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RL: What Are We Going To See?
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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
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Operations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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Reinforcement Learning and Interactions
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How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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More Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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Reinforcement and Approximation of Value Functions
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How to Deal with a Large/Infinite states/action space?
How to approximate value functions?
How to estimate good approximation of value functions?

Finite action space setting.
Stochastic algorithm (Deep Q Learning. . . ).
Policy deduced by a statewise optimization of the value function over the actions.
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Actor/Critic: a Policy Point of View
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Could We Directly Parameterized the Policy?
How to parameterize a policy?
How to optimize this policy?
Can we combine parametric policy and approximated value function?

State Of The Art Algorithms (DPG,PPO, SAC. . . )
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Outline

1 Policy Gradient Theorems

2 Monte Carlo Based Policy Gradient

3 Actor / Critic Principle

4 3 SOTA Algorithms

5 References
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Policy Point of View
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Policy Point of View
Optimize policy directely instead of deriving it from a value function.
Avoid the argmax operator.
Most natural POV?

Pontryagin vs Hamilton-Jacobi(-Bellman) in control!
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Policy Gradient TheoremsOutline

1 Policy Gradient Theorems

2 Monte Carlo Based Policy Gradient

3 Actor / Critic Principle

4 3 SOTA Algorithms

5 References
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Policy Gradient TheoremsPolicy and Goal

Jµ(π) =
∑
s

µ(s)vπ(s)

Goal: average expected return over the states
Target used to define the linear programming formulation of an optimal policy in
the tabular setting.
µ can be the initial distribution of the states (independent of π). . .
but may also depends on π (for instance the associated stationary measure)
Other choices will appear.

Goal: optimize Jµ(π) in π!
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Policy Gradient TheoremsParametric Policy

πθ(a|s) =


ehθ(a,s)∑
a′ ehθ(a,s′) (softmax)

Phθ(s)(a) (parametric conditional model)
1a==hθ(s) (deterministic)

Parametric Policy
Restriction of the set of policy to a parametrized one.
Most classical parametrizations:

Soft-max with a preference function hθ(a, s),
Parametric conditional model with parameter hθ(s)

To be useful need to be able to sample the distribution.
hθ: from linear model to deep learning. . .
Most of our result will assume that πθ(a|s) is differentiable with respect to θ.

Deterministic policies will be considered with a different analysis. 12



Policy Gradient TheoremsEpisodic Setting: Gradient of Expected Returns

vπθ
(s) = Eπθ

[G0|S0 = s]

∇θvπθ
(s) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
G0

∣∣∣∣∣∣S0 = s


Expected Returns
Rely on vπθ

(s) =
∑

τ

Pπθ
(τ |S0 = s) G0(τ) and

∇Pπθ
(τ |S0 = s) = Pπθ

(τ |S0 = s) ∇ logPπθ
(τ |S0 = s)

= Pπθ
(τ |S0 = s)

∑
t

(∇ log πθ(At |St) + ∇p(Rt+1, St+1|St , At))

= Pπθ
(τ |S0 = s)

∑
t

∇ log πθ(At |St)

In an episodic setting, any trajectory τ ends at a finite time Tτ . Ep
iso

di
c
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Policy Gradient TheoremsEpisodic Setting: Policy Gradient Theorem

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
G0


Policy Gradient Theorem

Natural µ: initial state distribution.
Gradient is an expectation: MC type algorithm. . .

Can be interpreted as the gradient of a the maximum likelihood of the actions
weighted by the return.
Favors good actions over bad ones.

Ep
iso

di
c

14



Policy Gradient TheoremsBaseline and Variance Reduction

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
 (G0 − b)


Variance Reduction and Baseline

The previous formulae are valid if one replace G0 by any function of τ .
For any constant b, this leads to

∇Eπθ
[b] = 0 = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)

 b


Optimal value for
b = Eπθ

[(∑Tτ −1
t=0 ∇ log πθ(At |St)

)2
G0

]
/Eπθ

[(∑Tτ −1
t=0 ∇ log πθ(At |St)

)2
]

Most used value b = Eπθ
[G0].

