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RL: What Are We Going To See?
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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
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Operations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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Reinforcement Learning and Interactions
MDP
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Behavior Policy

How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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More Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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Reinforcement and Approximation of Value Functions
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction Replay Buffer

Value Functions

Policy
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Final Policy

Behavior Policy

How to Deal with a Large/Infinite states/action space?
How to approximate value functions?
How to estimate good approximation of value functions?

Finite action space setting.
Stochastic algorithm (Deep Q Learning. . . ).
Policy deduced by a statewise optimization of the value function over the actions.
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Approximation?

Tabular Setting
Require to store the state(-action) values (a table).
Requirement in both OR and RL.

Approximation!
Use instead approximated value functions.
What is a good approximation?
How to use them?

Focus on value-functions. . . 8



Approximation Target(s)Outline

1 Approximation Target(s)
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Approximation Target(s)Approximated Value Functions

V (s) =⇒ Vw(s)
Q(s, a) =⇒ Qw(s, a)

Parametric Model
Reduce dimensionality by storing w instead of all the values.
Linear: Vw(s) = ⟨Φ(s), w⟩ and Qw(s, a) = ⟨Φ(s, a), w⟩

Φ(s) and Φ(s, a) are features associated to the states(-actions).
Tabular setting corresponds to (Φ)s′(,a′)(s(, a)) = 1s′=s(,a′=a).
Often used in theoretical analysis.

Deep Learning: Vw(s) = NNw(Φ(s)) and Qw(s, a) = NNw(Φ(s, a))
NN is any (deep) learning network.
Often used in practice.

Other parametrization (or even non parametric coding) could be used (at least in
theory. . . ). 10



Approximation Target(s)Approximated Value Functions Usage

vπ(s) ≃ Vwπ(s) v⋆(s) ≃ Vw⋆(s)
qπ(s, a) ≃ Qwπ(s, a) q⋆(s, a) ≃ Qw⋆(s, a)

argmax
a

qπ(s, a) ≃ argmax
a

Qwπ(s, a) argmax
a

q⋆(s, a) ≃ argmax
a

Qw⋆(s, a)

Approximated Value Functions Usage
Drop-in replacements for all the value functions?
Prediction and Planning?
Quality and Stability?
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Approximation Target(s)Approximation Quality

vπ(s) ≃ Vwπ(s) v⋆(s) ≃ Vw⋆(s)
qπ(s, a) ≃ Qwπ(s, a) q⋆(s, a) ≃ Qw⋆(s, a)

argmax
a

qπ(s, a) ≃ argmax
a

Qwπ(s, a) argmax
a

q⋆(s, a) ≃ argmax
a

Qw⋆(s, a)

Approximation Quality Norm
Ideal loss:

∥v − Vw∥∞ or ∥q − Qw∥∞
as this is the error used in all the previous analysis.
Practical loss:

∥v − Vw∥p
µ,p =

∑
s

µ(s)|v(s) − Vw(s)|p

or ∥q − Qw∥p
µ,p =

∑
s,a

µ(s, a)|q(s, a) − Qw(s, a)|p

often with p = 2 and µ related to the behavior policy.
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Approximation Target(s)Approximation Target(s)

q(s, a) = T q(s, a) ∼ Qw(s, a) −→

∥q − Qw∥µ,p small
∥T Qw − Qw∥µ,p small

Approximation Targets(s)
Direct measurement.
Bellman residual error.

Extended Measurement
Projection (with linear parametrization): ∥PΦ (T Qw − Qw) ∥µ,p small
Probes Z :

EZ [| ⟨T Qw − Qw , Z ⟩ |p]

Lots of freedom but hard to link with optimality of derived policy!
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Gradient and
Pseudo-Gradient
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Gradient and
Pseudo-Gradient

Prediction, Approximation and Gradient Descent

min
w

∑
s,a

µπ(s, a)|qπ(s, a) − Qw(s, a)|2

Prediction, Approximation and Gradient Descent
Prediction objective:

VE(w) =
∑

q
µπ(s, a)|qπ(s, a) − Qw(s, a)|2

Gradient:
∇VE(w) = −2

∑
s,a

µπ(s, a) (qπ(s, a) − Qw(s, a)) ∇Q(s, a)

