Reinforcement Learning

Operations Research: Prediction and Planning

Erwan Le Pennec
Erwan.Le-Pennec@polytechnique.edu

ECOLE
POLYTECHNIQUE

M2DS - Reinforcement Learning — Fall 2024

RL: What Are We Going To See?

Operations Research and MDP.

Reinforcement learning and interactions.

More tabular reinforcement learning.

Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View

Operations Research and MDP

How to find the best policy knowing the MDP?
@ Is there an optimal policy?

@ How to estimate it numerically?

Finite states/actions space assumption (tabular setting).

Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.

Outline

@ Prediction and Bellman Equation

© Prediction by Dynamic Programming and Contraction
© Planning, Optimal Policies and Bellman Equation
e Linear Programming

© Planning by Value Iteration

@ Planning by Policy Iteration

@ Optimization Interpretation

© Approximation and Stability

© Generalized Policy Iteration

@ Episodic and Infinite Setting

@ References

Markov Decision Process / Operations Research

MDP / OR
@ Known MDP model

@ Focus on the finite horizon setting

and the discounted setting:

@ We will later consider the other settings.

-
D
)
c
=]
o
Q
-2
Q
\
c
o)
N
=
)
T
)
i
=
L

o1

Policy

@ Finite horizon : emphasis on Markovian policies
N:(At = ar) = 7e(Ar = at|St = st) = me(atlst)
@ Discounted return: emphasis on stationary Markovian policies
MNi(Ar = at) = (Ar = a¢|St = st) = w(at|st)

O
(]
-
[
>
o
QO
L
()
\
[
@)
N
=
O
I
(D]
iy ot
=
L
6

Prediction

Prediction

@ How to efficently evaluate the quality of a policy

ven(s) = En Z YRS, =
t'=t+1
when we can ensure that the sum is finite?

@ v; n independent of t in the discounted setting if the policy is stationary.

O
(]
)
c
>
®]
O
2]
()
\
O
e
]
L
o
L
\
(D]
iy ot
E
L
7

Planning

@ How to find a policy 7 such that

Z p(s, t)ven(s)

is as large as possible?
@ Emphasis on u(s,t) =0if t # 0 and p(s,0) = Po(So = so).

O Utl | ne Prediction and Bellman

Equation

@ Prediction and Bellman Equation

Bellman Equation

Prediction and Bellman
Equation

ven(s Zm als) Zp s’ rls, a) (r + yver1n(s’)) e
= Zwt(a]s r(s,a) + 72 Zp(s’|s, a)me(als)ver1n(s’) S

s’ a

Bellman Equation

@ Link between v;n and vy n.

° Straightforward consequence of

Z ’7 t+1)Rt’ — Rt+1 +,y Z ,}/ (t+2) Rt’ 3 Rt-|-1 +’7Gt+1
t/_tJrl t/—t+2

and thus

E[Gt|S: = s] = E[Re11|St = s] + VE[E[Gr41|St11]|S: = 5]

e
(]
o
c
>
®]
O
2]
()
\
O
e
]
L
o
L
\
(D]
iy ot
E
L
10

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Be”man Operator Prediction and Bellman

Equation

T RIS RIS
TTov(s) =Y me(als)r(s,a) +7 > p(s'ls,a) Y me(als) v(s') C{{%

rre(S) Prt(s,s’)

Bellman Operator

o Affine operator from the space of state value functions to the space of state value
functions.

@ By construction,
vem =T " Ver1n

@ r,, is the vector of average immediate rewards using policy 7; while Pt is the one
step state transition matrix using policy 7;.

4

O
(]
o
c
>
®]
O
2]
()
\
O
e
]
2
o
L
\
(D]
iy ot
E
L
11

O Utl | ne Prediction by Dynamic

Programming and
Contraction

© Prediction by Dynamic Programming and Contraction

12

Flnlte HOFIZOH Naive ApproaCh Prediction by Dynamic

Programming and
Contraction

T
VtTI_I(s): Z (Z rt’)]P)n(At:at...,RT:I’T|St:5)

at,Mt41,5e41, 57 \t/=t+1

= > (> rt’) me(ails) x - x p(sr,rr|sroi,aroy) % m A m

at,Mt41,5e+1, 57 \t/=t+1

Finite Horizon: Naive Approach

@ Exhaustive exploration of the trajectories.
o Complexity of order (|A| x |S| x [R|)T~* for the value function at time t.

e Complexity can be reduced to (].4| x |S|)T~t by noticing that

N
vin(s) = >, (> f(snat)) me(aels) x --- x p(st|sT-1,aT-1)

at,St41, 7 ,S5t—1,dr—1 \t'=t+1

Finite Horizon

[y
w

Finite Horizon: Recursive Prediction Prediction by Dynamic

Programming and
Contraction

V7T,r| =0 g’;
T o gmen, T &

Vicin =

Finite Horizon: Recursive Prediction

o After time T, the finite horizon return G, = 0 hence vJ ; = 0 whatever the
policy.
@ The Bellman equation yields second equation.