Ep
iso

di
c
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Policy Gradient TheoremsGradient(s) of Expected Return

vπθ
(s) = Eπθ

[∑
γtRt

∣∣∣S0 = s
]

∇vπθ
(s) =

∑
t

γtEπθ

[( t−1∑
t′=0

∇ log πθ(At′ |St′)
)

Rt

∣∣∣∣∣S0 = s
]

=
∑
t′

Eπθ

∇ log πθ(At′ |St′)
∑

t≥t′
γtRt

 |S0 = s


=
∑
t′

γt′Eπθ
[∇ log πθ(At′ |St′)qπθ

(St′ , At′)|S0 = s]

=
∑
t′

γt′Eπθ

∇ log πθ(At′|St′) (qπθ
(St′ , At′) − vπθ

(St′))︸ ︷︷ ︸
aπθ

(St′ ,At′ )

|S0 = s


Expected Returns

Several formulas of stochastic gradients!

Ep
iso

di
c

/
D

isc
ou
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ed
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Policy Gradient TheoremsMore Gradient(s)

∇vπθ
(s) =

∑
t′

γt′
Eπθ

[∇ log πθ(At′ |St′)qπθ
(St′ , At′)|S0 = s]

=
∑
t′

γt′
Eπθ

[∇ log πθ(At′ |St′)aπθ
(St′ , At′)|S0 = s]

=
∑

s

(∑
t

γtPπθ
(St = s|S0 = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)qπθ
(s, a)

)

=
∑

s

(∑
t

γtPπθ
(St = s|S0 = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)aπθ
(s, a)

)

Focus on states
Even more stochastic gradients!

Ep
iso

di
c

/
D

isc
ou

nt
ed
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Policy Gradient TheoremsPolicy Gradient(s)

J(µ0)(πθ) =
∑

s
µ0(s)vπθ

(s)

∇Jµ0(πθ) =
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)qπθ
(s, a)

)

=
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a) − vπθ

(s, a))
)

Discounted Setting
Average (discounted) return from the beginning.
Focus on early steps in discounted setting. . .

Ep
iso

di
c

/
D

isc
ou

nt
ed
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Policy Gradient TheoremsPolicy Improvement Lemma

Jµ0(π′) − Jµ0(π) =
∑

t
γtPπ′(St = s)

(∑
a

(π′(a|s) − π(a|s)) qπ(s, a)
)

=
∑

t
γtPπ′(St = s)

(∑
a

(π′(a|s) − π(a|s)) aπ(s, a)
)

Proof
By construction, if St is a trajectory using policy π′:

vπ′(St) − vπ(St) =
∑

a
(π′(a|St) − π(a|St)) qπ(St , a) +

∑
a

π′(a|st) (qπ′(St , a) − qπ(St , a))

=
∑

a
(π′(a|st) − π(a|St)) vπ(St , a) + Eπ′ [Vvπ′(St+1) − vπ′(St+1)|St ]

Discounted setting shortcut
vπ′ − vπ = rπ′ + γPπ′

vπ′ − rπ − γPπvπ = rπ′ − rπ + γ
(

Pπ′
− Pπ

)
vπ + γPπ′

(vπ′ − vπ)

vπ′ − vπ = (I − γPπ′
)−1

(
rπ′ − rπ + γ

(
Pπ′

− Pπ
)

vπ

) Ep
iso

di
c

/
D

isc
ou

nt
ed
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Policy Gradient TheoremsApproximate Policy Improvement Lemma
∣∣∣∣∣Jµ0(π′) − Jµ0(π) −

