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RL: What Are We Going To See?

Operations Research and MDP.

Reinforcement learning and interactions.

More tabular reinforcement learning.

Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View




Operations Research and MDP

How to find the best policy knowing the MDP?
@ Is there an optimal policy?

@ How to estimate it numerically?

Finite states/actions space assumption (tabular setting).

Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.



Reinforcement Learning and Interactions

How to find the best policy not knowing the MDP?

@ How to interact with the environment to learn a good policy?

@ Can we use a Monte Carlo strategy outside the episodic setting?

@ How to update value functions after each interaction?

@ Focus on stochastic methods using tabular value functions (Q learning,
SARSA. ..)
@ Policy deduced by a statewise optimization of the value function over the actions.



More Tabular Reinforcement Learning

Is there a gain to wait more than one step before updating?
@ Can we interact with a different policy than the one we are estimating?
@ Can we use an estimated model to plan?

@ Can we plan in real-time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).



Reinforcement and Approximation of Value Functions

How to Deal with a Large/Infinite states/action space?

How to approximate value functions?

@ How to estimate good approximation of value functions?

@ Finite action space setting.
@ Stochastic algorithm (Deep Q Learning...).
@ Policy deduced by a statewise optimization of the value function over the actions.



Actor /Critic: a Policy Point of View

Could We Directly Parameterized the Policy?

@ How to parameterize a policy?

@ How to optimize this policy?

@ Can we combine parametric policy and approximated value function?

e State Of The Art Algorithms (DPG,PPO, SAC...)



Outline

@ Policy Gradient Theorems

© Monte Carlo Based Policy Gradient
© Actor / Critic Principle

@ 3 SOTA Algorithms

© References




Policy Point of View

Policy Point of View

@ Optimize policy directely instead of deriving it from a value function.
@ Avoid the argmax operator.
@ Most natural POV?

@ Pontryagin vs Hamilton-Jacobi(-Bellman) in control!




O Utl | ne Policy Gradient Theorems

@ Policy Gradient Theorems
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POl |Cy an d Goa | Policy Gradient Theorems 4

Sl = S ()wr(s)

@ Target used to define the linear programming formulation of an optimal policy in
the tabular setting.

@ 4 can be the initial distribution of the states (independent of ). ..

@ but may also depends on 7 (for instance the associated stationary measure)

@ Other choices will appear.

e Goal: optimize J,(7) in 7!
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Pa ra metrIC POl ICy Policy Gradient Theorems

hg(a,s)
% (softmax)
mo(als) = Phys)(a)  (parametric conditional model)

1) (deterministic)

Parametric Policy

@ Restriction of the set of policy to a parametrized one.
@ Most classical parametrizations:

e Soft-max with a preference function hy(a, s),
o Parametric conditional model with parameter hy(s)

To be useful need to be able to sample the distribution.

hg: from linear model to deep learning. . .

Most of our result will assume that my(als) is differentiable with respect to 6.

@ Deterministic policies will be considered with a different analysis.
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Episodic Setting: Gradient of Expected Returns ety o Themems K
VG~ b, Ve
] = f x V@:‘

Vﬂe(s) = EWB[G0|50 = 5]

(Til Vlog Wg(At]St)) Go

t=0

Expected Returns

@ Rely on v, (s) = ZPW (7]S0 = s) Go(7) and

VP, (TS0 = s) = Py, (7]|So = 5) VIog P, (7|So = 5)
= Py, (7|50 = 5) Y (Vlog mo(Ac|St) + VP(Ret1, Seva|St, Ar))

t

= Pr,y (7|50 = 5) 3 Wlogmp(A¢|S:)
t

VoVe,(s) = Eg, So=s

Episodic

@ In an episodic setting, any trajectory 7 ends at a finite time T..
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EpISOdIC Settlng POIICy Gradlent Theorem Policy Gradient Theorems /'%‘;

Jo(79) ZIP’ (So = 5) Viry ()
L 7 ML
| )

Vo(me) = Z V log mo(A¢|St)

t=0

Policy Gradient Theorem

o Natural w: initial state distribution.

@ Gradient is an expectation: MC type algorithm. ..

@ Can be interpreted as the gradient of a the maximum likelihood of the actions
weighted by the return.