Stochastic gradient:
∇̂VE(w) = −2 (qπ(St , At) − Qw(St , At)) ∇Qw(St , At)

Not a practical algorithm as qπ is unknown.
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Gradient and
Pseudo-Gradient

Prediction, Approximation and MC

wt+1 = wt + 2αt (Gt − Qwt (St , At)) ∇Qwt (St , At)

Monte Carlo Approach
Replace qπ(St , At) by its Monte Carlo estimate Gt .
Still a Stochastic Gradient of the original problem with limit (if it exists) satisfying

Eπ[(Gt − Qw∞(St , At))∇Qw∞(St , At)]
= E[(qπ(St , At) − Qw∞(St , At))∇Qw∞(St , At)] = 0

Convergence ensured for the linear parametrization as it is a convex problem.

Correspond exactly to the tabular MC prediction algorithm for the tabular
parametrization.
For the linear parametrization:

Limiting equation: Eπ[qπ(St)Φ(St , At)] = Eπ

[
Φ(St , At)Φ(St , At)⊤

]
w∞
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Gradient and
Pseudo-Gradient

Prediction, Approximation and TD

wt+1 = wt + 2αt (Rt+1 + γQwt (St+1, At+1) − Qwt (St , At)) ∇Qwt (St , At)

Temporal Differencies Approach
Replace qπ(St , At) by Rt+1 + γQwt (St+1, At+1).
Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying

Eπ[(Rt + γQw∞(St+1, At+1) − Qw∞(St , At)) ∇Qw∞(St , At)]
= Eπ[((T πQw∞ − Qw∞)(St , At)) ∇Qw∞(St , At)] = 0

No simple argument to justify the convergence. . .

In general, no straightforward relation with Bellman operator.
Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Gradient and
Pseudo-Gradient

Prediction, Approximation and Advanced TD

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

Temporal Differencies Approach
Replace qπ(St , At) by any advanced return G̃t .
Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying

Eπ

[(
G̃t − Qwt (St , At)

)
∇Qw∞(St , At)

]
= Eπ

[(
(T̃ πQw∞ − Qw∞)(St , At)

)
∇Qw∞(St , At)

]
= 0

No simple argument to justify the convergence. . .

In general, no straightforward relation with Bellman operator.
Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Gradient and
Pseudo-Gradient

Prediction, Approximation and Eligibility Trace

zt = γλzt−1 + ∇Qwt (St , At)
δt = Rt+1 + γQwt (St+1, At+1) − Qwt (St , At)

wt+1 = wt + αtδtzt

Eligibility Trace
Rewrite the TD(λ) updates using the backward point of view.
No strict equivalence due to time evolution of the parameterization.
Stochastic Approximation with limit (if it exists) satisfying

Eπ[(Rt+1 + γQw∞(St+1, At+1) − Qw∞(St , At)) zt ]
= Eπ[(T πQw∞ − Qw∞) (St , At)zt ] = 0

No simple argument to justify the convergence.
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Linear Approximation and
LSTD

Outline
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Linear Approximation and
LSTD

Linear Parametrization

Qw(St , At) = Φ(St , At)⊤w and ∇Qw(St , At) = Φ(St , At)

Linear Parametrization
Extension of the tabular setting.
Derivative is independent of w .
Analysis of Stochastic Approximation often possible!

More than a toy model as an algorithm not converging in the linear case will
almost certainly not converge in a more general setting.
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Linear Approximation and
LSTD

Linear Parametrization and MC

Iteration:wt+1 = wt + αt(Gt − Φ(St , At)⊤wt)Φ(St , At)
Limiting equation: Eπ[qπ(St , At)Φ(St , At)] = Eπ

[
Φ(St , At)Φ(St , At)⊤

]
w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)Φ(St , At)⊤

]
(w − w∞)

Linear Parametrization and MC
Limiting equation is a linear equation.
Under asymptotic stationarity assumption, convergence of ODE as
Eπ

[
Φ(St , At)Φ(St , At)⊤

]
is a Gram Matrix with positive eigenvalues (provided Φ

is not redundant and under an ergodicity assumption).
Need to explore all state-action pairs!

