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1 History Dependent or Markov Policies

Proposition 1 (Equivalence of History Dependent and Markov Policies). Let
7w be a stochastic history dependent policy. For each state so € S, there exists a
stochastic policy @' such that V™ (sg) = V™ (s0).

Proof. Let 7'(a¢|s:) = E [w(a¢|Ht)|St = s¢, S0 = Sg], we can prove by recursion
that

P (St =544 = at|50 = 50) =P (St =54, Ap = at|So = 50) .

This holds by definition for ¢ = 0. Now assume the property is true for ¢’ < ¢—1.
By construction,

P, (St = St‘SO = 50) = Z Z p(st‘st—la At—l)Pﬂ' (St—l = St—l,At—l = at—1|SO = 50)

St—1 At—1

= Z Z p(stlst—1, at—1)Prr (Se—1 = s¢—1, Ar—1 = ar—1]S0 = 50)

St—1 At—1

= Pﬂ— (St = St‘S() = SO) .
Hence,
Pﬂ—/ (St = Sy, At = (lt|80) = 7T/(G,t|5t)Pﬂ—l (St = St|SO = So)
=P, (At = (It|5t = 54,50 = SO)IPw (ST = 3t|SO = 30)
= ]P,T/ (St = St,AT = at|So = 80) .
It suffices then to notice that the quality criterion of m and 7’ depends on

only through respectively E [r(St, A¢)|So = so] or Ex [r(St, A¢)|So = so] which
are equals. O



2 Discounted Reward

2.1 Evaluation of a policy
Definition 1 (Value Function).

—+oo

Z’YthJrl

t=0

vr(s) =Eg

SQ = 81
+oo

= ZWtEw [Ri11]S0 = ]

t=0
Definition 2 (Bellman Operator).
Trv(s) = Er [Rls] + 7Y P (s']s) v(s')
Txv =1rp +vPrv

Proposition 2 (Value Function Characterization). Let 7 be a stationary Markov
policy, if 0 < v < 1 then v, is the only solution of v = Trv,

v =1y +vPv,
and vy = (Id — yP;) " try.

Proof. By definition, if v is a solution of v = T;v then (Id — yP;)v = rr. As P,
is a stochastic matrix, || P;|| < 1 and thus

(o9}
> Py
k=0

is well defined. One verify easily that this is an inverse of I — P, and such a v
exists, is unique and equal to

Z ’ykafrﬂ.
k=0
Now,
“+oo
Un(s) = Z'YtETr [Ri+1]S0 = s]
t=0

/

—+o00
=D P (S = 5|So = ) Ex [R]S = 5]
t=0

S

+oo
=D D (P)esr()
t=0

s’/



“+o0
=D ' (Prra)(s)
t=0

and thus v = v,. O

Proposition 3 (Bellman Operator Property). The operator T, satisfies the
following contraction property

1770 = Tat'loo < v — 2|0
Furthermore, v < v’ implies Trv < Trv" and Tr(v+ 1) = Trv + 71
Proof. For any s,

|Tx(v) = To(W')(s)] = [7Pr(v = ') (s)]
<Al = v'llso

because P; is a stochastic matrix.
It suffices to use the positivity of a stochastic matrix and the fact that 1 is
a eigenvector for the eigenvalue 1 to obtain the two remaining properties. [J

Proposition 4 (Policy Prediction). For any vg, define v,11 = Trv, then
lim v, = v,
n— oo

and

lvn = Vrlloo < ¥"[[vo — Vrloo

Furthermore,

lon = velloe < T2 llon = vn-illo

Finally, if vo > Trvo (respectively vo < Trvg) then vy > v, (respectively
vo < vg) and v, converges monotonously to vy.

Proof. For the first part of the proposition, we notice that v, is the only fixed
point of 7, which is a contraction. Hence, by the fixed point theorem, for any
vg, the sequence defined by v, 1 = Trv, converges toward v,.

A straightforward computation shows that

lvn — v lloo < Vl[va—1 = vzl <¥"[JV0 = Vr|lco-

Along the same line,

k—HH’Un

||vn+k - Un+k:+1||oo S Y - Un71||oo-

This implies that

k

lvn — Vrlloo < Z lvn+i = Uniitilloo + |Vntrs1 — Voolloo
=0



_ k42
<7 Y

=1 an - Unflnoo + 7n+k+1”7}0 - vﬂlloo

which yields the result by taking the limit in &.

2.2 Optimal Policy
2.2.1 Characterization

Definition 3 (Optimal Reward).
V4 (8) = max v, (s)
T
where the maximum can be taken indifferently in the set of history dependent
policies or Markov policies.
Definition 4 (Optimal Bellman Operator).

T.v(s) = maxE [R|S = s, A = d] —|—’yZIP’(S’ =5'|S=s,A=a)v(s)

S

=maxr(s,a) + Zp(s’|s, a)v(s’)
s/

T.v = maxr, + yPv
weD

where S is the set of deterministic Markov policies and the max is component-
wise.