@ Favors good actions over bad ones.
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Baseline and Variance Reduction Policy Gradient Theorems /X

Juo(m9) = D_P(So = 5) v, (s)

V(7o) = Er, (TTZ_lv log 71'(9(’4t|5t)> (Go — b)]

Variance Reduction and Baseline
@ The previous formulae are valid if one replace Gy by any function of 7.

@ For any constant b, this leads to

VE,,[b] =0=E,, {(TTZ_:I V log 7T9(At|5t)) b]

P O

©

@ Optimal value for 2
2 2 - —

b= Ex, | (S5 Viogmo(AlS))” Go| /Ery | (ST25" Vlogma(4dS0)’] =

@ Most used value b =E,[Go]. 15




G rad Ient(S) Of EXpeCted Retu rn Policy Gradient Theorems

Vg (5) = By [ 7' Re|So = ]

s) = ;VfEm th V log we(At,|5t,)> R,

t'=0

SOIS]

=> E,,

tl

=3 AE,,, [V log m9(Ar| St )Gy (Ser, Arr)|So = s]
tl

V log my(Aw|Se) (Z’Y ) 1So =5

t>t

= ZV Er, | Viog mo(Ar|St) (Gry (Str, Aer) — Vo (Ser)) [So = s

aﬁe( A

From Returns to Value Functions
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@ Action point of view and use of value functions.




M ore G rad ient(S) Policy Gradient Theorems

Vvﬂa (5) = Z'ytlEﬂ'e [v log 7"'G(At’|5t/)q7r9(5t’aAt/)’SO = 5]

tl
= 3" AYEr, [V log mo(Av|Ser)an, (Ser, Av)|So = s
tl

= Z (Z V' Pr, (St = 5'|So = s)) <Z mg(als )V log mo(als’) qr, (s, a))
=> (Z VP, (St = §'|So = s)) <Z mg(als’ )V log mp(als’)an, (s, a))

Focus on states
@ Even more stochastic gradients!
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POl |Cy G rad Ient(S) Policy Gradient Theorems 4

Juo(T6) ZMO )V (S
V() Z <ZV (St =5 ) (Z o(a|s)V log mo(als)qx, (s, a)>
=3 (S0P (5= 9)) (S mlale) o m(als) (5 2) v 2)

ed

Discounted Setting

@ Average (discounted) return from the beginning.

@ Focus on early steps in discounted setting. . .

5 Episodic / Disco



POl |Cy I m prOVGment I_em ma Policy Gradient Theorems 9

) = ) = X5 Ba(5, = ) (Z( (a|s>—w(a|s>>qw(s,a>)
- Z;m,(st ) <Z (v (als) — 7(al3)) (5. a))
_

@ By construction, if S; is a trajectory using policy 7'
Ve (Se) — v (Se) = Z( '(alSe) — m(alSt)) Gx(St, a) + ZW (alst) (r(St: @) — g (St, )
= Z "(alse) — m(alSt)) v (St, @) + Er [Vier (Se1) — Ve (Se1)1 St

@ Discounted settlng shortcut
Vel — Ve = Iy —|—fyP7r/v7r, —re —YP Ve =1y — e+ (P’Tl — P”) Vi —|—fyP7r (Vs — Vi)

Var — v = (I —yP™) 71 (rﬂ/ —rety (P”/ - P”) vﬁ>
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Approximate Policy Improvement Lemma

Policy Gradient Theorems 4

Juo(T') = Juo(m) = DD ' Pr(Se = ) (Z (7'(als) — m(als)) ax(s, a)) |

(St = 5) —Bo(S: = 5)) (Z (w'(als) — w(als)) ax(s. a)) '

a

27
S @y mex I Cle) m(s)[1 max|ax(s, 2)|

Approximate Policy Improvement Lemma

o If maxg ||7/(-|s) — 7(|s)|1 < e
Po(St=5)=(1—¢€)Pr(St =5) + (1 — (1 — €)")Pristake(St = 5)
= P (St =5) —Pr(Se = 5) <2(1 — (1 — €)*) < 2et

Discounted

N
(=)



Approximate Policy Improvement Lemma Policy Gradient Therems 2K

Jio(®) = Juo(7) = 3 S Pa(S: = 5) (Z (w'(als) — w(als)) an(s, a)) |

2y
< (1—~)2 max 17 (-|s) = 7 (-Is)II2 max |ax(s, a)|

Approximate Policy Improvement Lemma and Policy Gradient Theorem

o Let 7’ = To+p and
o 7o n(als) — mo(als) = me(als)(V log mo(als), h) + O(||Al|)
o [[mo+n(-|s) = mo(:[s)ll2 < ||l max, ||V log mo(als)I| + O([[hl?)
@ Implies Policy Gradient Theorem:
Juo(ﬂ'e—l-h)

= Jyuo(mo +eryf[@ﬂ9 (St =) (Zm«; als)(V log my(s, a) a,bgs a ) + O(J|hl1?)

