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RL: What Are We Going To See?
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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
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Operations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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Reinforcement Learning and Interactions
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction Replay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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More Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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Advanced Tabular Reinforcemcent Learning
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Core idea: Approximate Bellman Operators with Stochastic Approximation. . .

Advanced Ideas?
Between MC and TD?
Off-policy vs on-policy?
Exploration vs Exploitation?
Model? Replay?
Real Time Planning?
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n-step AlgorithmsOutline
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n-step Algorithmsn-steps

or or

How many steps before backup?
One step: TD.
As many steps as required to end the episod: MC.
n-steps: n-steps TD.(

T Π
)n

v(s) = EΠ

Rt+1 + γRt+2 + γn−1Rt+n + γnv(St+n︸ ︷︷ ︸
Gt:t+n

)

∣∣∣∣∣∣∣St = s


Family of stochastic approximation algorithms:

V (St)← V (St) + α(N(St)) (Gt:t+n − V (St))

D
isc

ou
nt

ed

9



n-step Algorithmsn-steps TD

or or

V (St)← V (St) + α(N(St)) (Gt:t+n − V (St))

n-steps TD
Convergence for prediction.
Need to be combined with Policy Improvement for planning: n-steps SARSA.
n-steps Q-learning could be an extension of API. . . but this means following the
optimized policy Π. . . i.e. SARSA!

Best convergence often for intermediate n.
No proof beside TD for n > 1! D
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ed
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n-step Algorithmsn-steps TD
Discounted: Prediction by n-steps TD
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St−n, At−n)← Q(St−n, At−n) + α(N(St , At)) (Gt−n:t − Q(St , At))
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: State-Action value function Q

D
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n-step AlgorithmsExpected SARSA

or

Expected SARSA
The policy Π is known so that we can use it in a formula:

Rt + γQ(St , At) −→ Rt + γ
∑

a
π(a|St)Q(St , a)

Make the update independent of the action chosen (and thus of the policy used to
play).
Reduce the variance for a computational cost.
Amount to use the current estimate for V (St). . .

D
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n-step AlgorithmsExpected SARSA
Discounted: Prediction by Expected SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St , At)← Q(St , At) + α(N(St , At))

(
Rt+1 + γ

∑
a π(a|St)Q(St+1, a)− Q(St , At)

)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: State-Action value function Q

D
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n-step Algorithmsn-steps Tree Backup

n-steps Tree Backup
At each time step, use the expected SARSA average over the action while
replacing the Q value for the picked action by a deeper estimate.
1-step return (Expected Sarsa)

Gt:t+1 = Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)

2-step return:
Gt:t+2 = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Qt+1(St+1, a)

+ γπ(At+1|St+1)
(

Rt+2 + γ
∑

a
π(a|St+2)Q(St+2, a)

)
= Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Q(St+1, a) + γπ(At+1|St+1)Gt+1:t+2

D
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n-step Algorithmsn-steps Tree Backup
1-step return (Expected Sarsa)

Gt:t+1 = Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)

2-step return:
Gt:t+2 = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Q(St+1, a) + γπ(At+1|St+1)Gt+1:t+2

= Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a) + γπ(At+1|St+1) (Gt+1:t+2 − Q(St+1, At+1))

Recursive definition of n-step return:
Gt:t+n = Rt+1 + γ

∑
a

π(a|St+1)Q(St+1, a)

+ γπ(At+1|St+1) (Gt+1:t+n − Q(St+1, At+1))
TD update

Q(St−n, At−n) = Q(St−n, At−n) + α(N(St−n, Qt−n)) (Gt−n:t − Q(St−n, At−n))

D
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n-step AlgorithmsQ(σ)

Between and

Sampling or Averaging
Unifying algorithm!
Recursive definition of n-step return:

Gt:t+n = Rt+1 + σGt+1:t+n

+ (1− σ)
(
γ
∑

a
π(a|St+1)Q(St+1, a)

+ γπ(At+1|St+1) (Gt+1:t+n − Q(St+1, At+1))
)