Proposition 5 (Optimal Bellman Operator and Markov Policies).
Tev(s) = max Trv(s)

or Tev = max nr, + yPrv

Proof. mq = e, is such that T, (s) = E[R|s,a] + 7>, p(s'|s,a)v(s’) so that
max, T-(s) > T.(s).

Now, for any ,

Te(s) = 3 lals) (E (RIS =5, 4=+ pls'ls. a>v<s’>>

a

<maxE[R|S=s5A4A=a]+ ’yZp(s/\s,a)v(s')

< Ti(s)



Proposition 6 (Bellman Operator Property). The operator T, satisfies the
following contraction property

170 = Tt lloo < Yllv = v'lloo
Furthermore, v < v’ implies Tov < Tov' and T.(v+ 1) = Tv + i1
Proof. For any s, if T,v(s) > T.v'(s)
| Tev = T (s)| = Tov(s) = Tov'(s)
= max r(s,a) + ’yZp(s’Ls, a)v(s") — (msxxr(&a) + 72p(8’|s7a)v'(s’)>

s’ s’

< max (r(s, a) + WZp(s’\s, a)v(s’) — (méixr(s,a) + 72p(s'|s,a)v’(s')>)

s’ s’

< 7 max Z p(s'[s, a)(v(s") —v'(s))

s'|s,a

<Allv = v'lso

Now, if v < ¢/, for any o

r(s,a') +7Y_ p(s'ls,a)o(s") <r(s,a') +7 ) p(s'|s,a' ) (s)
< Tv'(s)
hence T,v < T.0'. O

Finally,

To(v +01)(s) = maxr(s,a) + Zp(s’|s, a)(v(s') + 9)

s/

=max7r(s,a) +y Zp(s'|s, a)v(s’) + 48

= T.(v)(s) + 6.

Proposition 7 (Optimal Reward Characterization). v, is the unique solution
of V="T.V.

Proof. Assume v > T,v so that

v > max r; + yPrv.
s

Let m = (mp, 71, ...) be a sequence of Markov policies,

V> 1y +YPrv
v > Trg + VPuro (ray + 7P, v)



n
0> VP Ay TP
k=0

where P¥ =TT, _; Pr,,. As vz =Y 127" Pkry,, we verify that

oo
v — vy >y TPy Z 'yka:rmc.
k=n-+1

Taking the limit in k& yields v > v, and thus v > v,.
Now, if v < T,v = max, r, + v7P,v then assuming the max is reached at &

n
v < s+ PR <Y AP Phra + 4" PE T
k=0

and thus v < vz < w,.

We deduce thus that v = T,v implies v = v,. It remains to prove that such
a solution exists. This is a direct application of the fixed point theorem for the
operator 7. O

Proposition 8. Any policy . such that v, = v, is optimal.
Proof. This is a direct consequence of the previous theorem. O

Proposition 9. Any stationary policy m,. verifying m, € argmax r, + vPrv, is
optimal.

Proof. By definition,
7;r*/U* =Tr, + Pﬂ*v*
= maxr,; + P,
s
= ToUs = Us.

Hence v,, = v, and the policy is optimal. O

2.2.2 Policy Improvement and Policy Iteration

Proposition 10 (One step look-head policy improvement). For any m, w4
define by

Ty € argmax rp + yPrvg
’

s

satisfies

Ury < Ug



Proof. By construction,
Tay TV Pr U 2 17 + Y Prvg = vg
and thus
rr, — (L = vPr, Jur > 0.
It suffices to notice that v, = (I — 'yPM)’lrmr so that
vW+—vﬂ:(177Pﬂ+)71 (rﬂ+f(1—7Pﬁ+)vﬁ) >0
where we have use the positivity of (I — P, )~! = Z’ykaer. O
Proposition 11. Let A = B —1Id, the policy iteration scheme satisfies
)
Up41 = Un + Z’ykPT’fn“Avn.
k=0
Proof. As proved before,
Upt1 = (Id — 7P7rn+1)_17'7rn+1~
Now by construction,
Bvp = Try i1 Vn = Trpiy + VP Un
and thus
Trner = Avp + (Id =y Pr, ) n.

This implies immediately

Un41 = Up + (Id - 7Pﬂ7L+1)_1Avn

o0
=ov, + Z ’ykaanAvn
k=0

2.2.3 Value Iteration
Proposition 12. For any vy, define vp,41 = Tiv, then
lim v, = v,
n—oo
and
[on = villoo <" [[v0 = vslloo

Furthermore,

||vn_'U*Hoo < ||vn_vn—1Hoo

Finally, if vo > Tivg (respectively vg < Tivg) then vy > v. (respectively
vo < vy ) and v, converges monotonously to vs.