4

O
(O]
=
c
>
O
O
=2
)

N
[y


Erwan LE PENNEC




O Utl | ne Monte Carlo Based Policy

Gradient

© Monte Carlo Based Policy Gradient
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Monte CaI’IO ApproaCh Monte Carlo Based Policy

Gradient

Gt — Z Rt+1

t'>t

Qi (s,a) = E[G;|S: = s, A = 4]

Monte Carlo
@ Replace every return by an empirical estimate along episodes.

@ Need to wait until the end of the episods.

Episodic

N
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REINFORCE: Monte Carlo Based Policy Gradient X

Gradient

JMO(WQ) = ZP(SO = 5) Vﬁe(s)
(TTZ_lngm(AJSt)) Go
=) (Z P, (S: = s)) <Z mo(als)V log ma(als) g, (s, a)>

VJ#O(T‘-G) =E 0

t

T,—1
V(7o) = (Z V log m(A: |5t)) or V() ZVIogﬂg(A 15:) G
_ O
o
e Plain MC (SGD) algorithm. .%
@ Need to wait until the end of the episods. L
e Convergence guarantees (even in off-line setting with importance sampling). 24




REINFORCE with Baseline

( Y Viog m)(At]St)) (Go — b)]

t=0

= 25: <zt: P, (S5 = s)) (23: mo(als)V log ma(als) (gx, (s, a) — b(s)))

T o) = (nzlwogm(/\ |st)) (Go— b)

or V() ZVlOgﬂe(A |5¢) (Ge — b(St))

VJNO(T(—Q) =

REINFORCE with baseline

@ Several choices for b. ..

@ and for b(s) which can be any function (a crude estimate of V; (s) for instance)!

Episodic

e Convergence guarantees (even in off-line setting with importance sampling).
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Discounted REINFORCE?

Gradient

VJNO(T(—Q) =K

( Y Viog m)(At]St)> (Go — b)

t=0

= ES: <zt: VP (S = s)) (23: mo(als)V log my(als) (gr, (s, a) — b(s)

—

T o) = (TTZlWOgWe(A |st)) (Go— b)

or VJMO 7T9 Z’ytv |Og W@(A ‘St) (Gt - b(st))

Discounted REINFORCE

@ Can be defined. . .

@ but still requires an episodic setting for the discounted return G; to be computed.

Discounted? / Episodi

N
(=)}



D |SCOU nted MeaSU I’e7 Monte Carlo Based Policy 4

Gradient

Vdo(m9) = D" 7'V log me(Ac|S:) (G: — b(S))

t

— 1
— VJHW (7]'9) = ﬁv |Og W@(Atlst) (Gt' — b(St))?

Discounted Measure?
@ Much less weights for later states if x corresponds to the initial state distribution!

@ Equal weights corresponds to an averaged probability independent t, which is well
defined if the initial distribution is the stationary distribution i, corresponding to
mg (it it exists).

@ Approximately true after a burning stage if we reach stationarity. . .

@ Better handled by the average return!

@ More on this later. ..

27



O Utl | ne Actor / Critic Principle

© Actor / Critic Principle
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ACtOI’/CI’ItIC Actor / Critic Principle

Actor: Parametric policy my used.

Critic: Q-value function Qu (-, -) approximating Qr,.

Critic follows the Actor, which is optimized using the Critic.

In Value Approximation, the Actor follows the Critic (through the argmax
operator).
@ In on-line methods, the Actor is used to interact with the environment.

29



ACtOI’/CI’ItIC Actor / Critic Principle

Z/LO V7r9
Vuo(me) = (ZVth (S: = s> (Z mo(als)V log ma(als)(Gr, (s, @) — Viry (56))

S

V() = 7' mo(Ae|S0)V log m(Ad| St) (qm (e, A ZTQ(aISt Gry (St A ))
t

~ ;#m(At‘St)V log 79 (A¢|St) (QW(St7At) — ZW4‘3|5t)Qw(5t, Ar)

@ Critic update: Stochastic Policy Gradient with plugin.