D
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n-step Algorithmsλ-Return
Averaged n-steps return?

n-step return:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

Averaged n-step return: (compound update)

Gω
t =

∞∑
n=1

ωnGt:t+n with
∞∑

i=1
ωn = 1

TD(λ): specific averaging

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n

= (1− λ)
T−t∑
n=1

λn−1Gt:t+n + λT−tGt (Episodic)

interpolating between TD (a.k.a TD(0)) and MC for λ = 1.
Can be mixed with tree backup strategies (TB(λ)) D
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n-step Algorithmsλ-return and Temporality

True λ-return
Require to wait until the end of an episode before we can update.
Unusable in a non episodic setting!

Truncated λ-return
Truncated λ-return:

Gλ
t = (1− λ)

H−t∑
n=1

λn−1Gt:t+n + λH−tGt:H

The virtual horizon H may vary during the algorithm.

D
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n-step Algorithmsλ-return and Temporality

Temporality
n-step return

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)
depends on a current estimate V (or Q)!
In Gλ should we use

an estimate available at time t?
an estimate available at time t + n?
an estimate available at time H?

Off-Line vs On-Line!
Off-line: keep V constant during the episodes.
On-line: Used updated V when available.
True on-line (Sutton and Barto): restart algorithm with a growing horizon.

D
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Eligibility TracesOutline
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Eligibility TracesForward and Backward Point of View

From a forward view

To a backward one:
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Eligibility TracesReturns and Temporal Differencies
Returns and Temporal Differencies

n-step returns:
Gt:t+n − Q(St , At) = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n

+ γnQ(St+n, At+n)− Q(St , At)

=
n∑

l=1
γ l−1(Rt+l + γQ(St+l , At+l)− Q(St+l−1, At+l−1))

=
n−1∑
l=0

γ l−1δt+l

λ return:
Gλ

t − Q(St , At) = (1− λ)
∑

n
λn(Gt:t+n − Q(St , At))

=
∑
n=0

λnγnδt+n

D
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Eligibility TracesForward View and Backward View

Forward View
Updates:

Qt(s, a) = Qt−1(s, a) + 1(s,a)=(St ,At)αt(s, a)

∑
t′′≥t

λt′′−tγt′′−tδt′′


Cumulative updates:

Qt(s, a) = Q0(s, a) +
∑
t′≤t

1(s,a)=(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


Limit:

Q∞(s, a) = Q0(s, a) +
∑
t′

1(s,a)=(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


Focus on the update place.

D
isc

ou
nt

ed

23



Eligibility TracesForward View and Backward View

Limit(s)
Limit:

Q∞(s, a) = Q0(s, a) +
∑
t′

1(s,a)=(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


= Q0(s, a) +

∑
t′′

δt′′
∑

t′≤t′′

1(s,a)=(St′ ,At′ )αt′(s, a)λt′′−t′
γt′′−t′

Focus on the update place or and the temporal differencies. . .
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Eligibility TracesForward View and Backward View
Backward View

Same limit with cumulative udpates over temporal differencies
Qt(s, a) = Q0(s, a) +

∑
t′′≤t

δt′′
∑

t′≤t′′

1(s,a)=(St′ ,At′ )αt′(s, a)λt′′−t′
γt′′−t′

Updates
Qt(s, a) = Qt−1(s, a) + δt

∑
t′≤t

1(s,a)=(St′ ,At′ )αt′(s, a)λt−t′
γt−t′

︸ ︷︷ ︸
zt(s,a)

Pseudo Eligibility trace:
zt(s, a) =

∑
t′≤t

1(s,a)=(St′ ,At′ )αt′(s, a)λt−t′
γt−t′

= λγzt−1(s, a) + αt(s, a)1(s,a)=(St ,At)

Proof of convergence toward the same target. D
isc

ou
nt

ed
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Eligibility TracesEligibility Trace

Qt(s, a) = Qt−1(s, a) + αtδtzt(s, a)

Eligibility Trace
Focus on temporal differencies with simultaneous update on all states.
TD(λ) eligibility trace: zt(s, a) = λγzt−1(s, a) + 1(s,a)=(St ,At)

Strictly equivalent to the previous scheme for constant stepsize
Other eligibility trace:

Replacing trace:

zt(s, a) =
{

1 if (s, a) = (St , At)
λγzt−1(s, a) otherwise

Time dependent trace:
zt(s, a) = ctγzt−1(s, a) + 1(s,a)=(St ,At )

where ct is defined in a appropriate way to ensure the convergence of the algorithm.