Proof. For the first part of the proposition, we notice that v, is the only fixed
point of T, which is a contraction. Hence, by the fixed point theorem, for any
Vg, the sequence defined by vy, +1 = T.v, converges toward v,.

A straightforward computation shows that

lvn — velloo < AlVn-1 = Vlloo <" [lv0 — V[ 0o

Along the same line,

||Un+k - Un+/c+1||oo < 'Yk—Han - Un—llloo-
This implies that
k
||Un - U*Hoo < Z anﬂ’ - Un+i+1||oo + ||”n+k+1 - U*Hoo
i=0
_ k42
= %an — Vn-tlloo + 7" Hlvo — vl
which yields the result by taking the limit in k. O

Proposition 13. For any v and any ™ € argmax, T,v,

2
o = vulloo < Tl = vello

If v ="T,v' then

HU_UIHOO

[vr = Vlloo <

Proof. By definition of w, Tv = T,v, hence
[ve — velloo < Jvr = Trvloo + | Tev — viloo
SN Tave = Tavlloo + [ITev — Tovu|oo
< Allor = vlloo +7llv — villo
S Alvr = villoo +27llv — vulloo
and thus
2y

[vr = Valloo < 1 [v — villoo

For the second inequality,
[ve — Velloo < [Jvr = vlloc + [[v = viloo
Now

[or = vl < | Txvr = Tavlloo + I Tev = Tat'||oo



<AlJvr = Voo + (v - UIHOO

and thus

lv = 0]l

~
[vr = v]leo < 1

Along the same line,

[v=vulloc < [l = Tevfloo + [ Tov — viloo
< | Tev" = Tav]loo + || Tov — Tovi|| o
<Al = ]lee + v = villoo

and thus

[0 = vafloo < lo =o'l

L=y
. Combining those two bounds yields the result. O

2.2.4 Modifier Policy Iteration

Proposition 14 (MPI). Let vy such that T.vg > vg, define for any n and any
my,

® T,y € argmaxr, + Prv,
® Uno = 7;1171 = 7;1'n+1 Un
® Unm = 7;rn+1 Un,m—1
® Un+tl = Um,,
then v,4+1 > vy, and

lim v, = vs.
n—roo

At any step,

”Uﬂ'n+1 - U*”OO < 1 ,yHUTL - Un,O”oo

Furthermore,

v — /-Ym’n+

1
e — P

n+1

H%H—MMS< +w%“)%—mm

Proposition 15. Let A =T, —Id, let W™y = Tm+1y,

m
WMy = Z'ykafrﬂ + M prmatly
k=0

m
= v, + Z vk PEAw
k=0



Proof. By definition,

W#m)v = Tmntly
=7rr + 7P T

m
> A PEr, 4 ym P Y
k=0

= Z'ykaf (rr +yPrv—v) +v
k=0

=v+ Z’ykP,’fAv
k=0

Proposition 16. Define Wim") by

me")v(s) = max W™ y(s).

then W*(m") is a contraction:

W20 — WL oo < 9™ o= o

Furthermore, Wygm")v* = V.

Proof. Assume without loss of generality that W*(m")v(s) - W,fm")v’(s) > 0and
let & € argmax W#m")v(s),

W y(s) — Wy (s) = max W™ v(s) — max W ™! (s)

< W us) = W (s)
<y (o - 1) (s)
<9 o = )
By construction Av, = T,v, — v, = 0 and thus W#m")v* = v,. We deduce
immediately that W) v, = sup, W™ v, = v, O

Proposition 17. If u > v then for any m, W u > W v
If u> v and Au > 0 then for any @ Wru > T.v.
If Au >0 and m, such that T,u = Tr, u then WT(FT)’U, >0

Proof. By definition,

Wy — Wy > Whu — W
> Wr(u— o)
> APt (4 —v) > 0

10



Now,

m
Wy = u + Z’ykPT]fAu
k=0
>u+ Au="T.u
> Tw

By construction

AW ™y = TW My — Wiy
> T WMy — Wimly,
>Au—"Tr,u+u

> Au+ (yPr, —1d) (WT(rT)u - u) > Au+ (yPy, —1d) Z v PE Au
k=0
>y"PAu >0

Proof of MPI. Let ug = vg = wy.

By construction T, . , v, = T,v, and one verify easily that v,11 = Zr’fij Lo, =
WT(rTJr"l)Un.

Define now, uy+1 = Tety, and wy41 = me"
that Avy, >0, vpp1 > vy, and Uy, < vy < Wy

By assumption, Avg > 0 so that v, = WT(an")vo > T.vg > vg.