Ep
iso

di
c
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Linear Approximation and
LSTD

Linear Parametrization and TD
Iteration: wt+1 = wt + αt(Rt+1 + γΦ(St+1, At+1)⊤wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.: Eπ[r(ST , At)Φ(St , At)] = Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
(w − w∞)

Linear Parametrization and TD
Convergence of ODE if Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
has

complex eigenvalues with positive real parts. . .
which can be proved to be true under an ergodicity assumption!
Need to explore all state-action pairs!
Different solution than MC! Minimization of the Projected Bellman Residual. . .
Prop:

VE (wTD) ≤ 1
1 − γ

VE (wMC) = 1
1 − γ

min
w

VE (w) D
isc

ou
nt

ed
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Linear Approximation and
LSTD

Least-Squares TD

b = Eπ[r(ST , At)Φ(St , At)] ∼ 1
t

t−1∑
t′=0

Rt′+1ϕ(St′ , At′)

A = Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
∼ 1

t

t−1∑
t′=0

Φ(St′ , At′)
(
Φ(St′ , At′)⊤ − γΦ(St′+1, At′+1)⊤

)
Least-Squares TD

Bypass the Stochastic Approximation scheme by estimating directly its limit:
w∞ = A−1b

Much more sample efficient.
Recursive implementation possible.
Recursive implementation maintaining an estimate of A−1 is also possible. D

isc
ou

nt
ed
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Linear Approximation and
LSTD

Advanced Returns

Return: G̃t = R̃t+1 + Φ̃⊤
t w (affine formula)

Iteration: wt+1 = wt + αt(R̃t + Φ̃⊤
t wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.: Eπ

[
R̃tΦ(St , At)

]
= Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φt

⊤
)]

w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φt

⊤
)]

(w − w∞)

Linear Parametrization and TD
Convergence of ODE if Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φt

⊤
)]

has complex
eigenvalues with positive real parts. . .
which can be proved to be true for the advanced returns under an ergodicity
assumption!

D
isc

ou
nt

ed
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On-Policy Prediction and
Control

Outline

1 Approximation Target(s)

2 Gradient and Pseudo-Gradient

3 Linear Approximation and LSTD
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On-Policy Prediction and
Control

On-Policy Prediction

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

On-line TD Algorithm
Use the policy Π to obtain the interactions StAtRt+1St+1At+1. . .
Convergence. . . for linear parametrization under stationarity and coverage
assumptions!
Appear to converge even with more complex parametrization.

Monte Carlo can be used if the episods are short.
Similar observations with elegibility trace.

D
isc

ou
nt

ed
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On-Policy Prediction and
Control

On-Policy Control

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

πt+(s) = argmax Qwt (s, ·) (plus exploration)

On-Policy Control
SARSA type algorithm: update Q values and policy π while using policy π.
Not a Stochastic Approximation algorithm anymore. . .
Not approximate policy improvement as no sup-norm control. . .
No proof of convergence... but appear to work well in practice.

Non trivial scheduling issue in the definition of G̃t .
More constraints with eligibility trace.

D
isc

ou
nt

ed
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Off-Policy and Deadly TriadOutline
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Off-Policy and Deadly TriadOn-Policy vs Off-Policy
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On-Policy vs Off-Policy
On-Policy: the policy b used to interact is the same than the policy Π evaluated
or optimized.
Off-Policy: the policy b used to interact may be different from the policy Π
evaluated or optimized.

Off-Policy correction available for the return.
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Off-Policy and Deadly TriadOff-Policy Prediction

wt+1 = wt + αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

Off-policy TD Algorithm
Use a policy b to obtain the interactions StAtRt+1St+1At+1. . .
Compute an (importance-sampling based) corrected return.
Use it in the algorithm.

Can fail spectacularly!
Monte Carlo will work.

D
isc

ou
nt

ed
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Off-Policy and Deadly TriadOff-Policy Divergence

Simplest Example?
Simple transition with a reward 0.
TD error:

δt = Rt+1 + γVwt (St+1) − Vwt (St)
= 0 + γ2wt − wt = (2γ − 1)wt

Off-policy semi-gradient TD(0) update:
wt+1 = wt + αtρtδt∇V (St+1, wt)

= wt + αt × 1 × (2γ − 1)wt = (1 + αt(2γ − 1))wt

Explosion if this transition is explored without w being update on other
transitions as soon as γ > 1/2. D

isc
ou

nt
ed
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Off-Policy and Deadly TriadOff-Policy Divergence

So
ur

ce
:

Su
tt

on
an

d
B

ar
to

Baird’s Counterexample
Divergence of off-policy algorithm even without sampling, i.e. in Dynamic
Programming. D

isc
ou

nt
ed
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Off-Policy and Deadly TriadOff-Policy Divergence

Tsistiklis and Van Roy’s Counterexample
Exact minimization of bootstrapped VE at each step:

wt+1 = argmin
w

∑
s

(Vwt (s) − Eπ[Rt+1 + γVwt (St+1)|St = s])2

= argmin
w

(w − γ2wt)2 + (2w − (1 − ϵ)γ2wt)2

= 6 − 4ϵ

5 γwt

Divergence if γ > 5/(6 − 4ϵ).

D
isc

ou
nt

ed
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Off-Policy and Deadly TriadLinear Parametrization and TD
Iteration: wt+1 = wt + αt(Rt+1 + γ

∑
a

π(a|St+1)Φ(St+1, a)⊤wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.:Eb[r(ST , At)Φ(St , At)] = Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, a)⊤

)]
w∞

ODE: dw
dt = −Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, q⊤

)]
(w − w∞)

Linear Parametrization and TD
Convergence of ODE if

Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, q⊤
)]

= ΦΞ(I − γPπ)Φ⊤

(with Φ = (Φ(s, a)), Ξ = diag(µ(s, a))) and Pπ the transition matrix associated
to π) has complex eigenvalues with positive real parts. . .
Proof for on-policy relies on µ = µπ which satisfies µπ

⊤Pπ = µπ
⊤.

Not true anymore with an arbitrary behavior policy!

D
isc

ou
nt

ed
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Off-Policy and Deadly TriadDeadly Triad

Deadly Triad
Function approximation
Bootstrapping
Off-policy training

Instabilities as soon as the three are present!

Issue
Function approximation is unavoidable.
Bootstrap is much more computational and data efficient.
Off-policy may be avoided. . . but essential when dealing with extended setting
(learn from others or learn several tasks)

Dead End?
36



Off-Policy and Deadly TriadObjective?

Linear Parametrization Target?
Prediction objective VE :

∥qπ − Qw∥2
µ

Bellman Error BE :
∥T πQw − Qw∥2

µ

Projected Bellman Error PBE :
∥ Proj T πQw − Qw∥2

µ

with Proj = Φ(Φ⊤ΞΦ)Φ (Φ) Ξ.
37



Off-Policy and Deadly TriadPrediction Objective

Prediction Objective
Two MRP with the same outputs (because of approximation).
but different VE .
Impossibility to learn VE .
Minimizer however is learnable:

RE (w) = E
[
(Gt − Vwt (St))2

]
= VE (w) + E

[
(Gt − vπ(St))2

]
MC method target.
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Off-Policy and Deadly TriadBellman Error

Bellman Error
Two MRP with the same outputs (because of approximation).
Different BE .
Different minimizer!
BE is not learnable!
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Off-Policy and Deadly TriadTD Error

TDE (w) = ∥Eπ

[
δ2

t |St , At
]

∥µ

Mean-Squares TD Error
TDE (w) = Eb

[
ρtδ

2]
Gradient: ∇TDE (w) =
Eb[ρt (Rt + γQw(St+1, At+1)) − Qwt (St , At)) (γ∇Qwt (St+1, At+1) − ∇Qwt (St , At))]
SGD algorithm. . .
but solutions often converge to not to a desirable place even without approximation!

D
isc

ou
nt
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Off-Policy and Deadly TriadProjected Bellman Error
∥ Proj T πQw − Qw∥2

µ with Proj = Φ(Φ⊤ΞΦ)−1Φ⊤Ξ.

Projected Bellman Error
Rewriting

PBE (w) = ∥ Proj T πqw − qw∥2
µ = ∥ Proj δw∥2

µ

= (Proj δw)⊤Ξ (Proj δw) = (Φ⊤Ξδw)⊤ (Φ⊤ΞΦ
)−1

(Φ⊤Ξδw)
Gradient:

∇PBE (w) = 2∇(Φ⊤Ξδw)⊤ (Φ⊤ΞΦ
)−1

(Φ⊤Ξδw)
Expectations:

Φ⊤Ξδw = Eb[ρtδtΦ(St , At)]

∇(Φ⊤Ξδw)⊤ = Eb
[
ρt(γΦ(St+1, At+1) − Φ(St , At))Φ(St , At)⊤

]
Φ⊤ΞΦ = Eb

[
Φ(St , At)Φ(St , At)⊤

]
Not yet a SGD/SA as the gradient is a product of several terms. . .