Need to store (and update) this information. . .

D
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Eligibility TracesTemporal Differencies

δt?
Temporal Differencies

Basic temporal differencies:
δt = Rt+1 + γQ(St+1, At+1)− Q(St , At)

Expected temporal differencies:
δt = Rt+1 + γV (St+1)− Q(St , At)

= Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)− Q(St , At)

Average of both:
δt = Rt+1 + γσQ(St+1, At+1) + γ(1− σ)V (St+1)− Q(St , At)

= Rt+1 + γV (St+1) + γσ (Q(St+1, At+1)− V (St+1))− Q(St , At)

Only expected temporal average is independent of the next action.
No generic proof of convergence. . .

D
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1 n-step Algorithms

2 Eligibility Traces

3 Off-policy vs on-policy

4 Bandits

5 Model Based Approach

6 Replay Buffer and Prioritized Sweeping

7 Real Time Planning

8 References

28



Off-policy vs on-policyOn-Policy vs Off-Policy
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On-Policy vs Off-Policy
On-Policy: the policy b used to interact is the same than the policy Π evaluated
or optimized.
Off-Policy: the policy b used to interact may be different from the policy Π
evaluated or optimized.

Off-Policy allows in particular to (re)use interactions from previous experiments.
Q-learning was possible in off-policy setting.
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Off-policy vs on-policyImportance Sampling

ρt:t′ = PΠ(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′ |St)
Pb(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′|St)

= π(At |St) . . . π(At′ |St′)
b(At |St) . . . π(At′ |St′)

Importance Sampling
For any law p and q, and any function g

Ep[g(x)] = Eq

[p(x)
q(x)g(x)

]
provided q(x) = 0 implies p(x) = 0.
Varq

[
p(x)
q(x)g(x)

]
may be large with respect to Varp [g(x)] if the ratio p(x)/q(x) is

large. . .

Importance Sampling for Trajectories
For any trajectory τt:t′ = St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1),,
PΠ(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1)|St)
Pb(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1)|St)

= π(At |St) . . . π(At′ |St′)
b(At |St) . . . b(At′ |St′) 30



Off-policy vs on-policyImportance Sampling and Returns

EΠ[g(τt:t′)|St = s] = Eb[ρt:t′g(τt:t′)|St = s] with ρt:t′ = π(At |St) . . . π(At′|St′)
b(At |St) . . . b(At′ |St′)

From b to Π
Returns:

Eπ[Gt:t′ |St = s] = Eπ

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tV (St′)

∣∣∣∣∣∣St = s


= Eb

ρt:(t′−1)

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tV (St′)

∣∣∣∣∣∣St = s


= Eb

 t′∑
t′′=t+1

ρt:(t′′−1)γ
t′′−t−1Rt′′ + ρt:(t′−1)γ

t′−tV (St′)

∣∣∣∣∣∣St = s


31



Off-policy vs on-policyImportance Sampling and Returns

EΠ[g(τt:t′)|St , At ] = Eb
[
ρ(t+1):t′g(τt:t′)

∣∣∣St , At
]

with ρt:t′ = π(At |St) . . . π(At′|St′)
b(At |St) . . . b(At′|St′)

From b to Π
Returns:

Eπ[Gt:t′ |St , At ] = Eπ

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


= Eb

ρ(t+1):(t′−1)