Assume the property holds for n — 1 then using the previous lemmas one
obtains immediately Av, > 0 and

n+1

)wn. We can prove by recursion

Up = 7—*un71 <wv, = W';E—:Lnnil)vnfl <w, = Wagmnil)wnfl
Finally,
Up = Wﬂ(—;nnil)vn—l

k
= Up_1+ E Mp—17 PTrnA'Un—l
k=0
>’Un71~

Now, we have already proved that u, = T,ug tends to v, with
[un = villoe < 7"*[[vo — viloo

It suffices now to prove that w, also converges toward v, to obtain the conver-
gence of v,. We verify that

wn = velloe = W™ Dy — W™y, |0

11



Y [ wn—1 = valloo

n—1
k=0 ™ [0 = oo

which implies the convergence of w,,.

We have
0741 = Vslloo < M[vmys = vnlloo + llvn — valloo
Notice that v, 0 = Tr, ., Vn = Tivp so that
||'Urrn+1 — Unlloe < van+1 - 'Un,OHOO + ||Un,0 — Unlloo

< H7;l'n+1’uﬂ'n+1 - 7;1'n+1vn||00 =+ ||IU7L70 - UHHOO

< Mvrnis = Vnlloo + [vn0 — vnlloo
Along the same line,

||’U* - UW/HOO S ||’U* - Un,OHoo + ||Un,O - vnHoo
< [ITeve = Tavnlloo + llvn,0 — vnlloo

< 'YHU* — Vn|loo + an,o — Vnloo

Combining those two inequalities yields

2
S 1 _ an*vo,n”oo

||v7Tn+1 — Vsloo

As show before,

My
k pk
0 < v —Vpt1 SV — vy — E ~ PﬂnHAvn
k=0

Now, let m, such that T, v. = Buv,,
A, = Av, — Ave = Tovy, — v — (Tavs — 04)

< 7;1'*1}71 — Up — (7;1'*7]* - 'U*)
< (4P, —10) (v — 02)

Thus
0< vy —Vpt1 <V — vy — Z’ykaan( P, —1d) (v, — v)
k=0
< Zykaan Up — V) — Z'kaPMHP (VU — V)
k=0

My

< Z'Yk+1p7lr€n+1 Tot1 Pm)(vn - 'U*) - ’YanrlP:erlrl(Un - U*)
k=0

12



My

< Z’Yk+1|||P7rn+1 — Pr |||[lvn — vslloo + 7mn+1HUn — Vs |oo
k=0
_ AMn+l
< (T Pras = Pl 27 )l = v

2.3 Asynchronous Dynamic Programming
Proposition 18. Assume Tr,v9 > vo and at any step n
e Define a subset S, of the states and
o Fither
— keep the policy m,11 = m, and update the value function following

para(s) = {van@) if s €5,

Un () otherwise
— keep the value function s,+1 = Sn and update the policy following

() argmax, r(s,a) + vPr vn(s) ifs€ S,
Tnt1(s) =
+ Tn($) otherwise

Assume that for any state s and any n there exist n’ > n such that s € Sy
and one performs a value update at step n' and n'' > n such that s € S,» and
one performs a policy update at step n' then s,, tends monotonously to s.
Proof. We start by proving by recursion that 7, v, > v, implies

TrniiUntl = Ung1 = vp  and T vg

Note that that T;,v0 > v is an assumption.

Assume now that 7. v, > v,, then either at step n we update the value
function or the policy.

If we update the value function, 7,1 = 7, and thus

ora(5) = {Tmun(s) if s €,

Un () otherwise

As Tr, vn(s) > vy,(s), we deduce Ty, vy, > Uny1 > vp. It suffices to notice
that v,4+1 > v, implies

7;n+1vn+1 = TrpVnt1 = Tr, Un
to obtain

7;7n+1vn+1 Z Un+1 Z Un.

13



Now, if we update the policy, v,,41 = v, and

Tevn(s) ifse S,

Tx, vn(s) otherwise

Trniatn(8) = {

which implies T, vn > Tx, v and thus as v,4+1 = vy,

nt1
TrpiiVnt1 = Tr,Un > Up = Uny1.
We deduce thus that
TfUn-s-l > TrpiaUnt1 = Ung1 = U
which implies if we take the limit in k
Vs 2 Uptl = Up.
Hence v,, converges toward a limit ¢ satisfying

Assume now that there exists s such that o(s) < 7.9(s). By continuity of
T, there exists n such that for all n’ > n

0(s) < Tevn (s)

Let n’ > n such that one updates the policy of s and n” the smallest integer
larger than n” where one updates the value of s.