@ Actor update: any Q-value methods estimating gy, .

@ Requires a two-scales algorithm so that Q is always a good estimate of gr,.

« Episodic / Discounted “~—

@ Is this a real algorithm in a non-episodic setting?
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ACtOI’/CI’ItIC Actor / Critic Principle

Jyiny (T0) = 3 iy (8) Vi (5)

S

Vo (1) = 5 (51 = ) (S mle) 7 o o), 5,2) — v (5 2) |

/V\Jurg () =~ :

a

7o(Ae|St)V log mo(A¢| St) (QW(St, Ar) = 7(a]S:) Qu(S:, At)>

Critic update: Stochastic Policy Gradient with plugin.

Actor update: any Q-value methods estimating gy, .

Requires a two-scales algorithm so that Q,, is always a good estimate of qy,.

Require the existence of a stationary measure. .. and that this stationary measure
is reached quickly.

Much harder to do off-policy algorithm as the stationary measure is not known!

Discounted

®
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CI’ItIC |n ACtOI’/CrltIC Actor / Critic Principle

QW = qﬂ'g

On-line TD learning with interaction following 7.

Off-Policy TD learning is possible if the policy used for any action is stored.

Approximate off-policy TD learning is possible using a replay buffer providing 7y is
changing slowly.

May lead to 3 scales algorithm (Actor/Critic Target/Critic)

As mentionned in the previous slide, much harder to do off-line update for the
actor.
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OfF— Line Actor Actor / Critic Principle

Off-Line Actor

@ Idea proposed in 2012.
@ Key lemma in the paper
VJ,,(m0) Zu )Y mo(als)Vmg(als)gry(s, a)
a
turns out to be wrong!
@ Still used as a heuristic justification of many algorithms!

o Explicit formula for VJ|,(mg) can be obtained but much harder to use. ..
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O Utl ine 3 SOTA Algorithms

@ 3 SOTA Algorithms
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PPO: Minorize-Majorization Algorithm

3 SOTA Algorithms

Juo (') 2 Juo(m) + D 7P (St = s) (Z (7'(sla) — m(s[a)) ax(s, a))

a

2
s max| [ (1s) — m(-1s)[12 max |ax(s, 2)
T2

Ideal Minorize-Majorization Algorithm

o At step k, find 041 maximizing

Juo(T0|70,) ZZ’Y Prg, (St = 5) (Z (mo(s|a) — ma,(s]a)) ary, (s, a)>

a
2’y 5
_ W max | 7o(:|s) — o, (-]5)]|1 rr;gx |a7r9k (s,a)|

@ By construction, Jy,(mg, ;) > Juo(7e,)

O
(O]
+—
c
>
(@)
O
=2
)

e Sample efficient algorithm as the same trajectory can be (re)used in the
optimization.
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PPQO: Optimization

3 SOTA Algorithms

Juo(m0) 2 Jyo(m0,) + 3D 7 Py, (St = ) (Z (wo(s]a) — o, (s1)) ax,, (s, a>>
2
~ oy 1) = o, (1) max o, (5.2)

Optimization

@ Gradient descent is possible.

@ Gradient of the first term can be approximated using a critic by

SN APA(S: =s) (Z moVo(s|a)Ar,, (s, a))

@ Gradient of the second term more involved.

@ Simpler (TRPO like) strategy: optimize

3B, (S = 9) (Z (mo(s12) = o,(512)) am, 5. a))

under maxs [|ma(+|s) — mg, (:|s)||? < € and reduce e there is no gain.
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PPO Kl_ Relaxation 3 SOTA Algorithms
Jo(m0) 2 Juo(m) + 32 S 2B, (S = 9) (Z (ro(s12) — 0, (1)) ary, (5 a)))

o 27Rmax
(1—=79)?

TRPO/PPO Optimization

@ Replace the /1 norm by a KL divergence.

max KL(7o,(+[s), mo(:[5))

@ In practice, replace the max by an average and replace a ”‘;; by parameter § and
replace the a,, by an estimate A, .

@ PPO: Gradient descent of the relaxed goal.