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


= Eb

ρ(t+1):(t′′−1)

t′∑
t′′=t+1

γt′′−t−1Rt′′ + ρ(t+1):t′γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


No correction if t ′ = t + 1
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Off-policy vs on-policyλ-return
λ-return

Recursive definition of the λ-return:
Gλ

t |St = Rt+1 + γ
(
(1− λ)V (St+1) + λGλ

t+1

)
Gλ

t |St , At = Rt+1 + γ
(
(1− λ)

(
σQ(St+1, At+1) + (1− σ)(

∑
a

π(a|St+1)Q(St+1, a)

+ π(At+1|St+1)
(
Gλ

t+1 − Q(St+1, At+1)
)
)
)

+ λGλ
t+1

)
Off-line correction

Gλ
t |St = ρt:t

(
Rt+1 + γ

(
(1− λ)V (St+1) + λGλ

t+1

))
Gλ

t |St , At = Rt+1 + γ
(
(1− λ)

(
σQ(St+1, A′

t+1) + (1− σ)(
∑

a
π(a|St+1)Q(St+1, a)

+ π(At+1|St+1)
(
Gλ

t+1 − Q(St+1, At+1)
)
)
)

+ λρt+1:t+1Gλ
t+1

)
where A′

t+1 is drawn following π (or multiply by ρt+1:t+1 to use At+1). D
isc

ou
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ed
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Off-policy vs on-policyTemporal Differencies

δt?
Temporal Differencies

Basic temporal differencies:
δt = Rt+1 + γQ(St+1, A′

t+1)− Q(St , At)
with A′

t+1 drawn using π.
Expected temporal differencies:

δt = Rt+1 + γV (St+1)− Q(St , At)
= Rt+1 + γ

∑
a

π(a|St+1)Q(St+1, a)− Q(St , At)

without any correction.
Average of both:

δt = Rt+1 + γσQ(St+1, At+1) + γ(1− σ)V (St+1)− Q(St , At)
= Rt+1 + γV (St+1) + γσ

(
Q(St+1, A′

t+1)− V (St+1)
)
− Q(St , At)

with A′
t+1 drawn using π.
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Off-policy vs on-policyOff-Policy Algorithm
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Value Functions

Policy

Agent Policies
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Behavior Policy Real Time Policy

Off-Policy Correction
Replace any estimate of the gain by an importance-sampling corrected one.
Works well for prediction.
Can be combined with policy improvement (a la SARSA) but less (no?)
theoretical guarantees.
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Off-policy vs on-policyRetrace(λ)
T̃ Q(s, a) = Q(s, a) + Eb

∑
t≥0

γt
( t∏

t′=1
ct′

)
δt

∣∣∣∣∣∣S0 = s, A0 = a


ct = c(At , St , At−1, St−1, · · · , A0, S0)
Eb[δt |St , At ] = E[Rt+1 + γEπ[Q(St+1, ·)]− Q(St , At)|St , At ]

Generic Off-Policy Algorithm
Generic off-line algorithm including

Importance sampling: ct = ρt:t = π(At |St)/b(At |St)
TB(λ): ct = λπ(At |St)
Retrace(λ): ct = λ min(1, π(At |St)/b(At/St))

Prop: Qπ is a fixed point as Eb[δt |St , At ] = E[T πQ(St , At)− Q(St , At)|St , At ].
Prop: T̃ is a contraction provided ct ≤ ρt = π(At |St)/b(At |St).
Convergence for Importance sampling, TB(λ) and Retrace(λ) for any b.
Partial results for policy improvement under more assumptions.

For Q(λ), ct = λ, convergence if ∥π(|s)− b(|s)∥1 ≤ ϵ and λ ≤ (1− γ)/(γϵ).
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BanditsQ-Learning vs SARSA

How different are they?
In Q-learning, the exploratory policy used is decoupled from the optimized policy.
This exploratory policy may yield low rewards on average.
In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.
Subtle different behavior even if we modify the exploratory policy in Q-Learning.
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BanditsExploration vs Exploitation

Exploration vs Exploitation
Exploration: explore new policies to be able to discover the best ones.
Exploitation: use good policies to obtain a good return.
Exploration is a requirement.

