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RL: What Are We Going To See?

Operations Research and MDP.

Reinforcement learning and interactions.

More tabular reinforcement learning.

Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View




Operations Research and MDP

How to find the best policy knowing the MDP?
@ Is there an optimal policy?

@ How to estimate it numerically?

Finite states/actions space assumption (tabular setting).

Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.



Outline

@ Prediction and Bellman Equation

© Prediction by Dynamic Programming and Contraction
© Planning, Optimal Policies and Bellman Equation
e Linear Programming

© Planning by Value Iteration

@ Planning by Policy Iteration

@ Optimization Interpretation

© Approximation and Stability

© Generalized Policy Iteration

@ Episodic and Infinite Setting

@ References




Markov Decision Process / Operations Research

MDP / OR
@ Known MDP model

@ Focus on the finite horizon setting

and the discounted setting:

@ We will later consider the other settings.
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Policy

@ Finite horizon : emphasis on Markovian policies
N:(At = ar) = 7e(Ar = at|St = st) = me(atlst)
@ Discounted return: emphasis on stationary Markovian policies
MNi(Ar = at) = (Ar = a¢|St = st) = w(at|st)
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Prediction

Prediction

@ How to efficently evaluate the quality of a policy

ven(s) = En Z YRS, =
t'=t+1
when we can ensure that the sum is finite?

@ v; n independent of t in the discounted setting if the policy is stationary.
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Planning

@ How to find a policy 7 such that

Z p(s, t)ven(s)

is as large as possible?
@ Emphasis on u(s,t) =0if t # 0 and p(s,0) = Po(So = so).




O Utl | ne Prediction and Bellman

Equation

@ Prediction and Bellman Equation



Bellman Equation

Prediction and Bellman
Equation

ven(s Zm als) Zp s’ rls, a) (r + yver1n(s’)) e
= Zwt(a]s r(s,a) + 72 Zp(s’|s, a)me(als)ver1n(s’) S

s’ a

Bellman Equation

@ Link between v;n and vy n.

° Straightforward consequence of

Z ’7 t+1)Rt’ — Rt+1 +,y Z ,}/ (t+2) Rt’ 3 Rt-|-1 +’7Gt+1
t/_tJrl t/—t+2

and thus

E[Gt|S: = s] = E[Re11|St = s] + VE[E[Gr41|St11]|S: = 5]
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Be”man Operator Prediction and Bellman

Equation

T RIS RIS
TTov(s) =Y me(als)r(s,a) +7 > p(s'ls,a) Y me(als) v(s') C{{%

rre(S) Prt(s,s’)

Bellman Operator

o Affine operator from the space of state value functions to the space of state value
functions.

@ By construction,
vem =T " Ver1n

@ r,, is the vector of average immediate rewards using policy 7; while Pt is the one
step state transition matrix using policy 7;.
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O Utl | ne Prediction by Dynamic

Programming and
Contraction

© Prediction by Dynamic Programming and Contraction
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Flnlte HOFIZOH Naive ApproaCh Prediction by Dynamic

Programming and
Contraction

T
VtTI_I(s): Z ( Z rt’) ]P)n(At:at...,RT:I’T|St:5)

at,Mt41,5e41, 57 \t/=t+1

= > ( > rt’) me(ails) x - x p(sr,rr|sroi,aroy) % m A m

at,Mt41,5e+1, 57 \t/=t+1

Finite Horizon: Naive Approach

@ Exhaustive exploration of the trajectories.
o Complexity of order (|A| x |S| x [R|)T~* for the value function at time t.

e Complexity can be reduced to (].4| x |S|)T~t by noticing that

N
vin(s) = >, ( > f(snat)) me(aels) x --- x p(st|sT-1,aT-1)

at,St41, 7 ,S5t—1,dr—1 \t'=t+1

Finite Horizon
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Finite Horizon: Recursive Prediction Prediction by Dynamic

Programming and
Contraction

V7T,r| =0 g’;
T o gmen, T &

Vicin =

Finite Horizon: Recursive Prediction

o After time T, the finite horizon return G, = 0 hence vJ ; = 0 whatever the
policy.
@ The Bellman equation yields second equation.

e Equivalent rewriting
Vttl,l'l(s) = Iy (5) + Z P7rt71(57 SI)VtT
s/

o Complexity of order only T x |S|?(|.A| + |S|) to compute all the value functions. )
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Finite Horizon: Value Iteration Prediction by Dynarmic
Programming and
Contraction

