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ABSTRACT

We develop in this thesis mathematical methods for the performance analysis and dimensioning
of emergency call centers. To this purpose, we use tools from the field of discrete-event dynamical
systems, in particular the formalism of timed Petri nets with preselection and priority rules, to
describe the handling of emergency calls by dedicated platforms. These models are characterized
by piecewise affine and recursive dynamical equations which are a subclass of controlled switched
systems. We show that the continuous relaxation (or fluid) approximation of these dynamics is
asymptotically precise under the application of a scaling factor.

We establish formal correspondence results between the dynamical analysis of monotonic
timed Petri nets and the study of the value function of semi-Markov decision processes with
discount factors as well as terminal and stopping costs. Leveraging on this “backwards” corre-
spondence, we obtain several characterizations of the throughput vector of Petri nets, which
indicate the handling rate of the organization that is modeled. We deduce practical staffing
recommendations for emergency call centers in terms of the calls features. We compute analytical
upper bounds on the time needed for a class of monotonic and hierarchical timed Petri nets to
absorb a perturbation affecting an input by exhibiting a correspondence with stochastic shortest
path problems. In the context of emergency call centers, this indicates how quickly an extra peak
of calls can be treated. We also study Petri nets describing organizations with priority routings
and associated with non-monotonic dynamics, whose congestion phases can be represented by
polyedral complexes. This allows us to compute the minimum staffing of more involved call
center layouts. In addition, we focus on tropical posynomial systems, which are an algebraical
abstraction and static counterpart of our dynamical systems. In particular, these systems gen-
eralize Markov decision processes. We show that the resolution of these equations via linear
programming features geometric problems of independent interest, involving separation and
tangency properties of several convex bodies.

We challenge our theoretical contributions on two real-life case studies carried out in col-
laboration with emergency call centers in the Paris area: the four SAMU of AP-HP for medical
needs and the PFAU for rescue and police requests. Our comparison is based on numerical
simulations that reproduce call center operations with as few simplifications as possible, in line
with the “digital twin” logic. The arrival processes, service times and patience levels of callers
are randomly generated on the basis of histograms derived from the data analysis of millions of
calls. We show that our analytical formulas that neglect abandonment phenomena yield good
polyhedral approximations of the real throughput. We also evaluate the accuracy of queueing
theory estimates which are frequently applied to the sizing problem of call centers. The simulation
approach allows us to compare the single-tier and the two-tier architectures of emergency call
centers. We show that the latter causes fewer losses of urgent calls than the former provided that
the first-level instruction is quick. The two-tier layout is also more resilient to burst of calls. We
finally quantify the benefit in practice of merging or bringing together several pools of agents.



RÉSUMÉ EN FRANÇAIS
Nous développons dans cette thèse des méthodes mathématiques pour l’évaluation de performance
et le dimensionnement de centres d’appels d’urgence. Nous utilisons pour cela des outils issus de la
théorie des systèmes dynamiques à événements discrets, en particulier le formalisme des réseaux
de Petri avec règles de préselection ou priorité, afin de décrire le traitement d’appels d’urgence par
des plateformes dédiées. Ces modèles sont gouvernés par des équations dynamiques récursives et
affines par morceaux, une sous-classe des systèmes contrôlés à commutation. Nous montrons que
l’approximation relâchée-continue (ou fluide) de cette dynamique est asymptotiquement précise
sous une limite d’échelle.

Nous établissons une correspondance entre l’analyse de la dynamique des réseaux de Petri
temporisés monotones et l’étude de la fonction valeur des processus de décision semi-Markoviens
escomptés avec coûts finaux et coûts d’arrêt. Cette correspondance “en sens rétrograde” nous
permet d’obtenir plusieurs caractérisations du débit des réseaux de Petri, et de déduire des
recommandations pratiques de dimensionnement en agents pour les centres d’appels d’urgence
en fonctions des caractéristiques des appels. Nous calculons des bornes explicites sur le temps de
retour à la normale pour une classe de réseaux de Petri temporisés monotones et hiérarchiques,
afin d’absorber la perturbation d’une consigne. Nous exploitons pour cela une correspondence
avec les problèmes de plus court chemin stochastique. Dans le monde des centres d’appels,
cela fournit une borne supérieure du temps de traitement d’un pic d’appels. Nous étudions
aussi des réseaux de Petri d’organisations présentant des mécanismes de priorité et associées à
des dynamiques non-monotones, dont les phases de congestion peuvent être décrites par des
complexes polyédraux. Cela nous permet de calculer le dimensionnement minimum de centres
d’appels plus complexes. De plus, nous nous intéressons aux systèmes posynomiaux tropicaux,
qui sont une abstraction algébrique et le pendant statique de nos systèmes dynamiques. Ces
systèmes généralisent notamment les processus de décisions Markoviens. La résolution de ces
équations par programmation linéaire fait apparaître des problèmes géométriques d’un intérêt
indépendant, impliquant des notions de tangence et de séparation entre ensembles convexes.

Nous évaluons nos contributions théoriques à travers deux études de cas réalisées en collabo-
ration avec des centres d’appels d’urgence de la région parisienne, les quatre SAMU de l’AP-HP
pour les appels santé, et la PFAU pour les requêtes orientées police ou secours à personne. Nous
avons pour cela recours à la simulation numérique, reproduisant le fonctionnement de centres
d’appels avec aussi peu d’hypothèses simplificatrices que possible, selon le principe des jumeaux
numériques. Les lois des arrivées d’appels, des temps de conversation ou des niveaux de patience
des requérants sont générés aléatoirement sur la base d’histogrammes provenant de l’analyse
de plusieurs millions d’appels, et tenant compte de divers phénomènes de corrélations entre les
variables. Nous montrons que nos formules analytiques négligeant les abandons fournissent
de bonnes estimations polyédrales du débit réel. Nous étudions aussi la précision des formules
de performance prédites par la théorie des files d’attente et le calcul d’Erlang, souvent utilisés
dans les problèmes de dimensionnement de centres d’appels. L’approche par simulation nous
permet de comparer des architectures de centres d’appels mononiveau ou biniveau devant traiter
les mêmes flux d’appels. Nous montrons que le mode biniveau cause moins d’abandons que
le mononiveau pourvu que le premier niveau d’instruction soit court. L’architecture biniveau
est également plus robuste aux pics d’appels. Nous quantifions enfin l’intérêt opérationnel de
mutualiser partiellement ou intégralement des plateformes distinctes, ou encore de faire travailler
ensemble différents groupes d’agents.



REMERCIEMENTS

Ce travail de thèse, long de quasi quatre années, n’aurait tout simplement pas été possible sans le
concours de nombreuses personnes que je souhaite remercier ici.

Mes premiers mots vont évidemment à mes directeurs de thèse, Stéphane Gaubert et Xavier
Allamigeon. Stéphane, je te remercie pour la confiance que tu m’as accordée depuis le début, pour
toutes les portes que tu m’as ouvertes et en particulier pour m’avoir offert ce sujet unique. Ton
érudition, ta capacité à faire des liens entre de nombreux domaines scientifiques et ta pédagogie
se retrouvent je crois beaucoup dans ce travail. Xavier, tu as été d’un soutien sans faille tout
au long de ces années et travailler avec toi a été un plaisir de tous les instants. Cette thèse doit
autant à ta finesse mathématique qu’à ton intelligence humaine, et je souhaite à de nombreux
élèves de pouvoir en bénéficier dans le futur. Sur le plan scientifique, je veux aussi remercier
Marianne Akian et Philippe Robert qui ont pris de leur temps pour m’aider à traiter plusieurs
points techniques de ce travail.

Je suis très reconnaissant à Bruno Gaujal et Alessandro Giua d’avoir accepté de relire minu-
tieusement ce manuscrit et rapporter mon travail de thèse, dont ils ont su percevoir tous les
aspects. Je remercie également Pierre L’Ecuyer, Éric Goubault et Amandine Veber d’avoir bien
voulu faire partie du jury.

Rien de ce travail n’aurait été possible sans l’investissement de la Préfecture de Police (PP),
à travers la direction de programme PFAU. À ce titre, je souhaite en premier lieu remercier le
Lcl Stéphane Raclot dont l’expertise sur les systèmes d’urgence, la connaissance métier, les
contacts et parfois le flair ont tant contribué à donner à cette thèse sa dimension appliquée. Je
remercie beaucoup Régis Reboul pour la confiance et le soutien qu’il a apportés à notre équipe,
et je veux saluer la patience et l’abnégation dont il a toujours fait preuve. À travers lui, je veux
aussi remercier la Direction de l’Innovation, de la Logistique et des Technologies de la PP, en
particulier son directeur Arnaud Mazier mais aussi Christophe Guillonneau pour son aide sur
les questions fonctionnelles. Je remercie la Brigade des Sapeurs Pompiers de Paris, pour avoir
renouvelé son intérêt dans nos travaux et nous avoir régulièrement ouvert ses portes. Je suis
notamment très reconnaissant au Sch Benjamin Berhault pour son aide dans l’extraction des
données de téléphonies de la PFAU, et au Cne Denis Daviau qui nous a aidé à les interpréter.

Initialement permise par l’intermédiaire de la PP, la collaboration que nous avons pu dévelop-
per avec les SAMU a été un tournant majeur de cette thèse. J’exprime toute ma gratitude au
Dr Éric Lecarpentier, chef de service du SAMU 94, pour le rôle moteur qu’il n’a cessé de jouer
dans ce projet, tant sur les aspects organisationnels que techniques, avec le soutien de Thomas
Pérennou. À l’hôpital Necker, le SAMU de Paris nous a réservé un accueil exceptionnel et je tiens
à remercier chaleureusement le Pr Pierre Carli pour nous avoir hébergé et intégré à ses équipes
durant les premières semaines de la crise Covid, et maintenant pour avoir accepté de faire partie de
mon jury de thèse. Ces remerciements s’étendent au Dr Caroline Telion, au Dr Christelle Dagron
et évidemment au Dr Jean-Sébastien Marx dont les facéties et l’infatigable imagination n’auront
eu de cesse d’égayer ces années de thèse. Je remercie aussi beaucoup Jean-Michel Gourgues et
Isabelle Lhomme pour leur aide dans le traitement des données du SAMU. J’ai eu grand plaisir
à travailler avec les équipes du SAMU 92, où le Dr Thomas Loeb nous a toujours accueilli avec



beaucoup d’amitié, tout comme le Dr Jérémie Boutet, le Dr Anna Ozguler et le Dr Margot Cassuto
avec qui nous avons épluché de nombreux tableaux de données de téléphonie… Je remercie le
Dr Érick Chanzy du SAMU 93 qui avec le Dr Laurent Goix et Frédéric Linval a toujours pris de
son temps pour nous recevoir et répondre à nos questions. À l’AP-HP, je souhaite remercier le
Dr Christophe Leroy qui nous a aussi soutenu avec beaucoup d’enthousiasme, ainsi que Stéphane
Crezé et François Planeix pour nos nombreux échanges sur les questions techniques. Enfin, je
veux remercier les équipes du SAMU 69 pour l’intérêt qu’ils ont manifesté pour nos travaux et leur
accueil à Lyon, en particulier le Dr Christian Di Filippo, le Dr David Schiavo, le Dr Yann-Franck
Lourcy et le Pr Pierre-Yves Gueugniaud.

De retour au CMAP, il me faut bien sûr remercier Baptiste Colin, le Bill de “Boule et Bill”, tantôt
coloc’ et tantôt collègue, pour le temps passé à rire auMagnan comme pour celui passé à développer
le simulateur de réseaux de Petri. Cette tâche a été reprise avec succès par Benjamin Nguyen Van
Yen à qui je souhaite une très bonne continuation. Je tiens à saluer chaleureusement mes grands
et petits frères de thèse, avec qui j’ai eu plaisir à échanger : Nikolas Stott, Mateusz Skomra, Jean-
Bernard Eytard, Paulin Jacquot, Maxime Grangereau et Omar Saadi, puis Maël Forcier, Nicolas
Vandame et Quentin Canu. Je souhaite particulièrement remercier mon prédecesseur Vianney
Bœuf : tu as non seulement été de bon conseil avant mon arrivée à l’X, mais surtout, s’il y a
bien une thèse dont s’inspire la mienne, c’est la tienne ! Un grand merci également à Mathilde
Boissier et Céline Bonnet pour leur accueil au laboratoire. À l’École polytechnique ou à l’école
doctorale, j’ai pu compter sur l’aide de tous les personnels et je veux particulièrement remercier
Pierre Straebler, Alexandra Noiret, Nasséra Naar, Hanadi Dib, et Clotilde d’Épenoux. Je veux
aussi saluer le rôle joué par Inria Saclay : l’institut a toujours su témoigner son soutien moral et
matériel à cette thèse. Sur un tout autre plan, je veux remercier et saluer Alexandra Elbakyan
pour ses actions en faveur de la science ouverte.

À l’École des Mines, je remercie très amicalement Frédéric Fontane et Matthieu Mazière,
mais aussi Philippe Mustar et Sandrine Kletz, qui malgré mes promesses de moins fréquenter le
boulevard Saint-Michel m’ont à tour de rôle trouvé de nombreuses occupations en parallèle de la
thèse…

Un immense merci à tous mes amis pour m’avoir soutenu et supporté durant toutes ces
années : Baptiste à nouveau, comme Charles (pour cette inoubliable et débile année de colocation,
#709forever), Arnaud (pour nos soirées VS Code – Nuggets ©), Dog (pour nos nombreux “RDV
passerelle”), Rudy et Robin (pour nos fraternelles virées dans le 13ème), Aurélien (et tous ces
saumons finis en galettes), Laurie (pour nos collaborations artistiques mais aussi pour avoir toléré
les soirées VS Code – Nuggets ©), Corentin et Valentin (en souvenir de nos nuits sacrifiées pour
une minable feuille de chou), Fanny (pour nos vautrages parisiens et aixois), Lucie, Béatrice et
François (pour avoir accueilli un passager clandestin en plein Covid), Barrou, Vincent, Romain et
Océane (pour ces moments partagés en altitude avenue d’Italie), Juliette (pour notre colocation
éphémère mais nos commérages éternels), Haowen (en souvenir de soirées piano et raviolis),
Chloé et Agathe (pour m’avoir accueilli en leurs terrasses fleuries), Goutal (pour ce hackathon
où nous avons tous laissé beaucoup de points de QI), Rémi et Edward (pour nos repas de petits
gourmands à Lille) et Laurène (pour notre amour partagé de la mise en page et de la typographie).

Je veux pour terminer remercier mes parents, qui ont peu contribué à cette thèse mais ont bien
travaillé pendant les vingt-quatre années précédentes ! Enfin, je remercie Gwendal, pour tout; j’ai
sans doute passé à cause de toi un peu moins de temps que prévu sur ma thèse pendant ces deux
dernières années… mais c’était tellement mieux comme ça ! Garde ton sourire, ton intelligence,
ton énergie et ton humour, bref, ne change pas, car il faut bien que l’un de nous deux continue à
être payé une misère pour écrire des articles !



CONTENTS

Abstract iv

Résumé en français v

Remerciements vi

Introduction 1
1 Context of the thesis and related work . . . . . . . . . . . . . . . . . . . . . . . 1
2 Organization of the emergency calls reception in France . . . . . . . . . . . . . 5
3 Contributions and organization of the manuscript . . . . . . . . . . . . . . . . . 7
4 Publications related to the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Piecewise-affine dynamics of fluid Timed Petri Nets 15

1 Discrete dynamics of timed Petri nets 17
1 Basics of untimed Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Addressing underdetermined situations . . . . . . . . . . . . . . . . . . . . . . . 23
3 Timed Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Continuous relaxation and large-scale limit of Petri nets 47
1 Semantics and tools for fluid Petri nets . . . . . . . . . . . . . . . . . . . . . . . 49
2 Control aspects of monotonic discrete and fluid dynamics . . . . . . . . . . . . . 62
3 Fluid Petri nets as large-scale limits of discrete models . . . . . . . . . . . . . . . 69

3 Semi-Markov decision processes under weak non-Zeno conditions 85
1 Basic terminology and recalls on Markov chains . . . . . . . . . . . . . . . . . . 87
2 The finite-horizon value of semi-Markov decision processes . . . . . . . . . . . 92
3 Long-run properties of solutions of semi-Markov dynamics . . . . . . . . . . . . 121
4 Stochastic Shortest Path configurations . . . . . . . . . . . . . . . . . . . . . . . 126

4 The correspondence between monotonic fluid Petri nets and semi-Markov deci-
sion processes 133
1 A running example: an emergency call center for medical needs . . . . . . . . . 136
2 The finite-horizon correspondence theorems . . . . . . . . . . . . . . . . . . . . 140
3 Studying the throughput of fluid Petri nets through SMDP tools . . . . . . . . . 148
4 Deviation to a congestion-free regime . . . . . . . . . . . . . . . . . . . . . . . . 159
5 Convergence time of the value iteration algorithm for semi-Markov SSP problems 168
6 Application to a staffing problem of the SAMU . . . . . . . . . . . . . . . . . . . 185



5 Non-monotonic Petri net models of emergency call centers and their congestion
diagrams 189
1 Stationary regimes of Petri nets with priority rules . . . . . . . . . . . . . . . . 190
2 A bilevel emergency call center with a priority mechanism . . . . . . . . . . . . 194
3 An emergency call center for medical needs with a monitored reservoir . . . . . 201
4 Variations of the model EMS-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Posynomial systems and underlying geometric problems 219
1 Real and tropical posynomial systems . . . . . . . . . . . . . . . . . . . . . . . . 220
2 Properties of the colorful interior of convex sets . . . . . . . . . . . . . . . . . . 232

II A comprehensive study of a real-life and large-scale emergency call-
center 239

Foreword and context of the study 241
1 Object of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2 Presentation of the PFAU emergency platform . . . . . . . . . . . . . . . . . . . 242
3 Summary of the data analysis step . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4 Summary of the comparative study of organizations . . . . . . . . . . . . . . . . 245

7 Data analysis of phone logs 251
1 Description of used databases and global counts . . . . . . . . . . . . . . . . . . 252
2 Throughputs and proportions of calls . . . . . . . . . . . . . . . . . . . . . . . . 255
3 Identification of logged agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4 Service times of calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5 Patience of callers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
6 Some specific days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8 Performance analysis using numerical simulation 289
1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
2 Performance analysis of a bilevel and single-job system, comparison with a single-

tier layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
3 Validation of the analytical results by simulations . . . . . . . . . . . . . . . . . 314
4 Study of the PFAU architecture and its possible evolutions . . . . . . . . . . . . 326
5 Behaviour of the bilevel layout under non-standard arrivals . . . . . . . . . . . . 338

Conclusion and perspectives 345

Appendix: Summary of our work during the Covid-19 pandemic 353
1 Adaptation of the organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
2 Contributions to the dimensioning of response systems . . . . . . . . . . . . . . 354
3 Contributions to the forecast of the epidemic . . . . . . . . . . . . . . . . . . . . 357
4 Study of the Interactive Voice Response of SAMU 92 . . . . . . . . . . . . . . . . 358

Index 360

Bibliography 363





INTRODUCTION

1 Context of the thesis and related work

1.1 THE PERFORMANCE EVALUATION ENDEAVOUR. — Paraphrasing the definition given by Le
Boudec in his book [LB10], performance evaluation can be described as the process of quantifying
the service delivered by a system, whether it is a digital protocol (communication networks,
computer software…) or a physical and human-managed organization (manufacturing systems,
traffic infrastructure…). When one wants to address a problem that involves meeting a demand,
having objectified performance grounds is essential to shape a solution; either for the step of
system dimensioning (the more resources we put in it, the better the performance is likely to
be, but what is a satisfactory level?) or to nail down the system architecture itself (there may be
several design alternatives, is one of them any better?). Performance evaluation typically is about
determining if a system can withstand an incoming load, finding if it has an intrinsic capacity and
what are the bottlenecks. In an input/output approach, one is interested in relating the service
level to the load and the system parameters.

Assessing performance of a system necessarily starts with a formalization phase, where one
needs to rigorously establish what are the key parameters and factors that affect the performance
and what are the metrics of interest. Performing real-life trials is tempting, but these are often
expensive to carry out, little reproducible, and can rarely pretend to comprehensiveness. Therefore,
one generally has to develop a model that mimics the system but is easier to manipulate. This
whole process comes with some abstraction cost and requires a very good understanding of the
original system’s purposes (as well as its users) in order to accurately reflect its behaviour. As
customary in the field of model-building or engineering, it is crucial to carefully break down
the whole system into simpler pieces. This should be done without oversimplifications and by
retaining the fundamental features. At each step, one must control the potential approximation
errors and be aware of any blind spots of the model.

Performance evaluation sits at the confluence of several mathematical fields. First, the systems
we focus on frequently have to cope with a form of uncertainty (if the incoming demand is not
totally foreseeable, or random failure of some service units occur…). Hence it is natural to resort to
some tools of probabilities or stochastic processes in order to account for nondeterminism. In this
view, efficiency criteria may bring some statistical quantities into play, such as mean performance
and corresponding variance, quantiles, best and worst-case scenarios, etc., allowing one to perform
either average or robust system tuning. Moreover, when time intervenes (because the demand is
spread over some duration or because the system itself introduces delays or buffer steps), it is often
insufficient to study static algebraic properties. Instead, one has to tackle the problem through the
prism of dynamical systems. By further including the notion of feedback or system memory, (i.e.,
the fact that some protocols or organizations can adjust their behaviour depending upon the load
they receive or external decisions), one ends up looking at central questions of control theory.



2 Introduction

Finally, and contrary to multiple problems arising in physics, man-made and service-oriented
systems often involve phenomena of an integer nature (computer operations, limited number of
resources, channels or system components) and subject to on/off evolution (at the abrupt onset of
an exterior event, or when some threshold becomes exceeded). These observations motivated in
the past century the development of the field of discrete event systems (DES), operations research,
and the rise of suitable frameworks to deal with switched (or piecewise) dynamics.

1.2 MATHEMATICAL TOOLS AND APPROACHES. — A popular method to gain quantitative
insight on the performance of a discrete event system, which also encompasses stochastic and
control aspects, is simulation. In [Ban05], Banks recalls that it is a field of its own and lists many
dedicated software. The main interest of simulation is its ability capture a wide spectrum of
features with only minor simplifications needed to be made on the real system. It allows one
to test and compare many hypotheses and tweak varied parameters. On the other hand, even
implementing a simulation model, let alone developing an ad hoc software, may come with an
important entry cost. One also needs to ensure that the implemented program correctly simulates
the desired system. In addition, the results of the experiments are sometimes hard to interpret,
with many entangled effects. Finally, an important number of simulation runs may be needed,
which can turn out to be expensive and time-consuming. For these reasons, it is highly desirable
to also have analytical performance estimates, taking the form of closed formulas in which the
system parameters intervene.

In their introduction to discrete event systems [CL08], Cassandras and Lafortune review the
main theoretical tools used in the field of performance evaluation. Among these, the concept of
queus has been used early by Erlang in [Erl17] to describe the situation of a customer waiting for
a server (or in general for a resource that is in limited number) in a stochastic setting. Assuming
some primitive distributions for the arrivals and the service times, queueing theory aims at
computing stability conditions (in order for queues not to build up indefinitely) and performance
results such as the distribution of the waiting times, the queue length, or the probability that
some request shall be rejected or lost [Gro08]. Queues are considered to be one of the main
building blocks of discrete event systems, and have received broad attention since, with many
generalizations of server and customer classes or tasks types [BCMP75]. Burke’s Theorem [Bur56]
paved the way for the study of queueing networks in which multiple queues are cascaded and
where one can derive product-form solutions, in particular Jackson networks and Kelly networks
(see [CY01, Rob13]). However, the theoretical assumptions made on the network structures or
primitive distributions (typically exponential) are often strong and may not always be realistic.
Cassandras and Lafortune further precise that queueing theory is rather “descriptive” in nature,
and one often resorts to the study of controlled Markov processes to make room for some decision-
making and “prescriptive” aspects, see [KV15, Sti85]. Unfortunately, such techniques require
additional assumptions. From the numerical point of view, very large Markov chains are often
introduced to compute steady-state distributions and performance criteria of queueing networks,
and specific techniques need to be used to cope with the curse of dimensionality [Buc99, PF91].

In order to capture the event-to-event evolution of discrete event systems, many authors
have used the framework of automata (see the book of Hopcroft et al. [HMU01] for background
and [CL08] again for the specific use in DES). Among these tools, the expressive framework of
Petri nets has been praised for its modularity and its ease in graphically representing somewhat
complex systems. Introduced by Petri in a work centered on conceptualizing communicating
systems [Pet62], Petri nets have been designed to offer a general formalism covering synchroniza-
tion of resources (in a more general way than queues) and model concurrent processes (running
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in parallel and in an asynchronous way). They have later been extended to take timed phe-
nomena into account, as detailed in [Pet81] or in the historical perspective [GS18]. Reachability
problems and deadlock detection have been active research topics in the Petri net literature (see
for instance [Reu89, EN94]), in relation with the field of verification and performance analysis.
Petri nets also come with flexible ways to arbitrate conflicts and resource allocation, with the
possibility to implement priority or inhibition rules. Studying the dynamics of timed Petri nets
allows to compute performance estimates, like the throughput of the modeled system, or to
identify its bottlenecks. Algebraic techniques like those developed in min-plus and max-plus
algebras have shown to be particularly fruitful to derive analytical results of some subclasses
of timed Petri nets. This includes the class of timed event graphs, for instance used by Carlier
and Chretienne for application in scheduling [CC88] and also thoroughly studied by Baccelli,
Cohen, Olsder and Quadrat in [BCOQ92] with deterministic or stochastic time aspects. In the
subsequent work [BGF94, BFG96, BM98], in-depth analysis of Petri nets was extended to the class
of free-choice nets, building on fundamental monotonicity properties of the dynamics — see in
particular the book of Glasserman and Yao [GY94]. However, for more general models, mixing the
Petri net formalism with stochastic processes generally yields instances out of analytical reach,
and one often has recourse to fluidification methods or scaling limits to derive mean ergodic
results, as done in [CGQ95, GG04b, RS01]. Hybrid systems, featuring both discrete-event and
fluid parts, are also considered [BGM00] and remain active nowadays.

For the system dimensioning purposes, obtaining lower or upper bounds on the performance
can already be very satisfactory. This is the core motivation of the so-called network calculus,
introduced by Cruz in [Cru91], where one seeks to lean on an algebraic framework and symbolic
propagation techniques to compute envelopes on the system dynamics. Just as Petri nets, the
theoretical tools of idempotent structures play an important role in network calculus. The latter
can be seen as a filtering theory in the min-plus algebra, in particular building on the min-plus
convolution operation. Customarily, the arrival and service curves are bounded by piecewise affine
profiles, which makes computation more handy, but the theory also covers more general envelope
shapes. As shown by Chang in his book [Cha00], network calculus has proven advantageous
to guarantee bounds on backlog and delays in communication networks — other applications
include scheduling and buffer dimensioning (see Le Boudec and Thiran, [LBT01]). It was noted
that although the network calculus approach is well-adapted to worst-cases studies, it can be
over-pessimistic for average scenarios. This motivated further developments on the theory with
stochastic counterparts. We also refer to Bouillard who covered recent advances in [Bou14].

It is worth mentioning that queueing theory, Petri net analysis, and network calculus share
several common features and yield first-order estimates that are consistent. For instance, the
stability conditions of simple queues or the celebrated Little’s law (see [Lit61] or [CL08, p. 457])
express intuitive “rule-of-three” equilibria, that are retrieved by computation of throughput
functions in Petri nets. Similarly, evaluating transience bounds in the latter give affine formulas
that are reminiscient of network calculus, as we shall see in this thesis. Finally, all these analytical
methods are complementary with computer simulation, and it is often advantageous to carry
them out in parallel.