∑
t

γtPπ(St = s)
(∑

a

(
π′(a|s) − π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
=
∣∣∣∣∣∑t

γt (Pπ′(St = s) − Pπ(St = s))
(∑

a

(
π′(a|s) − π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
≤ 2γ

(1 − γ)2 max
s

∥π′(·|s) − π(·|s)∥2
1 max

s,a
|aπ(s, a)|

Approximate Policy Improvement Lemma
If maxs ∥π′(·|s) − π(·|s)∥1 ≤ ϵ

Pπ′(St = s) = (1 − ϵ)tPπ(St = s) + (1 − (1 − ϵ)t)Pmistake(St = s)
→ |Pπ′(St = s) − Pπ(St = s)| ≤ 2(1 − (1 − ϵ)t) ≤ 2ϵt∑

t 2γtt = 2γ
(1−γ)2

D
isc

ou
nt

ed
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Policy Gradient TheoremsApproximate Policy Improvement Lemma
∣∣∣∣∣Jµ0(π′) − Jµ0(π) −

∑
t

γtPπ(St = s)
(∑

a

(
π′(a|s) − π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
≤ 2γ

(1 − γ)2 max
s

∥π′(·|s) − π(·|s)∥2
1 max

s,a
|aπ(s, a)|

Approximate Policy Improvement Lemma and Policy Gradient Theorem
Let π′ = πθ+h and πθ

πθ+h(a|s) − πθ(a|s) = πθ(a|s)⟨∇ log πθ(a|s), h⟩ + O(∥h∥2)
∥πθ+h(·|s) − πθ(·|s)∥1 ≤ ∥h∥ maxa ∥∇ log πθ(a|s)∥ + O(∥h∥2)

Implies Policy Gradient Theorem:
Jµ0(πθ+h)

= Jµ0(πθ) +
∑

t
γtPπθ

(St = s)
(∑

a
πθ(a|s)⟨∇ log πθ(s, a), h⟩aπ(s, a)

)
+ O(∥h∥2)

D
isc

ou
nt

ed
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Monte Carlo Based Policy
Gradient

Outline

1 Policy Gradient Theorems

2 Monte Carlo Based Policy Gradient

3 Actor / Critic Principle

4 3 SOTA Algorithms
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Monte Carlo Based Policy
Gradient

Monte Carlo Approach
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Ãt
Model InteractionModel Replay BufferReplay Buffer
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Gt =
∑
t ′≥t

Rt+1

Qt,πθ
(s, a) = E[Gt |St = s, At = a]

Monte Carlo
Replace every return by an empirical estimate along episodes.
Need to wait until the end of the episods.

Ep
iso

di
c

23



Monte Carlo Based Policy
Gradient

REINFORCE: Monte Carlo Based Policy Gradient

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
G0


=
∑

s

(∑
t
Pπθ

(St = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s)qπθ

(s, a)
)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

G0 or ∇̂Jµ0(πθ) =
∑

t
∇ log πθ(At |St)Gt

REINFORCE
Plain MC (SGD) algorithm.
Need to wait until the end of the episods.
Convergence guarantees (even in off-line setting with importance sampling).

Ep
iso

di
c
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Monte Carlo Based Policy
Gradient

REINFORCE with Baseline

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
 (G0 − b)


=
∑

s

(∑
t
Pπθ

(St = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s) (qπθ

(s, a) − b(s))
)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

 (G0 − b)

or ∇̂Jµ0(πθ) =
∑

t
∇ log πθ(At |St) (Gt − b(St))

REINFORCE with baseline
Several choices for b. . .
and for b(s) which can be any function (a crude estimate of Vt,π(s) for instance)!
Convergence guarantees (even in off-line setting with importance sampling). Ep

iso
di

c
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Monte Carlo Based Policy
Gradient

Discounted REINFORCE?