No tradeoff if we optimize only the final result!
Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.
Tradeoff if we study a regret: ∑

t
EΠ⋆ [Rt ]− EΠt [Rt ]

which forces us to be good as fast as possible.
No natural definition in the discounted setting.

39



BanditsBandits

S = {0} and A = {1, . . . k} and r(s, a) = ra

Bandits
Very simple toy model where there is only one state!
Optimal policy: pick a⋆ ∈ argmax ra.
Q estimation: estimate ra by playing action a.
Strategy:

Every arm has to be played until we are sure they are bad.
Best arm should be played as often as possible to maximime the rewards during the
learnig phase.

Simple enough setting to obtain result on the regret
rT =

∑
t≤T

(ra⋆ − Rt)

We will use ∆a = ra⋆ − ra and assume that R|a is 1-subgaussian. 40



BanditsExplore Then Commit

Explore Then Commit (Random Exploration)
Play the arm successively during Km steps and then play the optimal one during
T − Km steps.
Prop:

rT ≤ min(m, T/K )
k∑

a=1
∆(a) + max(T −mK , 0)

k∑
a=1

∆(a) exp(−m∆(a)2/4)

Furthermore,
P(aT = a∗) ≥ 1−

∑
a ̸=a∗

exp(−m∆(a)2/4)
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Banditsϵ-greedy Strategy

ϵ-greedy Strategy
Estimate Q(a) = ra by MC:

Qt(a) =
∑t−1

t′=1 1At′ =aRt′∑t−1
i=1 1At′ =a

Pick arm a at time t using

π(a) =
{

ϵt/k + (1− ϵ) if a = argmaxa′ Qt(a′) (only the smallest if necessary)
ϵt/k otherwise

Prop:

rT ≥
T∑

t=1

ϵt
k

k∑
a=1

∆(a)
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Banditsϵ-greedy Strategy
ϵ-greedy Strategy

Prop:
P(AT = a∗) ≥ 1− ϵT − Σt exp(−ΣT /(6k))−

∑
a ̸=a∗

4
∆(a)2 e−∆(a)2ΣT /(4k)

with ΣT =
∑T

s=1 ϵs .
Furthermore,

P(a∗ = argmax QT ,a) ≥ 1− Σt exp(−ΣT /(6k))−
∑

a ̸=a∗

4
∆(a)2 e−∆(a)2ΣT /(4k)

If ϵt = c/t,

rT ≤
∑

a ̸=a∗

(
∆(a)

(
c log(T ) + 1

k + C
)

+ 4
∆(a)C ′

)
as soon as c/(6k) > 1 and c mina ̸=a∗ ∆(a)/4k < 1.
If ϵt = c log(t)/t then

rT ≤
∑

a ̸=a∗

(
∆(a)

(
c log(T )(log(T ) + 1)

k + C
)

+ 4
∆(a)C ′

)
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BanditsUCB Strategy

Upper Confidence Bound
Use an optimistic strategy to pick the best arm

At = argmax Qt(a) +
√

c log t
Nt(a)

Prop:

rn(t) ≤ Cc
∑

a
∆(a) +

∑
a

4c ln t
∆(a) .

with Cc < +∞ as soon as c > 3/2
Furthermore

P(At = a∗) ≥ 1− 2kt−2c+2

as soon as t ≥ maxa
4c ln t
∆(a)2 .

Optimal regret!
Hard to extend to RL setting but shows that ϵ-greedy may not be optimal.
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Model Based ApproachModel Based Approach

From

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt
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Model Based Approach
Use the interactions to learn a model. . .
that can be used to learn a good policy.
This model can be:

a MDP,
a simulator.

Often easier to obtain a simulator. 46



Model Based ApproachModel based and MDP
MDP
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Estimated MDP: back to OR
MDP can be estimated from trajectories.
Simple (but maybe slow) even in an off-line setting.
Once we have an estimated MDP, prediction and planning can be done using OR.