1.3 THE CASE OF CALL CENTERS AND EMERGENCYCALL CENTERS. — Call centers are nowa-
days a well-known industry, employing millions of people in the world. We usually distinguish
the concept of outbound and inbound call centers (respectively emitting and receveing calls).
Both types of platform fit into the setting of discrete event systems (the call sender initiates the
call, the receiver picks it up, the call is hung up after some time, etc.). Inbound call centers can
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fully be thought of as systems delivering a service to customers, for which we want to evaluate
the delay levels and the congestion situations. Queueing theory was actually developed for this
very application, giving rise to the pioneering Erlang calculus [Erl17] and some decades later to
the Palm calculus [Pal57]. Erlang formulas are still used for some practical dimensioning of call
centers nowadays. The Erlang-C formula predicts the average waiting time or the probability
for a customer to wait depending on the arrival rate, the mean service time and the number of
servers, provided the queue is stable. The Erlang-B and Erlang-A formulas refine these estimates
by considering that calls are blocked if all the servers are busy or that customers can hang up
themselves if the wait is too long.

More generally, call centers exhibit several performance evaluation or operations research
problems. In [AL05], the latter are reviewed by Avramidis and L’Ecuyer, who also cover the main
associated analytical models and simulation techniques. We also refer to the overview of staffing
and routing algorithms of Koole and Pot [KP06]. Beyond Erlang formulas, integer programming
and linear programming techniques can be implemented to solve scheduling problems in the call
center, like those of [ICWC10] and [AAC+12]. Other models include continuous-time Markov
chains to approximate service levels and find a satisfactory staffing level, as in [DLP+07], or
approximate dynamic programming to improve routing of calls [RB12]. Simulation tools are also
widely used in the call center domain, with some dedicated libraries (for instance [BL05]). Much
efforts has also been made to precisely understand the primitive parameters of call centers, like the
arrival rate of calls, the conversation times, the patience of the customers, etc., for both prediction
purposes but also to feed the analysis — see for instance the thorough study [BGM+05b] of Brown
et al. based on more than a million of calls over a year to a bank call center.

Emergency call centers are dedicated to the handling of medical distress or civil security
matters, with the ability to dispatch immediate assistance and response teams. Dealing with these
call centers has several specificities. First, owing to the very nature of the requests, any congestion
of the system resulting in long treatment delays or call abandonments can have a dramatic fallout.
Therefore, it is paramount that the calls are handled as soon as possible with minimum delay. This
has an influence on the staffing policy, that will typically be more conservative than commercial
call centers in which a trade-off between cost (number of agents) and efficiency (quality of service)
is tolerated, as discussed for instance in [KM02]. Second, there can be highly skilled agents
in emergency call centers (such as emergency physicians), hence the architecture and the call
handling procedures must be well thought through to correctly allocate these resources. In
addition, emergency call centers are more exposed to bursts in demand than commercial call
centers, due to unexpected events that have health or civil security repercussions, and have to
resist these peaks of calls while maintaining their performance level. As a critical public service,
one cannot afford to experiment with too many modifications or solutions directly on the real-life
emergency platforms, hence the recourse to analytical models and simulation is of great help in
practice.

In the emergency response field, most of the literature has been focused on the dispatching
chain, i.e., dealing with the issue of choosing the number, the location and the composition of
the response teams and vehicle fleet. In comparison, there are fewer works on emergency call
centers themselves (see for instance the recent review of Petitdemange in her dissertation [Pet20]).
Building on the work [AEH04], Ta, L’Ecuyer and Bastin study the staffing problem in emergency
call centers with a stochastic average approximation problem approach [TLB16], with application
to a 911 call center in Montreal, Canada. In [dQLMSG14], Lima et al. mix reliability block diagrams
and stochastic Petri nets to evaluate the performance and failure risks for an emergency call
center in Brazil. Discrete event system simulation was used by Gustavsson in his licenciate
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thesis [Gus18] with application to a Swedish emergency platform. In [vBKvdMB15], van Buuren
et al. rely on queueing models to simulate the performance of a medical emergency call center
as a function of the number of agents and choose the staffing accordingly. In the subsequent
work [vBKvdMB17], they compare different models with varied agent tasks, taking both the call
taking and the dispatching domains into account. In [ABG15], Allamigeon, Bœuf and Gaubert
proposed a modelization of an emergency call center located in Paris, France, using timed Petri
nets with priority rules, and derived analytical formulas of the system throughput as a function
of the staffing, hence deducing a minimum number of agents for all the calls to be handled with
no delay.

2 Organization of the emergency calls reception in France

The models of emergency call centers studied in this thesis have been developed in partnership
with French emergency services which we briefly present below. To begin with, there are four
main emergency phone numbers that the population can dial in France:

– the national number 15, dedicated to medical emergencies. It is operated by the Service d’Aide
Médicale Urgente (SAMU), and organizes the prehospital response, with ambulance or mobile
intensive care unit (MICU) dispatch.

– the national number 17, to contact the police when witnessing a crime, violence, traffic
accident, public disorder etc. The calls are picked up either by the national police or the
gendarmerie (local law enforcement), able to send teams on scene.

– the national number 18, to reach the firefighters and report fires, gas leaks, explosions etc. or
situations involving rescuing a victim (public road accident, injuries…). It is operated by the
Service d’Incendie et Secours (SIS), which handles fire trucks and rescue vehicles.

– the European number 112, which is a hub to contact all of the above (in several European
countries, the 112 is the only emergency number to dial regardless of the matter). In most
regions of France, the 112 calls are routed directly to the SIS and one often talks about the
18–112.

The emergency calls are typically centralized at the departmental level (France is divided into
101 “départements”), so that there are about 450 emergency call centers throughout the country,
involving more than 8000 responding agents. In 2018, 29 millions of calls were received by the
SAMU, 23 millions by the police or the gendarmerie, and 22 millions by the SIS (see [MP19]), thus
representing a total of 74 millions of emergency calls for a population of 67 millions inhabitants.

As far as medical emergencies are concerned, a characteristic of the French system is that an
emergency physician is present all along the intervention, from the call regulation to the on-site
intervention. This contributes to avoid “overtriage”, that is to say sending unneeded ambulances
and overcrowding emergency rooms. French emergency services tend to follow the “stay and
play” logic (see [SC09]), meaning that MICU can be dispatched in the most severe situations to
initiate on-site primary treatments and provide advanced life support (abb. ALS, which includes
invasive techniques). Other countries (such as the United States of America via the 911) adopt
the “scoop and run” model, in which only basic life support methods (abb. BLS, involving non
invasive techniques of immobilization, oxygen administration, bandaging…) are used, often by
paramedics, in order to bring the patient to an hospital facility as fast as possible. We refer the
reader to [NPJ98, AL04, JPM20] for more in-depth description of the French SAMU system.
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The health, police and rescue services work hand in hand to fulfill their missions of assistance
to the public. Due to their training in BLS techniques, the French firefighters are often called
in support of police operations (extraction and evacuation of victims) but also of SAMU teams
(patient transportation, cardiac massage…). For life threatening situations requiring immediate
care, the requests received by the SAMU and the firefighters sometimes overlap; in case of a heart
attack, the first witness dials the number 15 in one out of two cases, and the number 18 in the
other case [MP19, p. 39].

In the Paris area (i.e., the city and its inner suburbs, highlighted in the map below), the
emergency medical response is carried out the four SAMU of Assistance Publique – Hôpitaux de
Paris (AP-HP). The high number of hospital facilities in the region is an extra challenge for the
answering physicians who seek to send the patients to most appropriate units. Another regional
specificity is the military status of the Parisian firefighters, who are members of the Brigade des
Sapeurs-Pompiers de Paris (BSPP) and have specific means (see [BL19]). Likewise, police forces of
Paris area are unified under the interdepertmental unit referred to as the Direction de la sécurité
de proximité de l’agglomération parisienne (DSPAP). The BSPP and the DSPAP work under the
authority of the Préfecture de Police de Paris, which led to the inauguration in 2016 of a common
emergency calls platform with firefighters and police forces, the Plateforme d’Appels d’Urgence
(PFAU) , or also the 17–18–112 call center. This platform receives all the law enforcement and
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rescue emergency calls of the Paris area, making it the biggest emergency call center of the
country.

During this thesis, we had the opportunity to collaborate with the BSPP and DSPAP to carry
out the performance evaluation of the PFAU call center, and with the SAMU of Paris, Hauts-de-
Seine, Seine-Saint-Denis and Val-de-Marne to study each one of their regulation platforms as well.
During the Covid-19 crisis, we had the chance to also work with the SAMU of Rhône, located in
the city of Lyon, to adapt our models to their organizations and needs.

3 Contributions and organization of the manuscript

The thesis is divided in two parts, reflecting two complementary approaches to analyze real-life
organizations such as emergency call centers that lend themselves well to mathematical modeling
and numerical simulation. We present our contributions chapter by chapter.

Part I deals with analytical models of timed Petri nets and semi-Markov decision processes, and it
addresses performance evaluation issues of organizations modeled by these means. The central
object that we actually study is a set of dynamical recursive piecewis -affine equations with delays,
arising in these two families of models.

) Chapter 1 presents the formalism of Petri nets and timed Petri nets, with exogenous prescribed
inputs and subject to preselection or priority routings, and when the holding times are constant
and attached to places. We endeavour to show the well-posedness and compatibility of the firing
rules. We resort in particular to the notion of simultaneous firing of multisets of transitions in the
untimed setting, which allows one (Theorem 1.13) to avoid the situations of so-called “confusions”
brought up in [AMBC+98]. We recall the dynamical equations verified by the integer-valued
counter functions of the net, already featured in [ABG15]. In comparison, we work in a slightly
more expressive context where arbitrary degrees of priority rules are permitted.

In the priority-free framework, we show that this system of equations provide well-posed
dynamics even if the holding times of certain places are null, provided that no circuit of the net
is composed of only such places (Theorem 1.23). These sufficient “non-Zeno” condition allow
us to safely model real-life processes where some steps are instantaneous, with no need to add
artificial positive waits. We further show that the counter dynamics involving priority rules also
determine unambiguous trajectories but we have to this purpose to rule out some pathological
patterns.

) Chapter 2 focuses on continuous-relaxed (or fluid) timed Petri nets, in which integrality constraints
are discarded. The dynamical equations governing these models can be postulated by analogy
with their discrete counterpart. However, we show that the natural fluidification of the delayed
dynamics can be obtained by amending the usual ODE system based on exponential firings of
transitions considered by [AD98].

We propose a single operator-based formalism to treat both the discrete and continuous-
relaxed dynamics using a control theory approach. We establish structural properties of the
underlying evolution operators or evolution semigroups — in particular the fact that they are order-
preserving (or monotonic). The main contribution of the chapter is the quantitative analysis of
the deviation between the trajectories of the discrete and continuous-relaxed dynamics. Provided
the inputs at stake and the preselection rules have bounded differences, we prove that the fluid
approximation is asymptotically exact under a scaling of both dynamics, that is to say when more
andmore tokens navigate in the nets (Theorem 2.19). This conclusion is still valid when the discrete
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dynamics is subject tomultiple nondeterministic events; we prove under nonhomogeneous Poisson
arrivals, Bernoulli routings and arbitrarily-distributed holding times that after conjugation by a
scaling parameter, the stochastic discrete dynamics admit the continuous-relaxed trajectory as a
deterministic fluid limit (Theorem 2.23). This “strong law of large numbers for Petri nets” answers
a question raised in [CGQ95] and is an additional argument to justify the well-foundedness of
the fluid approximation.

) Chapter 3 introduces the setting of semi-Markov decision processes (SMDPs) with finite state and
action spaces and constant sojourn times. Unlike the majority of the SMDP literature, we allow
most sojourn times of the model to be null. We exhibit minimal non-Zeno assumptions under
which the expected number of moves achieved in the game in a given time-horizon stays finite
(Theorems 3.15 and 3.16). We establish under these weak non-Zeno conditions the finite-horizon
dynamic programming equations of several cost criteria, involving discount factors, terminal costs
and stopping costs (Theorems 3.18 and 3.22). Our whole setting requires tools from non-linear
Perron–Frobenius theory (see [AGN11]) to control the contraction properties of the semi-Markov
dynamics, in particular the Zeno phenomena that a priori induce implicit systems of equations. It
leads us to state an induction principle that we use to show multiple structural properties of the
trajectories via propagation in the dynamical equations, and we still use the high-level semigroup
formalism introduced in the Chapter 2.

Standard results on the SMDP average-cost problem are recalled, to characterize the long-run
behaviour of trajectories. In the last section of the chapter, we extend to the semi-Markov setting
the analysis of the stochastic shortest path problem introduced in [BT91] as a subclass of MDPs.
We prove the existence of the value and that all trajectories converge towards it (Theorem 3.41).

) Chapter 4 contains our main contributions to the analysis of timed Petri net dynamics. We
enounce a formal correspondence between fluid timed Petri nets and semi-Markov decision
processes based on their respective evolution equations (Correspondence Theorem 1), which
extends ideas sketched in [CGQ95]. We show that advanced modeling aspects in SMDP such as
the terminal and the stopping costs are essential to account for exogenous inputs in Petri nets.
Relying on the notion of stoichiometric invariants, we reduce the analysis of timed Petri nets to
the one of undiscounted SMDPs (Correspondence Theorem 2).

This allows us to consider the throughput vector of Petri nets as the average-cost vector of
an SMDP (Correspondence Theorem 3). We leverage on classical results of the SMDP literature
and on our non-Zeno extensions to retrieve or refine several characterizations of the throughput
of Petri nets. We show that the latter arises as the solution of a set of lexicographic piecewise
affine optimality equations and that it can also be explicitly expressed using the initial Petri
net parameters. This formula proves that the throughput vector of a Petri net is a piecewise-
affine, nondecreasing and concave mapping of the resources of the net. The corresponding
polyhedral complex provides a congestion diagram, which is an operational tool from which
staffing recommendations can be drawn for real-life organizations. Exploiting linear programming
techniques for SMDPs (see [DF68]), we also retrieve that the throughput vector of this class of
Petri nets can be computed as the solution of a linear program, which was first shown in [GG04b].

We build further on our correspondence theorems to study the transience regimes of single-
input Petri nets satisfying congestion-free conditions. We establish that the problem of evaluating
the time needed to catch-up the input after a perturbation reduces to computing the convergence
time of the value iteration procedure for semi-Markov decision processes in stochastic shortest
path configuration (Correspondence Theorem 4 and Theorem 4.11). We prove that the value
iteration terminates in finite-time if and only if the transition matrices of the optimal policies
are nilpotent (Theorem 4.13), which is also new in the setting of MDPs. We exhibit a class
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of hierarchical SMDPs for which this finite-time convergence conditions are satisfied, and we
compute analytical upper bounds on the length of the transient regimes (Theorem 4.19). We thus
obtain analytical maximal convergence times to catch-up the input in congestion-free Petri nets,
from which we can derive security margins on the staffing of real-life organizations in order to
recover quickly from a burst in the demand.

The entirety of the Chapter 4 is illustrated on the running example (EMS-A) of a medical
emergency call center that is drawn from our collaboration with the SAMU of Paris area. Examples
of practical recommendations are presented in the last section.

) Chapter 5 discusses how the use of priority rules in Petri nets impacts the results obtained for the
monotonic models of Chapter 4. We use the equations of [ABG15] in which the throughput of
non-monotonic Petri nets are looked for based on min-plus systems on germs of affine functions.
Our approach is inspired by the work [FGQ11] applied to the modeling of road traffic networks.

We illustrate on two examples of emergency call centers implementing priority rules that we
can still compute congestion diagrams in this setting. The first case study models the (Bi Lvl) sys-
tem of the PFAU, i.e., the 17–18–112 police and firefighters call center of Paris area. This call center
was already thoroughly studied in [ABG15, Bœu17]. Our second example, the system (EMS-B), is
an enhanced and complexified version of the medical emergency call center (EMS-A) introduced
in Chapter 4. It is also designed with the help of the SAMU, and its purpose is to study an
innovative reservoir mechanism.

The analytical expressions of the throughput that we derive for these two practical cases allow
us to demonstrate the interest of priority rules for certain call center architectures (protection
of the most urgent calls, desynchronization of limiting resources, …) and on the other hand, it
brings to light some pathological behaviours that can arise if the system is not correctly tuned.
For instance, we exhibit a situation where increasing the number of agents in the system (EMS-B)
decreases the throughput of the task with the highest priority of the call center. The advantage
of our approach is that it is modular and systematic, with a characterization of the system
throughput even in the degraded or unanticipated phases. We explore further three alternative
models to (EMS-B), and using the congestion diagram tool, we show that nontrivial comparison
criteria between models or extra security margins can be computed analytically.

) Chapter 6 focuses on posynomial systems, that are multivariate polynomials on positive variables
but with arbitrary exponents. We consider either classical posynomials or tropical posynomials.
Our motivation in this chapter is that tropical posynomial systems are induced by the fixed-point
equations arising in the dynamics of both continuous-relaxed timed Petri nets or semi-Markov
decision processes. As a result, the understanding of such systems is a way to gain insight on
those dynamics from the algebraical point of view.

We prove that solving classical or tropical posynomial systems is in general NP-hard (Proposi-
tion 6.3 and Theorem 6.4). Under two sufficient geometric conditions on the exponent vectors of
the posynomials – the pointed exponents property and the existence of a colorful vector – we show
that a solution of tropical posynomial systems can be found by resolution of a linear program
(Theorem 6.7). The same conditions imply the existence of solutions to classical posynomial
systems, that can be determined by solving a geometric program (Theorem 6.15). We establish that
the tropical posynomial systems that are pointed and that admit a colorful vector are equivalent
to Markov decision processes up to a change of variables (Theorem 6.12). We build on this result
to reduce the effective discount factor of discounted MDPs. We also study the properties of the set
of colorful vectors associated with convex bodies. We recall a result of [LS09] showing that this
set is the interior of a simplex if nonempty. We conjecture a necessary and sufficient condition
for this set to be nonempty, that we prove up to dimension 3 (Proposition 6.24).
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Part II of the thesis is an in-depth case study of the PFAU, the 17–18–112 police and firefighters
emergency call center of Paris area. The originality of this platform is threefold: first it is the
largest emergency call center in France, second it gathers under the same roof two distinct
emergency missions (security and rescue) most of the time physically separated in the rest of the
country, and finally implements a bilevel (or two-tier) procedure to handle inbound calls. In this
case study, the analytical results of Part I are challenged by a simulation approach with a very
high degree of fidelity with respect to the real organization. This work is part of a collaboration
with the Préfecture de Police de Paris initiated in 2015, and was funded by the Institut des Hautes
Études du Ministère de l’Intérieur (IHEMI). It is here presented in English, while a French version
can be found in [ABCG21].

) Chapter 7 presents the analysis of the call logs for more than 5 millions of emergency calls received
by the PFAU in 2019, in the spirit of the study [BGM+05b] carried out for a commercial call center.
We detail the arrival rates of the calls received through the three emergency numbers 17, 18 and
112, the distribution of conversation times at both levels of instruction depending upon the calls
severity degree, and the average staffing levels over the time. The scale of the study and the
fine granularity of the analysis seem unprecedented in the academic literature on emergency
call centers. We are able to detect phenomena on the arrivals that are invisible to the answering
operators, and we highlight unforeseen correlations between several primitive variables such as
conversation times at the different levels of instruction.

Building on statistical estimators used in survival analysis, we reconstruct the patience of the
callers at both levels of the instruction. We prove that the bilevel system increases the patience of
the callers between the two steps of the instruction, and so does the escort mechanism for very
urgent calls. We also present unaveraged data corresponding to particular events.

) Chapter 8 uses a dedicated simulation software to evaluate the performance of the PFAU for
different staffing policies. This is done by simulating the execution of very realistic random
scenarios which implement the arrivals, conversation times and patience levels computed in
the Chapter 7. A first interest of the simulation technique is to compare the precision of the
analytical formulas derived in the Part I using continuous-relaxed Petri nets without abandonment.
We show in the case of the PFAU that our polyhedral throughput expressions are good estimates
of the real simulated throughput, in particular deep inside the linearity regions. We also show that
the Erlang formulas – that are very often used for the sizing of call centers – perform reasonably
well as far as the proportion of abandonment is concerned, but that they do not precisely predict
the average waiting time of callers.

A central contribution of this chapter is the comparison of the current bilevel system adopted
by the PFAU and an equivalent single-tier architecture, privileged in other firefighters or police
French local call centers. The main conclusion of this aspect of the study is that with the same
number of operators, the bilevel system does not alter the global performance compared to the
single-tier system, provided the instruction at the first level is performed quickly enough relatively
to the second level — this also requires a “critical size” of the call center with a significant number
of inbound calls. We confirm that the two-tier organization offers a much better service to the
life-threatening calls when there are too many calls or not enough operators, which is why this
designed was brought up in Paris.

Finally, we use the simulation techniques to prospectively estimate the performance of some
modifications of the organization considered by the PFAU, in particular the merger of some pools
of operators. We are in addition able to quantify the interest of having two different forces (police
and firefighters) collaborating in the same platform.
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We quickly summarize our contributions by themes in the Conclusion, and discuss there some
perspectives and open problems that are left for future work. We present in a final Appendix
the work that we have done with the four SAMU of AP-HP during the beginning of the Covid-
19 pandemic. This was a very concrete situation in which we applied our call center staffing
methodology with immediate use.

4 Publications related to the thesis

4.1 JOURNAL AND CONFERENCE ARTICLES. — We mention below the articles we have pub-
lished throughout this work, and what part of the manuscript are drawn from them.

• [ABG21] was published in the proceedings of the Petri nets 2020 conference, and later in-
vited in the journal Fundamenta Informaticae for an extended version. Basic material from
the Chapter 1 come from this article, as well as the three first correspondence theorems and
the long-run behaviour analysis of the Chapter 4.

• [AABG20] was published in the proceedings of the ICMS 2020 conference, it is resumed in
our Chapter 6 with additional figures and results on MDPs.

• [ABG22] was accepted in the Petri nets 2022 conference. Most results of the Sections 3 and 4
in Chapter 4 on the computation of transient regimes of hierarchical Petri nets are drawn
from this article.

• [GAA+20] was released in the French Comptes-Rendus de l’Académie des Sciences. It arises
from a crisis work that occurred in the Covid-19 pandemic, when we worked with the four
SAMU of AP-HP to adapt our call center models and used the data at our disposal to model the
epidemic evolution. It is jointly authored by a team of mathematicians, computer scientists
and physicians from the SAMU.

• [Cov20] was published in the PLOS One medical journal, at the initiative of the crisis medical
director of AP-HP and intended to a medical audience. It provides a broader perspective on
epidemic indicators, featuring some material of [GAA+20].

4.2 TECHNICAL REPORTS. — In addition, our collaboration with French emergency services led to
the production of two reports:

• [ABG20b] refers to four reports delivered to SAMU 75 (Hôpital Necker in Paris), SAMU 92
(Hôpital Raymond Poincaré in Garches), SAMU 93 (Hôpital Avicenne in Bobigny) and SAMU 94
(Hôpital Henri Mondor in Créteil), where we analyze one month of emergency call logs from
their call centers and model the SAMU organization before computing practical staffing recom-
mendations. This work gave rise to the (EMS-A) model extensively discussed in our Chapter 4.
The Section 6 of the latter is drawn from our report to SAMU 94.

• [ABCG21] is the final report resulting from a work ordered and funded by the IHEMI, centered
around the performance study of the PFAU using data analysis and numerical Petri net
simulation. It constitutes the Part II of the manuscript.

Based on the study presented in the studies of [ABG20b], and on the methods presented in
Chapters 4 and 5 involving the analytic computation of the congestion-fluid regime thresholds,
we provided a prototype of emergency call center dimensioning tool to the four SAMU of AP-HP.
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During the Covid-19 crisis, we had the opportunity to develop contacts with the SAMU 69 (Hôpital
Édouard Herriot at Lyon). We developed a specific model of their call center, and adapted our
dimensioning tool for them, also based on the present modeling and analytic methodology.

Notation

We briefly list below some notational conventions used in the manuscript:

– In all the thesis except in Chapter 6, we use the “hat” superscript to refer to random variables,
like *̂ . In this case, no hat (for instance * ) means that we are talking about a realization of
the random variable *̂ .

– In any vector space, we use the notation 0 to stand for the zero vector, except for function
spaces where we add a tilde and denote the null function by 0̃. Likewise, the notation 1 and 1̃
respectively refer to the unit vector of a vector space (with all components set to one) and the
constant function equal to 1.

– Whenever ( is a finite set, we denote by R( the vector space over R with dimension |( |,
isomorphic to the space of functions from ( to R. In addition if G is a vector of R( , we may use
the notation GB to refer to the coordinate of G associated with the element B of ( . As customary
in Markov chain analysis, we may as well write G (B) (in particular in Chapters 3 and 4).

– If G is a vector of R( and ( ′ is a subset of ( , we denote by G |(′ the vector of R(
′
that is the

restriction of G to the elements of ( ′. The same goes for matrices, with the notation" |�′×�′ if
" is a matrix of R�×� , �′ ⊂ � and �′ ⊂ �.

– When working with square matrices, the notation � always denotes the identity matrix,
regardless of the dimension.

– We use the symbol 1 to denote the indicator function of any set (equal to one over this set,
zero elsewhere). It is sometimes identified with a vector.

– The floor and ceiling functions are respectively denoted by b·c and d·e.

– The dot product between two vectors is denoted by 〈·, ·〉.

– The symbols � and � respectively denote the Hadamard (componentwise) products and
division of vectors.

– The conic and convex hulls of a set - are denoted by cone(- ) and conv(- ).

Acknowledgement

This doctoral thesis was supported by a joint PhD grant from Inria and AID (Agence Innovation
Défense, part of the French Direction Générale de l’Armement).







Part I

PIECEWISE-AFFINE DYNAMICS
OF FLUID TIMED PETRI NETS





1
DISCRETE DYNAMICS OF

TIMED PETRI NETS

Contents
1 Basics of untimed Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Topology of a Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Markings and transition firings . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Elementary incidence patterns . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Petri nets with multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Petri nets controlled by external inputs . . . . . . . . . . . . . . . . . . . . 23

2 Addressing underdetermined situations . . . . . . . . . . . . . . . . . . . . . 23

2.1 Preselection routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Priority routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Simultaneous firing of non-conflicting transitions . . . . . . . . . . . . . . 27

3 Timed Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Framework and semantics of timed Petri nets . . . . . . . . . . . . . . . . 31

3.2 Counter functions of the net . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Bringing stochasticity to the nets . . . . . . . . . . . . . . . . . . . . . . . 41

There are several reasons why we choose to work with Petri nets in some parts of this thesis. As
detailed in the Introduction, they offer a great modeling power to describe discrete-event systems.
The notions of synchronization and concurrency were prime motivations of the work of Carl
Adam Petri [Pet62]. Various enhancements of the formalism – bringing time into play or allowing
fine resource allocation schemes – subsequently made Petri nets a very popular modeling tool in
applied mathematics. We refer for instance to the following reviews in the field of biology [HR04],
workflow management [VdA98], production scheduling [TB07], large computing infrastructures
and web services [CEHMR12] or urban traffic [NRA13] (and this list is not exhaustive). Petri
nets also come with simple graphical representations, which make them easy to present in the
layman’s term. Our main interest in Petri nets is however the dynamical systems they give rise to
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and that govern their evolution. These switched and controlled dynamics are actually the core
object that we study in this thesis.

