 = T πk vπk−1

Let πk such that T πk vπk−1 = T ⋆vπk−1

Implicit iteration on vπk :
vπk = (Id − γPπk)−1rπk

= (Id − γPπk)−1 (rπk + (γPπk − Id)vπk−1 + (Id − γPπk)vπk−1

)
= vπk−1 − (Id − γPπk)−1(Id − T πk)vπk−1

Can be interpreted as a second order method with pseudo-gradient
(Id − T πk)vπk−1 = (Id − T ⋆)vπk−1 and pseudo-Hessian (Id − γPπk).

Not a formal analysis but give a good insight on the better convergence of policy
iteration. D

isc
ou

nt
ed

58

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Approximation and StabilityOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

59

Approximation and StabilityStability of Value and Policy Iteration

Ideal Value and Policy Iteration?
Iterative algorithms.
Convergence proofs assume perfect computation.
What happens if we make a (small) error at each step?

Particularly important for Policy Iteration in which one resolves a linear system at
each step!

60

Approximation and StabilityValue Iteration Stability

vk = T ⋆vk−1 + ϵk−1

=⇒ ∥vk − v⋆∥∞ ≤ γk∥v0 − v⋆∥∞ +
max

0≤k′<k
∥ϵk′∥∞

1 − γ

=⇒ ∥vπk − v⋆∥∞ ≤ 2γk+1

1 − γ
∥v0 − v⋆∥∞ +

2γ max
0≤k′<k

∥ϵk′∥∞

(1 − γ)2

Stability with respect to approximations
Proof relies on the contraction property of T ⋆ (hence similar results for T π).

Error term
max

0≤k′<k
∥ϵk′∥∞

1−γ can be replaced by
k−1∑
k′=0

γk−k′∥ϵk′∥∞

Convergence if ∥ϵk∥∞ tends to 0.
Reach a neighborhood of the optimal solution if ∥ϵk∥∞ is bounded.

D
isc

ou
nt

ed

61

Erwan LE PENNEC

Approximation and StabilityPolicy Iteration

vk−1 = vπk−1 + ϵk−1 and T πk vk−1 = T ⋆vk−1 + δk−1

⇒ ∥vπk − v⋆∥∞ ≤ γk∥vπ0 − v⋆∥∞ + 1
(1 − γ)2

(
2γ(2 − γ) max

0≤k′<k
∥ϵk′∥∞ + max

0≤k′<k
∥δk′∥∞

)
Stability with respect to approximations

Quite involved proof but crude results.
Error term 2γ(2 − γ) max

0≤k′<k
∥ϵk′∥∞ + max

0≤k′<k
∥δk′∥∞ can be replaced by

(1 − γ)
k−1∑
k′=0

γk−k′ (2γ(2 − γ)∥ϵk′∥∞ + ∥δk′∥∞)

Convergence if ∥ϵk∥∞ and ∥δk |∥∞ tends to 0.
Reach a neighborhood of the optimal solution if ∥ϵk∥∞ and ∥δk |∥∞ are bounded.

Justify why Policy Iteration only requires an approximate estimate of vπk−1 , for
instance obtained by Bellman iteration. . .

D
isc

ou
nt

ed

62

Generalized Policy IterationOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

63

Generalized Policy IterationModified Policy Iteration
Discounted: Planning by Generalized Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial q
repeat

for s ∈ S do
π̃(s)← argmax

a
q(s, a)

end
repeat

qprev → q
for (s, a) ∈ S ×A do

q(s, a)← r(s, a) + γ
∑
s,a′

p(s ′|s, a)π̃(a′|s)qprev(s, a)

end
output: Deterministic policy π̃.

Algorithm driven by q.
Flexibility in the number of prediction steps after each policy improvement steps.
Special cases:

Large number: Policy Iteration with (small) error.
One: Value Iteration!