e Equivalent rewriting
Vttl,l'l(s) = Iy (5) + Z P7rt71(57 SI)VtT
s/

o Complexity of order only T x |S|?(|.A| + |S|) to compute all the value functions.)

c
o
N
=
o
L
[}
=
=
L

—
>

Finite Horizon: Value Iteration Prediction by Dynarmic
Programming and
Contraction

Finite Horizon: Prediction by Value Iteration

input: MDP model ((S,.A4,R), P) and policy I
parameter: Horizon T
init: v7(s)=0VseS, t=T

repeat
t«—t—1
for Vs € S do
v (s) Zm(a\s) (s a)—l—xz (s'|s, a)viia (s))
acA s’eS
end
until t =0

output: Value functions v,

@ Most classical formulation

c
o
N
=
o
L
[}
=
=
L

[y
o1

Erwan LE PENNEC

Erwan LE PENNEC

DISCOU nted N a |Ve ApproaCh Prediction by Dynamic

Programming and
Contraction

> T
vin(s)= > 4" "UEn[Ru|St =s]~ Y +'En[Ru|S: = s] = v} (5)
t'=t+1 t'=t+1

ZHOESDY > 2D (s 20 | manls) -

at,St41, " ,St—1,dt—-1 \t'=t+1

X p(sT|st—1,at-1)

Naive approach

@ Exhaustive exploration of truncated trajectories.

@ Back to the finite horizon setting. ..
BRI

< i max |r|

-
@ Prop: Control on the error as ’vﬁ — v ’ e
S 1—v rer

£

Discounted

T—t

Relation between the error € ~ «y
= (JA] x |S])Tt of order C ~ ¢!

and the numerical complexity

.
[y
=)}

Discounted: Recursive Prediction with Naive Prediction by Dynamic

Programming and

Initialization Contraction
y ~ 777—/ _
Vrn=Vrn = Vvrn :
2 T, A~
Vt—lﬂ_Ttht, >~ Vein="T"'

Recursive Prediction

@ Requires an initialization at time T with a horizon T'.
@ The Bellman equation yields the second equation.

o Complexity of order only T x |S|?(|A| + |S|) to compute all the value functions
after the initialization of cost (|.A| x |S|)7 7.

/
@ Prop: If the approximation error between v} ; and v%ﬁ is bounded by € then
- T—
HV?,I'I —¥nlleo <y te, Vt<T

O
(O]
+—
c
>
O
O
=2
)

[y
~

Discounted and stationary: Bellman Equation

Prediction by Dynamic
Programming and
Contraction

v = TWVn
vin(s) = 2o (als)r(s, a) + 722 p(s'ls, a)m(als)vn(s') 4}0

a

Bellman Equation

@ Time independent value function vp.
@ Prop: Unique solution of the linear equation vy = 7™ v
o Complexity of order (JA| + |S|) x |S|? to obtain the solution.

O
(O]
-
c
>
(@)
O
=2
)

[y
[e2)

Discounted and stationary: Recursive Implementation

Prediction by Dynamic
Programming and
Contraction

v ="T"vn bAC
Vi1 = T v with arbitrary v

Bellman Iteration

@ Prop: Unique fixed point of the Bellman operator v +— T7v.

@ Prop: The iterates vi11 = T " vk converges toward v and
Ivie = vitlloo < 7¥[Ivo — viilloo

e Complexity of order (k + |A])|S|? to obtain the kth iterate.

@ Exponential decay of the error with respect to the complexity.

O
(O]
+—
c
>
(@]
O
=2
)

—_
©

Bellman Operator and Contraction Prediction by Dynamic

Programming and
Contraction

HTWV - TWV/HOO < 'VHV - V/Hoo

@ By definition
1T =TV lo = AIP™(v = v))]loo
@ It suffices then to notice that P is a transition matrix, so that

ZP”—I

and thus |ZP izj| < max |z
J

Consequences

@ Unicity of the solution of 7™v = v.

@ Linear decay 7 of the error with the iterates.

O
(O]
+—
c
=
O
Q
=t
a

N
[=)

Erwan LE PENNEC

Erwan LE PENNEC

Bellman Operator and Bellman Equation Solution Prediction by Dynamic

Programming and
Contraction

0 #,mf
V”:(kZWk(PW)k>”w =Z b(F)V.;r
=0

ovn=T"vqne (I —vP")vqn=rr

@ As PT is a transition matrix, its eigenvalues are smaller than 1 and thus (/ —yPT)
is invertible of inverse

(1= PTY = 3 A (P
k=0

V.

@ Could have been obtained without the Bellman equation as the ((P”)k) | is, by
5,5

construction, the probability of being at state s’ at time k starting from s at time
0 and following 1.

O
(O]
=
c
>
o
O
=2
)

N
[y

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Discounted and stationary: Value Iteration

Prediction by Dynamic
Programming and
Contraction

Discounted: Prediction by Value lteration

input: MDP model ((S, A, R), P), discount factor -, and stationary policy 7
init: ¥(s)vVse S

repeat
Ve &=
for s € S do
U(s) < > _(als) ((a)+7 Y p(sls, a)aw(s')>
ac A s'eS
end

output: Value function ¥

@ When to stop?