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0

∇ log πθ(At |St)
 (G0 − b)


=
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s) (qπθ
(s, a) − b(s))

)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

 (G0 − b)

or ∇̂Jµ0(πθ) =
∑

t
γt∇ log πθ(At |St) (Gt − b(St))

Discounted REINFORCE
Can be defined. . .
but still requires an episodic setting for the discounted return Gt to be computed.

D
isc

ou
nt

ed
?

/
Ep

iso
di

c
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Monte Carlo Based Policy
Gradient

Discounted Measure?

∇̂Jµ0(πθ) =
∑

t
γt∇ log πθ(At |St) (Gt − b(St))

−→ ∇̂Jµπθ
(πθ) = 1

1 − γ
∇ log πθ(At |St) (Gt − b(St))?

Discounted Measure?
Much less weights for later states!
Probability independent of t if the initial distribution is the stationary distribution
µπθ

corresponding to πθ (it it exists).
Approximately true after a burning stage if we reach stationarity. . .
Better handled by the average return!

More on this later. . .
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Actor / Critic PrincipleOutline
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Actor / Critic PrincipleActor/Critic
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Actor/Critic
Actor: Parametric policy πθ used.
Critic: Q-value function Qw(·, ·) approximating Qπθ

.
Critic follows the Actor, which is optimized using the Critic.

In Value Approximation, the Actor follows the Critic (through the argmax
operator).
In on-line methods, the Actor is used to interact with the environment.

29



Actor / Critic PrincipleActor/Critic
J(µ0)(πθ) =

∑
s

µ0(s)vπθ
(s)

∇Jµ0(πθ) =
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a) − vπθ

(s, a))
)

∇̂Jµ0(πθ) =
∑

t
γtπθ(At |St)∇ log πθ(At |St)

(
qπθ

(St , At) −
∑

a
π(a|St)qπθ

(St , At)
)

≃
∑

t
γtπθ(At |St)∇ log πθ(At |St)

(
Qw(St , At) −

∑
a

π(a|St)Qw(St , At)
)

Actor/Critic
Critic update: Stochastic Policy Gradient with plugin.
Actor update: any Q-value methods estimating qπθ

.
Requires a two-scales algorithm so that Qw is always a good estimate of qπθ

.

Is this a real algorithm in a non-episodic setting?

Ep
iso

di
c

/
D

isc
ou

nt
ed
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Actor / Critic PrincipleActor/Critic
Jµπθ

(πθ) =
∑

s
µπθ

(s)vπθ
(s)

∇Jµπθ
(πθ) =

∑
s

1
1 − γ

Pπθ
(St = s)

(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a) − vπθ

(s, a))
)

∇̂Jµπθ
(πθ) ≃ 1

1 − γ
πθ(At |St)∇ log πθ(At |St)

(
Qw(St , At) −

∑
a

π(a|St)Qw(St , At)
)

Actor/Critic
Critic update: Stochastic Policy Gradient with plugin.
Actor update: any Q-value methods estimating qπθ

.
Requires a two-scales algorithm so that Qw is always a good estimate of qπθ

.

Require the existence of a stationary measure. . . and that this stationary measure
is reached quickly.
Much harder to do off-policy algorithm as the stationary measure is not known!

D
isc

ou
nt

ed
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Actor / Critic PrincipleCritic in Actor/Critic

Qw ≃ qπθ

Critic
On-line TD learning with interaction following πθ.
Off-Policy TD learning is possible if the policy used for any action is stored.
Approximate off-policy TD learning is possible using a replay buffer providing πθ is
changing slowly.

May lead to 3 scales algorithm (Actor/Critic Target/Critic)
As mentionned in the previous slide, much harder to do off-line update for the
actor.