D
isc

ou
nt
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Off-Policy and Deadly TriadProjected Bellman Error
Gradient and Stochastic Approximation

Gradient:
∇PBE (w) = 2Eb

[
ρt(γΦ(St+1, At+1) − Φ(St , At))Φ(St , At)⊤

]
(
Eb
[
Φ(St , At)Φ(St , At)⊤

])−1
Eb[ρtδtΦ(St , At)]

Least-squares inside:
v =

(
Eb
[
Φ(St , At)Φ(St , At)⊤

])−1
Eb
[
ρtδtΦ(St , At)⊤

]
⇔ v = argmin

v
Eb

[(
Φ(St , At)⊤vt − ρtδt

)2
]

which can be estimated by
vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)

Plugin pseudo gradient (SA):
wt+1 = wt − 2αtρt(γΦ(St+1, At+1) − Φ(St , At))Φ(St , At)⊤vt

Same target than Pseudo Gradient but converging algorithm provided αt ≪ βt .

D
isc

ou
nt
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Off-Policy and Deadly TriadGradient TD Algorithm
GTD

Simultaneous update:
vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)

wt+1 = wt − 2αtρt(γΦ(St+1, At+1) − Φ(St , At))Φ(St , At)⊤vt

As αt ≪ βt , w is seen as constant by v . . .

TDC
Simultaneous update:

vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)
wt+1 = wt − 2αtρt(δtΦ(St , At) − γΦ(St+1, At+1))Φ(St , At)⊤vt

Obtained by a similar derivation but faster in practice. . .
As αt ≪ βt , w is seen as constant by v . . .

Restricted to the linear setting but interesting insight. D
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ou
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Two-Scales AlgorithmsStochastic Approximation

θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

=⇒ θk → {θ, H(θ) = 0}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥] → 0,∑
k αk → ∞ and

∑
k α2

k < ∞,
the algorithm converges if we replace hk by H.

Convergence toward a neighborhood if α is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.
Proof quite technical in general.
The convergence with H is easy to obtain for a contraction.
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Two-Scales AlgorithmsStochastic Approximation and ODE

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to d θ̃

dt = H(θ̃)

ODE Approach
General proof showing that the algorithm converges provided the ODE converges.
Rely on the rewriting the equation

θk+1 − θk
αk

= hk(θk) = H(θk) + ϵk + ηk

αk can be interpreted as a time difference allowing to define a time tk =
∑

t′≤t αk .
θ(t) is piecewise affine and defined through its derivative at time t ∈ (tk , tk+1).
This piecewise function remains close to any solution of the ODE starting from θk
for an arbitrary amount of time provided k is large enough.

More general proofs based on martingale. 46



Two-Scales AlgorithmsStochastic Approximationθk+1 = θk + αkhk(θk , νk)
νk+1 = νk + βkgk(θk , νk)

with
hk(θ, ν) = H(θ, ν) + ϵk + ηk

gk(θ, ν) = G(θ, ν) + ϵ′
k + η′

k

=⇒ θk → {θ, H(θ, ν(θ)) = 0, ν(θ) ∈ {ν, G(θ, ν) = 0}}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥] → 0,∑
k αk → ∞ and

∑
k α2

k < ∞,∑
k βk → ∞ and

∑
k β2

k < ∞,
αk/βk → 0 (two-scales assumption),
the algorithm converges if we replace hk and gk by H and G .

Convergence toward a neighborhood if α ≪ β are kept constant (as often in
practice). 47



Two-Scales AlgorithmsStochastic Approximation and ODE

From

θk+1 = θk + αkhk(θk , νk)
νk+1 = νk + βk + gk(θk , νk)

with

hk(θ, ν) = H(θ, ν) + ϵk + ηk

gk(θ, ν) = G(θ, ν) + ϵ′
k + η′

k

to d θ̃

dt = H(θ̃, ν̃(θ̃)) with ν̃(θ) the limit of d ν̃

dt = G(θ, ν̃)

ODE Approach
General proof showing that the algorithm converges provided the two ODE
converge.
Quite generic setting and source of new algorithm or insight on existing ones.
Importance of having two scales. . .