O
(O]
+—
c
>
(@]
O
=2
)

N
N

Discounted and stationary: Value Iteration Prediction by Dynamic

Programming and
aptra ion

Discounted: Prediction by Value Iteration

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold

:fr;i;;avt(S)VS . ’/ V’iﬂ -V l/ w<S

Vorev < V
A<+ 0

for s € S do C’> [VQM V-R-jlqu<§\
U(s) < > _(als) ((a)+v Y p(sls, a)vw(s')>

ac A s'eS
A max (A, [7(s) — orev(s)]) -
end 8
until A < § c
output: Value function ¥ 8
<2
@ Prop: when the algorithms stops y a)
1V = villeo < -9 23

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Discounted and stationary: Value Iteration

Discounted: Prediction by Value lteration - Gauss-Seidel Version

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat
A+ 0
for s € S do
Vorev < V()

U(s) < > _(als) <r(s, a)+v Y p(s'ls, a)V(s'))
acA s'eS
A < max (A, [7(S) — Vorev|)
end
until A < ¢
output: Value function ¥

Prediction by Dynamic
Programming and

@ Gauss-Seidel variation mostly used in practice.
@ No need to store the previous value function.

O
(O]
+
c
=
O
Q
=t
a

N
~

O Utl Ine Planning, Optimal Policies

and Bellman Equation

© Planning, Optimal Policies and Bellman Equation

25

7

Optlmal POllcy Planning, Optimal Policies

and Bellman Equation

Optimal Policy
@ An optimal policy I, should be better than any other policies:
Vs, Vt, ven, (s) = sup ven(s)
n

.

Several Questions
Do this policy exists?

@ Is it unique?
@ How to characterize it?
@ How to obtain it?

.

Even the sup above could be an issue if it is not attained!

26

Erwan LE PENNEC

Finite HOFiZOﬂ and Optlmal POllcy Planning, Optimal Policies

and Bellman Equation

Explicit Recursive Solution

@ After horizon T, any policy leads to a 0 return.

@ At time T — 1,
o the total return Gt is the immediate return at time T and thus

vr.n«(s) = sup Z (als)r(a,s) = sup r(a,s)

m(als)

o the optimal policy 77 _; exists and is determistic.

@ By recursion,
o the total return at time t — 1 is the immediate return at time t plus the total return
at time t — 1 and thus

vi—1,n+ (s —supz (als) < a,s —1—2 |savt|-|Cs>
:sgp(a,s +Zp |53Vt|'|%)

e the optimal policy m;_; exists and is determlstlc.

Finite Horizon

N
~

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Planning, Optimal Policies /4
and Bellman Equation

Discounted Setting and Optimal Stationary Policy

£

e Optimal policy: va*(s) = sup, vri(s)
@ Stationary solution:

vii+(s) = sup (7" vir+) (s)

= e el (1.5 +1 A)

|S) a s/

= sup (r(a, s)+7 Z p(s'ls, a)vi- (5/)>

e Optimal deterministic policy: 7*(s) € argmax (r(a,s) + v Yo p(s'|s, a)vn=(s)).

v

Discounted

@ Is everything well defined? Yes but one has to be more cautious!

[
[3)

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Optimal Value Function and Bellman Operator Planning, Optimal Policies 2K

and Bellman Equation

Optimal Value Function
e Optimal value function: v,(s) = supp vr(s)

@ Defined state by state so that it is not necessarily attained by a single I1*

.

Optimal Bellman operator

@ Similar to the Bellman operator but do not depend on a policy:

T v(s) = sup <r(a,s) + vzp 'Is, a))>
YA . J

200 > -~
“ < 'IU") ‘—w)

Link between the two
@ v > T*v implies v > v,.

o v < T7T*v implies v < vq.

O
(O]
+
c
=
O
Q
=t
a

N
©

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Optimal Value Function and Bellman Operator

| T - Tar|| <% lIv-vi

Bellman Operator and Fixed Point

Planning, Optimal Policies
and Bellman Equation

@ Prop: 7* is a 7-contraction for the sup-norm and thus it exists a unique v, such
that v, = 7 v,,.

Fixed Point and Optimal Value Function

@ Prop: : v, = v, and is thus the unique fixed point of T*.

@ Proof: v, = T*vi, and thus vy, = v, according the link between the optimal
value function and the Bellman operator.

@ Does this mean something about policies?

O
(O]
=
c
>
O
O
=2
)

w
o

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Optlmal POllcy and Bellman Operator Planning, Optimal Policies

and Bellman Equation
Bellman Operator and Policy
@ Prop: For any v, any policy 7, satisfying
7,(s) € argmax (r(a, s)+v>_ p(s']s, a)v(s’))
a !

S

is such that 7*v(s) = sup, T™v(s) = T™v(s)

.