D
isc

ou
nt

ed
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Actor / Critic PrincipleOff-Line Actor

J ′
µ(π) =

∑
s

µ(s)vπ(s)

Off-Line Actor
Idea proposed in 2012.
Key lemma in the paper

∇J ′
µ(πθ) ≃

∑
s

µ(s)
∑

a
πθ(a|s)∇πθ(a|s)qπθ

(s, a)

turns out to be wrong!
Still used as a heuristic justification of many algorithms!
Explicit formula for ∇J ′

µ(πθ) can be obtained but much harder to use. . .
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3 SOTA AlgorithmsOutline

1 Policy Gradient Theorems
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3 SOTA AlgorithmsPPO: Minorize-Majorization Algorithm

Jµ0(π′) ≥ Jµ0(π) +
∑

t
γtPπ(St = s)

(∑
a

(
π′(s|a) − π(s|a)

)
aπ(s, a)

)

− 2γ

(1 − γ)2 max
s

∥π′(·|s) − π(·|s)∥2
1 max

s,a
|aπ(s, a)|

Ideal Minorize-Majorization Algorithm
At step k, find θk+1 maximizing

Jµ0(πθ|πθk ) =
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a) − πθk (s|a)) aπθk
(s, a)

)

− 2γ

(1 − γ)2 max
s

∥πθ(·|s) − πθk (·|s)∥2
1 max

s,a
|aπθk

(s, a)|

By construction, Jµ0(πθk+1) ≥ Jµ0(πθk )

Sample efficient algorithm as the same trajectory can be (re)used in the
optimization.

D
isc

ou
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3 SOTA AlgorithmsPPO: Optimization

Jµ0(πθ) ≥ Jµ0(πθk ) +
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a) − πθk (s|a)) aπθk
(s, a)

)

− 2γ

(1 − γ)2 max
s

∥πθ(·|s) − πθk (·|s)∥2
1 max

s,a
|aπθk

(s, a)|

Optimization
Gradient descent is possible.
Gradient of the first term can be approximated using a critic by∑

s

∑
t

γtPπ(St = s)
(∑

a
πθ∇πθ(s|a)Aπθk

(s, a)
)

Gradient of the second term more involved.

Simpler (TRPO like) strategy: optimize∑
s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a) − πθk (s|a)) aπθk
(s, a)

)
under maxs ∥πθ(·|s) − πθk (·|s)∥2

1 ≤ ϵ and reduce ϵ there is no gain.
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3 SOTA AlgorithmsPPO: KL Relaxation

Jµ0(πθ) ≥ Jµ0(πθk ) +
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a) − πθk (s|a)) aπθk
(s, a))

)

− 2γRmax
(1 − γ)2 max

s
KL(πθk (·|s), πθ(·|s))

TRPO/PPO Optimization
Replace the ℓ1 norm by a KL divergence.
In practice, replace the max by an average and replace 2γRmax

(1−γ)3 by parameter β and
replace the aπk by an estimate Aπk .
PPO: Gradient descent of the relaxed goal.
TRPO: Constrained optimization.

Adaptive scheme to set β.
Can be used with continuous action.
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3 SOTA AlgorithmsPPO: Clipped Objective∑
s

∑
t

γtPπθk
(St = s)

(∑
a

πθk (s|a) min
(

πθ(s|a)
πθk (s, a)aπθk

(s, a), clip(1 − ϵ,
πθ(s|a)
πθk (s, a) , 1 + ϵ)aπθk

(s, a)
))

Clipped Objective
Insight by (re)substracting

∑
a πθk (s|a)aθk (s, a) = 0:∑

a
min

(
(πθ(s|a) − πθk (s, a)) aπθk

(s, a), clip(−ϵ, πθ(s|a) − πθk (s, a), ϵ)aπθk
(s, a)

)
=
∑

a
clip(−ϵπθk (s, a), πθ(s|a) − πθk (s, a), ϵπθk (s, a))aπθk

(s, a)

− max
(
0, −(πθ(s|a) − πθk (s, a))aπθk

(s, a) − ϵπθk (s, a)|aπθk
(s, a)|

)
First term amount to replace πθ by a policy

π̃θ(a|s) = clip(πθk (a|s)(1 − ϵ), πθ(a|s), πθk (a|s)(1 + ϵ)) + ηsπθk (a|s)
where η is so that π̃ is a probability for all s and ∥π̃θ(·, s) − πθk (·, s)∥1 ≤ ϵ

Second term: hinge loss type penalization of policy πθ penalizing bad actions.