Finite Horizon: Prediction by Value Iteration

input: MDP model ((S,.A4,R), P) and policy I
parameter: Horizon T
init: v7(s)=0VseS, t=T

repeat
t«—t—1
for Vs € S do
v (s) Zm(a\s) ( s a)—l—xz (s'|s, a)viia (s ))
acA s’eS
end
until t =0

output: Value functions v,

@ Most classical formulation
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DISCOU nted N a |Ve ApproaCh Prediction by Dynamic

Programming and
Contraction

> T
vin(s)= > 4" "UEn[Ru|St =s]~ Y +'En[Ru|S: = s] = v} (5)
t'=t+1 t'=t+1

ZHOESDY > 2D (s 20 | manls) -

at,St41, " ,St—1,dt—-1 \t'=t+1

X p(sT|st—1,at-1)

Naive approach

@ Exhaustive exploration of truncated trajectories.

@ Back to the finite horizon setting. ..
BRI

< i max |r|

-
@ Prop: Control on the error as ’vﬁ — v ’ e
S 1—v rer

£

Discounted

T—t

Relation between the error € ~ «y
= (JA] x |S])Tt of order C ~ ¢!

and the numerical complexity

.
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Discounted: Recursive Prediction with Naive Prediction by Dynamic

Programming and

Initialization Contraction
y ~ 777—/ _
Vrn=Vrn = Vvrn :
2 T, A~
Vt—lﬂ_Ttht, >~ Vein="T"'

Recursive Prediction

@ Requires an initialization at time T with a horizon T'.
@ The Bellman equation yields the second equation.

o Complexity of order only T x |S|?(|A| + |S|) to compute all the value functions
after the initialization of cost (|.A| x |S|)7 7.

/
@ Prop: If the approximation error between v} ; and v%ﬁ is bounded by € then
- T—
HV?,I'I —¥nlleo <y te, Vt<T
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Discounted and stationary: Bellman Equation

Prediction by Dynamic
Programming and
Contraction

v = TWVn
vin(s) = 2o (als)r(s, a) + 722 p(s'ls, a)m(als)vn(s') 4}0

a

Bellman Equation

@ Time independent value function vp.
@ Prop: Unique solution of the linear equation vy = 7™ v
o Complexity of order (JA| + |S|) x |S|? to obtain the solution.
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Discounted and stationary: Recursive Implementation

Prediction by Dynamic
Programming and
Contraction

v ="T"vn bAC
Vi1 = T v with arbitrary v

Bellman Iteration

@ Prop: Unique fixed point of the Bellman operator v +— T7v.

@ Prop: The iterates vi11 = T " vk converges toward v and
Ivie = vitlloo < 7¥[Ivo — viilloo

e Complexity of order (k + |A])|S|? to obtain the kth iterate.

@ Exponential decay of the error with respect to the complexity.
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Bellman Operator and Contraction Prediction by Dynamic

Programming and
Contraction

HTWV - TWV/HOO < 'VHV - V/Hoo

@ By definition
1T =TV lo = AIP™(v = v))]loo
@ It suffices then to notice that P is a transition matrix, so that

ZP”—I

and thus |ZP izj| < max |z
J

Consequences

@ Unicity of the solution of 7™v = v.

@ Linear decay 7 of the error with the iterates.
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Bellman Operator and Bellman Equation Solution Prediction by Dynamic

Programming and
Contraction

0 #,mf
V”:(kZWk(PW)k>”w =Z b(F)V.;r
=0

ovn=T"vqne (I —vP")vqn=rr

@ As PT is a transition matrix, its eigenvalues are smaller than 1 and thus (/ —yPT)
is invertible of inverse

(1= PTY = 3 A (P
k=0

V.

@ Could have been obtained without the Bellman equation as the ((P”)k) | is, by
5,5

construction, the probability of being at state s’ at time k starting from s at time
0 and following 1.
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Discounted and stationary: Value Iteration

Prediction by Dynamic
Programming and
Contraction

Discounted: Prediction by Value lteration

input: MDP model ((S, A, R), P), discount factor -, and stationary policy 7
init: ¥(s)vVse S

repeat
Ve &=
for s € S do
U(s) < > _(als) (( a)+7 Y p(sls, a)aw(s')>
ac A s'eS
end

output: Value function ¥

@ When to stop?
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Discounted and stationary: Value Iteration Prediction by Dynamic

