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Machine LearningMachine Learning
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A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Machine LearningObject Detection
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Task: say if an object is present or not in the image
Performance: number of errors
Experience: set of previously seen labeled images
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Machine LearningArticle Clustering
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An article clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles

7



Machine LearningA Robot that Learns
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Task: play football
Performance: score evolution
Experience:

past games
current environment and action outcome,
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Machine LearningThree Kinds of Learning
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Unsupervised Learning
Task:
Clustering/DR
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Supervised Learning
Task:
Prediction/Classification
Performance:
Average error
Experience:
Good Predictions
(Ground Truth)

Reinforcement Learning
Task:
Action
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous learning)
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Reinforcement LearningReinforcement Learning

Reinforcement Learning Setting
Env.: provides a reward and a new state for any action.
Agent policy π: choice of an action At from the state St .
Total reward: (discounted) sum of the rewards.

Questions
Policy evaluation: how to evaluate the expected reward of a policy knowing the
environment?
Planning: how to find the best policy knowing the environment?
Reinforcement Learning: how to find the best policy without knowing the
environment?
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MDPThe Agent-Environment Interface

MDP
At time step t ∈ N :

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Dynamic entirely defined by
P

(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)

Finite MDP: S, A and R are finite.
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MDPReturns and Episodes

Return
(Discounted) Return:

Gt =
T∑

t′=t+1
γt′−(t+1)Rt′

Recursive property
Gt = Rt+1 + γGt+1

Finiteness if |R| ≤ M

|Gt | ≤
{

(T − (t + 1))M if T <∞
M 1

1−γ otherwise
Not well defined if T =∞ and γ = 1.
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MDPPolicies and Value Functions

Policy and Value Functions
Policy: π(a|s)
Value function:

vπ(s) = Eπ [Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

Action value function:
qπ(s, a) = Eπ [Gt |St = s, At = a]

Two natural problems
Policy evaluation: compute vπ given π.
Planning: find π⋆ such that vπ⋆(s) ≥ vπ(s) for all s and π.

Those objects may not exist in general!
Can be traced back to the 50’s!
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DPPolicy Evaluation by Bellman Backup

Fixed Point Property
Bellman Equation

vπ(s) =
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]
= Tπ(vπ)(s)

Linear equation that can be solved.

Policy Evaluation by Dynamic Programming
Fixed point iterative algorithm: vk+1(s) = Tπ(vk)(s)

Converge if T <∞ or γ < 1.
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DPPlanning by Policy Improvement
Policy Improvement Property

If π′ is such that ∀s, qπ(s, π′(s)) ≥ vπ(s) then vπ′ ≥ vπ.

ϵ-greedy improvement among ϵ-policy: classical improvement degraded by picking
uniformly the action with probability ϵ

Policy Iteration Algorithm
Compute vπk

Greedy update:
πk+1(s) = argmax

a
qπk (s, a)

= argmax
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvπk (s ′)

)
If π′ = π after a greedy update vπk+1 = vπk = v∗.

Convergence in finite time in the finite setting.
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DPPlanning by Bellman Backup

Fixed Point Property
Bellman Equation

v∗(s) = max
a

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γv∗(s ′)

]
= T∗(v∗)(s)

Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming
Iterative algorithm: vk+1(s) = T∗(vk)(s)

Converge if T <∞ or γ < 1.
Amount to improve the policy after only one step of policy evaluation.
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DPPlanning by Bellman Backup
Q-value and enhancement

Q-value:

qπ(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ

∑
a′

π(a′|s ′)qπ(s ′, a′)
]

Easy policy enhancement: π′(s) = argmax
a

q(s, a)

Fixed Point Property
Bellman Equation

q∗(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ max

a′
q∗(s ′, a′)

]
= T∗(q∗)(s, a)

Linear programming problem that can be solved.
Policy Evaluation by Dynamic Programming

Iterative algorithm: qk+1(s, a) = T∗(qk)(s, a)
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DPGeneralized Policy Iteration

Generalized Policy Iteration
Consists of two simultaneous interacting processes:

one making a value function consistent with the current policy (policy evaluation)
one making the policy greedy with respect to the current value function (policy
improvement)

Stabilizes only if one reaches the optimal value/policy pair.
Asynchronous update are possible provided every state(/action) is visited infinitely
often.
Very efficient but requires the knowledge of the transition probabilities.
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RLReinforcement Learning

Reinforcement Learning - Sutton (98)
An agent takes actions in a sequential way, receives rewards from the environment
and tries to maximize his long-term (cumulative) reward.

Reinforcement Learning
MDP setting with cumulative reward.
Planning problem.
Environment known only through interaction, i.e. some sequences
· · · StAtRt+1St+1At+1 · · · .
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RLMonte Carlo
MC Methods

Back to vπ(s) = Eπ [Gt |St = s].
Monte Carlo:

Play several episodes using policy π.
Average the returns obtained after any state s.