Uprr41(8) = 7;77// Uy (8)
> Trpsiy Vn+1(8)
2 7;7"/“7%'(5)
> Tovn (s) > 0(s)

which is impossible. O

2.4 Approximate Dynamic Programming
Proposition 19. If in a Generalized Policy Improvement, for all k
[k = vrlloc <€
and
[ Tisr 0k = Tivklloo <0

then

0+ 2ve

lim sup mgx (V+(8) = v, () < W

14



Proof. By construction,

Uny, (s) — 7 et (s) = T, Vs (s) — 7}“1”%“1
= T Umy (5) = T Uk (8) + T, 0 (S) = Trpss Vi
< ve+ Tavk(8) = Trpir Uiy
< ve+ T Vk(8) = Ty Vmpopy + 0
< e+ T V() + Trpi Uy (8) = Ty Ui (8) — Ty Vg, +0
<2ye+d+y max (”mc (s") = Umpis (s/))

and thus

2 0
max (v,rk (8") = Vmpps (s')) < ;ye + )
s’/ -

U*(S) — Unmpqa (3) = U*(S) - 7;"k+lv77k+1 (8)
= U*(S) - 7;"k+1v77k (S) + 7;"k+1v77k (S) - 7;rk+1v77k+1 (S)

< 04(8) = Trpyy Uy (8) + 727€_+ d

BRI =

< vi(s) = Tavr(s) +ye + 72Z€_+75

< vi(s) = Tevg(s) +ye+ 6+ 7217€_+ '

< Teva(s) = Tavg, (8) + 2ve + 6 + 7217€_+ d

< 7 max (vi(s) = vr,(8)) +27€+ 6 + 72¥€_+ d
thus

2ve+0

mae (v.(5) ~ vry () < ymae (v (5) = v, (3)) + 29 + 575/

and

2ve 49
1_

lim sup max (v« (s) — v, (5)) < limsupymax (vs(s) — v, () + 2ve + 0 + v
s s

which implies

2ve+ 0

lim sup msax (V+(8) — v, (5)) < W

15



3 Finite Horizon

Proposition 20. Ifvg =7, 7-1 and v, = T 17— pVn—1 =Tx17-n+ Pr1_nvn_1
then

T-1
Un(s) == Eﬂ l Z Rt+1|St—n—1 = 5‘| = vﬂ,T—n(S)

t=T—-n—1

If vg = ry and V41 = Tevy then

T—1
Up(8) = max E, l Z Riy1|St—n—1 = 8‘| = Vs 7—n(S)
T t=T—-n—1
Proof. If n = 0 then by definition v, r(s) = Ex [Rr|ST—1 = 8] = rr.1-1(s).
Now,
T—1
UTr,T—n(S) =E, Z Rt+1 ST p_1 = ;|
t=T—-n—1
T—1
= Tﬂ,Tfnfl(s) +E Z Rt+1 ST—n-1= S‘|
t=T—n
T—1
=Trr—n-1(8) + Z Zp(s’\s, a)w(a|s)E, l Z Rii1|Si—n = 3’]
a t=T—n

=Tr7—n-1(5) + Prr—n-1Vr 7—n—1(5)

Along the same line, if n = 0 then by definition v, 1 (s) = max, E, [Rr|St—1 = s] =
max, vy 7(s) = r.(s).

Now,
T-1
Vi T—n(8) = m?XE'n' l Z Ri1|Sr—n-1 = 81
t=T—n—1
T-1
= m‘?,X <’I”ﬂ—(8) +E Z Riv1|Sr—n-1= S])
t=T—n

T-1

= max (TW7T_TL_1(S) + Z Z:p(s’|s7 a)m(als)E l Z Riq

t=T—n

St—n = 3,‘|>

=maxTr r—n-1(5) + Prr—n-1 max Un T—n—1(8)

- 7;'0*7T—n—1(5)

16



4 Non Discounted Total Reward

Definition 5. Let 5§ be the absorbing state, we define the expected absorption
time starting from s 7.(s) by

7r(s) = Ex [Slfl:fgt

8028:|.

If T is finite, we say that w is proper.

Definition 6. We define the mazimum expected absorption time starting from
s by T(s) by

T«(8) = max Tr ()
Proposition 21. If 7, < 400 then
Tr =14 Prrp. = ToTr
If 7. < 400 then
Ty = m;xxl +Poti. =T7x
Proof. Tt suffices to notice that 7.(s) = E, {ZLOS’ Rt+1i| with Ry =0if s, = 3

and 1 otherwise. O

Proposition 22. 7, is a contraction of factor max 71(97()8;1 with respect to the
norm || llo,1/7,

Tu(s)—1
T (8)

T and T, are contraction of factor max with respect to the norm

1 lloo,1/7, -
Proof.

| Tzv(s) = Txv'(s)| < [Pr(v — ') (s)]
'l

< py(rx 2=Vl

—)s)

< Prr(s)llv = v'lloc,1/

1+ Prr(s) -1
S e P i
1+ Pr(s)—1
e O L

which yields the result for both 7 = 7, and 7 = 7.
Now, assume without loss of generality that T.v(s) > T.v'(s),

| Tew(s) = Tov'(s))

17



= max T,v(s) — max T,v'(s)
< max (Trv(s) — Tv'(s))
1+ Pur(s) —1

STOT gy e
which yields the result for 7 = .. O
5 Bandits
5.1 Regret

Definition 7. A k-armed bandit is defined by a collection of k random variable
R(a), a € {1,...,k}.