In Section 1, we focus on the so-called “untimed” Petri nets, that is to say the ground models
introduced in the 1960s. These were widely used to study structural properties of systems,
in particular to detect possible blockages. The purpose of Section 2 is to somehow “rigidify”
the setting of untimed Petri nets to guarantee that they behave in a univocal manner, without
resorting to the intervention of an external observer. Thus, they give rise to a single and well-posed
evolution sequence. We finally introduce time in Section 3, that enriches further the modeling
power of Petri nets, and that makes it quite natural to study their behaviour under the perspective
of controlled dynamical systems. In particular, we focus on the evolution of the counter functions
of the net. We also discuss several ways in which nondeterminism can be brought to models of
timed Petri nets.

Some original material on the uniqueness of Petri net trajectories is developed in Sections 2
and 3. For the rest of the chapter, that is a synthesis of basic definitions and main properties
of Petri nets, we rely on the monographs of Baccelli, Cohen, Olsder and Quadrat [BCOQ92], of
Heidergott, Olsder and van der Woude [HOvdW05], of Ajmone Marsan, Balbo, Conte, Donatelli
and Franceschinis [AMBC+98] and of Reisig [Rei13]. We also refer the reader to the surveys of
David and Alla [AD94] and of Bowden [Bow00].

1 Basics of untimed Petri nets

This section gives the formal definition of a Petri net and its evolution semantics, as well as the
graphical representation conventions that we shall use throughout the thesis.

1.1 TOPOLOGYOF A PETRI NET. — The fundamental and common layer to all the models of Petri
nets that we shall encounter involves specifying the connections between objects of two kinds:
places and transitions.

) Definition 1.1. A Petri net is a triple (P,Q, E), where P is a finite set whose elements are called
places, Q is a finite set whose elements are called transitions, and E is a subset of (P ×Q) ∪ (Q ×P)
representing the incidence relation between places and transitions.

It comes natural in practice to assume that P ∩ Q = ∅ and P ∪ Q ≠ ∅. A Petri net can then
be seen as a directed bipartite graph, with vertices set P ∪ Q and arcs set E. In particular, if ? is a
place of P and @ a transition of Q, there is an arc from ? to @ (resp. @ to ?) if and only if (?, @)
(resp. (@, ?)) belongs to E.

If G and ~ are two vertices of P ∪ Q such that the arc G → ~ is in the Petri net (i.e., the pair
(G,~) is in E), we say that G is an upstream vertex of ~, and that ~ is a downstream vertex of G .
The set of upstream (resp. downstream) vertices of G is denoted by G in (resp. G out). Due to the
bipartite character of the incidence relation, upstream or downstream vertices of a place (resp. a
transition) are transitions (resp. places).

We say that two vertices G and ~ create a self-loop in the Petri net if both pairs (G,~) and
(~, G) are in E. Petri nets with no self-loops are called pure, and constitute the most widely used
setting in the literature. The incidence relation of pure Petri nets can be represented by a |P | × |Q|
matrix with elements in {−1, 0, 1}, denoted by � and referred to as the incidence matrix. This is
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done by setting for all places ? in P and transitions @ in Q

�?@ B


1 if (@, ?) ∈ E
−1 if (?, @) ∈ E
0 otherwise

. (1.1)

The incidence matrix � is customarily decomposed under the form � = � + − � −, where � +

and � − are two 0–1-matrices with same dimension than � , respectively indicating the places to
transitions and transitions to places incidences. For a pure Petri net, the specification of the set E
is equivalent to the one of the matrix � , or to the knowledge of the matrices � + and � −.

Example 1.2. We depict below in Figure 1.1 a pure Petri net with places setP = {?1, ?2, ?3, ?4}
and transitions set Q = {@1, @2, @3}. By convention, places are depicted by circles, while
transitions are depicted by thick segment lines. Just like usual (bipartite) directed graphs,
incidence between a place-transition pair is represented by one-way arrows.

?1
@1

?2

?3

@2

@3

?4

Figure 1.1: A pure Petri net with four places and three transitions

The incidence relation associated with the Petri net of Figure 1.1 amounts to seven pairs,
namely E =

{
(?1, @1), (@1, ?2), (@1, ?3), (?2, @2), (?3, @3), (@2, ?4), (@3, ?4)

}
, but is more conve-

niently represented by the equivalent incidence matrix

� =

©«
ª®®®¬

−1 0 0 ?1

1 −1 0 ?2

1 0 −1 ?3

0 1 1 ?4

@1 @2 @3

.

1.2 MARKINGS AND TRANSITION FIRINGS. — A Petri net starts to come alive once some of its
places are populated with tokens, that we keep count of using the notion of marking.

) Definition 1.3. Given a Petri net (P,Q, E), we call marking (or sometimes state of the Petri net)
an integer-valued vector of NP . If < is a marking and ? is a place of P, the integer <? gives the
number of tokens present in ? .

Although introduced in an abstract way, tokens shall be used in practice to represent multiple
kind of information: pending job, available resource, operation in progress, etc. Only places are
equipped with tokens, and may be thought of as “tokens reservoirs”. By definition, a Petri net
undergoes a change of state when tokens appear or vanish in some of its places. This can only
happen if a transition is fireable.
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) Definition 1.4. For a Petri net (P,Q, E) with marking < in NP and associated incidence matrix
decomposition (� +,� −) in NP×Q , we say that the transition @ in Q is fireable if < > [� −]@ ,
where [� −]@ denotes the @-column of the matrix � − and the inequality is taken entrywise.

If the transition @ is fireable for the marking <, we further say that @ fires if the Petri net evolves
in state<′, such that <′ =< + [� +]@ − [� −]@ =< + [�]@ .

In other words, the firing of a transition @ is possible only if there are tokens present in each
upstream place of @ (i.e., each place of @ in). When performed, the firing of @ consumes one token
in each place of @ in and produces one token in each place of @ out (i.e., each downstream place of @).
The following principle epitomizes this fundamental evolution rule:

In a Petri net, tokens pop up in places or are cleared out from them as transitions fire.

We point out that it would be slightly misleading to say that “tokens go from places to places
by crossing transitions”. Indeed, depending on the incidence relation E, the firing of a transition
may not preserve the total amount of tokens at stake. In addition, the tokens of two different
places may represent objects of a very heterogeneous nature. As a consequence, the idea of
identical tokens traveling through the net should be considered with caution.

The firing condition of a transition @ may still be satisfied after one or multiple firings of @.
Alternatively, an initially non fireable transition @′ may become fireable after the firing of @. To
deal with successive firings of one or multiple transitions, the notion of firing sequence comes
in handy. Given an initial marking<0 in NP and ℓ in N ∪ {∞}, we say that a (possibly finite)
sequence of transitions f = (@ (1) , @ (2) , . . . , @ (:) , . . . ) of Qℓ is an admissible firing sequence for<0

if for all 1 6 : 6 ℓ , the transition @ (:) is fireable for the marking<0 +∑:−1
8=1 [�]@ (8 ) . For such a

finite sequence f and denoting by |f | the vector of NQ whose @-coordinate gives the number of
occurrences of transition @ in f , the final marking of the Petri net starting from initial marking
<0 is equal to<0 +� |f |. This equation is sometimes referred to as the fundamental equation of
Petri nets.

Example 1.5. We illustrate the notion of transition firing in Figure 1.2, which depicts a Petri
net with four places and with marking<0 = (3 0 1 0)T. The transition @4 is not fireable due
to the absence of tokens in ?2, however both @2 and @3 are fireable owing to the presence of
tokens in ?1.

?1

@2

@3

?2

?3

@4

?4

Figure 1.2: A Petri net with two marked places

Once @2 is fired (consuming a token in ?1 and producing a token in ?2), the transition @4
becomes fireable. Firing@4 has the effect of consuming a token in both ?2 and ?3 and producing
a token in ?4. We let the reader check that both (@2 @2 @2 @4) and (@2 @4 @3 @2 @4) are admissible
firing sequences from<0, and that they respectively lead to final markings (0 2 0 1)T and
(0 0 0 2)T.
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A lot of attention in the Petri net literature has been received by the reachability problem,
i.e., determining for two markings <0 and < in NP if there is a firing sequence f such that
< =<0 +� |f |. In this case, we say that< is reachable from<0. In various applications, reaching
a specific marking can model the termination of a process of interest, or the triggering of some
key step, etc. It was further observed that numerous other problems on Petri nets reduce to the
reachability question, see for instance [Hac76a]. In particular, it is often considered that a sound
behaviour for a Petri net is that the latter stays bounded from a given initial marking<0, which
means that no reachable marking from<0 can have an arbitrary large amount of tokens in some
place. We shall also be interested in Petri nets that are live for an initial marking<0, meaning
that for every reachable marking< from<0 and transition @ of Q, there exists a firing sequence
f such that @ is fireable for the marking< +� |f |. In other words, it is always possible to make
any transition fireable indefinitely many times. Conversely, we say that the net admits a deadlock
from<0 if there exists a reachable marking from<0 from which no transition is fireable anymore.

The elements of the left and right nullspaces of the matrix � are often used to characterize
structural properties of Petri nets. We shall use later on the following notion of T-invariants, that
expresses balance equations for produced and consumed tokens in places (in the manner of a
Kirchhoff’s nodal rule):

) Definition 1.6. Let (P,Q, E) be a pure Petri net with associated incidence matrix � . We say that
a vector ~ in NQ is a T-invariant if �~ = 0.

It is known in particular that if a bounded and deadlock-free Petri net admits an elementary
positive T-invariant (i.e., which is not a positive combination of T-invariants with smaller supports),
then it is live [LR96]. We also refer to [Reu89, EN94] for other results on structural analysis of
Petri nets.

1.3 ELEMENTARY INCIDENCE PATTERNS. — Topology-wise, the incidence patterns involving a
place or a transition of a Petri net are interpreted differently depending on the number of upstream
and downstream vertices at stake. The Figure 1.3 below depicts four elementary arrangements of
places and transitions, that all incidence patterns are extensions of.

@

?1 ?2

?3

Synchronization

(a)

@

?2 ?3

?1

Concurrency

(b)

?

@1 @2

@3

Join

(c)

?

@2 @3

@1

Fork

(d)

Figure 1.3: Four elementary incidence patterns

The first situation (1.3a) occurs when a transition @ has multiple upstream places. As outlined
previously, this transition cannot be fired until a token is present in each place of @ in. This
lends itself well to modeling the need for a synchronization of resources. If @ admits multiple
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downstream places (1.3b), the firing of @ produces one token in each place of @ out and allows
to consider concurrent (or parallel) lanes. When a place ? has multiple upstream transitions
(1.3c), the firing of any transition of ? in produces tokens in ? , and one can talk about tokens
meeting or joining – this may be used to model the merger of several lanes into a single one.
Finally, a somehow more delicate pattern arises when a place ? can admit multiple downstream
transitions (1.3d). Indeed, if one token lies in ? , a single transition of ?out may be fired (provided
these transitions do not have other upstream places with no tokens), and such a firing makes
all the transitions of ?out no longer fireable. As a result, there is here room for a choice, and as
illustrated by the Section 1.2 associated with the Figure 1.2, choosing which transitions to fire
highly influences the possible firing sequences and resulting markings to come in the future. We
shall discuss these cases in detail when introducing routing rules in Section 2.

In the case where only synchronization and concurrency patterns are involved, the class of
systems at stake reduces to event graphs, that are defined in [BCOQ92] as Petri nets where all
places have at most one upstream and one downstream transition. It comes with little surprise
that the structural and the dynamical analyses of event graphs are less difficult than those of Petri
nets. It is in fact customary in the Petri net literature to focus on several subclasses with extra
restrictions on the net topologies, to be able to derive analytical results.

1.4 PETRI NETS WITH MULTIPLIERS. — The modeling power of Petri nets is sometimes extended
by taking into account multipliers (or arc weights). Formally, one may consider that a Petri net
with multipliers is defined by a triple (P,Q, E ′), where P and Q still denote finite sets of places
and transitions, but E ′ is a subset of (P × Q × N∗) ∪ (P × Q × N∗). An element (G,~, U) of E ′
stands for an incidence relation between vertices G and ~ (i.e., an arc from G to ~) with weight U
in N∗. If a Petri net with multipliers is pure (in the sense that the underlying Petri net with no
multipliers is pure), the weighted incidence relation E ′ is conveniently represented by a |P | × |Q|
matrix, similarly to the matrix� introduced in (1.1), with this time coefficients in N. If ? is a place
of P and @ a transition of Q, we indeed let �?@ = U if (@, ?, U) belongs to E ′, �?@ = −U if (?, @, U)
belongs to E ′ and �?@ = 0 otherwise. Note that the resulting matrix � still admits a unique
decomposition into the form � = � + − � −, where the matrices � + and � − have nonnegative
entries. Following the convention of [CGQ98], if a Petri net with multipliers features a ? → @ arc
from place ? to transition @, we shall refer to its weight by U@? , while the weight of a @ → ? arc
from a transition @ to a place ? shall be denoted by U?@ .

When working with Petri nets with multipliers, the condition for a transition @ of Q to be
fireable from a marking< in NP that was introduced in Definition 1.4 is unchanged. It remains
< > [� −]@ , and the new marking obtained after the firing of @ is still given< + [�]@ . This means
that a single firing of transition @ consumes U@? tokens in place ? for each upstream place ? in
@ in, and produces U?@ tokens in place ? for each downstream place ? in @ out. Allowing weights
in Petri nets can be used in practice to represent the fact that some operations require multiple
resource of the same kind to be performed, or conversely provide multiple same elements when
achieved once (e.g., buying one box of eggs actually gives you six eggs).

Note that the definition of an admissible firing sequence f for a marking <0 introduced
in Section 1.2 extends to Petri nets with multipliers, and the resulting marking< after applying f
still verifies< =<0 +� |f |. Furthermore, Definition 1.6 also carries over and we say that a vector
~ in NQ is a T-invariant of a pure Petri net with multipliers if �~ = 0.
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Example 1.7. Consider the pure Petri net with multipliers depicted in Figure 1.4. The arc
weights are represented along the arcs if not equal to one.

?1

@1 ?2

?3

@2
?4

3

2 5

Figure 1.4: A Petri net with multipliers

The weighted incidence matrix � associated with this Petri net is given by

� =

©«
ª®®®¬

−1 0 ?1

3 −1 ?2

0 −2 ?3

0 5 ?4

@1 @2

.

An initial marking<0 = (1 0 2 0)T is also represented in Figure 1.4. Observe that (@1 @2) is
an admissible firing sequence, and it leads to the new marking (0 2 0 5)T.

1.5 PETRI NETS CONTROLLED BY EXTERNAL INPUTS. — So far, in the class of Petri nets that we
have described, the knowledge of a topology and an initial marking is sufficient to determine the
admissible firing sequences of the net, and thus its reachable states. Alternatively, one may want
to have leverage on the fireable character of certain transitions, for instance temporarily halt a
part of a chain of treatment, regulate the amount of tokens present in the net, etc. To this purpose,
it is useful to introduce controlled Petri nets, that are Petri nets of the form (P,Q, E) in which a
subset Qinput of Q is distinguished, with elements called input transitions. By convention, these
transitions have no upstream places, and their firings are prescribed externally, hence producing
tokens in all places they are located upstream of. In fact, if @input is an input transition, we can
always suppose without loss of generality that @input admits a single downstream place ?input,
that the latter admits a single downstream transition @internal in Q \ Qinput, and conversely that
? in
input = {@input}.

Allowing input transitions raises questions that are customary in control theory. In particular,
one would be interested in the controllability of a Petri net, that is to say the possibility to enforce
specific markings or behaviours of the net (liveness, boundedness, deadlock avoidance, etc.) by
choosing adequate input firings. More broadly, one can also study the stability of the system,
looking for equilibria and characterizing their properties.

2 Addressing underdetermined situations

The Petri nets that are not “controlled” in the sense of Section 1.5 and where Qinput is empty
are sometimes called “autonomous” Petri nets, for they do not rely on any external commands.
This designation is somewhat misleading, since whether there are input transitions or not, the
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associated Petri nets may still require the intervention of an observer to make some choices. For
instance, the “fork” pattern featured in the Figure 1.3 of Section 1.3 is fundamentally undetermined;
if several fireable transitions can consume the same resource, one needs to decide which one of
them should be actually fired. This situation is often referred to as a structural conflict:

) Definition 1.8. We say that two transitions @ and @′ of Q are in structural conflict if they have a
common upstream place, or in other words @ in ∩ @′ in ≠ ∅.

We denote by Pconflict the subset of P consisting of the places involved in structural conflicts,
i.e., Pconflict B {? ∈ P : |?out | > 1}. The term “structural” is used to precise that the conflict
is considered regardless of the marking of the net. Some authors convene that these conflicts
are not “effective” if enough tokens are present in the common upstream places mentioned
in Definition 1.8 to fire all the downstream transitions (see [AMBC+98, Chapter 2]).

Nonetheless, for a Petri net to behave autonomously, it is desirable to be able to arbitrate any
such conflict. This is the purpose of routing rules, or routing policies, that will in effect restrict
admissible firing sequences. In the following two subsections, we present two deterministic
routing rules that we shall use in practice in our applications. The triple (P,Q, E) will denote a
pure Petri net with multipliers, and<0 an initial marking of the latter.

2.1 PRESELECTION ROUTING. — We say that a place ? of P is ruled by a preselection (or pre-
allocation) routing rule if a transition of ?out is associated to each token of ? upon its production.
This token is then reserved to fire its related transition, and cannot be consumed by any other
transition of ?out, even if they are fireable. We denote byPpsel the set of places ruled by preselection,
and by Qpsel the set of transitions that are downstream of a place ruled by preselection, i.e.,
Qpsel B {@ ∈ Q | @ in ∩ Ppsel ≠ ∅}.

Formally, the preselection routing for a place ? is described by a collection of nondecreasing
mappings

(
Π
?
@

)
@∈?out fromN

∗ toN∗, and nonnegative integers (<?,@)@∈?out , satisfying the property:

∀= ∈ N∗,
∑
@∈?out

Π
?
@ (=) = = , and

∑
@∈?out

<?,@ =<0
? . (1.2)

For @ in ?out, Π?@ (=) represents the number of tokens which are reserved to fire transition @,
amongst the = first tokens produced in place ? (i.e., not including the initial marking), while<?,@

stands for the number of tokens reserved amongst the initial marking<0
? to fire @. Observe that

such a routing rule prescribes the fate on any token that will visit ? , with no dependence on the
global topology of the net nor on the markings of other places.

A trivial example of preselection routing occurs when for some @ in ?out, we have Π?@ (=) = =
for all = in N∗, that is, all the tokens produced in ? are routed towards @, and we talk about
a 0–1 allocation. Another more general instance is given by the periodic routings. If ?out =
{@1, @2, . . . , @: }, consider a positive integer !, a partition (�1, �2, . . . , �: ) of {1, 2, . . . , !} and define
Π
?
@: (=) = card({1, 2, . . . , =} ∩ (�: + !N)). Such maps are indeed nondecreasing, periodic (with

period !), and satisfy the requirements of (1.2). Observe that for large values of =, we have
Π
?
@: (=) ∼ = · card(�: )/!. More general and abstract preselection routings that are not periodic

can be built from Sturmian words, see for instance [Lot02] and [MV98].

Example 1.9. Consider the pure Petri net with three places and four transitions depicted
in Figure 1.5. It has initial marking<0 = (1 0 0)T.
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?

@1

@2

?1

?2

@′1

@′2

Π
?
@1

Π
?
@2

Figure 1.5: A Petri net with a place ruled by periodic preselection routing

The transitions @1 and @2 are in structural conflict for they share the common upstream place ? .
We here assume that ? is subject to a periodic preselection routing, associated with the two
mappings Π?@1 and Π

?
@2 such that for all = in N∗, we have

Π
?
@1 (=) B card

(
{1, . . . , =} ∩ 3N

)
and Π

?
@2 (=) B card

(
{1, . . . , =} ∩ (3N + {1, 2})

)
.

We use the “boxed” notation in Figure 1.5 to indicate the preselection mappings at stake. We
also let<?,@1 B 1 and<?,@2 B 0. This means that the first token that is in ? , present in the
initial marking, shall be routed towards transition @1. Afterwards, the only fireable transition
is @′1 and its firing produces a new token in ? , that will be directed towards @2. The same
goes for the second token produced in ? . However, the third token to pop up in ? shall be
routed towards @1. As a result, denoting by<1 = (0 1 0)T and<2 = (0 0 1)T, observe that the
visited states form the sequence (<0,<1,<0,<2,<0,<2,<0,<1, . . . ). In particular, this Petri
net is live and bounded.

To prevent any ambiguity in the future models to be introduced, we shall assume that preselection
routings are only allowed for places whose downstream transitions do not admit other upstream
places, i.e., Ppsel ⊂

{
? ∈ P | ∀@ ∈ ?out, @ in = {?}

}
, or equivalently, |@ in | = 1 for all @ in Qpsel.

This entails no loss of generality; indeed for a place ? in Ppsel and a transition @ in ?out, if we want
to take into account another constraint on @ and therefore another upstream place ? ′ in @ in, we
may as well consider a modified Petri net with an extra place ?∗ and an extra transition @∗, such
that ?∗ in = {@}, ?∗ out = {@∗}, and where the arc ? ′→ @ is replaced by a ? ′→ @∗ arc. This scheme,
depicted in Figure 1.6, consists in introducing the “buffer” place ?∗ so that @ indeed admits ? as
its single upstream place and @∗ still fulfills the synchronization role with ? ′. Note that if ? ′ itself
is involved in another preselection rule, this modification may be applied twice (and in general,
repeated for all transitions of ?out). We shall actually use the configuration depicted in Figure 1.6a
(not allowed in our setting) to stand as a shorthand notation for Figure 1.6b.

?

? ′

@1

@2

(a)

?

? ′

@1 ?∗1 @∗1

@2

(b)

Figure 1.6: Transformation of a Petri net to ensure that transitions located downstream of
a place ruled by preselection do not have other upstream places
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2.2 PRIORITY ROUTING. — Another way to arbitrate a structural conflict between two transitions
@ and @′ is to give priority to one of them for the consumption of tokens present in a place of
@ in ∩ @′ in. More generally, we may need to provide a priority order on multiple transitions to
obtain an unequivocal firing sequence.

We say that a place ? in P is ruled by priority routing, and we denote by Pprio the set of such
places, if the set ?out of downstream transitions of ? is equipped with a total order (≺?). The
principle of this routing rule is that a transition @ in ?out can be fired only if it is fireable and there
is no other fireable transition @′ in ?out with a higher priority, i.e., @′ ≺? @, or equivalently @ �? @′
(we convene that the minimal element of ?out with respect to ≺? is the highest priority transition).
In graphical representations (see the examples below), we will use increasing number of arrow
tips on arcs to account for priorities, the transition with highest priority level being pointed by
the highest number of tips. As before, we denote by Qprio the set of transitions downstream of a
place ruled by priority routing, i.e., Qprio B {@ ∈ Q | @ in ∩ Pprio ≠ ∅}.

Priority routings are particularly interesting when for a place ? in Pprio, some of the down-
stream transitions of ? admit other upstream places (otherwise it reduces to a 0–1 allocation
such as introduced in Section 2.1). It can then model subtle conditional behaviours involving the
constraints associated with different places. Hence, and contrary to the preselection routing, the
priority routing from a place is a dynamical allocation that may require the knowledge of the
marking in other places of the net. The following example (such as the Example 1.22 of Section 3
to come) illustrates well this observation.

Example 1.10. We show in Figure 1.7 a simple setting with three places and two transitions
where a priority rule is involved.

?2?1 ?3

@1 @2

Figure 1.7: A Petri net with a place ruled by priority routing

The place ?2 is ruled by priority and according to the graphical convention above, we have
@1 ≺?2 @2, which means that whenever @1 and @2 are both fireable, we should fire @1. This is
here the case since the initial marking is (1 2 2)T. Observe although that after firing @1 once,
there is no more tokens in ?1, as a consequence @1 is no longer fireable, but @2 still is. The
only admissible firing sequence here is thus (@1 @2). On the other hand, should the priority
levels be flipped, the only admissible firing sequence would have been (@2 @2).

Althoughwe allow transitions inQprio to admit multiple upstream places, a question of consistency
arises if several of these upstream places are ruled by priority. We shall allow this setting as long
as the following compatibility condition is met.

) Definition 1.11. We say that the rules (≺?)?∈Pprio are compatible if their union as binary relations
is acyclic.

Acyclicity means that the transitive closure of the union of the local total orders (≺?)?∈Pprio

forms a global partial order on the set Q of all transitions. The Figure 1.8a shows an example
of two compatible priority rules. Indeed, we have @1 ≺?1 @3 ≺?1 @2 and @3 ≺?2 @2 ≺?2 @4, so
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that the orders (≺?1) and (≺?2) are compatible with the global linear extension (≺) for which
@1 ≺ @3 ≺ @2 ≺ @4. However, no such global ordering can be found in the setting of Figure 1.8b,
due to the cyclic pattern @3 ≺?1 @2 ≺?2 @3.

?1

@1 @2 @3

?2

@4

(a)

?1

@1 @2 @3

?2

@4

(b)

Figure 1.8: Two Petri nets with two places ruled by compatible (left)
and incompatible (right) priority rules

Remark that the priority routing – and once again contrary to the preselection routing – is
essentially “non-monotonic”. This means that it is possible that a token is produced in a place ?
earlier than another token is produced in a place ? ′, and that this second token in ? ′ is consumed
before the first one in ? , owing to the priorities rules of the net. This simple observation shall
have huge consequences on our analysis of Petri nets. In fact, such non-monotonic allocations are
not totally standard in most models of Petri nets. As a result, we shall always explicitly mention
in this thesis when a studied Petri net uses priority rules; otherwise it is by default “priority-free”.

It is also worth mentioning that many authors do not use local priority rules as introduced here,
but adopt inhibitor arcs instead. By definition, if there is a ? → @ inhibitor arc for some ? in P and
some @ in Q, then @ cannot fire as long as tokens are present in ? , see for instance [AMBC87]. As
shown by Hack in [Hac76b] (see also [CDF91]), the use of two-level priorities can be equivalently
replaced by inhibitors arcs. In particular, building on the result of Peterson [Pet81], we can state
that allowing priority rules confer Petri nets the modeling power of Turing machines.

Observe that by construction, we have that Qpsel ∩ Qprio = ∅. We denote by Qsync the set
Q \ (Qinput ∪ Qpsel ∪ Qprio) of transitions only subject to synchronization of upstream places
(possibly a single one) and that admit at most one downstream place. The whole set of transitions
Q is therefore partitioned into input transitions, synchronization transitions, transitions that are
downstream of places ruled by preselection and finally transitions that are downstream of places
ruled by priority.

2.3 SIMULTANEOUS FIRING OF NON-CONFLICTING TRANSITIONS. — Arbitrating situations
of structural conflict using routing rules is necessary yet not quite sufficient to eliminate equivocal
behaviours of Petri nets. Consider indeed the following example, which is drawn from the book
of Ajmone Marsan et al. [AMBC+98, Figure 2.11].

Example 1.12. The Figure 1.9 represents a net involving at the same time a synchronization
pattern (we have arcs ?2 → @3 and ?3 → @3) and a conflict situation (due to the two arcs
?2 → @2 and ?2 → @3). The places ?1 and ?2 have an initial marking of one token.

In this Petri net, both the transitions@1 and@2 are fireable at the beginning of the execution,
and three different (maximal) firing sequences are admissible. The two sequences (@1 @2) and
(@2 @1) lead to the same final marking; so we might want to say that the firings of @1 and @2
“commute”. However, firing @1 first without firing @2 then allows to fire @3 (i.e., the firing
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sequence (@1 @3) is admissible), while the opposite is not true. As a result, even though they
are not in structural conflict, the order of firing of @1 and @2 does matter.