Good theoretical properties provided every states are visited asymptotically
infinitely often.

Extensions
Extension to off-policy setting (behavior policy b ̸= target policy π) with
importance sampling.
Extension to planning with policy improvement steps

No theoretical results for the last case.
Need to wait until the end of an episode to update anything. . .
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RLBootstrap and TD Prediction

Bootstrap and TD
Rely on

vπ(s) = Tπvπ(s)
= E [Rt+1 + γvπ(St+1)|St = s]

Temporal Difference: stochastic approximation scheme
V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

Update occurs at each time step.
Can be proved to converge (under some assumption on α)!

Combine the best of Dynamic Programing and MC.
Can be written in term of Q:

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
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RLSARSA and Q Learning
How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)
Update Q following the current policy π

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
Update π by policy improvement.

May not converge if one use a greedy policy update

Q Learning: Planning by Bellman Backup (off-line)
Update Q following the behavior policy b

Q(St , At)← Q(St , At) + α
(
Rt+1 + γ max

a
Q(St+1, a)− Q(St , At)

)
No need to use importance sampling correction for depth 1 update.

Proof of convergence in both cases.
26



RLVariations

Depth
Number of steps in the update.

Width
Number of states/actions considered at each step.
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RLPlanning and Learning

Planning and Models
Planning can combine a model estimation (DP) and direct learning (RL).

Real Time Planning
Planning can be made online starting from the current state.

Curse of dimensionality: methods are hard to use when the cardinality of the
states and the actions are large!
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RLValue Function Approximation

Value Function Approximation
Idea: replace v(s) by a parametric v̂(s, w).
Issues:

Which approximation functions?
How to define the quality of the approximation?
How to estimate w?

Approximation functions
Any parametric (or kernel based) approximation could be used.
Most classical choice:

Linear approximation.
Deep Neural Nets. . .
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RLApproximation Quality

How define when v̂(·, w) is close to vπ (or v∗)

Prediction(/Control)
Prediction objective: ∑

s
µ(s)(vπ(s)− v̂(s, w))2

Bellman Residual: ∑
s

µ(s)(Tπ v̂(s, w)− v̂(s, w))2

or its projection. . .

Issue: Neither vπ or Tπ are known. . .
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RLOnline Gradient and Semi-Gradient
Online Prediction

SGD algorithm on w :
w t+1 = w t + α (vπ(St)− v̂(St , w))∇v̂(St , w)

MC approximation (still SGD):
w t+1 = w t + α (Gt − v̂(St , w))∇v̂(St , w)

TD approximation (not SGD anymore):
w t+1 = w t + α (Rt+1 + γv̂(St+1, w t)− v̂(St , w))∇v̂(St , w)

Deeper or wider scheme possible.

Online Control
SARSA-like algorithm:

Prediction step as previously with the current policy
w t+1 = w t + α (Rt+1 + γq̂(St+1, At+1, w)− q̂(St , At , w))∇q̂(St , At , w)

ϵ-greedy update of the current policy
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RLOffline Control with Approximation

Offline Control
Q-Learning like algorithm:

w t+1 = w t + α
(
Rt+1 + γ max

a
q̂(St+1, a, w)− q̂(St , At , w)

)
×∇q̂(St , At , w)

with an arbitrary policy b.
Deeper formulation using importance sampling possible.

Issue: Hard to make it converge in general!
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RLDeadly Triad

Sutton-Barto’s Deadly Triad
Function Approximation
Bootstrapping
Off-policy training

Stabilization Tricks
(Back to policy iteration),
Memory replay: sample from a set of episodes
Frozen Q: use the previous weights in the max
Clip/normalize rewards. . .
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RLActor-Critic
Other approach with a parametric policy.

Actor-Critic
Simultaneous parameterization of

the policy π by θ,
the value function s by w

Simultaneous update:
δt = Rt + γv̂(St+1, w)− v̂(St , w)

θt+1 = θt+1 + αδt
∇π(a|St , θ)
π(a|St , θ)

w t+1 = w t+1 + αδt∇v̂(St , w)

Online approach
Can be adapted to continuous actions.
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AlphaGoAlphaGo

AlphaGo
Enhanced MCTS technique using a Deep NN for both the value function and the
policy.
Rollout policy and initial value network by supervised learning on a huge database.
Enhancement of the value network using Actor/Critic RL on self-play.
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AlphaGoAlphaGo

AlphaGo Zero
No supervised initialization but only self-play.
Alternate

MCTS with a current policy.
Gradient descent toward the resulting MCTS policy

Much shorter training time and better performance!
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