Programming and
aptra ion

Discounted: Prediction by Value Iteration

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold

:fr;i;;avt(S)VS . ’/ V’iﬂ -V l/ w<S

Vorev < V
A<+ 0

for s € S do C’> [ VQM V-R-jlqu<§\
U(s) < > _(als) (( a)+v Y p(sls, a)vw(s')>

ac A s'eS
A max (A, [7(s) — orev(s)]) -
end 8
until A < § c
output: Value function ¥ 8
<2
@ Prop: when the algorithms stops y a)
1V = villeo < -9 23
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Discounted and stationary: Value Iteration

Discounted: Prediction by Value lteration - Gauss-Seidel Version

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat
A+ 0
for s € S do
Vorev < V()

U(s) < > _(als) <r(s, a)+v Y p(s'ls, a)V(s'))
acA s'eS
A < max (A, [7(S) — Vorev|)
end
until A < ¢
output: Value function ¥

Prediction by Dynamic
Programming and

@ Gauss-Seidel variation mostly used in practice.
@ No need to store the previous value function.
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O Utl Ine Planning, Optimal Policies

and Bellman Equation

© Planning, Optimal Policies and Bellman Equation

25



7

Optlmal POllcy Planning, Optimal Policies

and Bellman Equation

Optimal Policy
@ An optimal policy I, should be better than any other policies:
Vs, Vt, ven, (s) = sup ven(s)
n

.

Several Questions
Do this policy exists?

@ Is it unique?
@ How to characterize it?
@ How to obtain it?

.

Even the sup above could be an issue if it is not attained!

26
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Finite HOFiZOﬂ and Optlmal POllcy Planning, Optimal Policies

and Bellman Equation

Explicit Recursive Solution

@ After horizon T, any policy leads to a 0 return.

@ At time T — 1,
o the total return Gt is the immediate return at time T and thus

vr.n«(s) = sup Z (als)r(a,s) = sup r(a,s)

m(als)

o the optimal policy 77 _; exists and is determistic.

@ By recursion,
o the total return at time t — 1 is the immediate return at time t plus the total return
at time t — 1 and thus

vi—1,n+ (s —supz (als) < a,s —1—2 |savt|-|Cs>
:sgp( a,s +Zp |53Vt|'|%)

e the optimal policy m;_; exists and is determlstlc.

Finite Horizon

N
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Planning, Optimal Policies /4
and Bellman Equation

Discounted Setting and Optimal Stationary Policy

£

e Optimal policy: va*(s) = sup, vri(s)
@ Stationary solution:

vii+(s) = sup (7" vir+ ) (s)

= e el (1.5 +1 A )

|S) a s/

= sup (r(a, s)+7 Z p(s'ls, a)vi- (5/)>

e Optimal deterministic policy: 7*(s) € argmax (r(a,s) + v Yo p(s'|s, a)vn=(s)).

v

Discounted

@ Is everything well defined? Yes but one has to be more cautious!
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Optimal Value Function and Bellman Operator Planning, Optimal Policies 2K

and Bellman Equation

Optimal Value Function
e Optimal value function: v,(s) = supp vr(s)

@ Defined state by state so that it is not necessarily attained by a single I1*

.

Optimal Bellman operator

@ Similar to the Bellman operator but do not depend on a policy:

T v(s) = sup <r(a,s) + vzp 'Is, a) )>
YA . J

200 > -~
“ < 'IU") ‘—w)

Link between the two
@ v > T*v implies v > v,.

o v < T7T*v implies v < vq.
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Optimal Value Function and Bellman Operator

| T - Tar|| <% lIv-vi

Bellman Operator and Fixed Point

Planning, Optimal Policies
and Bellman Equation

@ Prop: 7* is a 7-contraction for the sup-norm and thus it exists a unique v, such
that v, = 7 v,,.

Fixed Point and Optimal Value Function

@ Prop: : v, = v, and is thus the unique fixed point of T*.

@ Proof: v, = T*vi, and thus vy, = v, according the link between the optimal
value function and the Bellman operator.

@ Does this mean something about policies?
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Optlmal POllcy and Bellman Operator Planning, Optimal Policies

and Bellman Equation
Bellman Operator and Policy
@ Prop: For any v, any policy 7, satisfying
7,(s) € argmax (r(a, s)+v>_ p(s']s, a)v(s’))
a !

S

is such that 7*v(s) = sup, T™v(s) = T™v(s)

.