Bellman Operator and Optimal Policy

@ Prop: Any stationary policy 7, satisfying

T«(s) € arggnax (r(a, s)+ Z p(s'|s, a)v*(s’))

is optimal.

@ Proof: Indeed by construction, T*vi, = T™ v, and thus, as T v, = V4, Vi, = V4.

7

Discounted

w
—_

Optlmal POlICy and Be”man Opel’ator Planning, Optimal Policies /

and Bellman Equation

@ It exists a unique vy such that T*v, = v,
@ Vs, vi(s) = sup, vz(s)
@ Any policy 7, satisfying:

Vs, me(s) € ST <r(a, s)+ ’yz p(s']s, a)v*($/)>

s/

is optimal as Vs, vy, (s) = vi(s) = sup, vx(s)

e Existence result but not (yet) a constructive algorithm!

O
(O]
=
c
>
(@]
O
=2
)

w
N

O Utl | ne Linear Programming

e Linear Programming

33

Linear System and Linear Programming Linear Programming

Vi = 7-7r Vi Vi = T*V* @

Explicit Resolution of the Equations?

@ Prediction:

e Simple linear system for v;.

o Already mentionned before. . .

o Complexity of order (|A| + |S|)|S|?.
e Planning:

e More complex linear programming system for v, due to the max operator.
e Optimal policy easily deduced from v,.
o Complexity of order (|A||S|)3.

Discounted

w
'S

Llnear Programmlng Linear Programming

From Vs, v(s) = sup r(s,a) + fyZ p(s|s, a)v(s)
to min ZS: p(s)v(s)
such that V(s, a), v(s) > r(s,a) + v Z: p(s|s, a)v(s)

Different formulations but same solution

@ Using v > T*v & v > v,, the condition implies v > v,
e Now for any p satisfying p(s) > 0, > ¢ pu(s)v(s) > >, p(s)vi(s) as soon as the
condition is satisfied, hence v, is a solution.

e If for any state v(s) > v, (s) then >°, u(s)v(s) > > u(s)vk(s) and thus v, is the
unique minimizer.

O
(O]
=
c
>
(@]
O
=2
)

w
o1

Erwan LE PENNEC

Pl’lmal Problem Linear Programming

Primal: min ZS: p(s)v(s)
such that V(s, a), v(s) > r(s, a) + WZ: p(s'|s, a)v(s")

Some properties

@ Can be solved with a linear programming solver.
@ Unicity of solution (and thus independence with respect to 1) can be proved
without using v;.
o Proof: let v; a solution for 11 and v, a solution for iy then min(vy, v») satifies the
constraints. Furthermore if exists va(s) < vi(s) then min(vy, v2) is a strictly better
solution for uy which is impossible.

e}
(O}
)
c
=
]
Q
L
a
~
=
©
]
U
o
Ll
36

Dual Problem Linear Programming

Primal: min Es: w(s)v(s)
such that V(s, a), v(s) > r(s, a) + 72; p(s'|s, a)v(s")

Dual: max > (s, a)r(s, a)

A(s,a)>05 23

such that Vs, Y A(s,a) = u(s) + v p(sls’, a)A\(s', a)

/
s’.a

Derivation

@ Usual derivation through the Lagrangian:

L(v,A) =" u(s)v(s)+ > s, a) (r(s, a)+v>_ p(sls’, a)v(s) — v(s))

s’,a

O
(O]
-
c
>
(@)
O
=2
)

@ Strong duality as Slater condition holds when 7 < 1 with v = Lify maxs 5 r(s, a).

w
hy]

Dual and Interpl’etathn Linear Programming

Dual: max > A(s,a)r(s, a)

/\(5,3)20 s,a

such that Vs, 3" A(s,a) = u(s) +~ > p(s|s’, a)A(s', a)

s’.a

o0
Interpretation : max » YESTIP(S;: = a, Ar = a|Sy ~ i,) r(s, a)
k=0 5.2

Interpretation in terms of policy
@ For any feasible)\, define u(s) = >, A(s, a) and the policy m(als) = A(s, a)/u(s).
o Prop: u=(Id — yP™)u = ¥327* (P™)* p.

Prop: A(s, a) = n(als)u(s) = S50 V¥P(S: = 3, A¢ = alSo ~ 1)

Conversely for any 7 they is a feasible A.

@ e ®
Discounted

Any optimal A, (and thus policy) satisfies \.(s,a) = 0 if
vi(s) > r(s,a) + v X o p(s'|s, a)vi(s’) (optimal policy support)

N
w
[e2)

O Utl Ine Planning by Value Iteration

© Planning by Value Iteration

39

Finite Horizon

Finite Horizon: Planning by Value lteration

input: MDP model {(S,.A,R), P)
parameter: Horizon T
init: v/ (s)=0VseS, t=T

repeat
t—t—1
for s € S do
v (s) max (r(s, a)+~y Z p(s'|s, a)VtL(S/))
s’eS
end
until t =0

output: Deterministic policy m:(s) € argmax (s,a)+ 7 E (s'|s, a) v s')>
acA
s'eS

Planning by Value Iteration

@ Algorithm used to prove the existence of an optimal policy.
@ No necessarily unique as argmax may not be unique.

c
o
N
=
o
L
[}
=
=
L

N
o

Optimal Value Function, Fixed Point and Contraction

Planning by Value Iteration

v =T and [TV =TV, <v[v =V {\
SH 3D

= Vk41 = T*Vk — Vy

Bellman Operator

@ Properties of Optimal Bellman Operator:
e v, is a fixed point of 7*.
e T* is a vy-contraction for the || - ||oc norm.

o Classical fixed point theorem setting.