@ TRPO: Constrained optimization.

@ Adaptive scheme to set (5.
@ Can be used with continuous action.
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P PO Cllpped Objective 3 SOTA Algorithms
S, (S = 9) (Z (sl min (Z208%a, (s.a).cip(1 - e TS 14 O, (5 >)>

7o, (s, a) 7o, (s, a)

Clipped Objective
@ Insight by (re)substracting -, 7y, (s|a)ag, (s, a) = 0:

>~ min ((mo(sla) = 7, (s, 3)) an,, (5, 3), clip(—€, 79(s]a) — 79, (5, ), €)ar,, (5, 3))

= chip(—mgk (s, a), mo(s|a) — ma, (s, a), emg, (s, @) an,, (s, a)

— max (0, —(mo(s|a) — 79, (5, 2))any, (5, 3) — €mo, (5, 3)|amy, (5, 2)])

ue;
@ First term amount to replace my by a policy 9
fig(als) = clip(ma, (als)(1 — €), mo(als), 7o, (als)(1 + €)) + nsmo, (als) =

where 7 is so that 7 is a probability for all s and ||7g(-,s) — 7, (-, 5)|l1 < € §

@ Second term: hinge loss type penalization of policy 7y penalizing bad actions. ) Q
@ Very efficient for discrete actions. 38



PPO: Stationary Objective

3 SOTA Algorithms

a

ZIP’ﬂGk(St =s) (Z 7o, (s|a) min < mo(s]a) aﬂek(s, a),clip(l —e, m(sa))’ 1+ e)aﬂgk (s, a)))

D Pry, (5 =59) <Z (mo(s|a) — o, (s]a)) ax,, (s, a)) — BmaxKL(mo,(-[s), 7o ("[5))

. 7o, (s, a) 7o, (s, a

Stationary Objective

@ Amount to replace J,,,(7) by J,.(7)

@ Most common implementation of PPO. ..

@ But no way to justify it mathematically!

@ May explain the (possible) instabilities of PPO.
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DPG: Deterministic Policy Gradient 3 SOTA Algorithms

Juo(mp) = Z,uo( )Vr,(s) with deterministic policy my(als) = 1,—p,(s)

Juo (m0) Z Z'V 7Te = 5) V2q(St, ho(St))Vho(St)

Deterministic Policy Gradient

@ Deterministic policy replaced by a randomized one centered on hy(s) in the
interactions!

Critic trained with a TD variant of DQN.
Same formula by using a policy g = N(hg(s),o?Id) and letting o goes to 0.
Off-Policy as claimed?

Yes for the actor but no theoretical justification for the critic!

In practice, the buffer contains only samples using a policy close to the current
one. ..
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SAC: A New Goal

3 SOTA Algorithms

R: = R + AH(7(5:))

A Modified Reward
@ Modification of the reward to favor high entropy policy:

Rt — Rt aF AH(TF(St))
o Goal:

J(m) =E, lz v (R: + XH(W(St)))l
t
@ Soft value function implicitly defined as the fixed point of

T"qx(s,a) = rx(s,a) + Z ,0(5/‘5, a)VW(S,)

where vi(s,a) = Zﬂ(a]s) (g=(s, a) — log m(als))

a
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SAC: Policy Improvement and Optimal Policy 3 SOTA Algorthms

Ry = Ry + AH(7(S:))

A Modified Policy Improvement Lemma

@ Policy improvement rule:
*()s) —argmaxz (als) (q(s,a) — Alog((als)))

1
7" (als) o< exp(—1 (s, 2))
implies G+ (s, a) > Gx(s, a).

@ At convergence, J(7*) is optimal!

@ Convergence in the finite setting.

Discounted

~
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SAC: Parametrization

3 SOTA Algorithms
m~my and q(s,a) ~ Qu

e Fitted TD learning for Q:
w~argmin Y (R+Eq[vQw(S,a) — Mogmy(aS)] — Qu(S, A))°
(S,AR.S"eB
where the trajectory pieces are samples from a replay buffer and w is a slowdown
version of w (two-scales algorithm).

@ Online version rather than batch. ..

o Fitted KL for : _
6 ~ argmin Z KL(ma(:|S)| exp —AQW](S,)/Zw(S))
(S,A,R,S')eB

= Y Ey|5lom(als) - Qual)

(S,AR.S"eB
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© References
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