Bellman Operator and Optimal Policy

@ Prop: Any stationary policy 7, satisfying

T«(s) € arggnax (r(a, s)+ Z p(s'|s, a)v*(s’))

is optimal.

@ Proof: Indeed by construction, T*vi, = T™ v, and thus, as T v, = V4, Vi, = V4.

7

Discounted

w
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Optlmal POlICy and Be”man Opel’ator Planning, Optimal Policies /

and Bellman Equation

@ It exists a unique vy such that T*v, = v,
@ Vs, vi(s) = sup, vz(s)
@ Any policy 7, satisfying:

Vs, me(s) € ST <r(a, s)+ ’yz p(s']s, a)v*($/)>

s/

is optimal as Vs, vy, (s) = vi(s) = sup, vx(s)

e Existence result but not (yet) a constructive algorithm!
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O Utl | ne Linear Programming

e Linear Programming

33



Linear System and Linear Programming Linear Programming

Vi = 7-7r Vi Vi = T*V* @

Explicit Resolution of the Equations?

@ Prediction:

e Simple linear system for v;.

o Already mentionned before. . .

o Complexity of order (|A| + |S|)|S|?.
e Planning:

e More complex linear programming system for v, due to the max operator.
e Optimal policy easily deduced from v,.
o Complexity of order (|A||S|)3.

Discounted
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Llnear Programmlng Linear Programming

From Vs, v(s) = sup r(s,a) + fyZ p(s|s, a)v(s)
to min ZS: p(s)v(s)
such that V(s, a), v(s) > r(s,a) + v Z: p(s|s, a)v(s)

Different formulations but same solution

@ Using v > T*v & v > v,, the condition implies v > v,
e Now for any p satisfying p(s) > 0, > ¢ pu(s)v(s) > >, p(s)vi(s) as soon as the
condition is satisfied, hence v, is a solution.

e If for any state v(s) > v, (s) then >°, u(s)v(s) > > u(s)vk(s) and thus v, is the
unique minimizer.
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Pl’lmal Problem Linear Programming

Primal: min ZS: p(s)v(s)
such that V(s, a), v(s) > r(s, a) + WZ: p(s'|s, a)v(s")

Some properties

@ Can be solved with a linear programming solver.
@ Unicity of solution (and thus independence with respect to 1) can be proved
without using v;.
o Proof: let v; a solution for 11 and v, a solution for iy then min(vy, v») satifies the
constraints. Furthermore if exists va(s) < vi(s) then min(vy, v2) is a strictly better
solution for uy which is impossible.
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Dual Problem Linear Programming

Primal: min Es: w(s)v(s)
such that V(s, a), v(s) > r(s, a) + 72; p(s'|s, a)v(s")

Dual:  max > (s, a)r(s, a)

A(s,a)>05 23

such that Vs, Y A(s,a) = u(s) + v p(sls’, a)A\(s', a)

/
s’.a

Derivation

@ Usual derivation through the Lagrangian:

L(v,A) =" u(s)v(s)+ > s, a) (r(s, a)+v>_ p(sls’, a)v(s) — v(s))

s’,a
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@ Strong duality as Slater condition holds when 7 < 1 with v = Lify maxs 5 r(s, a).
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Dual and Interpl’etathn Linear Programming

Dual:  max > A(s,a)r(s, a)

/\(5,3)20 s,a

such that Vs, 3" A(s,a) = u(s) +~ > p(s|s’, a)A(s', a)

s’.a

o0
Interpretation : max » YESTIP(S;: = a, Ar = a|Sy ~ i, ) r(s, a)
k=0 5.2

Interpretation in terms of policy
@ For any feasible )\, define u(s) = >, A(s, a) and the policy m(als) = A(s, a)/u(s).
o Prop: u=(Id — yP™)u = ¥327* (P™)* p.

Prop: A(s, a) = n(als)u(s) = S50 V¥P(S: = 3, A¢ = alSo ~ 1 )

Conversely for any 7 they is a feasible A.