@ Practical algorithm to approximate v;.

Discounted

»~
purt

Value Itel’atlon AlgOl’Ithm Planning by Value Iteration /"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S
repeat
Vprev — v
A+ 0
for s € S do
W(s) maxr(s,2) +7 > p(5'ls, @)ier(s)
s'es
A < max (A, |[V(s) — Vrev(5)])
end
until A < ¢
output: Value function ¥

Discounted

@ Same convergence criterion (and similar proof) than in the planning case.
@ Which policy?

~
S}

Value Itel’atlon AlgOl’Ithm Planning by Value Iteration 1"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S
repeat
Vorev + V
A<+0
for s € S do
W(s) ¢ maxr(s,) + 7 Y pls']s, a)e(5)
s'eS
A max (A, [7(5) = Tpreu(s)])
end B
until A <9 =
output: Deterministic policy 7(s) € argmax r(s, a) + v Z p(s’|s, a)v(s") 8
? s’eS Q
J v
: , : . . a
@ Natural idea: define a policy using the argmax of the existence proof.
@ Do we have a convergence guarantee on the resulting policy? 43

Value and argmax Policy

Planning by Value Iteration /4

7i(s) € argmax r(s,a) + VZP('Is, a)v(s") i

= [[vi = vl <

Value and argmax Policy

@ Bound on the loss of the final policy!
@ Rely on the fact that, by construction, 7" v = T*¥
e Proof:
Ivi = Valloo = 1T va = T70 + T*7 = T viloo
ST i =T oo + [IT*7 = T villoo
< Allve = Plloo + IV — villoo
< AlIvie = villoo + 291V — viloo

Discounted

A\
N
N

Value Itel’atlon AlgOl’Ithm Planning by Value Iteration 1"“

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)Vse S

repeat
Vorev <= V
A<+0
for s € S do
(s) « maxr(s,2) +7 3 plsls, 2)els)
s'eS
A < max (A, |[V(s) — Vrev(5)])
end B
until A <9 =
output: Deterministic policy 7(s) € argmax r(s, a) + v Z p(s’|s, a)v(s") 8
? s’eS Q
J v
2 a
@ Prop: ||vi — vi|loo < 5
1—~y 45

From State Value to State-Action Value Functions Planning by Value Iteration /X

)

vr(s) = Ex [Z ’yth|So =5
K

gr(s;a) = Ex [ZVthSO =s,A=a

k

ted

T™v(s) =) n(als) ((a)+v) p(s'ls, a)v(s'>> T q(s,) = r(s,3) + X pls'ls,3) 3 w(als)als' 212
T v(s) = max r(s,a) +~ Z p(s’|s, a)v(s") T q(s,a) = r(s,a) +~ Z p(s’|s, a) max q(s’, a)

Two equivalent point of view?

@ Everything could have been defined using the state-action point of view.

@ Knowing v; is equivalent to knowing g, as

ve(s) =) _m(@l§)ax(s,a) and gx(s,a) =r(s,a) +7) p(s'ls, a)va(s).

a &

5 Episodic / Disc

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

State-Action Bellman Operators

Planning by Value Iteration

T7q(s,a) = r(s,a) + fyZp(s’]s, a) Zw(a\s/)q(s’, a)

a

T*q(s,a) = r(s,a) +7_ p(s'ls, a) max q(s', a)

s/

Properties
@ Prop: 7™ and T* are y contractions for the || - ||oc norm.
@ Prop: g, is the unique solution of 7"q = g

@ Prop: g, defined q.(s, a) = sup,. gr(s, a) is the unique solution of g = 7*q and is
attained for any policy , satisfying m.(s) € argmax g, (s, a).

@ Prop: Any such policy satisfies: v, (s) = g, (s, m(5)) = vi(s).

Discounted

»~
]

State-Action Value Iteration Algorithm Planning by Value lteration

Discounted: Planning by State-Action Value lteration

input: MDP model ((S,.A,R), P), and discount factor v
parameter: § > 0 as accuracy termination threshold
init: §(s,a)V(s,a) e Sx A

repeat
Gprev <— G
A<+ 0
for s € S do
for a € A do
(s, a) < (r(& a)+7 > p(s'ls, @) max Goreu (s, a’))
s’'es ?
A < max (Av ‘E](S, a) - E’P"ev(sv a)l)
end
end
until A < o

output: Deterministic policy 7(s) € argmax §(s, a)

@ Same complexity but more storage than with state value function. ..
@ but will be useful later!