D
isc

ou
nt

ed

64

Generalized Policy IterationMPI Analysis

T πk vk = T ⋆vk and vk+1 = (T πk)mk vk

=⇒ ∥vk+1 − v⋆∥∞ ≤ γ

(
1 − γmk

1 − γ
∥Pπk − P⋆∥ + γmk

)
∥vk − v⋆∥∞

Convergence Results
Quite technical proof.
Valid only under the mild assumption T ⋆v0 ≥ v0.
Very fast decay provided ∥Pπk − P⋆∥ is small.

No stability with arbitrary errors. . .
Except if mk is large enough (cf policy iteration).

D
isc

ou
nt

ed

65

Generalized Policy IterationGeneralized Policy Iteration

So
ur

ce
:

Su
tt

on
an

d
B

ar
to

General Policy Iteration
Two simultaneous interacting processes:

One forcing the policy to correspond to the current value function (Policy
Improvement)
One trying to male the current value function coherent with the current policy
(Policy Evaluation)

Several variations possible on the two processes.

In GPI, the policy is driven by the value function.
Typically, stabilizes only if one reaches the optimal value/policy pair.

Ep
iso

di
c

/
D

isc
ou

nt
ed

66

Generalized Policy IterationState Update Order
Discounted: Prediction by Value Iteration - State Update Order
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
init: ṽ(s)∀ s ∈ S
repeat

ṽprev ← ṽ
for s ∈ S ′ ⊂ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
end

output: Value function ṽ

Classical strategies
S ′ = S: classical iteration
S ′ = {s}: Gauss-Seidel
S ′ = {s, |T π ṽ(s) − ṽ(s)| > ϵ}: Prioritized sweeping

Converges provided all states are visited infinitely often. . .
Gain in term of storage or focus on most interesting states. . .

Ep
iso

di
c

/
D

isc
ou

nt
ed

67

Generalized Policy IterationPolicy Improvement Variation
Greedy : π(s) ∈ argmax

a
q(s, a) ⇐⇒ π(·|s) ∈ argmax

π̃

∑
a

π̃(a)q(s, a)

Restricted : π(·|s) ∈ argmax
π̃∈Π̃ϵ

∑
a

π̃(a)q(s, a)

Regularized : π(·|s) ∈ argmax
π̃

∑
a

π̃(a)q(s, a) + ϵP(π̃)

Classical Variations
ϵ-greedy: Restrict π̃ to the set of policy s.t. π̃(a) ≥ ϵ

Explicit solution: π(a|s) = ϵ + (1 − ϵ) argmax q(s, a)
Policy improvement property if ϵ decreases.

Soft-max: Regularize by ϵH(π̃) where H is the entropy.
Explicit solution: π(a|s) ∝ exp(q(s, a)/ϵ)
No classical policy improvement. . .

Tends to greedy when ϵ goes to 0.
Turn out to be interesting later...

Ep
iso

di
c

/
D

isc
ou

nt
ed

68

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Episodic and Infinite SettingOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

69

Episodic and Infinite SettingEpisodic Setting

Eπ

[
min

t
{t, St = sabs}

]
< H ⇒ ∥T v − T v ′∥ξ ≤ H − 1

H ∥v − v ′∥ξ

Proper Policy
A policy π is said to be H-proper if Eπ

[
min

t
{t, St = sabs}

]
≤ H < ∞

⇒ average duration of an episode using this policy less than a finite horizon H!

Bellman operators
If a policy π is H-proper, the Bellman operator T π is a (H − 1)/H- contraction
for a weighted sup-norm.
If all the policies are H-propers, the optimal Bellman operator T ⋆ is a
(H − 1)/H-contraction for a weighted sup-norm.

Under those strong assumptions, episodic setting ≃ discounted setting with
γ = (H − 1)/H.
Some results can be obtained under the much milder assumption that there is one proper policy
and that any non-proper policy has at least one state for which vπ(s) = −∞.

Ep
iso

di
c

=
D

isc
ou

nt
ed

?