@ e ®
Discounted

Any optimal A, (and thus policy) satisfies \.(s,a) = 0 if
vi(s) > r(s,a) + v X o p(s'|s, a)vi(s’) (optimal policy support)
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O Utl Ine Planning by Value Iteration

© Planning by Value Iteration
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Finite Horizon

Finite Horizon: Planning by Value lteration

input: MDP model {(S,.A,R), P)
parameter: Horizon T
init: v/ (s)=0VseS, t=T

repeat
t—t—1
for s € S do
v (s) max (r(s, a)+~y Z p(s'|s, a)VtL(S/))
s’eS
end
until t =0

output: Deterministic policy m:(s) € argmax ( s,a)+ 7 E (s'|s, a) v s')>
acA
s'eS

Planning by Value Iteration

@ Algorithm used to prove the existence of an optimal policy.
@ No necessarily unique as argmax may not be unique.
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Optimal Value Function, Fixed Point and Contraction

Planning by Value Iteration

v =T and [TV =TV, <v[v =V {\
SH 3D

= Vk41 = T*Vk — Vy

Bellman Operator

@ Properties of Optimal Bellman Operator:
e v, is a fixed point of 7*.
e T* is a vy-contraction for the || - ||oc norm.

o Classical fixed point theorem setting.

@ Practical algorithm to approximate v;.

Discounted
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Value Itel’atlon AlgOl’Ithm Planning by Value Iteration /"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S
repeat
Vprev — v
A+ 0
for s € S do
W(s)  maxr(s,2) +7 > p(5'ls, @)ier(s)
s'es
A < max (A, |[V(s) — Vrev(5)])
end
until A < ¢
output: Value function ¥

Discounted

@ Same convergence criterion (and similar proof) than in the planning case.
@ Which policy?

~
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Value Itel’atlon AlgOl’Ithm Planning by Value Iteration 1"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S
repeat
Vorev + V
A<+0
for s € S do
W(s) ¢ maxr(s,) + 7 Y pls']s, a)e(5)
s'eS
A max (A, [7(5) = Tpreu(s)])
end B
until A <9 =
output: Deterministic policy 7(s) € argmax r(s, a) + v Z p(s’|s, a)v(s") 8
? s’eS Q
J v
: , : . . a
@ Natural idea: define a policy using the argmax of the existence proof.
@ Do we have a convergence guarantee on the resulting policy? 43



Value and argmax Policy

Planning by Value Iteration /4

7i(s) € argmax r(s,a) + VZP( 'Is, a)v(s") i

= [[vi = vl <

Value and argmax Policy

@ Bound on the loss of the final policy!
@ Rely on the fact that, by construction, 7" v = T*¥
e Proof:
Ivi = Valloo = 1T va = T70 + T*7 = T viloo
ST i =T oo + [IT*7 = T villoo
< Allve = Plloo + IV — villoo
< AlIvie = villoo + 291V — viloo

Discounted
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Value Itel’atlon AlgOl’Ithm Planning by Value Iteration 1"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S

repeat
Vorev <= V
A<+0
for s € S do
(s) « maxr(s,2) +7 3 plsls, 2)els)
s'eS
A < max (A, |[V(s) — Vrev(5)])
end B
until A <9 =
output: Deterministic policy 7(s) € argmax r(s, a) + v Z p(s’|s, a)v(s") 8
? s’eS Q
J v
2 a
@ Prop: ||vi — vi|loo < 5
1—~y 45



From State Value to State-Action Value Functions Planning by Value Iteration /X

)

vr(s) = Ex [Z ’yth|So =5
K

gr(s;a) = Ex [ZVthSO =s,A=a

k

ted

T™v(s) =) n(als) (( a)+v ) p(s'ls, a)v(s'>> T q(s,) = r(s,3) + X pls'ls,3) 3 w(als)als' 212
T v(s) = max r(s,a) +~ Z p(s’|s, a)v(s") T q(s,a) = r(s,a) +~ Z p(s’|s, a) max q(s’, a)

Two equivalent point of view?

@ Everything could have been defined using the state-action point of view.

@ Knowing v; is equivalent to knowing g, as

ve(s) =) _m(@l§)ax(s,a) and gx(s,a) =r(s,a) +7 ) p(s'ls, a)va(s).

a &

5 Episodic / Disc
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State-Action Bellman Operators

Planning by Value Iteration

T7q(s,a) = r(s,a) + fyZp(s’]s, a) Zw(a\s/)q(s’, a)

a

T*q(s,a) = r(s,a) +7_ p(s'ls, a) max q(s', a)

s/

Properties
@ Prop: 7™ and T* are y contractions for the || - ||oc norm.
@ Prop: g, is the unique solution of 7"q = g

@ Prop: g, defined q.(s, a) = sup,. gr(s, a) is the unique solution of g = 7*q and is
attained for any policy , satisfying m.(s) € argmax g, (s, a).

@ Prop: Any such policy satisfies: v, (s) = g, (s, m(5)) = vi(s).