?1 @1 ?3

@3 ?5

?2

@2 ?4

Figure 1.9: A “confusion” pattern

The situation described in Example 1.12 is called a confusion in [AMBC+98], and the issue partly
comes from the fact that ?2 has multiple downstream transitions, that are therefore in structural
conflict. As we have seen before, the routing rules are designed to resolve such situations.
Equipping the place ?2 with a preselection routing rule as defined in Section 2.1 indeed removes
underdetermination since depending on the destination transition assigned to the token present
in ?2, we will either apply the firing sequence (@1 @3), or one of the two equivalent sequences
(@1 @2) and (@2 @1) (under this setting, the execution of the Petri net is to be understood in the
sense of the aforementioned reduction, based on the Figure 1.6). On the other hand, ruling ?2
with a priority routing may not bring more clarity. Indeed, if @3 has a higher priority level over @2
(meaning that @3 ≺?2 @2), both sequences (@1 @3) and (@2 @1) remain admissible. Since they lead
to different markings, this shows that we must rigidify the semantics further.

It is common to avoid confusion patterns by restricting to free-choice nets, denoting the Petri
nets in which for a place ? and a transition @, there can be a ? → @ arc (or a couple (?, @) in the
incidence relation E) only if @ in = {?} or ?out = {@} – we refer for instance to the book of Desel
and Esparza [DE95]. Note that our choice in Section 2.1 to restrict preselection routings so that
|@ in | = 1 for all @ in Qpsel is compatible with the free-choice setting. In free-choice nets, specifying
routing rules to all the places having multiple downstream transitions suffices to obtain a unique
maximal admissible firing sequence. However, this makes priority rules trivial as we pointed it
out in Section 2.2. Another solution to end up with a single firing sequence without resolving
to free-choice nets is to adopt another model of priorities, imposing a global firing order on all
the transitions of the net, even those that are not downstream of places in Pconflict – this is the
approach studied by Ajmone Marsan et al.

In this thesis, we choose to address the confusion configurations by sticking to our model of
local priority rules introduced in Section 2.2 but by refining the notion of firing sequence. Indeed,
the definition provided in Section 1.2 and widely used in the Petri net literature supposes that
transitions in a firing sequence are fired sequentially, in a step-by-step fashion. Instead, we consider
sensible that some transitions must fire simultaneously, when they are not in effective conflict.
Sometimes, the same transition may also simultaneously fire several times, if enough resources
are available for it. Formally, given a marking< in NP of the net, whose incidence matrix �
still writes under the form � = � + −� − (see Sections 1.1 and 1.4), we say that a multiset - B
(Q \ Qinput, a) of transitions of Q \ Qinput (i.e., a subset of Q \ Qinput with possibly repeated
elements, the vector a in NQ\Qinput giving the multiplicity of each element) is simultaneously
fireable if

∑
@∈Q\Qinput

a@ [� −]@ 6 <. When a simultaneously fireable multiset - of transitions
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with multiplicity a fires, the vector
∑
@∈Q\Qinput

a@ [� −]@ gives the number of tokens consumed in
each place of P, while the vector

∑
@∈Q\Qinput

a@ [� +]@ gives the number of tokens produced in
each place.

An admissible generalized firing sequence for a given initial marking<0 in NP is (as in Sec-
tion 1.2) a sequence (-1, -2, . . . , -: , . . . ) of multisets of transitions of Q \ Qinput, where for
all : > 1, -: B (Q \ Qinput, a

(:) ) is simultaneously fireable for the marking <: B <:−1 +∑
@∈Q\Qinput

a
(:)
@ [�]@ . Observe that the definition of a firing sequence is recovered if each multiset

happens to be a singleton. In the simultaneous firing setting, the firings are performed so that at
each step, the transitions of a multiset - do not have access to the tokens produced by the firings
of other transitions in - . Hence, the notion of simultaneously fireable multiset is the right one
to consider transitions whose firings “commute”. Naturally, when working with routing rules
such as preselection or priorities, the conditions for a multiset to be simultaneously fireable are
restricted in the same way as in Sections 2.1 and 2.2.

Example 1.12 (continued). Arbitrating the conflict occurring at place ?2 by the priority
routing such that @3 ≺?2 @2, there is a single maximal multiset that is simultaneously fireable
from the initial marking of Figure 1.9, and this is {@1, @2}. After firing it, no more transition is
fireable. Using the notion of simultaneously fireable multisets, we can thus see here that the
transition @3 can never be fired.

The logic behind the idea of simultaneously fireable multisets of transitions is for every marking
to look formaximal such multisets (in the sense of the inclusion of multisets, i.e., if - and - ′ have
multiplicity vectors a and a ′, then - ⊂ - ′ if and only if a ′@ 6 a@ for every @ in Q \ Qinput). Due to
the partially ordered structure of multisets and also to the conflict patterns, showing that such
a maximum exists is not entirely trivial. The next theorem, that is constructive, addresses this
question and confirms that a maximal simultaneously fireable multiset exists. Actually, the proof
shows that transitions in Qpsel do not cause much problem since by construction, they admit
only one upstream place that reserves tokens for them, and similarly to transitions of Qsync, the
number of times that they can simultaneously fire can be maximized regardless of the behaviour
of the rest of the net. On the contrary, dealing with priority rules that are sometimes mixed
requires more care, because tokens need to be allocated in accordance with the local orderings.

) Theorem 1.13. If all the conflict places of a Petri net with multipliers are ruled by preselection or
priority, and that the priority rules (≺?)?∈Pprio are compatible in the sense of Definition 1.11, then
for any marking of the net, there exists a maximal (and therefore unique) simultaneously fireable
multiset of transitions that comply with the routing rules.

Proof. Let< ∈ NP be a marking of the net. We first build a simultaneously fireable multiset of transitions
- , and show in a second phase that it is maximal and unique.

Our construction is based on the following algorithmic procedure:

(0) Define - B ∅.
(1) For all @ ∈ Qsync, add @ in - with multiplicity a@ B min?∈@ in

⌊
U−1@?<?

⌋
.

(2) For all @ ∈ Qpsel with upstream place ? , add @ in - with multiplicity a@ B
⌊
U−1@?<?,@

⌋
.

(3) Define< (1) B <, and set 8 B 1. Choose a global order (≺) compatible with the orders (≺? )?∈Pprio .
Label the transitions in Qprio according to this order: @1 ≺ @2 ≺ · · · ≺ @ |Qprio | .

(4) Add @8 to - with multiplicity a@8 B min?∈@ in
8

⌊
U−1@8?<

(8)
?

⌋
.

(5) If 8 = |Qprio |, stop and return - , otherwise, define< (8+1) B < (8) − a@8 [�−]@8 , let 8 B 8 + 1 and
apply step (4).
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We first prove that - is indeed simultaneously fireable, that is,
∑
@∈- a@ [�−]@ 6 <. For Qsync, Qpsel and

Qprio are pairwise disjoint, we may verify the inequality on each of these subsets. If ? ∉ Pconflict, then
|?out | 6 1, so we should only prove the inequality when ? admits a single downstream transition @ ∈ Qsync.
We have ∑

@′∈-
a@′�

−
?,@′ = a@�

−
?,@ = U@?

⌊
U−1@?<?

⌋
6 <? .

If ? ∈ Ppsel, we have similarly∑
@∈-

a@�
−
?,@ =

∑
@∈?out

a@�
−
?,@ =

∑
@∈?out

U@?
⌊
U−1@?<?,@

⌋
6

∑
@∈?out

<?,@ =<? .

Finally if ? ∈ Pprio, we prove that
∑
@∈- a@�

−
?,@ =

∑ |Qprio |
8=1 a@8�

−
?,@8
6 <? by finite induction. We rely on

the invariant given by the above procedure, that stipulates a@ 9 [�−]@ 9 6 < ( 9) for all 9 in {1, . . . , |Qprio |}
(it is obtained by inequalities similar as above). This invariant specified for 9 = 1 gives the initialization
step a@1�

−
?,@1
6 <

(1)
? =<? . Suppose now that for some 1 6 9 < |Qprio |, we have

∑9

8=1 a@8�
−
?,@8
6 <? . Our

invariant provides a@8+1�
−
?,@ 9+1 6 <

( 9+1) , but we can also derive by immediate induction that< ( 9+1) =

< (1) −∑9

8=1 a@8 [�
−]@8 , therefore by induction hypothesis we obtain

∑9+1
8=1 a@8�

−
?,@8
6 <

(1)
? =<? .

We now prove that - is maximal, in the sense that if - ′ is another simultaneously fireable set of transitions
with multiplicities (a ′@)@ verifying the routing rules, therefore a ′ 6 a . Suppose for contradiction that there
is some @ in Q such that a ′@ > a@ . A first situation occurs if @ ∈ Qsync, in which case for each ? in @ in, the
a ′@ firings of @ consume a ′@U@? tokens. However, we have ?∗ ∈ @ in such that a@ = bU−1

@?∗<?
∗c, as a result

we can write a ′@U@?∗ > (a@ + 1)U@?∗ = (bU−1@?∗<?∗c + 1)U@?∗ > <?∗ , using a standard property of the floor
function. This would mean that - ′ consumes more tokens in ?∗ than its marking, hence the contradiction.
If @ ∈ Qpsel and ? is its unique upstream place, we obtain by the exact same argument that - ′ consumes
more than<?,@ tokens in ? to fire @, which is not possible.

We now focus on the case @ ∈ Qprio, still assuming by contradiction that a ′@ > a@ . We know that we
have 9∗ between 1 and |Qprio | such that @ = @ 9∗ . Actually, up to replacing @ 9∗ by another transition with
higher priority degree, we can suppose that 9∗ is the minimum integer such that @ 9∗ has a strictly bigger
multiplicity in - ′ than in - , i.e.,

9∗ = argmin
{
9 ∈ {1, . . . , |Qprio |}

�� a ′@ 9 > a@ 9 } . (1.3)

In other words, for all 8 such that 1 6 8 < 9∗, we have a ′@8 − a@8 6 0. We now state a fundamental family of
equations that are derived from our algorithm in the beginning of the proof, expressing the maximality of
the (a@)@∈Qprio :

∀9 ∈ {1, . . . , |Qprio |}, <? −
∑9

8=1 a@ 9U@ 9? < U@ 9? . (1.4)

Indeed, the (a@)@∈Qprio have been constructed so that none of them can be incremented; when considering
any transition @ of Qprio, after firing the transitions (@′)@′≺@ with higher priority than @, the tokens
remaining in places of @ in only permit a@ firings of @.

We now state the simultaneous fireability condition of the multiset - ′, that is
∑ |Qprio |
8=1 a ′@8U@8? 6 <? .

Because the (a ′@8U@8? )1686 |Qprio | are all nonnegative, we can also state that

∀9 ∈ {1, . . . , |Qprio |},
∑9

8=1 a
′
@8
U@8? 6 <? .

We can particularize this last equation to 9 = 9∗, given by (1.3), and we obtain∑9∗

8=1 a
′
@8
U@8? =

∑9∗

8=1

(
a@8 + (a ′@8 − a@8 )

)
U@8? 6 <? , or also, <? −

∑9∗

8=1 a@8U@8? >
∑9∗

9=8
(a ′@8 − a@8 )U@8? .

However, we know by (1.3) that for all 8 such that 1 6 8 < 9∗, we have a ′@8 −a@8 6 0. If all these nonpositive
integers are actually null, i.e., for all 1 6 8 < 9∗, a ′@8 − a@8 = 0, then maximality of a at step 9∗ (expressed
in (1.4)) is contradicted due to a ′@ 9∗ > a@ 9∗ (meaning that @ 9∗ could have been used at least one more time
in - ). Otherwise, it means that there exists 8∗ < 9∗ such that a ′@8∗ < a@8∗ , but this is also a contradiction,
because in this case, - ′ does not respect the priority rule. Indeed, @8∗ has higher priority level over @ 9∗ , so
the number of firings of the former cannot be decreased to increase the one of the latter! s
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The following result is a direct consequence of Theorem 1.13, when the latter is applied by
induction. It claims that the routing rules and the framework of simultaneous firings of multisets
of transitions suffice to make the evolution of a Petri net univocal. Note that this corollary is here
stated in an uncontrolled setting, as we reckon that these controls find their place better in the
next section where time is also introduced.

) Corollary 1.14. Let be an untimed Petri net with multipliers and no input transitions, where
conflicts are arbitrated by preselection or priority. For any initial marking, there exists a unique
admissible generalized firing sequence of the net made of maximal multisets.

We point out that the unique firing sequence mentioned in Corollary 1.14 can have finite or
infinite length. Actually, this sequence is finite if and only if the net admits a deadlock for the
considered initial marking. Conversely, in a live Petri net, the unique firing sequence must be
infinite.

3 Timed Petri nets

The models of Petri nets that we have presented so far are very useful to explore the structural
properties of a system implementing synchronization and concurrency patterns, and in which
the firings of the transitions (possibly simultaneous) only involve a logical time. Even though we
talk about sequential steps, these could very well happen instantaneously, in a flash.

For many applications though, it is natural to augment these models to take into account
a physical time, mainly to describe the time needed for some tasks to be completed. Such an
extension was first introduced by Ramchandani in his doctoral thesis [Ram73], and a great variety
of models of timed Petri nets arose afterwards – see for instance the survey of Bowden [Bow00].
In this section, we present a model of timed Petri nets along with tools to study the dynamical
systems that they give birth to.

3.1 FRAMEWORKAND SEMANTICSOFTIMEDPETRI NETS. — We begin by formally introducing
our model. Although the most popular setting in the Petri net literature is to attach duration and
holding times only to transitions, we choose to rather have timed places and untimed transitions,
as done for instance in [Sif79]. These two frameworks are however equivalent.

) Definition 1.15. A timed Petri net is a 4-tuple (P,Q, E, g), where the triple (P,Q, E) is a Petri
net with multipliers and g is a vector of RP>0. For ? in P, the nonnegative real number g? is called
the holding time of the place ? .

Compared to an untimed Petri net, the semantics of a timed Petri net are modified as follows.
When a token is produced in a place ? ofP, a fictional clock is triggered to retain its age. This token
cannot be consumed by any transition of ?out before it is mature, i.e., before its age exceeds g? ,
the holding time of ? . Conversely, a transition is fireable if and only if all its upstream places
contain enough tokens with an age greater than their respective holding times (“enough” here
corresponding to the amount of tokens given by the places-to-transitions multipliers). The firing
of a transition is instantaneous, and when a fireable transition fires, it consumes tokens in each of
its upstream places and produces tokens in each of its downstream places, with null ages. Between
two successive firing instants (say C1 and C2) of two transitions of the net (possibly the same), the
marking of the net is left unchanged, but the age of every token in every place is incremented by
C2 − C1. This last point prompts us to distinguish the notions of marking and state for timed Petri
nets, a state now being a given marking (the number of tokens in every place) and the age of
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every token in every place. If a timed Petri net is equipped with an initial marking, we convene
that the related tokens have an infinite age at the beginning of the execution of the net, so that
they are immediately consumable.

Since the holding times attached to places introduce additional constraints on the fireable
character of transitions, there will typically be less admissible firing sequences in a timed Petri
net than in the corresponding untimed Petri net (with the holding times ignored) for the same
marking and at a given instant. Still, the notion of simultaneously fireable multiset of transitions
discussed in Section 2.3 carries over, being understood that it is now defined for a given state and
not a given marking, and therefore that only mature tokens can be used to fire transitions.

To avoid confusion patterns, we require that anytime a transition is fired, we actually fire
(with multiplicity) all the transitions of the maximal simultaneously fireable multiset exhibited
in Theorem 1.13. Note a subtlety here, the notion of simultaneously fireable transitions essentially
refers to the logical time (measurable with a click counter, governing the step-by-step evolution
of untimed Petri nets, from markings to markings), and not the physical time (measurable with
a clock, comparable with the holding times of places or the ages of tokens). In particular, two
transitions of a simultaneously fireable multiset of transitions shall be fired at the same physical
time, while the converse may be false – see the Example 1.17 below.

The newly added requirement that tokens produced in a place must await for a duration
greater than the holding time of this place only provides a lower bound on the firing times. Indeed,
nothing in the semantics prevents that transitions are fired long after becoming fireable. To the
extent of tightening the evolution and reducing the degrees of freedom of the Petri nets we study,
we shall always place ourselves in the earliest behaviour setting, meaning that transitions are
fired as soon as possible.1 In other words, a token can have an age strictly greater than the holding
time of the place it lies in if and only if no downstream transition of this place can be fired.

One talks about controlled timed Petri nets if as set out in Section 1.5, there are some transitions
of the net whose firings are prescribed externally. More precisely, all the (possibly repeated) firing
(physical) instants of input transitions are known in advance. As for other transitions of the net,
the firings of input transitions cost no time, and produce tokens in all places that are downstream
of them.

The following theorem extends Corollary 1.14 to the case of controlled timed Petri nets. It
guarantees that the setting described above is rigid enough to yield a single and univocal evolution
of the net.

) Theorem 1.16. Let be a controlled timed Petri net with multipliers, where conflicts are arbitrated
by preselection or priority, and subject to the earliest behaviour rule. For any initial marking, there
exists a unique trajectory of the net.

Proof. The difference with the direct proof of Corollary 1.14 by induction is that time needs to be taken
into account. At the beginning of the execution of the net (say at physical time C = 0), we denote by
<0
C=0 ∈ N

P the marking vector composed of the tokens of the initial marking and the tokens possibly
produced by the firing of input transitions at time C = 0 in places with null holding times, i.e., all the tokens
that are mature. According to Theorem 1.13, there exists a unique maximal simultaneously fireable multiset
- (<0

C=0) of transitions in Q \ Qinput, whose firing provides a marking<1
C=0, still at physical time C = 0. If

in turn - (<1
C=0) ≠ ∅, the earliest behaviour rule imposes to fire this new multiset, giving a new marking

<2
C=0. This continues until for some : ∈ N∗, we have - (<:

C=0) = ∅ (otherwise the evolution of the net
stays uniquely determined but does not exceed C = 0). Then, we consider the minimal physical instant
C1 > 0 such that the marking of mature tokens evolves (i.e., some young token becomes old) or an input
transition fires, giving a marking of mature tokens denoted by<0

C=C1
. The earliest behaviour rule imposes

1 No doubt that this assumption will be quite licit in the systems later considered in this thesis, as they originate from
real-life emergency call centers.
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to reapply Theorem 1.13 to this marking, and the previous scheme goes on. If at some step : , we have
C: = ∞, i.e., no more external token arrives while all tokens are mature, then the execution of the net stops.
s

Example 1.17. The Figure 1.10 depicts a timed Petri net basically consisting in two lanes,
synchronizing in transition @3. We provide the holding times of the places ?2, ? ′2, ?3 and ?

′
3

(respectively 1, 0, 3 and 2 units of time), the other ones being not relevant in this example.

?1

? ′1

@1

@′1

?2

? ′2

@2

@′2

?3

? ′3

@3 ?4g?2 = 1

g?′2 = 0

g?3 = 3

g?′3 = 2

Figure 1.10: A two-lane timed Petri net

Enumerating places in the order ?1, ? ′1, ?2, ?
′
2, ?3, ?

′
3 and ?4, this Petri net is equipped with an

initial marking (1 1 0 0 0 0 0)T. When its execution starts, say at C = 0, both tokens present
in ?1 and ? ′1 have infinite age and thus @1 and @′1 are immediately and simultaneously fireable.
The earliest behaviour then imposes to fire them, producing tokens with null ages in ?2 and
? ′2. For g?′2 = 0, the transition @′2 is immediately fireable, and its firing produces a token in ? ′3,
still at C = 0. No more transition is then fireable, and we must wait for 1 unit of time before
the token in ?2 is old enough to fire @2. At C = 1, @2 fires and produces a token in ?3. At C = 2,
the age of the token in ? ′3 exceeds g?′3 , but due to the synchronization pattern, we must wait
until the instant C = 4 to fire @3 – since the token present in ?3 is not old enough beforehand.
Finally, at C = 4, a token is produced in ?4 and execution stops.

To summarize, five different markings are encountered during the execution of the net,
associated with five (distinct) logical instants:

Logical time Physical time Marking

0 0 (1 1 0 0 0 0 0)T
1 0 (0 0 1 1 0 0 0)T
2 0 (0 0 1 0 0 1 0)T
3 1 (0 0 0 0 1 1 0)T
4 4 (0 0 0 0 0 0 1)T

Observe in particular that due to the null time associated with ? ′2, the firing of @′2 occurs at
the same physical time than those of @1 and @′1, although in this example, @′1 and @′2 are never
simultaneously fireable.

Our choice to allow zero holding times for some places is not very usual in the literature. Indeed,
most authors prefer to use a vector g with positive entries, which spares many technicalities.
Instantaneous steps are then either ruled out, or modeled using very small holding times compared
with the rest of the system. In order to work in a somewhat purified framework, we shall embrace
in this thesis the rough ride that mercilessly comes with null times. In particular, a restriction is in
order to avoid the Zeno behaviour of a Petri net, which designates the phenomenon of counting
indefinitely many firings of a transition over a zero timespan. Such a predicament can only arise
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if a transition belongs to a cycle of the graph where all places have zero holding times. As a result,
we will choose to work only with non-Zeno Petri net.

) Definition 1.18.We say that a timed Petri net is non-Zeno if its underlying bipartite graph of
places and transitions does not contain any cycle in which all places have null holding time.

Throughout the coming chapters and models, we shall come back to the notion of “non-
Zenoness” and refine it when possible. When working with controlled timed Petri nets, i.e., in
which there are input transitions whose firings are prescribed externally (see Section 1.5), we
will always assume that these controls are non-Zeno as well, in the sense that not only the input
transitions cannot fire indefinitely many times in a null time (Zeno effect on the count of produced
tokens), but also that the they cannot fire indefinitely many times over a finite timespan (Zeno
effect on the dates of token productions), which is more restrictive. See below our discussion on
piecewise-constant functions.

3.2 COUNTERFUNCTIONSOFTHENET.— Now that the time comes into play, it is natural to study
Petri nets from a dynamical perspective. One typically wants to keep track of the net markings or
the firings of the transitions over time. The evolution summary provided in Example 1.17 already
gives such a flavour. Instead of focusing on instantaneous markings, we consider an “integral”
(or cumulated) version of it, expressed by counter variables. We will always convene that the
execution of the timed Petri nets we study starts at the (physical) instant C = 0.

) Definition 1.19. Let (P,Q, E, g) be a non-Zeno timed Petri net equipped with an initial marking.
We call counter functions of the net the mappings (-?)?∈P , (.?)?∈P and (/@)@∈Q from R>0 to N
such that for all C > 0:

-? (C) denotes the number of tokens that have been present in place ? up to time C included (i.e.,
either the tokens produced in ? or those of the initial marking in ?);

.? (C) denotes the number of tokens that have been present and mature in place ? up to time C
included;

/@ (C) denotes the number of firings of transition @ up to time C included.

Dually to counter functions, one can also introduce “dater” functions fromN to R>0, compiling the
times at which (cumulated) events occur. Counters and daters – as tools for the study of systems
involving concurrency and synchronization mechanisms – were already used by Baccelli, Cohen,
Olsder and Quadrat in [BCOQ92]. The following proposition recalls the form of the counter
functions. We use the term “càdlàg function” to denote a function that is right-continuous with
left limits.2

) Proposition 1.20. The counter functions of a non-Zeno timed Petri net are nondecreasing piecewise-
constant and càdlàg functions.

Proof. The well definition of counter functions comes from the fact that owing to the non-Zeno character
of the net (and of the possible input transitions), starting from a finite marking and using finite multipliers,
the number of firings of a transition over the time period [0, C] stays finite. Counters are nondecreasing by
definition, and stay constant between two successive events (again, this notion is well-posed thanks to the
non-Zeno property). Finally, the càdlàg character is ensured by the fact that the Definition 1.19 is based on
a number of events up to a certain instant included. s

2 The abbreviation comes from the French “continue à droite, limite à gauche”
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) Remark 1.21. Note that in all the thesis, we use the term “piecewise” to refer to a property
verified over a countable (hence not necessarily finite) collection of disjoint intervals; however
we require that there are finitely many such pieces over any compact set. For instance, the usual
floor function G ↦→ bGc is piecewise-constant over R, but if we denote 1= B

∑=
:=1 2

−: for all = in
N∗, then the function G ↦→ ∑∞

==1 1=1[1=,∞) (G) is not piecewise-constant. This is due to the fact
that the discontinuity points accumulate at G = 1, thus there are infinitely many pieces over [0, 1].
This function is still càdlàg though.

It will be useful to extend the definition of counter functions from R>0 to R, by simply setting
-? (C) = .? (C) =<? and /@ (C) = 0 for all C < 0 and all places ? or transitions @, where the vector
< in NP denotes the initial marking. When working with a càdlàg function 5 , we shall also
denote by 5 (C−) the left limit of 5 at point C in R.

Example 1.22. We depict in Figure 1.11 a timed Petri net with four places and four transitions.
The net is equipped with an initial marking of six tokens in ?0, two tokens in ?1 and one
token in ?2, or equivalently< = (6 2 1 0)T. The holding times of places are set to g?1 = 4,
g?2 = 3 and g?3 = 2 (the one of ?0 does not play a role here).

As an external control, we choose the behaviour of the transition @0 and we decide that it
will fire once at C = 4 and twice at C = 6, so that we already know that the counter function
associated with @0 will be /@0 = 1[4,∞) + 2 · 1[6,∞) .

?0
?1

@0

@1 @2

?2?3

@3

g?1 = 4

g?2 = 3g?3 = 2

Figure 1.11: A non-Zeno timed Petri net associated with the counters of Figure 1.12

We are interested in plotting the counter functions corresponding to this Petri net. First, we
describe its complete execution.

At C = 0, the tokens of the initial marking in ?1 and ?2 can be used to fire @1 twice and
@2 once, this also consumes three tokens in ?0, and produces one token in ?3. At C = 2, the
latter is old enough to trigger the firing of @3 and a new token enters ?2. At C = 4, @0 fires and
a token is produced in ?1. At C = 5, the token present in ?2 is old enough for @2 to be fired,
consuming the fourth token of ?0. At C = 6, accordingly to our input, @0 fires twice, adding
two tokens in ?1. At C = 7, @3 fires and a new token pops up in ?2. At C = 8, the first token
originating from the command is old enough to fire @1, which consumes the fifth resource
initially present in ?0. At C = 10, both @1 and @2 are fireable, the former can use mature tokens
generated by the input four unit of times before, the latter can use the mature token in ?3.
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However, only one last token is available in ?0, the priority rule applies and @1 fires only once.
At the end of the execution, we are left with a marking of (0 1 1 0)T.

We show the counter functions in the Figure 1.12 below, representing the families (-?)?∈P
and (/@)@∈Q . To simplify the notation, we write -0 and /0 instead of -?0 and /@0 , etc.
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Figure 1.12: Counter functions corresponding to the net of Figure 1.11

We verify in particular the claim of Proposition 1.20. Here, since none of the transitions are
live and the execution stops in finite time, the counters are stationary functions.

We point out that although the transitions @1 and @2 fired six times in total, the priority
rule was actually only used once to arbitrate an effective conflict. In all the other situations,
either one of the transitions was not fireable, either there was enough tokens to fire both of
them as many times as possible.