Can be used to prove the convergence of GTD and TDC!
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Deep Q LearningSimplified Deep Q-Learning

wt+1 = wt + βt(Rt+1 + γ maxa Qνt (St+1, a) − Qwt (St , At))∇Qwt (St , At)
νt = w⌈t/T ⌉T

Simplified Deep Q-Learning
Stochastic Approximation for a fixed ν:

Limiting equation:
Eb[(T ⋆Qν(St , At) − Qw∞(St , At))∇Qw∞(St , At)] = 0

Stochastic Gradient Descent of
Eb

[
(T ⋆Qν(St , At) − Qw(St , At))2

]
Qw → T ⋆Qν

Approximate Value Iteration Scheme!

Two-scales algorithm flavour as ν is kept constant.
Explicit two scales with νt+1 = νt + αt(wt − νt) variation.
Could be used for prediction with Rt+1 + γ

∑
a π(a|St+1)Qνt (St+1, a)
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Deep Q LearningDeep Q-Learning
wt+1 = wt + βt(Rt + γ max

a
Qνt (St+1, a) − Qw(St , At))∇Qw(St , At)

νt = w⌈t/T⌉T

Who are St , At , Rt+1, St+1? and thus to what corresponds Eb?

Simplified Deep Q-Learning
Use a behaviour policy b.
The current greedy plus exploration Q-policy can be used.

Neural Fitted-Q
Instead of a policy b, use a fix dataset D of St , At , Rt+1, St+1.
Several pass on the data can be made.

Deep Q-Learning
Use the current greedy plus exploration Q-policy to populate a FIFO buffer D.
Use random samples of the buffer Dt (more than one per interaction is OK).

D
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Deep Q LearningDeep Q-Learning
wt+1 = wt + βt(Rt + γ max

a
Qνt (St+1, a) − Qw(St , At))∇Qw(St , At)

νt = w⌈t/T⌉T

Plus tricks

Deep Q-Learning Tricks
Replay buffer
Double Q-Learning
Better Exploration
Advanced Return and Distributional
Network Architecture

Rainbow paper. . .
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Deep Q LearningReplay Buffer

Replay Buffer
Replace an expectation over real trajectories by an empirical average over past
(short) sub-trajectories stored in a replay buffer.
The empirical average corresponds to uniform sampling.
If the policy is changing across time, we should use a importance sampling
correction to be faithful with the theory. . .
Not necessary for one-step Q learning but required for most of the other methods
where replay buffer is used.
Often no correction in practice if the policies used in the buffer are closed to the
current one.
Prioritized sweeping variant possible. . .

Buffer can be constructed in parallel of the learning part.
Only requires to transmit the current greedy plus exploration Q-policy.
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Deep Q LearningDouble Q-Learning
Q-Learning and overestimation

Target: Rs,a + γ maxa′ Qw(s ′, a′)
Approximation issue: Qw(s ′, a′) ∼ Q(s, a) + ϵ(s, a)
Consequence: E[maxa Qw(St , a)] ≥ max (Q(s, a) + E[ϵ(s, a)])

Double Q-Learning with two Q functions: Qw1 and Qw2

Used in a crossed way for the target of Qwi :
Rs,a + γQwi′ (s

′, argmax
a′

Qwi (s ′, a′))

Mitigates the bias.

Clipped Q-Learning with several Q functions: Qwi

Used in a pessimistic way for the target of Qwi :
Rs,a + γ min

i ′
Qwi′ (s

′, argmax
a′

Qwi (s ′, a′))

Seems even more efficient. 54
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Continuous ActionsContinuous Action
Case (almost) not yet covered in the lectures.
Most complex theoretical extension.

Prediction
No algorithmic issue if one can sample π.
Off-policy can be considered under a domination assumption.

Planning
Main issue is the argmax of the greedy policy (or the sampling of Gibbs policy).
May be impossible to compute.
Possible if the parametrization of Q with respect to a is simple (e.g. explicit
quadratic dependency in a).
An alternative could be to approximate the argmax operator, or to learn how to
approximate the argmax directly, which is very close to approximating directly the
policy itself. . .
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