70

Episodic and Infinite SettingEpisodic Setting and Discount

∃H < ∞, ∀s,Eπ

[
min

t
{t, St = sabs

∣∣∣∣S0 = s}
]

< H

⇐⇒∃T , γT < 1, ∀s,Pπ(ST = sabs|S0 = s) ≥ 1 − γT

Episodic Setting and Discount
Discounted setting: ∀s,Pπ(ST = sabs|S0 = s) = 1 − γ

Episodic setting: Generalization in which more states are needed to reach the
absorbing state.
Prop:

H < ∞ =⇒ γ(1+ϵ)H ≤ 1
1+ϵ

γT < 1 =⇒ H < T
1−γT

Bertsekas equivalent assumption:
∃γ|S| < 1, ∀s,Pπ

(
S|S| = sabs

∣∣∣S0 = s
)

≥ 1 − γ|S| Ep
iso

di
c

=
D

isc
ou

nt
ed

?

71

Episodic and Infinite SettingInfinite Setting
No issue with the rewards, as only the expectation is used.
All the theory remains valid if the states are countable, but there is an issue in the
algorithms, as we need to store/update an infinite number of states.
The proof of existence of an optimal policy requires the max to be attained, which
cannot be ensured in an infinite (even countable setting).

Some results. . .
Thm: If S is countable, there exists an ϵ-optimal (stationary) policy for any ϵ > 0.
Thm: If S is a Polish space (completely metrizable topological space),

there exists a (P, ϵ)-optimal (stationary policy) for any ϵ > 0.
if each As is countable, there exists an ϵ-optimal (stationary) policy for any ϵ > 0.
if each As is finite, there exists an optimal (stationary) policy.
if each As is a compact metric space, r(s, a) is a bounded u.s.c. function on As and
p(B|s, a) is continuous in a for each Borel subset B and any s, there exists an
optimal (stationary) policy.

Mainly technical difficulties. . .

Fi
ni

te
Ho

riz
on

/
D

isc
ou

nt
ed

72

Erwan LE PENNEC

ReferencesOutline
1 Prediction and Bellman Equation
2 Prediction by Dynamic Programming and Contraction
3 Planning, Optimal Policies and Bellman Equation
4 Linear Programming
5 Planning by Value Iteration
6 Planning by Policy Iteration
7 Optimization Interpretation
8 Approximation and Stability
9 Generalized Policy Iteration
10 Episodic and Infinite Setting
11 References

73

ReferencesReferences
R. Sutton and A. Barto.
Reinforcement Learning, an Introduction
(2nd ed.)
MIT Press, 2018
O. Sigaud and O. Buffet.
Markov Decision Processes in Artificial
Intelligence.
Wiley, 2010
M. Puterman.
Markov Decision Processes. Discrete
Stochastic Dynamic Programming.
Wiley, 2005

D. Bertsekas and J. Tsitsiklis.
Neuro-Dynamic Programming.
Athena Scientific, 1996

W. Powell.
Reinforcement Learning and Stochastic
Optimization: A Unified Framework for
Sequential Decisions.
Wiley, 2022
S. Meyn.
Control Systems and Reinforcement
Learning.
Cambridge University Press, 2022
V. Borkar.
Stochastic Approximation: A Dynamical
Systems Viewpoint.
Springer, 2008
T. Lattimore and Cs. Szepesvári.
Bandit Algorithms.
Cambridge University Press, 2020

74

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

You are free to:
Share: copy and redistribute the material in any medium or format
Adapt: remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:
Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the
original.
No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

Contributors
Main contributor: E. Le Pennec
Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet.

75

	Prediction and Bellman Equation
	Prediction by Dynamic Programming and Contraction
	Planning, Optimal Policies and Bellman Equation
	Linear Programming
	Planning by Value Iteration
	Planning by Policy Iteration
	Optimization Interpretation
	Approximation and Stability
	Generalized Policy Iteration
	Episodic and Infinite Setting
	References
	