The three families of counter variables defined in Definition 1.19 are linked together by the
evolution rules of the net described previously, and we now detail how to put them into equations.
First and foremost, a token can be present in a place ? in P if and only if it is part of the initial
marking of ? or if it has been produced by the firing of a transition in ? in. Denoting by< the
initial marking vector of the net and recalling that a single firing of @ in ? in produces U?@ tokens
in ? , we have:

∀? ∈ P, -? (C) =<? +
∑
@∈? in

U?@ /@ (C) . (P1)

Since the two definitions of -? and .? differ from the condition that tokens are old enough to fire
the downstream transitions of the place ? , the latter is obtained by delaying the former by the
time g? :

∀? ∈ P, .? (C) = -? (C − g?) . (P2)

We know using the earliest behaviour rule that a transition not involved in a structural conflict
must fire as soon as possible, which occurs when all its upstream places contain enough mature
tokens. More precisely, if @ is in Qsync and ? is a place of @ in, it takes U@? mature tokens in ? to
fire @ once, and therefore : mature tokens in ? can fire @ exactly bU−1@?:c times, where : is an
integer and b·c denotes the floor function. Because the upstream place of @ with the least number
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of old enough tokens constrains the number of firings of @, if for all ? in @ in, ? contains :? mature
tokens, then @ can fire min?∈@ in bU−1@?:?c. In terms of counter functions and cumulated number of
firings, we obtain

∀@ ∈ Qsync, /@ (C) = min
?∈@ in

⌊
U−1@? .? (C)

⌋
. (P3)

If a transition is involved in a structural conflict, meaning that one of its upstream places admits
several downstream transitions, the equation (P3) must be amended to take into account the
routing rules. We first address the case of transitions in Qpsel, that by convention admit a single
upstream place (see Section 2.1). If @ is in Qpsel with upstream place ? , then among the initial
marking of<? tokens (with infinite age), <?,@ tokens are reserved to fire @, and among the =
first tokens produced in ? , Π?@ (=) tokens are reserved to fire @. Since the total number of tokens
produced in ? (i.e., excluding the initial marking) that are mature at time C is .? (C) −<? , we have

∀@ ∈ Qpsel, /@ (C) =
⌊
U−1@?

(
<?,@ + Π?@

(
.? (C) −<?

) )⌋
(@ in = {?}) . (P4)

The equations for transitions that are downstream of a place ruled by priority are a little more
subtle. If @ is in Qprio and C is in R, we focus on /@ (C) − /@ (C−), which precisely gives the number
of firings of @ at time C . The amount of tokens available in a place ? of @ in at the physical time
C before actually firing any transition of ?out is . (C) −∑@′∈?out U@′?/@′ (C−). These tokens can be
used to fire the fireable transitions of ?out, by allocating them in order of priority. In details,
the transition @1 in ?out with the highest priority degree relatively to ? can fire all these tokens
provided it is not constrained by another upstream place. The /@1 (C) − /@1 (C−) firings of @1 at
instant C leave an amount of . (C) −U@1?/@1 (C) −

∑
@′∈?out\{@1 } U@′?/@′ (C−) tokens in ? to fire @2, the

transition of ?out with second higher priority relatively to ? . This scheme goes on until hitting @,
which can use the . (C) −∑@′≺? @ U@′?/@′ (C) −

∑
@′<? @ U@′?/@′ (C−) remaining mature tokens in ? .

As a result, we obtain /@ (C) − /@ (C−) by packing these tokens by groups U@? and taking the
minimum of resulting terms over @ in to account for the synchronization, which by canceling the
terms /@ (C−) in both sides provides:

∀@ ∈ Qprio, /@ (C) = min
?∈@ in

⌊
U−1@?

(
.? (C) −

∑
@′≺? @

U@′?/@′ (C) −
∑
@′�? @

U@′?/@′ (C−)
)⌋
. (P5)

The equations (P1)–(P5) can be combined together to form a system of equations that features
only the transition counters (/@)@∈Q based on their “type”, and we write them in Table 1.13.
Observe that in case the preselection or priority routings are trivial, we recover for transitions in
Qpsel and Qprio the equation of transitions in Qsync. We let the reader check that these relations
are verified for the counters depicted in Figure 1.12.

In [ABG15, Theorem 1], Allamigeon, Bœuf and Gaubert prove that any admissible firing
sequence of transitions of a timed Petri net yield counter functions that verify equations (P1)–(P5)
(in a slightly lighter setting without arc multipliers and only two priority levels, but their demon-
stration extends to our framework). Conversely, Bœuf shows that if the equations (P1)–(P5)
admit nondecreasing càdlàg solutions, then the latter correspond to a firing sequence of the Petri
net, see [Bœu17, Section 2.3.6]. We close the loop by studying well-posedness properties of the
counter equations, that is to say in which cases they determine unique solutions. We begin with
the standard priority-free setting.
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Type Counter equation in the discrete model

@ ∈ Qinput /@ (C) is prescribed externally

@ ∈ Qsync /@ (C) = min
?∈@ in

⌊
U−1@?

(
<? +

∑
@′∈? in

U?@′ /@′ (C − g?)
)⌋

@ ∈ Qpsel /@ (C) =
⌊
U−1@?

(
<?,@ + Π?@

( ∑
@′∈? in

U?@′ /@′ (C − g?)
))⌋

@ ∈ Qprio /@ (C) = min
?∈@ in

⌊
U−1@?

(
<? +

∑
@′∈? in

U?@′ /@′ (C − g?) −
∑
@′≺?@

U@′?/@′ (C) −
∑
@′�?@

U@′?/@′ (C−)
)⌋

Table 1.13: Dynamic equations followed by transitions counter functions

) Theorem 1.23. In a non-Zeno and priority-free controlled timed Petri net, the knowledge of the
input profiles (/@)@∈Qinput and the system of equations of Table 1.13 determine unique nondecreasing
càdlàg functions (/@)@∈Q\Qinput over R.

Proof. The proof is based on an inductive scheme exploiting the delays arising in the equations of the Ta-
ble 1.13. The most important step is first to reduce to a set of equations featuring only positive delays.

We introduce the weighted and directed graph G B (Q, EG,F) with nodes set Q, arcs set EG and arc
weights functionF , so that for @1 and @2 in Q, the arc @1 → @2 is in EG if and only if @ in1 ∩@

out
2 ≠ ∅, and it

has weightF (@1 → @2) B min
{
g?

�� ? ∈ @ in1 ∩@ out2

}
. Based on G, we introduce the binary relation� over

Q, where if @ ∈ Q \ Qinput and @′ ∈ Q, we say that @� @′ if and only if there exists : ∈ N∗ and transitions
@1, @2,…, @: in Q such that either the conditions (i)+(ii)+(iii)+(iv) or the conditions (i)+(ii)+(iii)+(v) below
are verified (note that (iv) implies (iii) due to the non-Zeno assumption):

(i) @1 = @ and @: = @′ ,

(ii) @1 → @2 → · · · → @: is a directed walk in G ,

(iii) @1 → @2 → · · · → @:−1 is a walk in G that does not contain any cycle ,

(iv) F (@8 → @8+1) = 0 for all 1 6 8 < : − 1 andF (@:−1 → @: ) > 0 ,

(v) @′ ∈ Qinput .

If the conditions (i)+(ii)+(iii)+(iv) hold, we say that the walk @1 → @2 → · · · → @: is a maximal non-Zeno
walk from @ to @′. This means that the counter equation of @ will causally depend on the counter function
/@′ , delayed at least byF (@:−1 → @: ) units of time (that is positive). Note that /@ might depend on itself,
although delayed. Similarly, if the conditions (i)+(ii)+(iii)+(v) hold, we talk about a maximal input-headed
walk from @ to @′, and the counter equation of @ will causally depend on input function /@′ (possibly with
no positive delay). In both cases, we talk about maximal walks from @ to @′.

For all @ ∈ Q \ Qinput, we denote by C(@) B {@′ ∈ Q | @� @′} the set of transitions that are in relation
with @ in the previous sense. For @ ∈ Q \ Qinput and @′ ∈ C(@), we denote by g@,@′ the set

g@,@′ B
{
F (@:−1 → @: )

�� @1 → @2 → · · · → @:−1 → @: is a maximal walk from @ to @′
}

To lighten a little bit the notation, we denote C1 (@) B C(@) ∩ Qinput and C2 (@) B C(@) \ Qinput.

Exploiting the Table 1.13, for all @ ∈ Q \ Qinput, we can apply a finite number of substitutions in the
equation on /@ to obtain an equality of the form

/@ (C) = �@
( (
/@′ (C − g)

)
@′∈C1 (@),g ∈g@,@′ ,

(
/@′ (C − g)

)
@′∈C2 (@),g ∈g@,@′

)
, (M)
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where �@ only involves affine combinations of counters, preselection operators, minimum and floor
functions operations. In other words, /@ (C) depends only on input counters (/@ (C − g))@′∈C1 (@),g ∈g@,@′
possibly delayed by a null time, and on other counters (/@ (C − g))@′∈C2 (@),g ∈g@,@′ necessarily delayed by a
positive time. Indeed, if @′ ∈ C2 (@), then the condition (iv) is verified for any maximal walk from @ to @′,
therefore g > 0 for all g ∈ g@,@′ > 0 by definition.

Hence, denoting by gmin B min?∈P {g? | g? > 0} and gmax B max?∈P {g? | g? > 0}, we can see that
for all @ ∈ Q \ Qinput, the number /@ (C) is fully determined by the knowledge of the restrictions
(/@′ | [C−Cmax,C ] )@′∈Qinput and (/@′ | [C−Cmax,C−Cmin) )@′∈Q\Qinput . We can thus apply the following inductive
scheme; for all : ∈ N, compute the restrictions (/@ | [:gmin,(:+1)gmin) )@∈Q\Qinput , each step based on the
inputs and on the restrictions computed at the previous steps. In particular, for all C > 0, the value of /@ (C)
can be computed by induction in dC/gmine steps.
The fact that the resulting counters are nondecreasing and càdlàg follows from the fact that the input
profiles are such functions and the form of the equations of Table 1.13 (to check this part, we may for the
sake of simplicity suppose that all the holding times are positive to avoid the above substitutions). s

The induction technique employed in the proof of Theorem 1.23 to propagate the dynamics is
fundamental, and we shall encounter it again multiple times in our work. To stress its importance
and easily refer to it, we frame it as a principle.

) Induction Principle (I). In a non-Zeno and priority-free controlled timed Petri net, denoting
by gmin B min?∈P{ g? | g? > 0 } and gmax B max?∈P{ g? | g? > 0 }, the trajectory of the
net over [0,∞) can be determined by induction, since for all : in N, the counter functions over
[:gmin, (: + 1)gmin) only depend on their values over [:gmin − gmax, :gmin) and on the input profiles.

When working with priority rules and zero holding times, we need to pay extra care for the
dynamics associated with the equations of Table 1.13 to remain well-posed. Observe indeed the
Petri net of the Figure 1.14, where the place ?0 is ruled by priority, with @2 ≺?0 @1, and the holding
times of both places ?0 and ?1 are null.

@0 ?0

@1 ?1

@2

Figure 1.14: A “diamond” pattern leading to ambiguous dynamics

We have according to our dynamical equations that for all C > 0,/2(C) = min(/1(C), /0(C)−/1(C−))
and /1(C) = /0(C) −/2(C). Even though /0 is known, the value of /2 (or /1) at any instant depends
upon itself, and we may find several solutions to our dynamics. These ambiguous equations arise
despite the fact that there are no “Zeno circuit” in the net, and the behaviour of the latter seems
intuitive; here @2 shall fire exactly once every two firings of @0 (while it would never fire if the
priority degrees were swapped).

We think it is desirable in general to prevent such configurations and work only with timed
Petri nets in which substitution schemes in the dynamical equations always suffice for these
dynamics to determine unique trajectories. To this purpose, we make use of an additional
topological condition in the Theorem 1.24 below.
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Reusing the maximal walks in zero time introduced in the proof of Theorem 1.23, we denote for
all @ in Q \ Qinput by D(@) the subset of transitions defined by

D(@) B
⋃

@′∈C(@)

{
@8

�� 1 < 8 < : and @1 → · · · → @:−1 → @: is a maximal walk from @ to @′
}
.

The transitions ofD(@) precisely indicate which equations are used and substituted to go from the
initial equation giving/@ in the Table 1.13 to the relation (M) featured in the proof of Theorem 1.23.
Note that D(@) is empty if all the places of @ in have positive holding times.

) Theorem 1.24. In a non-Zeno and controlled timed Petri net, such that for all @ in Q \ Qinput we
have D(@) ∩ Qprio = ∅, the knowledge of the input profiles (/@)@∈Qinput and the system of equations
of Table 1.13 determine unique nondecreasing càdlàg functions (/@)@∈Q\Qinput over R.

Proof. We reuse the notation of the proof of Theorem 1.23. In addition to the sets C1 (@) and C2 (@), we
introduce for all @ ∈ Q \ Qinput the sets C3 (@) and C4 (@) (empty whenever @ ∉ Qprio) defined by

C3 (@) B
⋃

?∈Pprio∩@ in

{
@′ ∈ ?out | @′ ≺? @

}
and C4 (@) B

⋃
?∈Pprio∩@ in

{
@′ ∈ ?out | @′ �? @

}
.

For transitions in Qsync ∪Qpsel, the equation (M) is unchanged. However, if @ ∈ Qprio, the master equation
governing the evolution of /@ is after finitely many substitutions of the form

/@ (C) = �@
( (
/@′ (C − g)

)
@′∈C1 (@),g ∈g@,@′ ,

(
/@′ (C − g)

)
@′∈C2 (@),g ∈g@,@′ ,

(
/@′ (C)

)
@′∈C3 (@) ,

(
/@′ (C−)

)
@′∈C4 (@)

)
.

(1.5)
Indeed, according to the assumption that D(@) ∩ Qprio = ∅ and the equations of Table 1.13, only the
siblings of @ can appear with no delay in the equation. This would not be true if some @′ ∈ Qprio lied
in D(@), because we would have used the equation of /@′ in the substitution scheme and would have
introduced with no positive delay the transitions of Qprio in structural conflict with @′.

For all @ ∈ Qinput, we denote by T@ the set of firing instants of @, which are also the discontinuity points of
/@ , since /@ =

∑
C ∈T@ 2C1[C,∞) (where 2C is the number of firings at instant C ∈ T@ ). By assumption on the

input profiles, the set T@ is countable, with no accumulation point (this entails that the sequence of the
successive firing times of @ tends to∞ if T@ is countably infinite). We also define the subset T of R>0 by

T B
( ⋃
@∈Qinput

T@
)
+
( ∑
?∈P

g? N
)
.

The set T is countably infinite (it could be finite in the trivial case where the Petri net has a tree structure
with only zero holding times), and most importantly, for all C > 0, the set T ∩ [0, C] is finite, even though
T is ultimately dense. Therefore, the elements of T can be written as an increasing sequence (C=)=∈N,
with lim=→∞ C= = ∞.

We now show by induction that the predicate “The functions (/@ | (−∞,C=) )@∈Q\Qinput are entirely determined
by the (/@)@∈Qinput and the equations of Table 1.13. In addition, their discontinuity points lie in T .” holds for
all = ∈ N. Since C0 = 0, the property for = = 0 follows by definition of the counter functions that are taken
null over R<0.

Let us now suppose that the above predicate is verified for some = ∈ N. We first show that the functions
(/@ | [C=,C=+1) )@∈Qprio are uniquely determined, using the equation (1.5).We reason cluster by cluster, where
for @ in Qprio, the cluster of @ is the transitive closure of {@} by the binary relation ∼ defined by @ ∼ @′ if and
only if (@ in ∩ @′ in) ∩ Pprio ≠ ∅, that is to say @ and @′ are siblings under some priority rules. The clusters
form a partition of Qprio, as shown by Bœuf in [Bœu17]. Let {@1, @2, . . . , @: } be a cluster of the Petri net of
cardinal : ∈ N \ {0, 1}. Due to the compatibility of the priority rules, we have for all 1 6 8 < 9 6 : that
? ∈ Pprio and ? ∈ @ in

8
∩ @ in

9
implies @8 ≺? @ 9 (up to possible relabeling of the elements of the cluster).

This means that in the equation of type (1.5) for @1, the transition with highest priority degree in the cluster,
the set C3 (@1) is empty, and /@1 (C=) only depends on the (/@′ (C= − g)

)
@′∈C1 (@),g ∈g@,@′ (known because
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coming from input profiles), the (/@′ (C= −g)
)
@′∈C2 (@),g ∈g@,@′ (known because in this case C= −g < C=) and on

the /@′ (C−= )@′∈C4 (@) . The latter are also known by our induction hypothesis, hence /@1 (C=) is indeed fully
determined by the (/@ | (−∞,C=) )@∈Q . We can then focus on @2, for which C3 (@2) ⊂ {@1}, and still deduce
/@2 (C=). More generally, since C3 (@8 ) ⊂ {@1, . . . , @8−1} and C4 (@8 ) ⊂ {@8+1, . . . , @: }, all the (/@8 (C=))1686:
are determined using the past values. We know use the fact that derived from the canonical equation
for @ ∈ Qprio in the Table 1.13 that /@ (C) can jump only if some /@′ (C − g? ) jumps for some ? ∈ @ in and
@′ ∈ ? in. Because the functions C ↦→

(
/@′ (C − g)

)
@′∈C1 (@)∪C2 (@),g ∈g@,@′ are constant for C ∈ [C=, C=+1) by

construction of T , we deduce that so are the (/@8 )1686: , in other words /@8 (C) = /@8 (C=) for all 1 6 8 6 :
and C ∈ [C=, C=+1). This proves our predicate for the transitions in Qprio.

Dealing with transitions in Qsync ∪ Qpsel is easier because we just need to reuse equation (M) from the
proof of Theorem 1.24. The fact that the discontinuity points of the (/@)@∈Qsync∪Qpsel is immediate using
the piecewise-constant character of the counters. s

Observe that the extra assumption required by Theorem 1.24 was not verified for the Petri net in
the Figure 1.14, in which we had D(@2) = {@1} and @1 was indeed an element of Qprio. We think
in general that requiringD(@) ∩ Qprio = ∅ for all @ in Qprio is too strong, and that finer necessary
conditions could be exhibited. This is however left for future work.

3.3 BRINGING STOCHASTICITY TO THE NETS. — The models of controlled timed Petri nets
that we have presented so far are deterministic, in the sense that multiple executions of the
same Petri net with same controls will provide the same evolution and final states. However,
one may also want to study systems in which there is room for nondeterminism at certain
steps. This will typically make the counter functions of the net random variables, and we shall
write (-̂? , .̂? , /̂@)?∈P,@∈Q with the “hat” notation to emphasize the stochastic character. More
specifically, we work in a probability space (Ω,A, P), these random variables take values in the
sample space Ω, and we denote by -? (C ;l), .? (C ;l) and /@ (C ;l) the non-random values taken
by the counters at the instant C for the event l in Ω.

The term “stochastic Petri net” does exist in the literature and mostly denotes the Petri nets in
which the transitions have firing duration given as realizations of nonnegative random variables.
Most authors consider exponentially distributed firing times, as introduced independently by
Molloy [Mol82] and Florin and Natkin [FN85]. This model allows to consider a new routing
rule to arbitrate conflict, known as the “race policy”. When several transitions have a common
upstream place and are all fireable at the same instant, each one of them starts a virtual firing with
exponentially distributed duration; the first one to finish the race (that is to say the transition
with the minimum firing time) actually fires and consumes the resources involved in the conflict.
Marsan et. al. talk about “generalized stochastic Petri nets” (see [AMCB84]) when firing duration
can be both null or exponentially distributed.

In our model, the firings of the transitions are always immediate and the race policy does not
apply. However, we may want to allow stochastic holding times to account for the fact that a
same abstract task can in practice be performed with a non-constant duration. This amounts to
adopting holding times that are no longer place-dependent but token-dependent. More formally, we
say that a timed Petri net has stochastic holding times if there are nonnegative random variables
(ĝ?)?∈P , such that every time a token is produced in the place ? of P, it is given a nonnegative
holding time that is a realization of ĝ? . This token cannot be used to fire any transition of ?out

before its age exceeds its holding time. Note that this formalism still supposes that the distributions
of the holding times are place-dependent. However, the (ĝ?)?∈P can follow any distribution, not
necessarily exponential, since the latter is unrealistic for many applications. In particular some
places may still use Dirac distributions if we want to model a task that lasts for a deterministic
and constant duration.
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By using stochastic holding times, the instants at which tokens are produced in places or at
which transitions fire become random variables, and so do the counter functions. Nevertheless,
equations (P1), (P3), (P4) and (P5) of Section 3.2 are still valid. Only the equation (P2) needs to be
modified, since for a place ? in P the relationship between .̂? and -̂? is no longer a simple delay.
If ? is in P and : in N∗, we denote by )̂ (?)

:
the :-th instant at which a token is produced in ? (we

convene that )̂ (?)
:

= ∞ if no transition of ? in is live and that -? (C) < : for all C > 0), so that

-̂? (C) =<? +
∞∑
:=1

1[)̂ (?)
:
,∞) (C) .

Now denoting by ĝ (?)
:

the holding time of the :-th token to be produced in ? , we have

.̂? (C) =<? +
∞∑
:=1

1[)̂ (?)
:
+ ĝ (?)

:
,∞) (C) . (P2’)

The above expression actually defines an operation between the random variable -̂? and the
random variable ĝ? , and we shall denote .̂? = -̂? ∗ ĝ? , where

∀l ∈ Ω, ∀C ∈ R,
(
-̂? ∗ ĝ?

)
(C ;l) B <? +

∞∑
:=1

1[) (?)
:
(l) +g (?)

:
(l),∞) (C) . (1.6)

The equation (P2’) surely is more involved and harder to work with than (P2). It illustrates that
the non-uniform holding times are likely to operate a “shuffle” of the tokens, in the sense that
some young tokens may become mature before their older siblings. We let the reader check that
if ĝ? is in fact deterministically equal to the value g? , we retrieve .̂? (C) = -̂? (C − g?), that is to
say (P2).

A second possible source of nondeterminism may be implemented for preselection routings.
In Section 2.1, the allocation of the initial marking (via the integer collections (<?,@)@∈?out ) and
of the produced tokens (via the mappings (Π?@ )@∈?out ) were known in advance for all ? in Ppsel.
Alternatively, each<?,@ or Π?@ (=) with = in N could be a random variable, for example to model
systems with multiple treatment lanes where the allocation to one of these is unknown. In this
case, we talk about stochastic preselection routings.

The most natural stochastic preselection routing is the so-called “Bernoulli routing” (see for
instance [BGM05a]), in which we consider that the preselection of a token entering the place ? in
Ppsel towards the transition @ in ?out is given by the realization of a boolean random variable '̂@ .
The ('̂@)@∈?out are of course not independent, and we will suppose that their joint distribution is
such that

P
(
'̂@ = 1 and ∀@′ ∈ ?out \ {@}, '̂@′ = 0

)
= c@? , (1.7)

where the (c@?)@∈?out are nonnegative real numbers verifying
∑
@∈?out c@? = 1. Observe that the

“preselection mappings” (Π?@ )@∈?out used so far can be recovered as follows. It indeed suffices to
consider independent and identically distributed sequences

( (
'̂
(:)
@

)
@∈?out

)
:∈N∗ of random variables

verifying (1.7), that allocate each token entering ? to a single one of its downstream transitions.
For @ ∈ ?out and = ∈ N∗, the cumulative number of tokens routed from ? to @ among the = first is
given by

Π̂
?
@ (=) B

=∑
:=1

'̂
(:)
@ , still satisfying

∑
@∈?out

Π̂
?
@ (=) = = . (1.8)
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In particular, the random variables
(
Π̂
?
@ (=)

)
@∈?out follow a multinomial law with probabilities

(c@?)@∈?out . The same reasoning could also be applied to the partition of the initial marking of
each place ruled by preselection, and using the definition (1.8), the equation (P4) governing the
evolution of counters for transitions in Qpsel still holds. It is interesting to note that with Bernoulli
routings, the fraction Π̂

?
@ (=)/= of tokens routed towards the transition @ of ?out almost surely

tends to c@? when = approaches∞. Recall that this asymptotic property was (deterministically)
true as well for periodic routings.

Finally, since we are interested in controlled Petri nets and that the evolution of the system
highly depends on the prescribed firing instants of transitions in Qinput, it is also worth considering
a randomization of these entries. This can model systems having to cope with a demand that is
not totally foreseeable. In this case, we talk about stochastic inputs.

Such stochastic inputs could by any random process on the nonnegative half-line. However,
Poisson process stand out from this class, for both their mathematical ease of use and the realistic
representation they provide in many applications (we refer to the Figure 7.6 in Chapter 7 to justify
how well Poisson processes are adapted to the models we study). Recall that a Poisson process �
with rate parameter _ > 0 is given by a sequence of (random) nonnegative physical times ( Ĉ=)=∈N,
such that the interarrival times ( Ĉ=+1 − Ĉ=)=∈N are independent realizations of an exponential
random variable with parameter _. It is customary to write a Poisson process under the càdlàg
function form giving the cumulated number of arrivals over time, denoted by �̂ :

�̂ (C) B
∞∑
==1

1[ Ĉ=,∞) (C) . (1.9)

Recall also that the number of arrivals of a Poisson process with parameter _ in a time-window of
length ΔC follows a Poisson law with parameter _ΔC , i.e., for all C > 0 and : in N:

P
(
�̂ (C + ΔC) − �̂ (C−) = :

)
=
(_ΔC):
:!

4−_ΔC , (1.10)

and in particular if we are interested in the average number of arrivals since the beginning, we
have E

(
�̂ (C)

)
= _C .

Poisson processes can be extended by nonhomogeneous Poisson processes, in which the
arrival rate _ is no longer a constant but a measureable nonnegative function over R>0. This rate
function can be used for instance to take into account hourly or daily effects. It is customary in
this context to introduce the integrated rate Λ defined for all C > 0 by

Λ(C) B
∫ C

0
_(B) dB .

In nonhomogeneous Poisson processes, the interarrival times are no longer independent (if
C, B > 0, we have P( Ĉ=+1 − Ĉ= > C | Ĉ= = B) = exp(Λ(B + C) − Λ(B))), but the function �̂ still defined
by (1.9) has independent increments, i.e., the random variables (�̂ ( Ĉ=+1) − �̂ ( Ĉ=))=∈N∗ are mutually
independent. The equation (1.10) admits the nonhomogeneous counterpart

P
(
�̂ (C + ΔC) − �̂ (C−) = :

)
=

(
Λ(C + ΔC) − Λ(C)

):
:!

4−(Λ(C+ΔC )−Λ(C )) , (1.11)

and we have in average E
(
�̂ (C)

)
= Λ(C). We refer the reader to [Kal97] for advanced discussion

on Poisson processes.
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Example 1.25. We show in Figure 1.15 a timed Petri net that is very simple in terms of
topology, but that is stochastic in the three different ways introduced before. The input
transition @1 fires according to a Poisson process with parameter 0.2 s−1 and produces tokens
in ?1, the holding time of a token in ?1 follows a Gamma law with shape parameter 6 s and
scale parameter 2, to which we add a constant delay of 1 s. Mature tokens in ?1 are reserved to
fire @2 and @3 according to a Bernoulli preselection scheme, with proportions 3/10 and 7/10.

?1

@2 @3

@1 �(5)

1 + Γ(6, 2)

3/10 7/10

Figure 1.15: A timed Petri net with stochastic inputs,
holding times and preselection routings

This system could model many simple real-life organizations. Think for instance of a polling
station where voters cast their ballots in @1, that it takes a varying time to open and count, and
finally the function /2 gives the number of votes over time received by a candidate expected
to obtain 30 % of total votes…

We depict in Figure 1.16 the counter functions /1, -1 and /2 for two different executions
of the Petri net.
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Figure 1.16: Stochastic counters functions associated with the Petri net of Figure 1.15
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We can observe that these two trials provide very different outputs, for instance after 40 s, the
transition @1 has fired twelve times in the first execution, and only six times in the second.
Observe that the horizontal shift between the curves of /1 and -1 for a same trial varies
importantly, for the holding times are no longer uniform. The jump times of /2 are contained
in those of -1 but with a three in ten chance, possibly leading to quite different empirical
results. For instance still at 40 s, two tokens out of eight have been routed to @2 in the first
experience, versus three out of four in the second one.