The best arm is a, is such that E [R(a.)] > max, E [R(a)].

For any policy w, the regret is defined by

rrx = TE [R(a.)] — E

T
> R(A)

where A, is the arm chosen at time t following the policy .

Proposition 23. Let Ti(a) = Ei:l 14.—; and A(a) = E[R(a.)] — E [R(a)]
then

k

18



5.2 Concentration of subgaussian random variables
Definition 8. A random wvariable X is said to be o-subgaussian if

E [exp AX] < exp(A\20?/2)
Proposition 24. If X is o-subgaussian then for any e > 0

—€

2
P(X >¢) <exp (22>
o

Proof.

P (X >¢) =P (exp(AX) > exp(Ae))
< E [exp(AX)]
exp(Ae)
< exp(A20?/2 — Xe)

—e2
<exp| —
<ow (55
where the last inequality is obtained by optimizing in A. O

Proposition 25. If X is o-subgaussian and Y is o’-subgaussian conditionnaly
to X then

e E[X] =0 and Var [X] < o2

o cX is |c|o-subgaussian.

o X +Y is\/o? + (0')2-subgaussian.
Proof.

E [X*]

=[x

E [exp AX] = Z

while
/\2k0.2k
2 279\ _
exp(A“0°/2) = zk: ]
By looking at the term in front of A! and A2, we obtain

S
AE [X] <0 and EE[X | < TSl

which implies

E[X]=0 and Var[X]<o”
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By definition,
E [exp(AcX)] < exp(A2c?0?/2)

hence the |c|o-subgaussianity of ¢X.
Now,

E [exp(A(X +Y))] <E[E [exp(A(X +Y))[X]]
E [E [exp(AX) exp(AY))| X]]
Espexp(AX) exp(A\?(0”)?/2)

<
<
<
<exp (\*(0® + (0")%)/2)

Proposition 26. If X; — p are iid o-subgaussian variable,
1 « ne? 1 — ne
P (n ;Xi > u—|—e> < exp (_W> and P <n ;Xi <pu-— e> < exp (—M)
Proof. Tt suffices to notice that L > | X; — pand p— 137" | X; are 0//n-
O

subgaussian.

5.3 Explore Then Commit strategy

Definition 9. The simple current mean estimate Q;(a) is defined by

@(0) = 75 Y LaeFia(o)

Proposition 27. Assume we play the arm successively during Km steps and
then play the arm which mazimize the current mean estimate Q¢(a) then if the
R(a) — E [R(a)] is 1-subgaussian

k k
rrx < min(m,T/K) Z A(a) + max(T — mK,0) Z A(a) exp(—mA(a)?/4)

a=1 a=1

Furthermore,

Proof. We have



we can thus focus on E [Tr(a)].
Now
E [Tr(a)] < min(m,n/K) + max(n — mK,0)P (amkx+1 = a)

< min(m,n/K) + max(n — mK,0 ( ¢(a )Zn}ith(a’O

< min(m,n/K) + max(n — mkK,0
< min(m,n/K) + max(n — mK,0

(@m(a) = Qm(ax))

P
P
P (amK+1 = a)
P(Q
P E [R(a)] —

) )
) )
< min(m,n/K) + max(n — mK,0)
) )
) )

(Qmr+1(a) — (Qmr+1(ax)

It suffices then to notice that Q. x+1(a)
is 4/2/m-subgaussian to obtain

E [Tr(a)] < min(m,n/K) + max(n — mkK,0)P

—E [R(a)] = (QmE+1(as) — E [R(a.)])

(Qmr+1(a) > Qmr+1(as))

< min(m,n/K) 4+ max(n — mK,0) exp(—mA(a)?/4)
Now
P(ar =a.) = 1—Za7éa*]P’(aT =a)
<13 exp(-mA(a)/4)
aFax
O
5.4 e-greedy strategy
Proposition 28. Let w be an €;-greedy strategy,
o E
t
TR > Z - Z Ala)
t=1 a=1
Proof. By definition of an e-greedy strategy
T
Z &
~ k
hence the first result. O

Proposition 29. Let 7 be an €;-greedy strategy,

4
P(Ar =a,) > 1 — er — Sy exp(—X7/(6k)) — e~ A (@) DT/ (4k)

with ET = ZZ:l €s.

21
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Furthermore,

4
P (a, = argmax Qr.q) > 1 — Xy exp(—X7/(6k) — > e~ A BT/ (4k)

If e = ¢/t,

UEEDY <A(a) (clog(Tk)H + C) + A?a) C’)

aFay

as soon as ¢/(6k) > 1 and cming.,, A(a)/4k < 1.
If e, = clog(t)/t then

rrn < ; (A(a) (clogm(lofm £, C) . 40)

Proof. By definition of m,

P(Ar=a) < 4 (1- %IP’ (Qr(a) > Qr(a.))