Discounted

»~
]



State-Action Value Iteration Algorithm Planning by Value lteration

Discounted: Planning by State-Action Value lteration

input: MDP model ((S,.A,R), P), and discount factor v
parameter: § > 0 as accuracy termination threshold
init: §(s,a)V(s,a) e Sx A

repeat
Gprev <— G
A<+ 0
for s € S do
for a € A do
(s, a) < (r(& a)+7 > p(s'ls, @) max Goreu (s, a’))
s’'es ?
A < max (Av ‘E](S, a) - E’P"ev(sv a)l)
end
end
until A < o

output: Deterministic policy 7(s) € argmax §(s, a)

@ Same complexity but more storage than with state value function. ..
@ but will be useful later!

Discounted

I
co



O Utl Ine Planning by Policy Iteration

@ Planning by Policy Iteration

49
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Va | ue FOnCtlon VS POl ICy POI nt Of VleW Planning by Policy Iteration

v,g— Il or 1— v,q?

Planning

@ Focus so far on value-fonction point of view!

@ Heuristic: find a good approximation of the optimal value function and deduce a
good policy.

@ Can we work directly on the policy itself?

@ For prediction, only the policy point of view makes sense!

50



TOW3 rd POl |Cy I m prOvement Planning by Policy Iteration

e}
(O}
)
<
=
]
Q
L
a
~
=
©
]
U
o
Ll
51

Vs, m.(s) € argmax gx(s, a) = Vv (5) > va(5)

Classical Policy Improvement Lemma

@ Prop: Given a policy 7 and its g value-function, one can obtain a better policy
with the argmax operator.

@ Prop: If no improvement is possible, it means that 7 is already optimal.

@ Proof: Use T™ v, = T*v; > T v = v to prove (T”*)k Vr > v which implies
the result by letting k goes to +oc.

@ Leads to a sequential improvement algorith. ..



POl |Cy I m prOVGment I_em ma Planning by Policy Iteration
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oo

B[ (S0)] — Ela(So)] = 3. 9*Er |5 (2150 (4:(k: 2) = (D)

k=0

= 3 9B |5 (W(alS) = (2150) 0:(5:.)

A Generic Improvement Lemma

@ No assumptions on 7 and 7!
e Easy proof.

@ Imply the previous lemma as max, Qx (s, a) — vx(s) > 0.

@ Show that improvement choices are possible.

@ Will prove to be useful later. ..
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POlicy |teration Planning by Policy Iteration [“

Discounted: Planning by Policy lteration

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: Initial policy 7
repeat
~Compute gz.
for s € S do
for a € A do
\ ﬁ/(s) + argmax gz (s, a)
end
end
output: Deterministic policy 7.

o How to obtain g7
@ When to stop?
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POlicy |teration Planning by Policy Iteration é"h

Discounted: Planning by Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor v
parameter: Initial policy 7
repeat
stable <— 0
Compute gx.
for s € S do
old — action < 7(s)
7t(s) < argmax g (s, a)
if 77(s) # old — action then
| stable <— 0
end

end
until stable =1
output: Deterministic policy 7.

Finite Setting

o Finite set of action-states implies a finite set of policy.

¢ Episodic / Discounted

@ Convergence of the algorithm in finite time!



Policy Iteration

Planning by Policy Iteration /4

Convergence Rate

@ Crude analysis:
e Bound after k steps of the algorithm
v, = Valloo < Vs = Valloo <71V = walloo
i
[V, = Villoo < EHVM — Vi lloo

e Not much better than value iteration but much higher complexity as g, is obtained
by solving the Bellman equation!

@ Much faster in practice. ..
@ Clever analysis (Putterman):
o Under some mild assumptions and provided ||P™ — P*|| < K||vy;, — Vi||oo then
Ky
[V, = Valloo < ﬁllvm,1 —vill%

e May explain the better convergence in practice!

Discounted

o1
o1



O Utl Ine Optimization Interpretation

@ Optimization Interpretation

56



Va | ue Itel’atlon (Rel axed) Fl rSt O rder M ethOd Optimization Interpretation

Value lteration

@ lteration:

Vi = T*Vk—l
= Vk—_1+ (7-* - Id) Vik—1
@ Relaxation
Ve = Vk—1 — a(Id — T7) vg_q

can be proved to converge for any a < ﬁ

Can be interpreted as a first order method with pseudo-gradient (7* — Id) vx_1.