We show in dotted lines the empirical mean obtained by averaging the counter functions
of a hundred executions of the net. We can then see deterministic expectations arising from
this operation, and we retrieve the fact that the expectation of /1 is linear with slope 1/5 s−1
(and in particular in 60 s, @1 has fired in average twelve times). We note that the average
counter of -1 follows the one of /1 up to a seemingly constant delay, except in the beginning
of the execution where the slope is significantly lower. Finally, the average counter of /2 is
obtained by multiplying the one of -1 by 3/10.

We shall discuss further in the Section 3 of Chapter 2 these models of Petri nets in which stochastic
behaviours are allowed. In particular, we will explain how they induce deterministic systems
through averaging techniques.
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The Petri net paradigm introduced in Chapter 1 can represent accurately a huge variety of real-life
organizations that fit in the discrete-event systems formalism. As mentioned in the Introduction,
whether it is in logistics, telecommunication networks or hardware design, problems are very
often expressed by considering tasks or resources of an atomic or at least integer nature. This is
well captured by the notion of tokens in a net, and also by counter functions that by definition
are integer-valued and experience whole jumps at precise instants.

It is however known that these aspects generally comewith issues of computational complexity.
Although working with Petri nets or timed event graphs subject to integrality constraints is
possible through an appropriate and advanced formalism (see for instance [BCOQ92, CHB13,
TCHR20]), there are in this case many properties associated with structural analysis (reachability,
liveness, boundedness, …) that involve exploring structures whose size exponentially grows with
the number of tokens at stake (known as the state explosion problem). In order to cope with
these difficulties, continuous relaxation techniques have been proposed, in the work of Trivedi,
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Kulkarni, Horton and Nicol [TK93, HKNT98] and in the one of Alla and David [AD98] – see also
the work of Recalde and Silva [RS01]. They consist in deriving “continuous-state counterparts” of
discrete models, in which integrality constraints are relaxed, but where the evolution semantics
stay close from those of original Petri nets. These continuous-relaxed Petri nets are sometimes
called “fluid” since everything happens in their evolution as if atomic tokens were replaced by
fluids, that can be divided in arbitrary small parts. We shall be careful with such denomination to
avoid confusion with the notion of fluidity of a system, that is to say for which the inputs are the
only limiting factors in the evolution.

From another perspective, the integrality constraints of the models in Chapter 1 generally
make dynamical aspects of timed Petri nets more intricate and less predictable, without resorting
to explicit computation of the trajectory of the system. It thus turns desirable to simplify the
recursive system of equations characterizing the evolution of the counter functions in Table 1.13,
and to propose a continuous-relaxed dynamics in which all integrality constraints are discarded.
These simplified dynamics have been studied by Cohen, Gaubert and Quadrat in [CGQ95, CGQ98]
and byGaujal andGiua [GG04b], in particular to derive analytical evaluations of firing throughputs
in the net. These objectives were also pursued in [ABG15]. Among other things, the present part
of the thesis aims at extending this work.

Discrete timed
Petri nets

Discrete
counters dynamics

Continuous-relaxed
timed Petri nets

Continuous-relaxed
counters dynamics

Figure 2.1: Two different routes leading to continuous-relaxed dynamics of Petri nets

We insist on the fact that our main motivation in the coming chapters is not to study the dynamics
associated with continuous-relaxed Petri nets, but rather to focus on the continuous-relaxed
dynamics of classical discrete Petri nets, as shown by the solid arrows in the Figure 2.1. The
two notions may indeed not coincide, unless we adopt a suitable semantics for the former.
Still, building a bridge between the commonly used models of “fluid” Petri nets and the set of
dynamical equations we are going to study is valuable (dashed arrows in Figure 2.1), if only to get
interpretation of these dynamics in terms of standard fluid models. That is the reason why we
discuss fluid Petri nets in Section 1 and explain why relaxing integrality constraints in equations
of Table 1.13 is in a sense well-founded. The material of Section 1.2 is purposefully introduced in
a heuristic spirit, as establishing formal equivalences between different choices of semantics are
beyond the scope of this discussion.

Section 2 takes a more abstract view on both classical and continuous-relaxed dynamics
of Petri nets. It introduces evolution operators and evolution semigroups, that are standard in
control theory for infinite dimensional time-delay systems (see for instance [Ber12a] for a case
where dynamics are given by partial differential equations). In Section 3, we demonstrate that the
approximation of a discrete timed Petri net by its continuous relaxation is asymptotically exact
when applying a scaling parameter on the initial marking and inputs firings, even in presence of
many non-deterministic events, which legitimizes the use of fluid models.
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1 Semantics and tools for fluid Petri nets

1.1 FLUID PETRI NETS AND THEIR FIRING RULES. — The core idea of continuous-relaxed Petri
nets is to allow non-integer and infinitely divisible tokens, along with non-integer firings of
transitions. To this purpose, we first adapt the definitions of the previous chapter to authorize
arbitrary markings and arc weights:

) Definition 2.1.We say that a 4-tuple (P,Q, E, g) is a continuous-relaxed (or fluid) timed Petri
net with multipliers if contrary to the requirements of Definition 1.3 and Section 1.4 of Chapter 1, the
marking vectors and the arc weights take nonnegative real values.

Because the markings of the places in a continuous-relaxed Petri net are not necessarily integer,
we may talk about fluid-tokens to refer to these “fractional” tokens. They have the key property
to be divisible at will, since a real quantity can be split into an arbitrary number of arbitrary
smaller real quantities. The term “fluid Petri net” is very often used in lieu of “continuous-relaxed
Petri net” to convey the idea that fractional and divisible tokens are better understood if thought
of as particles of fluids, that flow and pour into places, crossing transitions by being mixed (or
unmixed) according to the multipliers stoichiometry.

The definition of the incidence matrix � in presence of multipliers given in Section 1.4
of Chapter 1 is unchanged, except that we now have that � is in RP×Q . As before, � can be
decomposed under the form � = � + −� −, with � + and � − in RP×Q>0 . The fundamental principle
that transitions of the net fire by consuming resource in their upstream places and produce
resource in their downstream places does survive to the continuous-relaxed case, but we now
authorize non-integer firings. If @ is a transition of Q and a is a positive real number, a firings of
@ consume U−1@?a fluid-tokens in each place ? of @ in, and produce U?@a fluid-tokens in each place ?
of @ out. In the analogy with fluids circulating in the net, non-integer firings of transitions can
be thought of as adjusting the opening of a tap to regulate the fluid outflow. Remark that non-
integer firings preserve the idea of packing and unpacking tokens according to the arc multipliers,
introduced in Section 1.4 of Chapter 1 – indeed, if a place ? in @ in contains<? fluid-tokens (with
<? > 0), their infinitely divisible character allows us to create U@? “packs” of U−1@?<? tokens. The
notion of T-invariant introduced in Definition 1.6 of Chapter 1 also carries over, but these are
now elements of RQ>0 instead of NQ .

As in discrete models, we shall also consider routing rules (resp. age constraints) to address
possible conflicts (resp. to represent the progress of the physical time) that will restrict the
possibility to fire some transitions. Apart from these, it can be seen that a major difference with
the discrete framework is that a transition of a continuous-relaxed Petri net can be fired as soon
as each of its upstream places contain any positive quantity of fluid-tokens, with no minimum
threshold.

The study of structural properties of discrete Petri nets also have its continuous-relaxed
counterpart; it is even made richer in the sense that some executions of fluid Petri nets can result
in convergent marking sequences. The set of reachable or lim-reachable markings is therefore
often studied, as well as associated notions of liveness, boundedness, etc. We refer to this purpose
to the work of Fraca and Haddad [FH15] in which they show that several of these problems are
decidable in polynomial time in the continuous-relaxed framework, which is not the case when
dealing with discrete models of Petri nets (see also [VMJS13]). The following example illustrates
the notions of non-integer firings.
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Example 2.2. Figure 1.1 depicts a pure Petri net with three places and three transitions.
As in Section 1.4 of Chapter 1, arc weights, that are not necessarily integer anymore, are
given along the arcs when not equal to one. In this example, the net is equipped with an
initial marking of (+ + 0)T, where+ is a positive number (we do not represent atomic tokens
anymore, but just in this example use pictures of fluids…)

?1

?3

@2@1

@3

?2

1/2
1/2

4/51/5

Figure 2.2: A continuous-relaxed Petri net

This continuous-relaxed Petri net could model the water circuit of a house, where ?1 is a cold
water tank, and ?2 a hot water tank, both filled with a volume of+ liters. Firing @1 consists in
taking a lukewarm shower, that is a fifty-fifty mix of hot and cold water, while firing @2 uses
only cold water. Firing the transition @3 amounts to activate a recycling circuit that empties
the bath tub and fills back the tanks, but this operation produces only 20 % of hot water again!

If a lukewarm shower consuming a total volume 2+ is taken (i.e., @1 fires 2+ times)
the marking vector becomes (0 0 2+ )T, and after recycling water, we obtain the marking
(8+ /5 2+ /5 0)T, meaning that the next person who wants to take the least cold and longest
shower possible can only use a volume of 2+ /5 liters of hot water. Repeating this scheme
indefinitely many times makes the marking of ?2 decrease geometrically with a rate of 2/5,
and the net reaches a limit marking of (2+ 0 0)T, so that only cold showers can ultimately be
taken (or fewer and fewer infinitesimal amounts of hot water are used, resulting in using no
water)… Conversely, note that in this toy model, taking only cold showers indefinitely many
times (i.e., using only transitions @1 and @3) also results in cold water shortage due to the little
production of hot water by the recycling circuit.

It is also possible to combine non-integer firings of both @1 and @2. For example, if @2
is fired + times and @1 is fired + /2 times from the initial situation, resulting in a water mix
colder than lukewarm but warmer than cold, we obtain the marking (12+ /10 8+ /10 0)T after
the recycling circuit is triggered, which is closer from the starting volumes than when using
only @1. An equilibrium exists and can be found by looking at the incidence matrix associated
with the Petri net of Figure 2.2, given by

� =
©« ª®¬
−1/2 −1 4/5 ?1

−1/2 0 1/5 ?2

1 1 −1 ?3

@1 @2 @3

.
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The vector ~ B (3/5 2/5 1)T verifies �~ = 0 and therefore is a T-invariant of the net. We
deduce that using @1 and @2 in respective 60 % and 40 % proportions guarantees that both tanks
are always refilled to their initial capacity. Alternatively, observe that the vector 4 B (1 1 1)T
is a so-called P-invariant of the incidence matrix (4� = 0T), which translates the conservation
of the total fluid quantity in this particular example.

In the same manner as explained in Section 2 of Chapter 1, we are interested in Petri nets models
where it is not up to an observer to make the choices of which fireable transitions should actually
be fired, and in which proportions. The first underdetermined case to address is the one of conflicts,
in case the same fluid-tokens present in a place ? can be used to trigger several transitions in ?out.
In this scenario, we still implement routing rules, either preselection or priorities. The notation
Ppsel, Pprio, Qpsel, Qprio and Qsync from Chapter 1 are hereafter reused with the same meaning.

In the Section 2.1 of Chapter 1, the preselection routing for a place ? was explicitly introduced
using nondecreasing mappings (Π?@ )@∈?out from N∗ to itself such that

∑
@∈?out Π

?
@ (=) = = for all =

in N∗. An identical construction could be brought up for continuous-relaxed models, replacing
N∗ by R>0 and imposing that

∑
@∈?out Π

?
@ (G) = G for all G > 0. For instance, in a two-lane fork

situation where ?out = {@1, @2}, one could define Π
?
@1 : G ↦→

∫ G
0

∑
:∈N 1[2:+ ,(2:+1)+ ) (D) dD and

Π
?
@2 : G ↦→

∫ G
0

∑
:∈N 1[ (2:+1)+ ,(2:+2)+ ) (D) dD, where + > 0. This would model an allocation of

fluid-tokens produced in ? between @1 and @2 in a “one after another” fashion, by portions of +
units of fluid each time. Although this formulation is the most general, we will in practice always
consider much simpler preselection routings, that we may call proportional preselection routings,
in which a vector of probabilities (c@?)@∈?out is given, i.e., we have

∑
@∈?out c@? = 1, and for all @ in

?out and G > 0we have Π?@ (G) = c@?G . This amounts to saying that any quantity+ of fluid-tokens
produced in ? is automatically split into the portions (c@?+ )@∈?out , and each one of these portions
is reserved for the firing of one transition in ?out. In particular in this type of routing, the ratio
Π
?
@ (G)/G is constant for all G > 0 and @ in ?out. This property was only asymptotically reached for

many preselection routings of interest for discrete models. Note that to obtain a fully determined
routing, one also needs to precise the allocation of the initial marking+ 0 of ? . In the proportional
setting, this can be done by specifying a probability vector (c0

@?)@∈?out , either identical or different
from the one governing the fluid-tokens produced in ? , such that for all @ ∈ ?out, the fraction
c0
@?+

0 of the initial marking is reserved for the firing of @.

The formalism of priority routing introduced in the Section 2.2 of Chapter 1 does not need
to be changed and applies also to continuous-relaxed nets. Given a place ? equipped with a
marking + and ruled by the local priority order (≺?), a maximum amount of fluid-tokens must
be used to fire the transition @1 of ?out with highest priority degree (this quantity is necessarily +
if @ in1 = {?}), then the second transition @2 in priority order is fired a maximum number of times
using the remaining tokens in ? , and so on. We extend to fluid models the convention introduced
on discrete models that transitions in Qpsel have only one upstream place (recall that it is not
restrictive, cf. Figure 1.6), while those in Qprio may have multiple upstream places.

Finally, we intend to avoid situations of “confusion”, in the same way as done in Section 2.3
of Chapter 1. To this purpose, we still rely on a notion of simultaneous firings. Since the transitions
can fire a real number of times, we do not talk about simultaneously fireable multisets of transitions
anymore, but we can keep the idea of a weight vector indicating if simultaneous and multiple
firings of transitions are possible. Formally, given a vector a in R

Q\Qinput
>0 and a marking< in RP>0,

we say that the transitions of the net (or rather those for which a is positive) are a-simultaneously
fireable if

∑
@∈Q\Qinput

a@ [� −]@ > <. The simultaneous firings of these transitions consume (resp.
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produces) fluid-tokens in the places of P in amounts given by the vector
∑
@∈Q\Qinput

a@ [� −]@
(resp.

∑
@∈Q\Qinput

a@ [� +]@).
We extend to the continuous-relaxed setting the concept of holding times introduced in

the Section 3.1 of Chapter 1, and impose similar semantic constraints. Any fluid-token produced
in a place ? in P must wait for a nonnegative (so possibly null) physical time g? before being used
or split to fire any transition of ?out. We may again say that a fluid-token with an age exceeding
the holding time of its place is mature, and by convention the tokens of the initial marking have
an infinite age. Like in the Definition 1.18 of Chapter 1, a continuous-relaxed Petri net is said to
be non-Zeno if none of its cycles contain only places with zero holding times.

Finally, we point out that continuous-relaxed Petri nets may also admit input transitions, and
to prevent Zeno behaviours, either on firing instants or quantities of produced fluid-tokens, we
require as in the Chapter 1 that only a finite amount of fluid-tokens can be fired by these input
transitions over any finite time-window.

1.2 FIRING-RATE SEMANTICSANDFLUIDCOUNTERFUNCTIONS.— Studying the behaviour of
continuous-relaxed Petri nets over time first requires to carefully specify their evolution semantics.
This is what we have done in the Chapter 1, by setting more and more evolution rules until there
was no more underdetermination. We recalled in addition the results of [ABG15, Bœu17] who
showed that these evolution rules were equivalent to the system of equations of Table 1.13, on
discrete counter functions of the net.

So far, the evolution rules that we have described for continuous-relaxed Petri nets are contrary
to their discrete peers not tight enough, due to a new behaviour made possible by the fluid context.
Indeed, while a transition in a discrete Petri net could maybe fire one token (and not less!) every
second, it is totally licit for its continuous-relaxed counterpart to fire a tenth of the fluid token
every tenth of second, or even a thousandth fluid-token every thousandth of second. Pushing
this reasoning to the limit, one can sense that the rightful notion to consider is that transitions of
fluid Petri nets can have firing rates, also referred to as continuous firings.

In particular, it would be of little use in practice (although it is true) to state in the spirit
of Theorem 1.13 that there exists a maximal vector a in R

Q\Qinput
>0 such that the transitions of

a continuous-relaxed net are a-simultaneously fireable. Indeed, this vector can be null and
yet the transitions of the net can fire with positive firing rates. We need in fact to authorize
both instantaneous and continuous firings in the semantics. Formally, if a (0) and a (1) are two
nonnegative vectors of R

Q\Qinput
>0 , we should say that a continuous-relaxed Petri net withmarking<

in RP>0 is a
(0) -simultaneously and a (1) -continuously fireable if we have

∑
@∈Q\Qinput

a
(0)
@ [� −]@ > <,

and
∑
@∈Q\Qinput

a
(1)
@ [�]@ > 0. In this case, for dC > 0 small enough, the firing of transitions of

the net with immediate multiplicity a (0) and rate a (1) at time C = 0 would produce a marking
<(C) =<+∑@∈Q\Qinput

(a (0)+a (1)dC) [�]@+> (dC) (note that the transitions can have time-dependent
firing rates). Proceeding as in Chapter 1 would therefore prompt us to show that there exists
at each instant two maximal vectors a (0) and a (1) such that the net is a (0) -simultaneously and
a (1) -continuously fireable.

Instead, we develop below an approach that is converse of the one applied in the Chapter 1.
We postulate that the evolution of the net is dictated by some equations on the counter functions,
which keep track of the evolution of fluid-tokens in the net. The following definition formally
introduces them, and to insist on the fact that their dynamics is different from the one arising in
the discrete context, we denote them by using lowercase letters.
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) Definition 2.3. Let (P,Q, E, g) be a non-Zeno continuous-relaxed timed Petri net equipped with
an initial marking. We call counter functions of the net the mappings (G?)?∈P , (~?)?∈P and (I@)@∈Q
from R>0 to R>0 such that for all C > 0:

G? (C) denotes the (nonnegative real) number of fluid-tokens that have been present in place ? up
to time C included (i.e., either the fluid-tokens produced in ? or those of the initial marking
in ?);

~? (C) denotes the (nonnegative real) number of fluid-tokens that have been present and mature
in place ? up to time C included;

I@ (C) denotes the (nonnegative real) number of firings of transition @ up to time C included.

Denoting by< the initial marking of the net, we extend the domain of these counters to R by
setting G? (C) = ~? (C) =<? and I@ (C) = 0 for all C < 0, ? in P and @ in Q. The main difference with
discrete counters is that the functions (G?)?∈P , (~?)?∈P and (I@)@∈Q do no longer take values in
N but in R>0, hence are not piecewise-constant anymore.

) Proposition 2.4. The counter functions of a continuous-relaxed non-Zeno timed Petri net are
nondecreasing piecewise-continuous càdlàg functions.

Proof. The proof is the same as the Proposition 1.20 of Chapter 1. s

Recall that monotone functions are almost everywhere continuous (see for instance [Rud76,
Theorem 4.30, p. 90]), and even almost everywhere differentiable (see [WZ77, Theorem 7.22,
p. 177]); it is then licit to talk about the derivatives of the counter functions. Actually, we shall
soon only work with Petri nets whose input profiles are such that the counters are piecewise-
continuously-differentiable – we will come back on this aspect after the semantics are tightened.
Following Proposition 2.4, observe that any jump of a counter I@ at the instant C > 0 (characterized
by I@ (C) > I@ (C−)) translates that I@ (C) − I@ (C−) instantaneous firings of @ occurred at C , while
continuity of I@ over [C1, C2) means that @ fires with a rate ¤I@ (C) for all C in [C1, C2) (wherever this
derivative exists).

We now discuss the form of the equations that we choose to govern the evolution of our
continuous-relaxed Petri nets (we will not prove that this yields identical semantics than imposing
maximum vectors a (0) and a (1) at each instant). The fact that firing rates are involved and that
counters functions (and therefore the markings of places as well) admit derivatives does explain
why various authors introduce fluid semantics of Petri nets as systems of ordinary differential
equations (ODEs). Since ¤I@ (C) gives the firing rate of transition @ in Q, the equation governing
the instantaneous variations of the amount<? (C) of fluid-tokens in ? of P at instant C is

¤<? (C) =
∑
@′∈? in

U?@′ ¤I@′ (C) −
∑
@∈?out

U@? ¤I@ (C) . (2.1)

Remark that contrary to the ( ¤I@)@∈Q that are nonnegative, the ( ¤<?)?∈P are a priori allowed to be
negative (if more tokens are consumed than produced). The equation (2.1) is nothing else that the
derivative of the fundamental equation<(C) =<(0−) +�I (C) for the place ? of P. However, since
only mature tokens of ? can be used to fire transitions of ?out, it is desirable to decompose the
term<? (C) into<young

? (C) +<old
? (C), where<young

? (resp.<old
? (C)) is the number of fluid-tokens

present in ? at instant C that are not yet mature (resp. that are mature). We can then explicitly
introduce a conversion rate qyoung→old

? (C) indicating for all ? in P the amount of non-mature
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tokens of ? becoming mature at instant C , by writing

for all ? ∈ P,

¤<young
? (C) =

∑
@′∈? in

U?@′ ¤I@′ (C) − qyoung→old
? (C) ,

¤<old
? (C) = −

∑
@∈?out

U@? ¤I@ (C) + qyoung→old
? (C) .

(2.2)

We naturally retrieve (2.1) by taking the sum of both equations in (2.2). To characterize the
firing rates ( ¤I@)@∈Q\Qinput , we remark that in the discrete framework of Chapter 1, each transition
admitted at each instant an upstream place with no idle mature token, in accordance with the
requirement to fire as many tokens as possible. We shall later refer to these places (i.e., the set
{? ∈ P | <old

? (C) = 0}) as bottleneck places, since they have no fluid-tokens to offer to the firing
of their downstream transitions. In addition, by the earliest behaviour rule that we still want
verified in the continuous-relaxed setting, if there are several bottleneck upstream places of a
transition @, then the firing rate ¤I@ is limited by the creation rate of mature tokens qyoung→old

? of
one of these bottleneck places. Except for transitions involved in structural conflicts (and whom
we will focus on afterwards), these two conditions can both be coded by the equation

for all @ in Qsync, min
?∈@ in

<old
? (C )=0

(
¤<old
? (C)

)
= 0 . (2.3)

Note indeed that for all @ in Qsync, {? ∈ @ in | <old
? (C) = 0} must be nonempty for a minimum

taken on this set to be non-infinite. The semantics are completed by specifying the form of the
conversion rates (qyoung→old

? )?∈P . A standard choice is that a constant fraction of non-mature
tokens does become mature at each instant,1 so that qyoung→old

? (C) is proportional to<young
? (C):

for all ? ∈ P, qyoung→old
? (C) B

<young
? (C)
g?

(exponential conversion rate) , (2.4)

where g? > 0. Re-using (2.2), one can see that (2.4) leads to a proper ODE system, and this is
the model studied by Allamigeon, Bœuf and Gaubert in [ABG17]. It is equivalent to the system
obtained by David and Alla in [AD98] and revisited by Recalde and Silva in [RS01]. In this setting,
if a unit of fluid is produced in a place ? at time C = 0, with ?out = {@} and @ in = {?}, then @ will
fire this fluid-token according to an exponential law with parameter g? > 0, i.e., a total proportion
of (1/g?)

∫ C
0
4−D/g? dD units of fluid originating from the initial fluid-token will be consumed in ?

between 0 and C . This indeed corresponds to a firing rate that is proportional to the marking of ?
itself (remark that it takes an infinite time to fully consume the initial fluid-token).

Although it yields non-trivial and rich dynamics, the postulate (2.4) does not match our
requirement that fluid-tokens become mature after a constant holding time. To enforce this
behaviour, we shall instead work with conversion rates such that

for all ? ∈ P, qyoung→old
? (C) B

∑
@′∈? in

U?@′ ¤I@′ (C − g?) (delayed conversion rate) , (2.5)

which means that the conversion rate between non-mature and mature fluid-tokens in place ? is
precisely given by ?’s inflow of tokens, delayed by g? . Contrary to the form (2.4), the choice (2.5)

1 Similarly to the usual decay model of radioactive nuclei, each nucleus having a probability d% = dC/g to break down
over an infinitesimal duration dC
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leads to a somehow “factitious” ODE system, since the two relations of (2.2) become easily
integrable and we have<old

? (C) = <? +
∑
@′∈? in U?@′I@′ (C − g?) −

∑
@∈?out U@?I@ (C) for all ? in P.

The fact given by (2.3) that any transition @ of Qsync admits bottleneck upstream places (and that
these upstream places only admit @ as downstream transition due to the absence of conflict) then
provides

for all @ in Qsync, I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′I@′ (C − g?)
)
.

We recognize the equation obtained for transitions in Qsync for discrete timed Petri nets (see Ta-
ble 1.13), except that the integer-parts have been dropped, and the arc multipliers are not compelled
to be integer. In this sense, continuous-relaxed dynamics equations on counter functions arise
from the semantics of continuous-relaxed timed Petri nets under the “delayed conversion rate” rule.
Similarly to the discrete framework, the previous equation also writes I@ (C) = min?∈@ in U−1@? ~? (C)
if @ is in Qsync, where for all ? in P, we have G? (C) =<? +

∑
@∈? in U?@ I@ (C) and ~? (C) = G? (C − g?).

These three relations are the fluid counterparts of equations (P1), (P2), and (P3) from Chapter 1.
One could also have obtained a fluid equation for transitions in Qpsel that resembles the

discrete one. Observe that if ? is a place ruled by proportional preselection routing with the
probabilities (c@?)@∈?out , the second equation of (2.2) also writes ¤<old

? (C) = −
∑
@∈?out

(
U@? ¤I@ (C) +

c@?q
young→old
? (C)

)
. In accordance with the preselection logic, we shall then require that a fraction

c@? of the non-mature fluid-tokens becoming mature are allocated to the firing of the transition @
in ?out, and introduce the number of tokens (<old

?,@ (C))@∈?out,C ∈R that are mature in ? and reserved
for @ at time C , so that ¤<old

?,@ (C) = −U@? ¤I@ (C) +c@?qyoung→old
? (C) for all @ in ?out. The equation (2.3)

becomes <old
?,@ (C) = ¤<old

?,@ (C) = 0 since no transition @ of ?out is involved in synchronization
patterns and should fire mature tokens of ? as soon as possible. Equivalently, this means using
the initial condition<old

? (0−) = c0
@?<? that

for all @ in Qpsel such that @ in = {?}, I@ (C) = U−1@?
(
c0
@?<? + c@?

∑
@′∈? in

U?@′ I@′ (C − g?)
)
, (2.6)

which is indeed a continuous-relaxed counterpart of preselection equation of Table 1.13, since
discrete initial markings and preselection mappings degenerate into real fractions.

Our point is that starting from natural fluid semantics where evolution rules are stated on
firing rates, one recovers under the “delayed conversion rate” convention the dynamical equations
of the Table 1.13 for discrete Petri nets, with integrality constraints removed. Hence, echoing
the Figure 2.1, we highlight the following principle for priority-free nets:

The continuous-relaxation of dynamical equations on counter func-
tions of Table 1.13 for discrete timed Petri nets also describes
the dynamics of fluid counter functions for continuous-relaxed
timed Petri nets, under the delayed conversion rate semantics.

This observation legitimizes the fluid equations that we shall use in the thesis, and shows that they
are not only brought up for computation convenience. Instead, they characterize the behaviour
of systems that sure are idealized, but still obey very reasonable evolution rules.