Discounted

I
co

O Utl Ine Planning by Policy Iteration

@ Planning by Policy Iteration

49

Erwan LE PENNEC

Va | ue FOnCtlon VS POl ICy POI nt Of VleW Planning by Policy Iteration

v,g— Il or 1— v,q?

Planning

@ Focus so far on value-fonction point of view!

@ Heuristic: find a good approximation of the optimal value function and deduce a
good policy.

@ Can we work directly on the policy itself?

@ For prediction, only the policy point of view makes sense!

50

TOW3 rd POl |Cy I m prOvement Planning by Policy Iteration

e}
(O}
)
<
=
]
Q
L
a
~
=
©
]
U
o
Ll
51

Vs, m.(s) € argmax gx(s, a) = Vv (5) > va(5)

Classical Policy Improvement Lemma

@ Prop: Given a policy 7 and its g value-function, one can obtain a better policy
with the argmax operator.

@ Prop: If no improvement is possible, it means that 7 is already optimal.

@ Proof: Use T™ v, = T*v; > T v = v to prove (T”*)k Vr > v which implies
the result by letting k goes to +oc.

@ Leads to a sequential improvement algorith. ..

POl |Cy I m prOVGment I_em ma Planning by Policy Iteration

e}
(O}
)
<
=
]
Q
L
a
~
=
©
]
U
o
Ll
52

oo

B[(S0)] — Ela(So)] = 3. 9*Er |5 (2150 (4:(k: 2) = (D)

k=0

= 3 9B |5 (W(alS) = (2150) 0:(5:.)

A Generic Improvement Lemma

@ No assumptions on 7 and 7!
e Easy proof.

@ Imply the previous lemma as max, Qx (s, a) — vx(s) > 0.

@ Show that improvement choices are possible.

@ Will prove to be useful later. ..

Erwan LE PENNEC

POlicy |teration Planning by Policy Iteration [“

Discounted: Planning by Policy lteration

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: Initial policy 7
repeat
~Compute gz.
for s € S do
for a € A do
\ ﬁ/(s) + argmax gz (s, a)
end
end
output: Deterministic policy 7.

o How to obtain g7
@ When to stop?

e}
(O}
)
c
=
o
Q
L
a
~
=
©
]
U
o
Ll
53

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

POlicy |teration Planning by Policy Iteration é"h

Discounted: Planning by Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor v
parameter: Initial policy 7
repeat
stable <— 0
Compute gx.
for s € S do
old — action < 7(s)
7t(s) < argmax g (s, a)
if 77(s) # old — action then
| stable <— 0
end

end
until stable =1
output: Deterministic policy 7.

Finite Setting

o Finite set of action-states implies a finite set of policy.

¢ Episodic / Discounted

@ Convergence of the algorithm in finite time!

Policy Iteration

Planning by Policy Iteration /4

Convergence Rate

@ Crude analysis:
e Bound after k steps of the algorithm
v, = Valloo < Vs = Valloo <71V = walloo
i
[V, = Villoo < EHVM — Vi lloo

e Not much better than value iteration but much higher complexity as g, is obtained
by solving the Bellman equation!

@ Much faster in practice. ..
@ Clever analysis (Putterman):
o Under some mild assumptions and provided ||P™ — P*|| < K||vy;, — Vi||oo then
Ky
[V, = Valloo < ﬁllvm,1 —vill%

e May explain the better convergence in practice!

Discounted

o1
o1

O Utl Ine Optimization Interpretation

@ Optimization Interpretation

56

Va | ue Itel’atlon (Rel axed) Fl rSt O rder M ethOd Optimization Interpretation

Value lteration

@ lteration:

Vi = T*Vk—l
= Vk—_1+ (7-* - Id) Vik—1
@ Relaxation
Ve = Vk—1 — a(Id — T7) vg_q

can be proved to converge for any a < ﬁ

Can be interpreted as a first order method with pseudo-gradient (7* — Id) vx_1.

No function corresponding to this gradient!

Is there a better choice for o than o = 17
No as the resulting operator is a contraction of constant
1 —al+ay>7y

[
¢ Episodic / Discounted

Policy lteration: Newton-Raphson Method Optimization Inerpretation K

Policy Iteration

@ Explicit iteration:

Solve vy, , = T™b,,
Let 7k such that 7™ vy, |, =T vy, _,
o Implicit iteration on v ,:
Ve, = (Id — vP”k)_lrﬂk

= (Id — yP™) ™! (rr, + (YP™ — 1d)vir,_; + (Id — YP™) vy, ;)
= Vp,_, — (Id — yP™) 1 (1Id — T™) vy, _,

@ Can be interpreted as a second order method with pseudo-gradient

(Id = T™) g, _, = (Id = T*)vy,_, and pseudo-Hessian (Id — yP™).

@ Not a formal analysis but give a good insight on the better convergence of policy
iteration.