No function corresponding to this gradient!

Is there a better choice for o than o = 17
No as the resulting operator is a contraction of constant
1 —al+ay>7y

[
¢ Episodic / Discounted



Policy lteration: Newton-Raphson Method Optimization Inerpretation K

Policy Iteration

@ Explicit iteration:

Solve vy, , = T™b,,
Let 7k such that 7™ vy, |, =T vy, _,
o Implicit iteration on v ,:
Ve, = (Id — vP”k)_lrﬂk

= (Id — yP™) ™! (rr, + (YP™ — 1d)vir,_; + (Id — YP™) vy, ;)
= Vp,_, — (Id — yP™) 1 (1Id — T™) vy, _,

@ Can be interpreted as a second order method with pseudo-gradient

(Id = T™) g, _, = (Id = T*)vy,_, and pseudo-Hessian (Id — yP™).

@ Not a formal analysis but give a good insight on the better convergence of policy
iteration.

Discounted
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O Utl Ine Approximation and Stability

© Approximation and Stability

59



Stablllty Of Value and POIICy Iterat|on Approximation and Stability /

Ideal Value and Policy Iteration?

@ lterative algorithms.
@ Convergence proofs assume perfect computation.

@ What happens if we make a (small) error at each step?

@ Particularly important for Policy Iteration in which one resolves a linear system at
each step!

60



Va | ue Itel’atlon Sta bi | |ty Approximation and Stability 4

vk = T Vi1 + €1

max ||k ||oo

0<k/<k
= vl € 94— vl
2v max |ley
e oy = el € 2 = v+ 7“’“”: -
1—7y (1—=7)

Stability with respect to approximations

@ Proof relies on the contraction property of 7* (hence similar results for 77).

N [I2]P

@ Error term i

k—1
can be replaced by Z VKK e[| oo
k'=0
e Convergence if ||ex||oo tends to 0.

@ Reach a neighborhood of the optimal solution if ||ex || is bounded.

O
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c
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POl |Cy Ite ratiOI"I Approximation and Stability £

Vke1 = Ve, e and T v =T vy + 0k

1
= vy = Wl < P vy = el g (2902 =) el max, 1)

0<k’<k 0<k’<k

Stability with respect to approximations

@ Quite involved proof but crude results.

@ Error term 2y(2 — v) max. lexr||oo + max [|0x || can be replaced by

0<k’/< 0<k’<k
k—1 ,
(L= Y YK 2v2 =)l llos + 115k llso)
k'=0

e Convergence if ||ex||co and ||dk|||oo tends to O.

@ Reach a neighborhood of the optimal solution if ||ex||oo and ||dk|||c are bounded. )

@ Justify why Policy lteration only requires an approximate estimate of v, ., for
instance obtained by Bellman iteration. ..

Discounted

[
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O Utl Ine Generalized Policy Iteration

© Generalized Policy Iteration
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Modified Policy lteration

Generalized Policy Iteration 4

Discounted: Planning by Generalized Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor ~y
parameter: Initial g
repeat
for s € S do
‘ 7t(s) < argmaxq(s, a)

end
repeat
Qprev — g
for (s,a) € S x A do

q(57 a) < I‘(S, a) + Z p(S/‘S, a)ﬁ—(alls)qprev(sv a)

s,a’

end
output: Deterministic policy 7.

@ Algorithm driven by q.
@ Flexibility in the number of prediction steps after each policy improvement steps.
@ Special cases:

o Large number: Policy Iteration with (small) error.

e One: Value lteration!

Discounted
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M P I An a IySIS Generalized Policy Iteration

T vk =T"vi and vip1 = (T™)™ v

1P — p| w"k) Ve = vl

my

1—1v

— o = o <7 (2

Convergence Results

@ Quite technical proof.

Valid only under the mild assumption 7*vy > vg.

Very fast decay provided ||P™ — P*|| is small.

No stability with arbitrary errors. ..

Except if my is large enough (cf policy iteration).
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Generalized Policy lteration

Generalized Policy Iteration £

Vs, T

General Policy Iteration

3 Episadic. L.Discounted

@ Two simultaneous interacting processes:

o One forcing the policy to correspond to the current value function (Policy
Improvement)

e One trying to male the current value function coherent with the current policy
(Policy Evaluation)

@ Several variations possible on the two processes.

@ In GPI, the policy is driven by the value function.
@ Typically, stabilizes only if one reaches the optimal value/policy pair.