Very efficient for discrete actions.
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3 SOTA AlgorithmsPPO: Stationary Objective

∑
s,t

Pπθk
(St = s)

(∑
a

(πθ(s|a) − πθk (s|a)) aπθk
(s, a)

)
− β max

s
KL(πθk (·|s), πθ(·|s))

∑
s,t

Pπθk
(St = s)

(∑
a

πθk (s|a) min
(

πθ(s|a)
πθk (s, a)aπθk

(s, a), clip(1 − ϵ,
πθ(s|a)
πθk (s, a) , 1 + ϵ)aπθk

(s, a)
))

Stationary Objective
Amount to replace Jµ0(π) by Jµπ (π)
Most common implementation of PPO. . .
But no way to justify it mathematically!
May explain the (possible) instabilities of PPO.
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3 SOTA AlgorithmsDPG: Deterministic Policy Gradient

Jµ0(πθ) =
∑

s
µ0(s)vπθ

(s) with deterministic policy πθ(a|s) = 1a==hθ(s)

∇Jµ0(πθ) =
∑

s

∑
t

γtPπθ
(St = s) ∇aq(St , hθ(St))∇hθ(St)

Deterministic Policy Gradient
Deterministic policy replaced by a randomized one centered on hθ(s) in the
interactions!.
Critic trained with a TD variant of DQN.
Same formula by using a policy πθ = N(hθ(s), σ2Id) and letting σ goes to 0.
Off-Policy as claimed?
Yes for the actor but no theoretical justification for the critic!
In practice, the buffer contains only samples using a policy close to the current
one. . . D
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3 SOTA AlgorithmsSAC: A New Goal

Rt → Rt + λH(π(St))

A Modified Reward
Modification of the reward to favor high entropy policy:

Rt → Rt + λH(π(St))
Goal:

J(π) = Eπ

[∑
t

γt (Rt + λH(π(St)))
]

Soft value function implicitly defined as the fixed point of
T πqπ(s, a) = rπ(s, a) + γ

∑
s′

p(s ′|s, a)vπ(s ′)

where vπ(s, a) =
∑

a
π(a|s) (qπ(s, a) − log π(a|s))
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3 SOTA AlgorithmsSAC: Policy Improvement and Optimal Policy

Rt → Rt + λH(π(St))

A Modified Policy Improvement Lemma
Policy improvement rule:

π+(·|s) = argmax
π(·|s)

∑
a

π(a|s) (q(s, a) − λ log(π(a|s)))

π+(a|s) ∝ exp(− 1
λ

q(s, a))
implies Gπ+(s, a) ≥ Gπ(s, a).
At convergence, J(π⋆) is optimal!
Convergence in the finite setting.
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3 SOTA AlgorithmsSAC: Parametrization

π ∼ πθ and q(s, a) ∼ Qw

SAC Choices
Fitted TD learning for Q:

w ≃ argmin
∑

(S,A,R,S′)∈B

(
R + Eπθ

[
γQw(S ′, a) − λ log πθ(a|S ′)

]
− Qw(S, A)

)2
where the trajectory pieces are samples from a replay buffer and w is a slowdown
version of w (two-scales algorithm).
Online version rather than batch. . .
Fitted KL for π:

θ ≃ argmin
∑

(S,A,R,S′)∈B
KL(πθ(·|S)| exp −λQ[w ](S, )̇/Zw(S))

≃
∑

(S,A,R,S′)∈B
Eπθ

[ 1
λ

log πθ(a|S) − Qθ(a|s)
]

Plus tricks: double Q learning, adaptation of λ. . .
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