Discounted

o1
[e2)

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

O Utl Ine Approximation and Stability

© Approximation and Stability

59

Stablllty Of Value and POIICy Iterat|on Approximation and Stability /

Ideal Value and Policy Iteration?

@ lterative algorithms.
@ Convergence proofs assume perfect computation.

@ What happens if we make a (small) error at each step?

@ Particularly important for Policy Iteration in which one resolves a linear system at
each step!

60

Va | ue Itel’atlon Sta bi | |ty Approximation and Stability 4

vk = T Vi1 + €1

max ||k ||oo

0<k/<k
= vl € 94— vl
2v max |ley
e oy = el € 2 = v+ 7“’“”: -
1—7y (1—=7)

Stability with respect to approximations

@ Proof relies on the contraction property of 7* (hence similar results for 77).

N [I2]P

@ Error term i

k—1
can be replaced by Z VKK e[| oo
k'=0
e Convergence if ||ex||oo tends to 0.

@ Reach a neighborhood of the optimal solution if ||ex || is bounded.

O
(O]
=
c
>
(@]
O
=2
)

(<))
—_

Erwan LE PENNEC

POl |Cy Ite ratiOI"I Approximation and Stability £

Vke1 = Ve, e and T v =T vy + 0k

1
= vy = Wl < P vy = el g (2902 =) el max, 1)

0<k’<k 0<k’<k

Stability with respect to approximations

@ Quite involved proof but crude results.

@ Error term 2y(2 — v) max. lexr||oo + max [|0x || can be replaced by

0<k’/< 0<k’<k
k—1 ,
(L= Y YK 2v2 =)l llos + 115k llso)
k'=0

e Convergence if ||ex||co and ||dk|||oo tends to O.

@ Reach a neighborhood of the optimal solution if ||ex||oo and ||dk|||c are bounded.)

@ Justify why Policy lteration only requires an approximate estimate of v, ., for
instance obtained by Bellman iteration. ..

Discounted

[
N

O Utl Ine Generalized Policy Iteration

© Generalized Policy Iteration

63

Modified Policy lteration

Generalized Policy Iteration 4

Discounted: Planning by Generalized Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor ~y
parameter: Initial g
repeat
for s € S do
‘ 7t(s) < argmaxq(s, a)

end
repeat
Qprev — g
for (s,a) € S x A do

q(57 a) < I‘(S, a) + Z p(S/‘S, a)ﬁ—(alls)qprev(sv a)

s,a’

end
output: Deterministic policy 7.

@ Algorithm driven by q.
@ Flexibility in the number of prediction steps after each policy improvement steps.
@ Special cases:

o Large number: Policy Iteration with (small) error.

e One: Value lteration!

Discounted

(@]
>

M P I An a IySIS Generalized Policy Iteration

T vk =T"vi and vip1 = (T™)™ v

1P — p| w"k) Ve = vl

my

1—1v

— o = o <7 (2

Convergence Results

@ Quite technical proof.

Valid only under the mild assumption 7*vy > vg.

Very fast decay provided ||P™ — P*|| is small.

No stability with arbitrary errors. ..

Except if my is large enough (cf policy iteration).

O
(O]
+—
c
>
(@)
O
=2
)

(o))
(&3]

Generalized Policy lteration

Generalized Policy Iteration £

Vs, T

General Policy Iteration

3 Episadic. L.Discounted

@ Two simultaneous interacting processes:

o One forcing the policy to correspond to the current value function (Policy
Improvement)

e One trying to male the current value function coherent with the current policy
(Policy Evaluation)

@ Several variations possible on the two processes.

@ In GPI, the policy is driven by the value function.
@ Typically, stabilizes only if one reaches the optimal value/policy pair.

State U pd ate Order Generalized Policy Iteration /'W

Discounted: Prediction by Value lteration - State Update Order

input: MDP model ((S,.A,R), P), discount factor v, and stationary policy w
init: ¥(s)Vse S
repeat

Vorev < V

for s € S’ C S do

v(s) < > _m(als) ((a)+v>_ p(s'ls, a) vprev(s’)>

ac A s'eS

end
output: Value function v

Classical strategies

e §' = §: classical iteration
o S8’ = {s}: Gauss-Seidel
o 8" ={s,|T™V(s) — V(s)| > e}: Prioritized sweeping

@ Converges provided all states are visited infinitely often. ..
@ Gain in term of storage or focus on most interesting states. . .

s Episodic / Discounted

POl |Cy Im prOVGment Va rlatlon Generalized Policy Iteration £

Greedy : 7(s) € argmax q(s, a) <= m(-|s) € argmax Y _ 7(a)q(s, a)

Restricted : 7(-|s) € argmax Y #(a)q(s, a)
el a

IRegiilarized : 7(-|s) € argmax Y _7(a)q(s, a) + €P(7)

Classical Variations

o[égreedy: Restrict 7 to the set of policy s.t. 7(a) > €
o Explicit solution: 7(als) = ¢+ (1 — e%rgmax q(s,a) =
e Policy improvement property if ¢ decréases.

o Soft=maxiiRegularize by eH(7) where H is the entropy.

o Explicit solution: m(als) o< exp(q(s, a)/e€)
e No classical policy improvement. ..