State U pd ate Order Generalized Policy Iteration /'W

Discounted: Prediction by Value lteration - State Update Order

input: MDP model ((S,.A,R), P), discount factor v, and stationary policy w
init: ¥(s)Vse S
repeat

Vorev < V

for s € S’ C S do

v(s) < > _m(als) (( a)+v>_ p(s'ls, a) vprev(s’)>

ac A s'eS

end
output: Value function v

Classical strategies

e §' = §: classical iteration
o S8’ = {s}: Gauss-Seidel
o 8" ={s,|T™V(s) — V(s)| > e}: Prioritized sweeping

@ Converges provided all states are visited infinitely often. ..
@ Gain in term of storage or focus on most interesting states. . .

s Episodic / Discounted



POl |Cy Im prOVGment Va rlatlon Generalized Policy Iteration £

Greedy : 7(s) € argmax q(s, a) <= m(-|s) € argmax Y _ 7(a)q(s, a)

Restricted : 7(-|s) € argmax Y #(a)q(s, a)
el a

IRegiilarized : 7(-|s) € argmax Y _7(a)q(s, a) + €P(7)

Classical Variations

o[ égreedy: Restrict 7 to the set of policy s.t. 7(a) > €
o Explicit solution: 7(als) = ¢+ (1 — e%rgmax q(s,a) =
e Policy improvement property if ¢ decréases.

o Soft=maxiiRegularize by eH(7) where H is the entropy.

o Explicit solution: m(als) o< exp(q(s, a)/e€)
e No classical policy improvement. ..

@ Tends to greedy when € goes to 0.
@ Turn out to be interesting later...
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O Utl Ine Episodic and Infinite Setting

@ Episodic and Infinite Setting
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EpiSOd ic Settl ng Episodic and Infinite Setting £ X

.
e
()
=
c
=}
O
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|
=
e
O
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o
Ll

H-1
B [min{t, S, = s} < H = [TV = TVl < v = Ve

Proper Policy
@ A policy 7 is said to be H-proper if E [mtin{t, S = 5abs}] <H<x

@ = average duration of an episode using this policy less than a finite horizon H!

Bellman operators

e If a policy 7 is H-proper, the Bellman operator 7™ is a (H — 1)/H- contraction
for a weighted sup-norm.

o If all the policies are H-propers, the optimal Bellman operator 7* is a
(H — 1)/H-contraction for a weighted sup-norm.

S

@ Under those strong assumptions, episodic setting ~ discounted setting with
v=(H-1)/H.

@ Some results can be obtained under the much milder assumption that there is one proper policy
and that any non-proper policy has at least one state for which v, (s) = —o0.

~
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EpiSOd |C Settl ng a nd DISCOU nt Episodic and Infinite Setting

JH < 00,Vs, E, {mtin{t, Si = Sabs

50 = S}:| < H
<=3T, 77 < L,Vs,Pr(ST = Saps|So =) > 1 — 7

Episodic Setting and Discount

@ Discounted setting: Vs, Pr(S7T = saps|So =5) =1 — v
o Episodic setting: Generalization in which more states are needed to reach the
absorbing state.
o Prop:
o H< oo = Yatn <

o 77T<1l = H<1_7:YT

1
1+e

@ Bertsekas equivalent assumption:
Fys) < L, Vs, Pr (5\3| = Sabs

5025) > 1=

P

.
e
(D)
=
c
=}
O
O
2]
)
|
O
e
O
L
o
Ll

~
[y



Infl n Ite Settl ng Episodic and Infinite Setting

@ No issue with the rewards, as only the expectation is used.

@ All the theory remains valid if the states are countable, but there is an issue in the
algorithms, as we need to store/update an infinite number of states.

@ The proof of existence of an optimal policy requires the max to be attained, which
cannot be ensured in an infinite (even countable setting).

Some results. . .

@ Thm: If S is countable, there exists an e-optimal (stationary) policy for any ¢ > 0.
@ Thm: If S is a Polish space (completedg metrizable topological space),

there exists a (P, €)-optimal (stationary policy) for any € > 0.

if each A; is countable, there exists an e-optimal (stationary) policy for any € > 0.

if each A is finite, there exists an optimal (stationary) policy.

if each A is a compact metric space, r(s, a) is a bounded u.s.c. function on As and
p(Bls, a) is continuous in a for each Borel subset B and any s, there exists an
optimal (stationary) policy.

@ Mainly technical difficulties. . .
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