Note that the case of priority routings is once again a little more subtle when firing rates are
involved. It is addressed in [ABG17] (using exponential conversion rate, but it could be adapted to
the delayed conversation rate as well) for local priority patterns involving two transitions, and in
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Type Counter equation in the continuous-relaxed model

@ ∈ Qinput I@ (C) is prescribed externally

@ ∈ Qsync I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g?)
)

@ ∈ Qpsel I@ (C) = U−1@?

(
c0
@?<? + c@?

∑
@′∈? in

U?@′ I@′ (C − g?)
)

@ ∈ Qprio I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g?) −
∑
@′≺?@

U@′?I@′ (C) −
∑
@′�?@

U@′?I@′ (C−)
)

Table 2.3: Dynamic equations followed by transitions counter functions

this case we need to provide additional semantic equations. We do not develop this aspect further,
and when priority rules will be featured in continuous-relaxed timed Petri nets, we shall use
the same dynamical counter equations than those stated in Table 1.13 for discrete nets, but with
integer-parts dropped, in accordance with the above principle. This approach is justified by the
fact shown in [ABG17, Bœu17] that both settings provide identical evaluations of the long-run
behaviour of the system.

We gather in the Table 2.3 above the system of dynamical equations that governs the evolution
of fluid counter functions of transitions of the net based on their type. Similarly to the discrete
case, as soon as the Petri net is non-Zeno, we can use use the induction principle (I) to study
the effect of these equations by chunks of gmin units of time. In particular, we obtain that the
continuous-relaxed dynamics define unique trajectories:

) Theorem 2.5. In a non-Zeno and priority-free continuous-relaxed controlled timed Petri net, the
knowledge of (I@)@∈Qinput and the system of equations of Table 2.3 determine unique nondecreasing
càdlàg functions (I@)@∈Q\Qinput over R.

Proof. The proof is identical to the one of Theorem 1.23, making use of non-Zeno substitutions in the
equations and the induction scheme (I) to propagate the dynamics. s

We can use the same technique to show that the unique solution of the dynamics inherits the
regularity of the input profiles, hence if the latter are piecewise-continuously-differentiable, so is
the whole trajectory.

Note that we did state Theorem 2.5 only in the “monotonic” framework, that is to say without
priority rules. The fact that pathological input profiles can yield accumulating sequences of
instants for which minimizing terms change in the equations Table 2.3 makes it more difficult to
extend Theorem 1.24. In Chapter 5, we shall use the result of Theorem 2.5 also under priority
rules, but with much simpler inputs.

In the following example, we review some of the similarities and differences between the
two above models of conversion rates, for a very simple Petri net with no structural conflict. It
is the only place of the thesis where we consider the exponential conversion rate; all the future
computations on continuous-relaxed Petri nets will systematically use the equations of Table 2.3,
hence supposing delayed conversion rates.
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Example 2.6. We show in the Figure 2.4 a simple timed Petri net representing a so-called
“single-tier” inbound call-center, which means there is only one pool of identical agents
picking up the inbound calls, and carrying out the instruction in its entirety. The calls arrive
via the uppermost transition @0 and cumulated arrivals are counted by I0. A characteristic
time g0 must elapse before an arrived call is presented to one of the # agents, who can then
pick up the calls by firing transition @1. The instruction will take a typical time g1, and once
the conversation is over, @2 fires, hence sending back the agent in his or her pool. Note that
we suppose that a characteristic time g2 must elapse before this agent is available again before
picking up new calls (it can be thought of either as a recovery time or a back-office task). Since
we are working in the continuous-relaxed framework, firings of transitions can be non-integer.
In the coming illustrations, we have used # = 3, g0 = 10 s, g1 = 120 s and g2 = 5 s.

@0

g0

@1

g1

@2

g2# .

Figure 2.4: A timed Petri net representing a single-tier inbound call-center

On one hand, the response of the call-center depends on the input profile C ↦→ I0(C) of
the inbound demand. We study below three simple cases for this profile: low-slope ramp,
high-slope ramp, and high step. Yet, the semantics rule we choose also play a key role. In the
delayed conversion rate setting (later abbreviated DCR), the dynamics equations write

I1(C) = min
(
I0(C − g0) , # + I2(C − g2)

)
I2(C) = I1(C − g1)

(St-DCR)

In the contrary, if we place ourselves in the exponential conversion rate setting (abb. ECR), we
have to solve the following piecewise-linear differential system:

¤<young
0 (C) = ¤I0(C) −<young

0 (C)/g0

¤I1(C) =

{
<young

0 (C)/g0 if I0(C) − I1(C) −<young
0 (C) = 0

<young
2 (C)/g2 if # + I2(C) − I1(C) −<young

2 (C) = 0

¤<young
1 (C) = ¤I1(C) −<young

1 (C)/g1

¤I2(C) = <young
1 (C)/g1

¤<young
2 (C) = ¤I2(C) −<young

2 (C)/g2

(St-ECR)
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In both system labels, the abbreviation “St” stands for single-tier. The system of equa-
tions (St-DCR) is easy to solve using the induction principle (I). To find solutions of the
system (St-ECR), we can first look for the functions (<young

0 ,<young
1 ,<young

2 ). Indeed, as a
vector function ℎ, they satisfy a coupled piecewise-linear differential system of the form
¤ℎ(C) = �ℎ(C) + 1 (C), where the matrix � can take two different values (both diagonalizable)
depending upon which term attains the minimum in the equation on I1. Afterwards, we can
integrate the obtained functions and get I1 and I2.

Remark that in both cases, as long as not too many calls arrive, starting with # idle
answering agents guarantees that at the start of the execution we first use the equation
I1(C) = I0(C − g0) in (St-DCR), and the equation ¤I1(C) =<young

0 (C)/g0 in (St-ECR).

a) The input profile is a low-slope ramp. We first suppose that for all C > 0, I0(C) = _C ,
with _ not too high. This corresponds to arrivals of inbound calls with a constant rate. The
resolution of both systems (St-DCR) and (St-ECR) provides the following counter evolution:

Delayed conversion rate Exponential conversion rate

I0(C) I1(C) I2(C)

I0(C − g0) − I1(C)

# + I2(C − g1) − I1(C)

I0(C) I1(C) I2(C)

I0(C) − I1(C) −<
young

0
(C)

# + I2(C) − I1(C) −<
young

2
(C)
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The solutions in the DCR model are simple:

I1(C) = _(C − g0)1[g0,∞) (C) and I2(C) = _(C − g0 − g1)1[g0+g1,∞) (C) .

This is very reasonable; it tells us that call pick ups and hang ups follow the pace imposed by
the input, even though holding times of the places create a constant delay between I0, I1 and
I2. Since g0 is short, I1 closely follows I0, contrary to I2 which follows I1 by an important
delay due to the conversation time g1.

For the ECR model, we obtain little more complex expressions:

I1(C) = _
(
C−g0(1−4−C/g0)

)
and I2(C) =

_

g1 − g0

(
g1
(
C−g1(1−4−C/g1)

)
−g0

(
C−g0(1−4−C/g0)

) )
,

however it is easy to figure out that these functions, that are continuously differentiable,
admit the same asymptotes than in the DCR case (and therefore with same interpretation).
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The major difference with the DCR situation is that the transition @2 fires from the very start
of the experience, which is not very realistic for this application.

In both cases, we have shown in dashed blue line by “how far” the system is from switching
regime (in the ECR model, this is exactly the function<old

2 ). When it hits zero, it means that
no answering agents can be idle anymore, or in other words the internal part of the system is
no longer ahead of the input. It is remarkable that in the two cases, the asymptotic value of
this quantity is # − _(g1 + g2) (it is not too hard to obtain with DCR equations, but a little
more involved with ECR ones). This means that the arrival rate _∗ defined by

_∗ B
#

g1 + g2

plays the role of a critical arrival rate, and we are here in the situation where _ 6 _∗. Note how
_∗ can be interpreted as a mean cycle time, since we have # agents performing instructions
requiring a total of g1 + g2 units of time.

b) The input profile is a high-slope ramp. If we still impose I0(C) = _C but choose _ > _∗,
we get quite different behaviours of the counter functions.

Delayed conversion rate Exponential conversion rate

I0(C) I1(C) I2(C)

I0(C − g0) − I1(C)

# + I2(C − g1) − I1(C)

I0(C) I1(C) I2(C)
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0
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For the DCR case, we still have I1(C) = _(C −g0) shortly after g0, but after taking # calls (which
occurs at time g0 + # /_), all the agents are busy so no more calls can be picked up, and I1
stays constant. The system is at this point in another regime, where the counter variables do
not follow the input anylonger. At time g0 + g1 + g2, the agents having picked up the first calls
(at time g0) become available again, hence the growth of I1 resumes at pace _. This scheme
repeats indefinitely, alternating between plateaus of length g1 + g2 − # /_ and ramps with
slope _ and length # /_. This “zigzag” pattern hence has pseudo-slope _∗.

Using ECR equations, we also observe that the system enters in a new phase for some
instant C0 such that<old

2 (C0) = 0. The change of slope of I1 at C0 is justified by the discontinuity
of ¤I1 in (St-ECR), but I2 remains continuously differentiable. In this second regime, the
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evolution of I1 and I2 is autonomous and occurs with ultimate slope _∗; in addition I2 follows
I1 with an ultimate delay g1.

An important difference between the two models is that in the DCR case (resp. ECR), I2
begins its growth at C = g0 + g1 (resp. C = 0). This means that the comebacks of answering
agents occurs sooner in ECR, which is why the phase switch happens later than the DCRmodel
– and as a consequence the solutions of DCR lag behind those of ECR.

c) The input profile is a high step. We suppose that I0(C) = 21[0,∞) (C) is a Heaviside-type
function, representing a sudden bulk of calls arriving at C = 0 (we choose 2 = 5, so that
# < 2 < 2# ).

Delayed conversion rate Exponential conversion rate

I0(C) I1(C) I2(C)

I0(C − g0) − I1(C)
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In the DCR model, none of these calls are visible to the idle agents before the instant g0, so
that we are technically in an input-driven regime. At C = g0, the answering agents pick up as
many calls as they can, so that I1 suddenly jumps at # . These # calls are hanged up g1 units
of time later, and our agents become available again at time g0 + g1 + g2. They are in sufficient
staffing to pick up the remaining calls, so that the demand is caught up with and the system
switches back in the first regime. The 2 − # last calls are hanged up at time g0 + 2(g1 + g2).

For the ECR setting, the fact that I0 is discontinuous at time C = 0 also makes<young
0

discontinuous, and as a consequence I1 non-differentiable. The counter I1 quickly grows until
all agents are saturated. In this second phase beginning with a new discontinuity of ¤I1, both
counters have a nearly-linear growth with “slope” _∗. When I1 catches up with the input, it
naturally stays flat, and I2 is a simple exponential function afterwards. In particular, because
the asymptotic value of<young

1 is null, the growth I2 becomes slower and slower, so that the
total catch-up of the input takes an infinite time.
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1.3 CONFLICT-FREE TRANSFORMATION OF PRESELECTION ROUTINGS. — At this point, it
is worth mentioning an operation on continuous-relaxed Petri nets that has no equivalent for
discrete nets. Introduced by Gaujal and Giua in their work [GG04b], it consists in replacing the
conflict places ruled by proportional preselection routing by equivalent conflict-free patterns,
thus referred to as a conflict-free transformation. If applied to an initial Petri net that do not
feature any priority routing, this technique provides a transformed Petri net with no conflict place
at all, or in other words, such that |?out | 6 1 for all places ? in P.

Specifically, given a continuous-relaxed Petri net (P,Q, E) such that Ppsel ≠ ∅, its equivalent
conflict-free net is the Petri net (P ′,Q, E ′) such that

– Each place ? in Ppsel ruled by preselection in the original Petri net is duplicated as many times
as its number of downstream transitions (into {?@ | @ ∈ ?out}), so that in the transformed net

P ′ B
(
P \ Ppsel

)
∪

⋃
?∈Ppsel

{?@ | @ ∈ ?out} ,

– Each one of this new places now admits a single downstream transition, with unchanged weight

∀? ∈ Ppsel, ∀@ ∈ ?out, U ′@?@ B U@? ,

– Each one of this new places admits all upstream transitions of their corresponding original
place ? as upstream transitions, with arc multipliers weighted by ?’s preselection probabilities

∀? ∈ Ppsel, ∀@ ∈ ?out, ∀@′ ∈ ? in, U ′?@@′ B c@?U?@′ .

This construction is illustrated by the Figure 2.5. The Figure 2.5a depicts a pattern involving a place
ruled by proportional preselection routing with two upstream transitions and two downstream
transitions. As a result, its conflict-free equivalent still features four transitions but now two places
instead of one. Observe on Figure 2.5b how each upstream transition now produces tokens in all
the newly created places, with arc multipliers taking into account the former routing proportions.

?

@1 @2

@3 @4

c?,@3 c?,@4

U?,@1 U?,@2

U@3,? U@4,?

(a)

?@3 ?@4

@1 @2

@3 @4

U@3,? U@4,?

U
?,@

1 c
?,@

4 U ?
,@
2
c ?
,@
3

U
?
,@

2
c
?
,@

4

U
?
,@

1
c
?
,@

3

(b)

Figure 2.5: (a) A Petri net with a place ruled by proportional preselection routing. (b) Its
conflict-free equivalent Petri net, all places have now a single downstream transition.

The main interest of the conflict-free transformation is naturally to avoid dealing with conflicts
and confusion, but it also spares the need to distinguish dynamical equations for places in Ppsel
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(by construction, Ppsel = ∅ in conflict-free transformed nets). Above all, we have the following
result, once again for standard Petri nets (i.e., with no priority rules).

) Proposition 2.7 ([GG04b]). The transition counter functions of a non-Zeno continuous-relaxed
timed Petri net and of its equivalent conflict-free Petri net have the same dynamics, and as a
consequence both nets have the same trajectories.

Therefore, whenever it comes in handy, we shall use the conflict-free transformation in our
statements and proofs.

2 Control aspects of monotonic discrete and fluid dynamics

We take in this section a more high-level view of the objects we are dealing with, whether they
originate from discrete or continuous-relaxed Petri nets, and discuss how they fit in a control and
operator approach setting. Since priority rules alter several structural properties of the dynamics,
we only work in what follows with monotonic models, that is to say priority-free Petri nets. We
shall come back to the study of models with priority in the Chapter 5.

2.1 ABSTRACT FORM OF THE SYSTEMS. — For a (classical) Petri net with transitions set Q, let us
write the counters that are not associated with inputs in vector form, i.e., / B (/@)@∈Q\Qinput , and
likewise, denote /input B (/@)@∈Qinput (in the context of continuous relaxed nets, we would write
I and Iinput). We have seen in Theorem 1.23 about discrete Petri nets dynamics that under the
non-Zeno assumption (see Definition 1.18), the evolution of priority-free nets can be reduced to
the master equation (M)

∀C > 0 / (C) = �
( (
/ (C − g)

)
g ∈T ,

(
/input(C − g)

)
g ∈Tinput

)
∀C < 0 / (C) = 0

/input is prescribed externally over R

, (M)

where T (resp. Tinput) is a finite subset of R>0 (resp. R>0). The operator � encapsulates all
the topological and conflict-solving aspects of the Petri net (incidence relations, arc multipliers,
preselection mappings…) as long as initial markings, and apart from that, only features sum,
minimum and integer part operations (in particular, it is nonlinear). Systems of the form (M) are
piecewise affine dynamical systems with delays, and typically arise in discrete-event models. As
it is emphasized on in the induction principle (I), the master equation (M) allows us to determine
the present (i.e., / (C)) using the past (the (/ (C − g))g ∈T ) and the inputs.

It can help understanding the above framework to compare it with the extensively studied
and continuous counterpart setting of ordinary differential equations (ODEs). In this case, the
master equation of the dynamics does not feature delays but derivatives of an unknown function
G , and becomes ¤G (C) = � (G (C) , D (C)), associated with a condition G (C0) = G0. In this context, the
vector-valued function D plays the role of a control. By comparison, observe that /input can also
be interpreted in (M) as a control chosen by an external agent, and the equation / | (−∞,0) = 0 is
nothing but a (functional) initial condition. The operator � still encloses the dynamics governing
the evolution of the state vector G .

In this light, and as already mentioned in Section 1.5 of Chapter 1, many questions that are
customary in control theory arise. First, we may wonder whether the system is controllable, and
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in particular if we are able to guarantee the follow-up of the inputs. Characterizing the trajectories
of the system, determining if they reach an ultimate regime, and if yes at which speed are also
questions of interest. All these aspects are hidden in the operator � .

Observe further that Q is already partitioned into the subsets Q \ Qinput and Qinput, so that
our system is naturally divided into an internal part and an external part. As usual in control,
focusing first on the internal part (or in other words “disabling” the external inputs) is fruitful to
understand the properties of � . In our setting, since all the coordinates of /input occur in (M) in
minimum operations with components of / , this “impulse response” (or “free-run regime”) can
be obtained by letting /@ (C) = ∞ for all @ in Qinput and C in R.

When the operator � is specifically built using the continuous-relaxed equations of Table 2.3
(and no more using discrete equations of Table 1.13), the integer parts disappear. This way, � is
still nonlinear, but only involves sums and minimums. For the sum and minimum operations
are both associative and because the sum distributes over the minimum, each component of �
actually arises as a minimum of finitely many affine functions of the coordinates of (/ (C − g))g ∈T
and (/input(C − g))g ∈Tinput (with nonnegative “slope” coefficients). In other words, for all @ in

Q \ Qinput, there is an integer ℓ (@) > 1, there are real numbers (0 (@)
8
)1686ℓ (@) , nonnegative vectors

(1 (@,g)
8
)1686ℓ (@) ,g ∈T and (2 (@,g)

8
)1686ℓ (@) ,g ∈Tinput such that for all C > 0 we have

/@ (C) = min
1686ℓ (@)

(
0
(@)
8
+
∑
g ∈T

〈
1
(@,g)
8

, / (C − g)
〉
+

∑
g ∈Tinput

〈
2
(@,g)
8

, /input(C − g)
〉)
,

where 〈·, ·〉 denotes the usual dot-product. Note that in the Petri net models that we will study,
the vectors (1 (@,g)

8
)1686ℓ (@) ,g ∈T and (2 (@,g)

8
)1686ℓ (@) ,g ∈Tinput will typically be sparse – that is to say,

with many zero coefficients.
Although the vector /input formally intervenes as a control, it will in our systems most often

stand for the inbound demand, that is by essence not chosen but endured (see for instance Ex-
ample 2.6). It is possible to transform the equation (M) to better account for this phenomenon,
by simply blending in a new operator � the action of the operator � together with the effect of
/input and its delays. Because /input is a function of the time, so is � , and the equation becomes

∀C > 0 / (C) = �
( (
/ (C − g)

)
g ∈T , C

)
∀C < 0 / (C) = 0

, (M’)

In the system (M’), the function / arises as the solution of an autonomous but non-stationary
dynamics, contrary to the previous non-autonomous but stationary form. The analysis of the
trajectories of the system now requires to focus on the properties of the operator � . To that
purpose, one can adopt an approach based on evolution operators, frequently introduced to deal
with the solutions of dynamical systems.

2.2 THE OPERATOR APPROACH. — Recall from Theorem 1.23 and Theorem 2.5 that whether
we work with discrete or continuous-relaxed models of (priority-free) timed Petri nets, the
knowledge of inputs determines a unique trajectory of the system. More specifically, the induction
principle (I) on which these two theorems are based shows that we can propagate a solution /
of the dynamics as soon as we know /input over R and we know / over [−gmax, 0) – recall that
gmax is the greatest holding time of the net. So far, we have always fixed / | [−gmax,0) = 0̃, since by
definition transitions do not fire before the physical time C = 0. Observe from a more abstract
perspective that any other choice of functional initial condition would lead to a fully determined
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continuation as well. In particular, for C0 > 0, we should be able to start from an initial condition
drawn from the execution of a Petri net between the instants −gmax + C0 and C0, and recover the
same trajectory after time C0.

To formalize this idea, we introduce the set � B ℱ
(
[−gmax, 0),RQ\Qinput

)
of vector-valued

functions over [−gmax, 0), and define the notion of evolution operator.

) Definition 2.8.We call evolution operator the two-parameter family (�C
B )06B6C defined by

�
C
B :


� −→ �

/ 0 ↦−→
{
[−gmax, 0) → RQ\Qinput

D ↦→ / (D + C)
(2.7)

where / is the function uniquely determined by the initial condition / (· + B) = / 0 on [−gmax, 0), the
input /input on [−gmax,∞) and the equations of Table 1.13 or Table 2.3.

We shall explicitly write �
disc and �

cont to refer to the evolution operators respectively
associated with dynamics of Table 1.13 and Table 2.3, but we use the general notation � when
our claims apply to both cases. For / 0 in�, we denote by �

C
B

[
/ 0

]
the image of / 0 by �

C
B , and

sometimes �C
B

[
/ 0, /input

]
to recall the dependence on the input functions. We may refer to / 0 as

a seed function, and to � as the set of seeds functions, since they give rise to the trajectories.
The Definition 2.8 can be interpreted as follows. The action of �C

B is to “push” forward a
function defined over [−gmax + B, B) by C − B units of time according to the dynamical system
and the inputs. From this perspective, we may think of � as an operator of “initial condition
transportation”, analogously to flow properties for ODEs.

If / is the solution of the master equation (M) (or (M’)), then, by choosing sufficiently small
Y > 0 (actually any positive number in (0, gmax) works), we have

for all C > 0, / (C) = �
C+Y
0

[
0̃
]
(−Y) , (2.8)

since / (· + 0) must be null on [−gmax, 0) (hence the choice B = 0 with respect to (2.7)). Observe
that it is not possible to write / (C) = �

C
0

[
0̃
]
(0) since elements of � cannot be evaluated in zero.

This is somehow expected since the physical instant C = 0 is already part of the execution of the
system, and thus we need to “push” the dynamics strictly more than C units of time from 0 to
figure out the value of / (C).

The form (2.8) surely seems very burdensome to simply denote/ (C), but the evolution operator
� is intended to act on much more general functions of � than 0̃. The following proposition
formalizes the “bootstrapping” idea expressed in the beginning of the subsection.

) Proposition 2.9. For nonnegative reals A , B and C such that 0 6 A 6 B 6 C , the evolution operator
� satisfies

�
C
B ◦�B

A = �
C
A .

Proof. Let / 0 ∈ �. Let us denote by / 1 the function defined over [−gmax + A,∞) with values in RQ\Qinput

such that / 1 | [−gmax+A,A ) = / 0 and / 1 satisfies the discrete (or continuous) dynamics. We have for all
D ∈ [−gmax, 0) that �B

A

[
/ 0] (D) = / 1 (B + D) and �

C
A

[
/ 0] (D) = / 1 (C + D). Let us now denote by / 2 the

function defined over [−gmax + B,∞) such that / 2 | [−gmax+B,B) = �
B
A

[
/ 0] = / 1 (B + ·) | [−gmax,0) , so that for

all D ∈ [−gmax, 0), we have �
C
B

[
�
B
A

[
/ 0] ] (D) = / 2 (C + D). Since / 1 and / 2 coincide over [−gmax + B, B),

by uniqueness of the continuation under the dynamics, they coincide over [−gmax + B,∞). In particular,
because C > B , we have / 1 (C + D) = / 2 (C + D) for all D ∈ [−gmax, 0). This amounts to saying that �C

A

[
/ 0]

and �
C
B

[
�
B
A

[
/ 0] ] = (�C

B ◦ �B
A )
[
/ 0] are equal, as two functions of �. Since this holds for any / 0, the

operators �C
A and �

C
B ◦�B

A are equal. s
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Example 2.10. We consider the same single-tier call-center than in the Figure 2.4 of Ex-
ample 2.6, with continuous-relaxed dynamics (St-DCR) and parameters # = 1, g0 = 10 s,
g1 = 120 s and g2 = 5 s. The arrivals of inbound calls in this case follow a smooth profile
growing from 0 to 4 received calls between C = 0 s and C = 400 s.
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Figure 2.6: Counters functions evolution for the given input and fluid Petri net
of Figure 2.4.

The initial condition is I0 = (I1 | [−120,0) , I2 | [−120,0) ) = 0̃. The solution of the dynamics would
of course remain null if it was not for the increasing input Iinput, that kicks the growth of I1
(resp. I2) at C = g0 (resp. C = g0 + g1). Since there are not enough agents to pick up all the calls,
we observe “zigzag” growth profiles for I1 and I2, as in Example 2.6b.

The Figure 2.6 illustrates the composition property of the evolution operator �. We
denote by I B (I1, I2) the vector function represented over [−120, 730). Let the dynamics
evolve for 250 s from C = 0 s and the initial null condition I0, and let us focus on the function
I1 B I | [130,250) (· + 250) = �

250
0

[
I0
]
. The “+250” translation guarantees that I1 is also an

element of� (which we represent by the grayed box in overlay). Therefore, we could compute
�
C
0

[
I1
]
. However, this would amount to applying the dynamics from I1 and use values of Iinput

over [−120, C], which would not give back I. On the contrary, computing �
450
250

[
I1
]
consists

in propagating the dynamics from the initial condition I1(· − 250) = I | [130,250) , starting from
instant 130 and thus using values of Iinput lying in [130, 450). This gives back I | [330,450) , from
which we can define I2 B I | [330,450) (· + 450) so that I2 is in �. Applying �

720
450 to I2, we end

up with a function I3 that is constant over [−120, 0), since at C = 600 s the system has reached
a final state with I1(C) = I2(C) = 4. The function I3 is none other than �

720
0

[
I0
]
, since

�
720
0

[
I0
]
= �

720
450

[
�

450
250

[
�

250
0

[
I0
] ] ]

= �
720
450

[
�

450
250

[
I1
] ]

= �
720
450

[
I2
]
= I3 .

A special case occurs if there are no input transitions in (M), or if /input is constant. In this
situation, the system is explicitly autonomous, with / (C) = �

(
(/ (C − g))g ∈T

)
, and the effect of

the evolution operator � is more conveniently represented by an evolution semigroup.
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) Proposition 2.11. If there are no inputs or if the inputs counters are constant, then �
C+A
B+A = �

C
B

for all A > 0 and 0 6 B 6 C . Defining the operator �C B �
C
0 , we have that (�C )C>0 forms a

one-parameter semigroup, i.e., �0 = id� and for all C, C ′ > 0, we have �C+C ′ = �C ◦�C ′ .

Proof. The invariance by translation property readily follows from the abstract form (M) and Definition 2.8.
To prove the semigroup property, we first note that �0 is the identity operator over � by definition, and
that for C, C ′ > 0, we have�C ◦�C ′ = �

C
0 ◦�

C ′
0 = �

C+C ′
C ′ ◦�

C ′
0 = �

C+C ′
0 = �C+C ′ (the second equality has been

obtained leveraging on the invariance by translation, and the third one using Proposition 2.9). s

We now discuss a few structural and algebraical properties of the evolution operator �. The
set � of seed functions is equipped with the usual partial ordering (6), so that for / 1 and / 2

in �, the inequality / 1 6 / 2 means that for all @ in Q \ Qinput and for all D in [−gmax, 0), we
have / 1

@ (D) 6 / 2
@ (D) – and more generally all inequalities between vector-valued functions are

understood this way. A fundamental property of the dynamics we study is that they preserve this
partial ordering. Echoing the remark stated in Chapter 1 after the Figure 1.8, we point out that
this would not hold with priority routings, since they break the monotonicity of the evolution.

) Proposition 2.12. The evolution operator � is order-preserving (or nondecreasing) relatively
to both the seed function and the input functions, i.e., for all / 1 and / 2 in �, given an input
/input B (/@)@∈Qinput , we have

/ 1 6 / 2 =⇒ �
C
B

[
/ 1, /input

]
6 �

C
B

[
/ 2, /input

]
,

and likewise, given a seed / 0 in �, we have

/ 1
input 6 /

2
input =⇒ �

C
B

[
/ 0, / 1

input

]
6 �

C
B

[
/ 0, / 2

input

]
.