=t
k
and

P(Qr(a) = Qr(as)) <P (Qr(a) > pla) + Ala)/2) + P (Qr(a.) < pla.) — Ala)/2).

By symmetry, it suffices to bound

P (Qr(a) > pla) + A/2) < a) =1,Qr(a) > p(a) + A/2)

[0
(-
e

)

(a) =t

(a):t%ZR a)+A/2
(

M=

t=1

IN

t=1

IN

t=1

IN

NERNIERINERINIE

t=1

0

P
P
P
P
P

<

(Tw>=t1 Ri(a) > <>+A/2>+ T A

t=1 t=To+1

Let TF(a) be the number of time the arm a has been chosen at random before
time T’

To
<P (Tf?(a) <t
t=1

1 i 2 A2
ZZR’“(G) 2,u(a)+A/2> +x2¢ ATTo/2

k=1
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Now the Bernstein inequality yields

P (1710 < B [170)] -3) = o0 (g7

with

. Choosing Ty = 222 = %Zil £ = 1E [TF(a)] < 1 Var [Tf(a)] leads

< 15/2
=P\ T 112
T3/2
< —_
eXp< T +T0/2)

which implies
2 _a
P (Qr(a) > p(a) + A/2) < Ty exp(~To/3) + 1z~ /2
and thus

2
Aa)?

e—A(a)QZT/(4k)

P (a = argmax Qr(a)) < 2(1 — 6—T) (ET/(2k) exp(—Xr/(6k)) +

. e—A(a)zET/4>

€T ET 4
<L 42T (=% o
<2 + . exp( T/(6k)+A(a2

with Yp = 23:1 €s which goes to 0 as soon as X7 tends to +oo We deduce
then that

4

efA(a)QET/(élk)
a)2

€T €T ZT
PAr=a) < — + — + — -y k
(Ar a)_k+k+kexp( T/(6)—|—A

23
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which goes to 0 if furthermore er tends to 0
Finally,

M=

E[Tr(a)] = Y P (4; = a)

#
Il
_

™=

<

€ Xy 4 A)?s,)(ak)
— - _E - t
(k + 2 exp(—X;/(6k) + A(a)2e

&
I
—

Hence

T
Xp Xy -, /(6k) 4 —A(a)?%/(4k)
TT,TrS Z <A(a) (k—’_zke / +A(Q)Ze (a) /
t=1

aFay t=1

Assume that ¢; = ¢/t so that Xy < ¢(In(t) + 1) then the previous inequality
becomes

T
log(T) + 1 log(t) + 1 4 , .
< Y <A(a) <c og( k) 1. S Og(k) + e—caog(t)+1)/<6k>) A Ze—A(a>2c(1og<t>+1>/(4k>>

RS

as soon as ¢/(6k) > 1 and cmingx,, Aa)/4k < 1.
If €; = clog(t)/t then

i < a; (A(a) (clog(T)(lolf(T) +1) n C) n AL(LQ)C/>

5.5 UCB strategy

Proposition 30. Assume we use a UCB strategy with a variance term 4/ %‘zif
then

4clnt
Tn(t)gccza:A(a)“r : m

with C. < 400 as soon as ¢ > 3/2
Furthermore

P(A; = a,) > 1 — 2kt 2+2

as soon as t > max, 25(1(:‘)5.
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Proof. By construction,
t
T a) = Z 1A5:a

< Z 1Q )+cs(a)=max Qs(a’)+cs(a’)

<T0 Z 1Q )tcs(a)=max Qs(a’)+cs(a’),Ts(a)>To(a)
s=To+1
t
<STo(a) + D 1, () tes(@2Qs () es(a2).Ty(a) > To(a)
s§= T0+1

< To(a E 1
maXqy (a)<s// <t ,, Z] 1’ R(a)(])+ﬁ>m1n r<t , Z] 15’ R(ax )Gy +/ ‘1"3

s=To+1

t s—1 s—1
< To(a) + Z Z Z 2> 5=1°" R(a) (J)+ﬁ>l > i=1"R(a.) <J>+\/:

s=To+1s'=1s"=Ty(a

t s—1 s—1
< To(a) + Z Z Z )]'u(a*)ﬁu(a)-iﬂ\/“51?+ 15% j=1' R(“)(J)>M(a)+\/ ooy

s=To+1s'=1s"=Ty(a

1 ,
+ L3 5=15"R(a.) (jy<pla.)—/ <52
t s—1 s—1
—2clns
<@+ >, >, > Lia<utayray /e T 26

s=To+1s'=1 s”—To(a)
t

E [Ty(a)] < To(a) + Y Z Z Sz\/@Jrzs—zc

s=To+1s'=1s"= T()

choosing Ty(a) = 20(21)g

S 4Chlt Z 28_2C+2
s=To+1

dclnt
‘e

= A

as soon as ¢ > 3/2.
One deduce thus

4elnt
) < C. E Ala .
Afa)

Note that we have shown

P(A; =a) <2t7%
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4clnt
as soon as t > A2 Thus

P (A, = a,) > 1— 2kt~ 2¢+2

4clnt 0

as soon as t > max, Ala)?