Implicitely done by TD(0) when doing several passes.
Model should be checked/improved as much as possible when new trajectories
arrive.
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Model Based ApproachModel based and RL
MDP

Env.

Agent
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Estimated Simulator: back to RL
Simulator can be estimated from trajectories.
Simple (but maybe slow) even in an off-line setting.
Once we have an estimated simulator, prediction and planning can be done using
RL.

Model should be checked/improved as much as possible when new trajectories
arrive.
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Model Based ApproachModel Free and Model Based Approach
MDP
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Agent
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Dyna
Combine true interactions with simulated ones.
Simultaneous acting, model learning, OR learning and RL learning.
Search for a tradeoff between the (slow) learning RL algorithm and the (wrong)
model OR algorithm.
Need to deal with schedule!
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Replay Buffer and Prioritized
Sweeping

Replay Buffer and Prioritized Sweeping

From

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt
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Replay Buffer and Prioritized Sweeping
Can we reuse previous interactions?
In which order?
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Replay Buffer
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Replay Buffer
Store previous interactions (trajectories) in a first-in first-out buffer.
Draw a subsequence from those interactions (trajectories) and use it in a RL
algorithm:

On-line: if the trajectory comes from the same policy.
Off-line: if the trajectory comes from a different policy.

Similar to a simulator but no arbitrary choice of state or action.
Often use with on-line algorithm if the policy has only mildy evolved. . . 52



Replay Buffer and Prioritized
Sweeping

Prioritized Sweeping
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Prioritized Sweeping
Plain Replay Buffer: subsequence drawn uniformly.
Prioritized Sweeping: subsequence drawn favoring states with large temporal
differencies.

Can be combined with a model approach.

53



Real Time PlanningOutline

1 n-step Algorithms

2 Eligibility Traces

3 Off-policy vs on-policy

4 Bandits

5 Model Based Approach

6 Replay Buffer and Prioritized Sweeping

7 Real Time Planning

8 References

54



Real Time PlanningReal Time Planning

Real Time Planning
Can we optimize the policy at the current state?
Do we need to optimize it everywhere?
What is required?

Planning at decision time. . .
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Real Time PlanningReal Time Dynamic Programming

Warmup in Dynamic Programming. . .

RT DP
Use trajectories to sample the states to update.
Convergence holds with exploratory policy.
Optimal policy does not require to specify the action in irrelevant states.
Convergence holds even without full exploration in some specific cases!

In practice, seems to be computationaly efficient.
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Real Time PlanningPlanning At Decision Time

Planning At Decision Time
Can we find a good action At at St . . . without having it precomputed?
Policy Improvement

At = argmax Qt(St , ·)
can be seen as a first step.
How to go deeper?

A model or a simulator will be required!
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Real Time PlanningHeuristic Search

Heuristic Search
Requires the knowledge of the MDP and of a heuristic based value function V .
Strategy:

Build a limited depth tree by stopping after a few steps and at some specific states.
Backup the heuristic based value function using Dynamic Programming (Optimal
Bellman operator).
Pick the action having the hight value.

The deeper the better. . . but the more expensive due to branching!
Requires a suitable heuristic. . .
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Real Time PlanningRollout Algorithm

Rollout Policy
Use a MC estimate with a default policy instead of a heuristic.
Backup those estimates using Dynamic Programming.
Simulation can even start after the first action (as in Policy Improvement).

The values are (most of the time) discarded for the next state.
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Real Time PlanningMonte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.
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Real Time PlanningModel Predictive Control?

Model Predictive Control
Open loop optimization:

max
at ,at+1,...,at+h

E
[ t+h∑

t′=t
Rt

]
using a predictive model (simulator).
Do not take into account state uncertainties in the control choice. . .
But much simpler optimization. . .
and equivalence for a linear Gaussian model.

Extensively used for short-term planning in Control.
May be combined with value functions after t + h.
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