@ Tends to greedy when € goes to 0.
@ Turn out to be interesting later...

e}
(O}
)
<
=
O
Q
L
a
~
=
©
]
U
o
Ll
68

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

Erwan LE PENNEC

O Utl Ine Episodic and Infinite Setting

@ Episodic and Infinite Setting

69

EpiSOd ic Settl ng Episodic and Infinite Setting £ X

.
e
()
=
c
=}
O
@]
2]
)
|
=
e
O
L
o
Ll

H-1
B [min{t, S, = s} < H = [TV = TVl < v = Ve

Proper Policy
@ A policy 7 is said to be H-proper if E [mtin{t, S = 5abs}] <H<x

@ = average duration of an episode using this policy less than a finite horizon H!

Bellman operators

e If a policy 7 is H-proper, the Bellman operator 7™ is a (H — 1)/H- contraction
for a weighted sup-norm.

o If all the policies are H-propers, the optimal Bellman operator 7* is a
(H — 1)/H-contraction for a weighted sup-norm.

S

@ Under those strong assumptions, episodic setting ~ discounted setting with
v=(H-1)/H.

@ Some results can be obtained under the much milder assumption that there is one proper policy
and that any non-proper policy has at least one state for which v, (s) = —o0.

~
o

EpiSOd |C Settl ng a nd DISCOU nt Episodic and Infinite Setting

JH < 00,Vs, E, {mtin{t, Si = Sabs

50 = S}:| < H
<=3T, 77 < L,Vs,Pr(ST = Saps|So =) > 1 — 7

Episodic Setting and Discount

@ Discounted setting: Vs, Pr(S7T = saps|So =5) =1 — v
o Episodic setting: Generalization in which more states are needed to reach the
absorbing state.
o Prop:
o H< oo = Yatn <

o 77T<1l = H<1_7:YT

1
1+e

@ Bertsekas equivalent assumption:
Fys) < L, Vs, Pr (5\3| = Sabs

5025) > 1=

P

.
e
(D)
=
c
=}
O
O
2]
)
|
O
e
O
L
o
Ll

~
[y

Infl n Ite Settl ng Episodic and Infinite Setting

@ No issue with the rewards, as only the expectation is used.

@ All the theory remains valid if the states are countable, but there is an issue in the
algorithms, as we need to store/update an infinite number of states.

@ The proof of existence of an optimal policy requires the max to be attained, which
cannot be ensured in an infinite (even countable setting).

Some results. . .

@ Thm: If S is countable, there exists an e-optimal (stationary) policy for any ¢ > 0.
@ Thm: If S is a Polish space (completedg metrizable topological space),

there exists a (P, €)-optimal (stationary policy) for any € > 0.

if each A; is countable, there exists an e-optimal (stationary) policy for any € > 0.

if each A is finite, there exists an optimal (stationary) policy.

if each A is a compact metric space, r(s, a) is a bounded u.s.c. function on As and
p(Bls, a) is continuous in a for each Borel subset B and any s, there exists an
optimal (stationary) policy.

@ Mainly technical difficulties. . .

O
()]
-
[
>
O
QO
L
()
\
[
@)
N
=
O
I
(D]
iy ot
=
L
72

Erwan LE PENNEC

O Utl | ne References

@ References

73

References

R. Sutton and A. Barto.

Reinforcement Learning, an Introduction
(2nd ed.)

MIT Press, 2018

0. Sigaud and O. Buffet.

Markov Decision Processes in Artificial
Intelligence.

Wiley, 2010

M. Puterman.

Markov Decision Processes. Discrete
Stochastic Dynamic Programming.
Wiley, 2005

D. Bertsekas and J. Tsitsiklis.
Neuro-Dynamic Programming.
Athena Scientific, 1996

conTROL
SYSTEMS 0
REINFORCEMENT
LEARNING

References

W. Powell.

Reinforcement Learning and Stochastic
Optimization: A Unified Framework for
Sequential Decisions.

Wiley, 2022

S. Meyn.

Control Systems and Reinforcement
Learning.

Cambridge University Press, 2022

V. Borkar.

Stochastic Approximation: A Dynamical
Systems Viewpoint.

Springer, 2008

T. Lattimore and Cs. Szepesvari.
Bandit Algorithms.
Cambridge University Press, 2020

74

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)
@ You are free to:

@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the
original.

@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything
the license permits.

Contributors
@ Main contributor: E. Le Pennec

@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet.

75

	Prediction and Bellman Equation
	Prediction by Dynamic Programming and Contraction
	Planning, Optimal Policies and Bellman Equation
	Linear Programming
	Planning by Value Iteration
	Planning by Policy Iteration
	Optimization Interpretation
	Approximation and Stability
	Generalized Policy Iteration
	Episodic and Infinite Setting
	References
	