6 Stochastic Approximation

6.1 Convergence of a mean

Proposition 31. Assume X; are i.i.d. such thatE [X;|F;—1] = p and Var [ X;|F;—1] <
o2, let

M, =M,_1 + an(Xyn — M,_1)
with 1 > «; > 0 then
o if Y i — 400 and Y. a? < 400, M, — p in quadratic norm.
e «; = « then limsup | M,, — u|? < ac?
Proof. By definition,

Mn = Mn—l + an(Xn - Mn—l)
= (1 - an)Mn—l + an Xy,

=[[0-e)Mo+> ] (1 - )anXs
i=1 k=1 i=k+1
thus
E [||Mn = pul?] = [T = an)llMo =l + > T (1 - ai)®aio”
i=1 k=1 i=k+1

Thus it suffices to prove that

H(l —a;) — 0 and Z H (1— ;)i =0
i=1 k=1i=k+1

For the first part, we use (1 —z) < e~ * for 0 < z <1 to obtain

which goes to 0 if Y | a; — +oo.
For the second one,

S I -afat <y [T 0-apaie > I (-agel
k=1i=k+1

k=1i=k+1 k=m+1i=k+1
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m n n n
< AH(l—aZ) s+ maﬁlak ( H (1- o) -
k=1i=m k=m+1 \i=k+1
Z n
-2
<e f=m & Zak—f— Jmax ak<1— H (1—0@))
k=1 i=m+1

92 n i
<e D @ E aF + max ag
—1 k>m+1

Choosing m = n/2 yields

n/2
Mo — il + ¢ Zienn® S o202 4 2
0— I o2 maxaka

E [[[Mp — 1]2] < e 2ima

If we assume that > ,_, a; — +00 and >, @ < +oo then all the term in
the right hand side goes to 0.
If we assume «y = « then

E [||My — pll?] < ™My — pll? + ne~"*a%0? + ac?

which is yields the result. O

6.2 Generic Stochastic Approximation

Definition 10 (Generic Stochastic Algorithm). Let H; be a sequence of ap-
prozimation of an operator h, let a;(t) be a set of non negative sequences, for
any initial value Xo, we define the following iterative scheme

Xit1, = Xos + o () He(Xy)i
Definition 11. h and H; are compatible if

Hy(z) = h(z) + &(x) + b:(x)
with

E[e:(x)|F:]) =0 and Var [e;(x)]|F] < co(1 + [|z]*)
and with probability 1
16 (2)[1? < e (1 + l])?

with ¢, — 0 and either

o it exists a non negative V. C' with L-Lipschitz gradient satisfying

(VV(2), h(2)) < —cl|VV ()|
E [[[He(2)]?] < o1+ [VV(@)I?),
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e or h is a contraction for the norm considered.

Proposition 32 (Generic Stochastic Approximation). Assume that for any i,
we have almost surely

T T
ZaiﬁJroo and Za? < 400
i=1 i=1

Then providing h and H; are compatible,
h(X,) — 0.

Proof. See Neuro-Dynamic programming from Bertsekas and Tsitsiklis. O

6.3 TD()) and linear approximation

Proposition 33. Provided there is a unique stationary distribution u on the
states, that the basis function are linearily independent and

T T

Za — 400 and ZaQ < 400
i=1 i=1

For any X\ € (0,1), the TD(\) algorithm with linear approxzimation converges
with probability one. The limit w, ) is the unique solution of

L, 7V Xw, ) = Xw. ,.

Furthermore,

11—y

Xy = vrll2p < 75—

M7 = vr 2,

Proof. See Tsitsiklis and Van Roy. O

Proof. Assume A is invertible and let wrp = A~ 'b

E [wir1 — wrplwe] = wi + (b — Aw;) — wrp
= (Id — aA)(w; — wrp)

If we prove that A is positive definite then A will be invertible and the
asymptotic algorithm will converge provided « is small enough.
In the continuous task setting,

A=Y uls)) wlals) Yy plr,s'ls, a)a(s)(@(s) — ya(s))"

a r,s’

=D uls) D wlals) Y pals'ls)z(s)(@(s) —ya(s)))’
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=" uls)a(s) (x(s) — Zpﬂ(s’ls)sc(S’))
= X'D(Id — yP,;) X

where D is a diagonal matrix having u(s) on the diagonal.
As P is a stochastic matrix, the row sums of D(Id —vFP; ) are non negative.
Recall that p is such that p!P, = u* and thus

1'D(Id — yPy) = p'(Id — yPy)
= ' — ' Pr
=1=y)u" >0
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