Proof. Remark that up to translating the inputs, we can always reduce to the case where B = 0. We show
the proposition building on the induction principle (I). For / 1 and / 2 in �, let us still denote by an
abuse of notation / 1 and / 2 the trajectories they uniquely determine over [−gmax,∞) under the same
inputs. By definition, we have / 1 (C) 6 / 2 (C) if C ∈ [−gmax, 0), which is the initialization of (I). For the
heredity, suppose that for some : ∈ N, we have / 1 (C) 6 / 2 (C) for all C ∈ [−gmax, :gmin). Let us take
C ∈ [:gmin, (: + 1)gmin), if @ ∈ Qsync and ? ∈ @ in, it is clear that U−1@?

(
<? +

∑
@′∈? in U?@′/

1
@′ (C − g? )

)
6

U−1@?
(
<? +

∑
@′∈? in U?@′/

2
@′ (C − g? )

)
since the multipliers are positive, and taking the integer part and the

minimum preserve inequalities. If @ ∈ Qpsel, we use the same arguments and also the fact that for ? ∈ @ in,
the mapping Π?@ is by definition nondecreasing. As a result, / 1 (C) 6 / 2 (C) also holds on [:gmin, (:+1)gmin).
For two inputs / 1

input and /
2
input, the heredity part is exactly the same and the initialization is trivial for the

/ 1 and / 2 have common seeds. s

The multipliers and the proportions involved in the evolution of counters in continuous-relaxed
nets raise the question of possible “explosion” (or decimation) of markings. To control the growth
of the different counters, it is useful to introduce the notion of stoichiometric invariants.

) Definition 2.13. We say that a vector 4 of RQ is a stoichiometric invariant of a Petri net if

for all @ in Qsync, for all ? in @ in, 4@ = U−1@?
∑
@′∈? in

U?@′4@′ ,

for all @ in Qpsel, such that @ in = {?}, 4@ = c@?U
−1
@?

∑
@′∈? in

U?@′4@′ .

The next proposition underlines another important structural property of the evolution operator
in the continuous-relaxed setting, the sub-homogeneous character. In particular, it will ensure
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that under the existence of a stoichiometric invariant, a single counter function cannot “blow up”
because of a nudge affecting another coordinate of the trajectory.

) Proposition 2.14. If 4 is a positive stoichiometric invariant of the net, then the evolution operator
�

cont is additively sub-homogeneous with respect to 4 , that is to say, for all G > 0, for all 0 6 B 6 C
and for all I0 in �:

�
cont | CB

[
I0 + G4̃

]
6 �

cont | CB
[
I0
]
+ G4̃ and �

cont | CB
[
I0 − G4̃

]
> �

cont | CB
[
I0
]
− G4̃ ,

where 4̃ denotes the constant function of � such that 4̃ (D) = 4 |Q\Qinput for all D in [−gmax, 0).

Proof. We prove the result using induction principle (I), and like the proof of Proposition 2.12, we reduce
to the case where B = 0. Let I0 ∈ � and G > 0, we denote by I (resp. IG ) the unique continuation of
I0 (resp. I0 + G4̃) given some similar inputs and continuous-relaxed dynamics of Table 2.3. We know
that IG (C) 6 I (C) + G4 |Q\Qinput for all C ∈ [−gmax, 0) (using the seed function, this inequality is the trivial
relation I0 (C) + G4 |Q\Qinput 6 I

0 (C) + G4 |Q\Qinput ), and we want to show that this also holds for C > 0.
Suppose that we have : ∈ N such that for all C ∈ [−gmax, :gmin), we indeed have IG (C) 6 I (C) +G4 |Q\Qinput .
If C ∈ [:gmin, (: + 1)gmin) and @ ∈ Qsync, we use the corresponding equation in Table 2.3, and we have

IG@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′I
G
@′ (C − g? )

)
6 min

?∈@ in
U−1@?

(
<? +

∑
@′∈? in
@′∉Qinput

U?@′
(
I@′ (C − g? ) + G4@′

)
+

∑
@′∈? in
@′∈Qinput

U?@′I@′ (C − g? )
)

6 min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′
(
I@′ (C − g? ) + G4@′

) )
= min

?∈@ in

{
U−1@?

(
<? +

∑
@′∈? in

U?@′I@′ (C − g? )
)
+ GU−1@?

∑
@′∈? in

U?@′4@′

}
= I@ (C) + G4@

where the first inequality has been obtained by using the induction hypothesis on internal transitions
and the fact that the input profiles are the same on input transitions, and the second inequality is derived
from Proposition 2.12, since increasing the inputs on the right-hand side preserves the inequality. The last
line makes use of the defining property of stoichiometric invariant. The proof is similar for transitions in
Qpsel. Finally, to show the property if G 6 0, it suffices to apply our inequality to the seed I0 − G4̃ . s

Remark that if there are no inputs, the same lines of proof show that the evolution operator�cont

is additively homogeneous with respect to 4̃ , meaning that �cont | CB
[
I0 + G4̃

]
= �

cont | CB
[
I0
]
+ G4̃ ,

for any I0 in �, G in R and 0 6 B 6 C . This is in general not true for �disc due to the additional
integrality constraints (floor functions or preselection mappings).

Let us finish this section by elaborating further on the notion of stoichiometric invariants,
that shall play a key role in the Section 3 to come and also in our Chapter 4. The two equations
in Definition 2.13 express the conservation of the markings of the net if the transitions of the
net are fired with weights (4@)@∈Q (and taking into account the arc multipliers and routing
proportions). In this sense, the notion of stoichiometric invariant slightly refines the one of
T-invariant introduced in Definition 1.6, by imposing that in and out flows of tokens are balanced
for all places but also respect the proportional preselection rules. The two definitions actually
coincide in the setting of conflict-free nets, introduced in Section 1.3.
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) Proposition 2.15. If 4 in RQ is a T-invariant of the pure and equivalent conflict-free net of some
(priority-free) Petri net, then 4 is a stoichiometric invariant of this original Petri net.

Proof. Let us denote by (P,Q, E) the original priority-free Petri net, and by (P ′,Q, E ′) its conflict-free
equivalent Petri net (by definition, they have common set of transitions). We denote by � and � ′ their
weighted incidence matrices.

If 4 is a T-invariant of (P ′,Q, E ′), we have � ′4 = 0, or equivalently � ′ +4 = � ′−4 . This vector identity
provides |P ′ | scalar equalities accounting for the balance equations of all the places of the conflict-free net.
The places in P ′ \ P ′psel and their in/out incidences are unchanged with respect to the original net, and by
definition, these places only have at most one downstream transition, so we can write

∀? ∈ P \ Ppsel,
∑
@∈Q

� +?@4@ =
∑
@∈Q

�−?@4@ ,

or equivalently using only nonzero multipliers,

∀? ∈ P \ Ppsel, s.t. ?out = {@},
∑
@′∈? in

U?@′4@′ = U@?4@ .

If ? ∈ Ppsel, coefficients of � and � ′ will differ on the corresponding rows, but if ?out = {@1, . . . , @: },
we have reusing the notation of Section 1.3 that �

′−
?@8

= c?,@8�
−
?@8@8

and �
′+
?@8

= � +?@8 for all 1 6 8 6 : .
Therefore we obtain the identities

∀? ∈ Ppsel, ∀@ ∈ ?out, c@?

∑
@′∈? in

U?@′4@′ = U@?4@ .

We now observe that for all @ ∈ Q \ Qinput, there is some ? in P such that @ ∈ ?out, hence the conditions
for 4 to be a stoichiometric invariant are all satisfied. s

On the model of Proposition 2.14, we shall pay a particular attention to stoichiometric invariants
that are positive; or in other words whose support (set of nonzero components) is the whole
set Q. It was shown in both the discrete and the continuous contexts (see [CCS89] and [RTS99])
that live and bounded conflict-free Petri nets admit positive T-invariants that are unique up
to a multiplicative constant. Conversely, Gaujal and Giua proved that in strongly connected
and conflict-free (continuous-relaxed) Petri nets, there is at most one positive T-invariant up
to scaling [GG04b, Proposition 12]. We study below a weaker topological condition to derive a
similar result, also more suitable to take input transitions into account. To that purpose, we use a
notion of accessibility between transitions that is the converse of the one featured in the proof
of Theorem 1.23, i.e., we work in the directed graph with nodes set Q and with directed arcs set
{(@1, @2) ∈ Q2 | @ out1 ∩ @ in2 ≠ ∅}.

) Proposition 2.16. Suppose that a continuous-relaxed Petri net is conflict-free, and that there is a
subset Q0 of Q such that for all @ in Q, there is @0 in Q0 that has access to @. Then, for all positive
vector 40 of RQ0>0 there is at most one positive T-invariant 4 in RQ

>0 such that 4 |Q0 = 40

Proof. Suppose that we have two positive T-invariants 4 and 4 ′ such that 4 |Q0 = 4 ′ |Q0 , but assume for
contradiction that 4 ≠ 4 ′. Let us define V B min{4@/4 ′@ | @ ∈ Q}. Up to swapping the role of 4 and 4 ′ if
4 ′ 6 4 , we have V < 1. By definition, the vector 4̃ B 4−V4 ′ is still a T-invariant since�4̃ = �4−V�4 ′ = 0−0,
and it is nonnegative. However it has a null component.

Because V < 1, a null component @ of 4̃ must lie in Q \ Q0. On one hand, @ is accessible from some @0 in
Q0, so @ in is nonempty and the places of @ in also admit upstream transitions. On the other hand, using the
definition of the conflict-free net, we have denoting by ? an upstream place of@ that 4̃@ = U−1@?

∑
@′∈? in U?@′4̃@′ .

Because 4̃ is nonnegative and 4̃@ = 0, we deduce that 4̃@′ = 0 for all @′ ∈ ? in. We can reapply this scheme
(a finite number of times) until getting that 4̃@0 = 0 for some @0 ∈ Q0, hence 4@0 = V4 ′@0 < 4 ′@0 , and the
contradiction. s
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We insist on the fact that the condition of Proposition 2.16 is about uniqueness and not existence
of a positive T-invariant of the net, in particular the system �4 = 0 may be overdetermined
and not admit any solution – even though it is possible to form a triangular subsystem. We
retrieve the fact that strongly connected Petri nets have at most one positive T-invariant (up to a
multiplicative constant) since in this case any singleton {@} with @ in Q fulfills the requirements
of our claim. This is also true for single-input Petri nets where the input transition has access to
all the “internal” transitions. More generally, we can use the Proposition 2.16 to conclude that
there are at most |Qinput | degrees of freedom for positive T-invariants of nets where any transition
is accessible from an input.

3 Fluid Petri nets as large-scale limits of discrete models

Our main motivation for using continuous-relaxed dynamics in what precedes is to simplify the
original discrete dynamics governing the evolution of timed Petri nets. By doing so, we necessarily
introduce errors between a solution / of the discrete equations and a solution I of their fluid
counterparts. It is then quite a natural matter to know how good I is an approximation of / .

Leveraging on the infinitely many divisible nature of fluid-tokens and their interpretation as
a huge number of particles, we can draw the intuition that as more and more tokens circulate
in a discrete Petri net (obtained by increasing initial markings and input transitions firings), its
behaviour is better and better approximated by a “similar” continuous-relaxed Petri net with same
markings. Indeed at large scales, integer-part effects or tokens preselection should play a reduced
relative effect. This idea was mentioned in [CGQ95, Section V], although with no systematic
treatment.

In this section, our purpose is to formalize the study of this phenomenon, and in particular to
detail the notion of “similarity” between a classical Petri net and a continuous-relaxed Petri net.
To take explicitly into account an increase of the initial resources and of the tokens produced by
inputs, we shall make use of a positive integer scaling parameter, hereafter denoted by # . Such
scaling techniques were used before in queueing networks to study heavy traffic limits and “state
space collapse” properties – see [Bra98, Wil98, BD01].

3.1 THE BOUNDED DEVIATIONS MODEL. — We first focus on a setting close from the deter-
ministic Petri net models developed so far. To the purpose of studying the impact of the scaling
parameter # which controls increases of initial markings and input transitions firings of a Petri
net, we choose to introduce for both discrete and continuous-relaxed frameworks a sequence (or
family) of scaled Petri nets, whose # -th term shall be referred to as the scaled-by-# or simply
scaled Petri net. We impose in addition that these discrete and fluid families of Petri nets are such
that

• All the scaled discrete and fluid Petri nets share the same topology, meaning that they have
same places set P, transitions set Q and weighted incidence relations E, regardless of # . In
particular, the arc multipliers are integers, to fit in the framework of discrete Petri nets.

• The scaled-by-# instances of discrete and fluid Petri nets have identical initial marking #<,
where < is a vector of NP independent of # . For a place ? ruled by preselection, initial
quantities of tokens dedicated to the firing of @ in ?out also coincide for scaled discrete and fluid
nets, so that the real quantity c0

@?<? of (2.6) is set to the integer value<@,? of (P4) by fixing
the rational c0

@? .
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• Both families of nets have identical and constant place-by-place holding times, that are inde-
pendent of the scaling factor. We assume that these times ensure non-Zenoness of the Petri
nets in the sense of Definition 1.18.

• If @ is in Qinput, the firing profile of @ in the scaled-by-# fluid Petri net is I#@ (C) B #I@ (C),
where I@ is a reference nondecreasing, piecewise-continuous and càdlàg function of R>0 to
itself (hence being the firing profile of @ for # = 1). We assume that the corresponding firing
profile /#@ in the discrete scaled-by-# model has bounded deviation with respect to I#@ , i.e.,
there is [@ > 0 independent of # such that for all C > 0, we have |/#@ (C) − I#@ (C) | 6 [@ .

• All the conflicts in the fluid Petri nets are arbitrated by proportional preselection routings
(see Section 1.1) with proportions independent of # . The conflicts in the discrete models are
arbitrated by preselection mappings also independent of # , and we assume that these have
bounded deviations with respect to the corresponding fluid proportions, meaning that for all ?
in Ppsel and @ in ?out, there is [?,@ > 0 (independent of # ) such that |Π?@ (=) − c@?= | 6 [?,@ for
all = in N∗. In particular we have lim=→∞ Π

?
@ (=)/= = c@? .

For # in N∗ and given input profiles (/#@ )@∈Qinput , we shall denote by /# B (/#@ )@∈Q\Qinput the
trajectory of the transition counter functions of the scaled-by-# discrete Petri net, i.e., that obeys
the discrete dynamical evolution equations and such that /# is null over R<0. Similarly, we
denote I# B (I#@ )@∈Q\Qinput the trajectory of the scaled-by-# continuous-relaxed net. If # = 1,
we write / and I instead of / 1 and I1.

Using the equations of Table 1.13 for the discrete nets and the equations of Table 2.3 for the
fluid ones, we can write for all # inN∗ the dynamical equations verified by/# and I# , gathered in
the Table 2.7 opposite. Due to our strong hypotheses on the deviations of inputs and preselection
mappings, we call these equations the Bounded Deviations setting. Our aim is now to evaluate
the difference /# −I# . Primarily, we would like to know in which extent our “low-level” bounded
deviations assumptions reflect from a “high-level” and trajectory-focused perspective.

Notice that it is a direct consequence of Theorems 1.23 and 2.5 that under the knowledge of
input profiles and some (functional) initial condition, the equations of Table 2.7 determine unique
trajectories of the scaled-by-# nets for any # in N∗. Therefore, on the model of Definition 2.8,
these equations induce two sequences of evolution operators (�disc,# )# ∈N∗ and (�cont,# )# ∈N∗
enjoying in particular the order-preserving character, and for the continuous evolution operators,
the additively sub-homogeneous character (see Propositions 2.12 and 2.14).

In addition, due to the fact that # operates a multiplicative scaling on input profiles and
initial markings for the fluid scaled models, the evolution operator�cont,# also satisfies a scaling-
homogeneity property, highlighted by the following result.

) Proposition 2.17. For all I0 in �, # in N∗ and 0 6 B 6 C , we have

�
cont,# | CB

[
#I0

]
= # �

cont | CB
[
I0
]
.

Proof. Just like in the proof of Proposition 2.12, we reduce to the case B = 0 and apply induction principle (I).
Denoting by I# (resp. I) the trajectories uniquely determined by identical inputs, continuous-relaxed
equations for scaled-by-# (resp. scaled-by-1, or unscaled) system in Table 2.7, and initial condition #I0

(resp. I0) on [−gmax, 0), it is clear that I# and #I coincide on [−gmax, 0). Now suppose that they coincide
on [−gmax, C) for some C > 0, using equations of Table 2.7, the fact that all holding times are greater than
gmin and induction hypothesis, it is clear that the equations for I# can always be factored by # , hence
I# = #I over [C, C + gmin). s

Another way to state this property, looking only at trajectories of the Petri nets initialized with
I0 = 0̃, is to write (I# )/# = I. It is interesting to see this relationship as an invariance of the fluid
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Type Counter equation in the discrete model (Bounded Deviations setting)

@ ∈ Qinput /#@ (C) is prescribed externally with
��/#@ (C) − I#@ (C)�� 6 [@

@ ∈ Qsync /#@ (C) = min
?∈@ in

⌊
U−1@?

(
#<? +

∑
@′∈? in

U?@′ /
#
@′ (C − g?)

)⌋

@ ∈ Qpsel /#@ (C) =
⌊
U−1@?

(
#<?,@ + Π?@

( ∑
@′∈? in

U?@′ /
#
@′ (C − g?)

))⌋
with

��Π?@ (=) − c@?=�� 6 [?@
Type Counter equation in the continuous model (Bounded Deviations setting)

@ ∈ Qinput I#@ (C) = #I@ (C) with I@ (C) prescribed externally

@ ∈ Qsync I#@ (C) = min
?∈@ in

U−1@?

(
#<? +

∑
@′∈? in

U?@′ I
#
@′ (C − g?)

)

@ ∈ Qpsel I#@ (C) = U−1@?
(
#<?,@ + c@?

∑
@′∈? in

U?@′ I
#
@′ (C − g?)

)
Table 2.7: Dynamic equations followed by counter functions of scaled-by-#

discrete and fluid Petri nets

dynamics under conjugation, in the sense that a premultiplication by# and a postmultiplication by
1/# do not affect the unscaled dynamics. Likewise, we may also think of (/# )/# as a conjugate
of / by the scaling operation, although the relation /# = #/ does not hold here due to the
leeway of discrete inputs and preselection mappings – in a tubular neighborhood of their fluid
counterparts – and also due to the side effects of integer-parts. In what follows, we shall then not
focus on the deviation /# − I# but rather on the difference (/# )/# − I, which anyway appears
as the right renormalized object to study (rescaling by 1/# after accelerating the arrivals by a
factor of # ).

We now state a technical lemma that plants the first seed for quantifying the deviation of the
continuous-relaxed dynamics compared to the discrete one.

) Lemma 2.18. There is a positive constant [ such that for all / 0 in �, all # in N, all B > 0 and C
in [B, B + gmin), we have

�
disc,# | CB

[
/ 0] − [1̃ 6 �

cont,# | CB
[
/ 0] 6 �

disc,# | CB
[
/ 0] + [1̃ .

Proof. Let B > 0 and C ∈ [B, B + gmin). We denote by /# (resp. I# ) the function defined over [B − gmax,∞)
and with values in RQ\Qinput such that /# (B + D) = / 0 (D) (resp. I# (B + D) = / 0 (D)) for all D ∈ [−gmax, 0)
and satisfying the scaled-by-# discrete (resp. continuous) dynamics of Table 2.7 with corresponding inputs.
By definition, /# and I# coincide on [B − gmax, B).
We first unfold the proof when all the holding times of the net are positive, in particular, for all ? ∈ P,
g? > gmin. We explain at the end of the proof how to adapt the reasoning in the presence of zero holding
times.

Let us take @ ∈ Qsync. Remark that if ? ∈ @ in, because C ∈ [B, B + gmin), we have C − g? ∈ [B − gmax, B), so
we can replace in the relations of Table 2.7 the delayed terms of the form (/#

@′ (C − g? ))@′∈? in by explicit
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values of / 0 or values of /#input and I
#
input, which leads to

/#@ (C) = min
?∈@ in

⌊
U−1@?

(
#<? +

∑
@′∈? in
@′∉Qinput

U?@′ /
0
@′ (C − g? ) +

∑
@′∈? in
@′∈Qinput

U?@′ /
#
@′ (C − g? )

)⌋
,

I#@ (C) = min
?∈@ in

U−1@?

(
#<? +

∑
@′∈? in
@′∉Qinput

U?@′ /
0
@′ (C − g? ) +

∑
@′∈? in
@′∈Qinput

U?@′ #I@′ (C − g? )
)
.

Using on one hand the classical inequalities G − 1 < bGc 6 G that are valid for all G ∈ R, and on the other
hand the inequalities #I@′ (D) −[@′ 6 /#@′ (D) 6 #I@′ (D) +[@′ valid for all @′ ∈ Qinput and D ∈ R, we obtain
that

I#@ (C) −"@ − 1 6 /#@ (C) 6 I#@ (C) +"@ ,

where"@ B max?∈@ in

[
U−1@?

∑
@′∈? in∩Qinput

U?@′[@′
]
.

If we now take @ ∈ Qpsel, with ? ∈ P such that @ in = {?}, we have by similar arguments that

/#@ (C) = min
?∈@ in

⌊
U−1@?

(
#<?,@ +Π?@

( ∑
@′∈? in
@′∉Qinput

U?@′ /
0
@′ (C − g? ) +

∑
@′∈? in
@′∈Qinput

U?@′ /
#
@′ (C − g? )

))⌋
,

I#@ (C) = min
?∈@ in

U−1@?

(
#<?,@ + c@?

∑
@′∈? in
@′∉Qinput

U?@′ /
0
@′ (C − g? ) + c@?

∑
@′∈? in
@′∈Qinput

U?@′ #I@′ (C − g? )
)
,

and using in addition of previous inequalities the fact that c@?= − [?@ 6 Π
?
@ (=) 6 c@?= + [?@ , we get

I#@ (C) −"@ − [?@ − 1 6 /#@ (C) 6 I#@ (C) +"@ + [?@ , (2.9)

with an identical definition of"@ (here reduced to one term in the minimum).

To conclude the proof in the case where all the holding times are positive, we remark that letting

[ B max
@∈Q\Qinput

{"@
}
+ max
@∈Qpsel,@

in={? }
{[?@} + 1

gives the desired inequality I# (C) − [1 6 /# (C) 6 I# (C) + [1.
If some holding times are null (but the Petri net stays non-Zeno), we need to resort to substitutions schemes
such as the one of Theorem 1.23 before replacing terms of the form /@′ (C − g? ) by values of / 0. In both
models (discrete and continuous), this would lead to nested equations, possibly featuring nested preselection
mappings, and in the discrete models, we would encounter nested integer parts. However, we still obtain
the result claimed in the lemma by using the two deviation properties and the inequality on the integer part;
the terms"@ would typically become more cumbersome (product of multipliers along maximal non-Zeno
walks) and the term 1 in (2.9) could be replaced by a greater integer corresponding to the maximum number
of nested floor functions. Nevertheless, the term [ that we obtain still only depends upon the topology of
the net and the preselection proportions. s

The Lemma 2.18 is a local result, and we now want to extend it globally. Once more, we could
formally use the induction principle (I) to achieve this goal, but instead, we present with Theo-
rem 2.19 a proof using the evolution operator machinery to emphasize its convenience – both
techniques share the same spirit anyhow. Propagating the result of Lemma 2.18 beyond time-
windows of length gmin also requires to control the evolution of the error between two functions
of� under the application of the dynamic equations, hence the need for a stoichiometric invariant
(see Definition 2.13) of the nets (that all share the same topology, hence the same invariants).
Remark that this theorem answers questions raised in the end of [CGQ95] on the comparison
between the evolution of discrete and continuous-relaxed nets.
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) Theorem 2.19. Suppose that the Petri nets admit a positive stoichiometric invariant 4 , and denote
by 4̃ the constant function of � equal to 4 . Then, there are positive constants ^0 and ^1 such that
for all / 0 in �, all # in N and 0 6 B 6 C , we have

−
(
^1(C − B) + ^0

)
4̃ 6 �

cont,# | CB
[
/ 0] −�disc,# | CB

[
/ 0] 6 (

^1(C − B) + ^0
)
4̃ .

In particular, denoting by /# the unique solution of the scaled discrete dynamics (by a factor # )
and by I the unique solution of the unscaled continuous dynamics of the Petri net, we have

for all C > 0,
/# (C)
#

=
#→∞

I (C) +$
(
C

#

)
. (2.10)

Proof. Take / 0 ∈ �, # ∈ N and 0 6 B 6 C . Let us also choose a real number V in (0, 1), intended to be very
close to 1. We define the integer ! B d(C − B)/Vgmine (the notation d·e stands for the upper integer part, or
ceiling function), and for all integer ℓ such that 0 6 ℓ < !, we denote Cℓ B B + ℓVgmin, and finally C! B C ,
so that 0 < Cℓ+1 − Cℓ < Vgmin for all 0 6 ℓ < !. Because 4 is a stoichiometric invariant, all its coordinates
are positive (see Definition 2.13), we then introduce the positive number ^0 B [/min@∈Q\Qinput {4@} where
[ is the constant featured in Lemma 2.18.

We are going to show by finite induction that �cont,# | CℓB
[
/ 0] −�disc,# | CℓB

[
/ 0] 6 ℓ^04̃ for all 1 6 ℓ 6 !.

The initialization for ℓ = 1 is a slightly weaker version of the Lemma 2.18, since for all @ ∈ Q \ Qinput, we
have [ 6 ^04@ by definition of ^0. Suppose now that this inequality is satisfied for some ℓ < !. We have:

�
cont,# | Cℓ+1B

[
/ 0] = �

cont,# | Cℓ+1Cℓ

[
�

cont,# | CℓB
[
/ 0] ]

6 �
cont,# | Cℓ+1Cℓ

[
�

disc,# | CℓB
[
/ 0] + ℓ^04̃]

6 �
cont,# | Cℓ+1Cℓ

[
�

disc,# | CℓB
[
/ 0] ] + ℓ^04̃

6 �
disc,# | Cℓ+1Cℓ

[
�

disc,# | CℓB
[
/ 0] ] + ℓ^04̃ + [1̃

6 �
disc,# | Cℓ+1B

[
/ 0] + (ℓ + 1)^04̃ ,

where the successive (in)equalities respectively come from the composition property of the evolution
operator (Proposition 2.9); the induction hypothesis combined with the nondecreasing character of the
evolution operator (Proposition 2.12); the additively sub-homogeneous character of the evolution operator
with respect to 4 (Proposition 2.14); the application of Lemma 2.18 to the function �

disc,# | CℓB
[
/ 0] of �

with B = Cℓ and C = Cℓ+1 (and we indeed have C ∈ [B, B + gmin)); and finally the composition property of the
evolution operator again in addition to the inequality [1̃ 6 ^04̃ .

In particular our inductive property holds for ℓ = !, and we obtain the exact same converse inequality by
below using the other side of Lemma 2.18. Reusing the defining formula of ! leads to

−^0
⌈
C − B
Vgmin

⌉
4̃ 6 �

cont,# | CB
[
/ 0] −�disc,# | CB

[
/ 0] 6 ^0 ⌈ C − B

Vgmin

⌉
4̃ .

It only suffices to use the bound dGe 6 G+1 to obtain the result claimed in the theorem, with^1 B ^0/(Vgmin).
Both coefficients ^0 and ^1 depend only on the topology of the net. Observe that the previous inequalities
are verified for all 0 < V < 1, so by taking the limit when V → 1, we could as well use ^1 B ^0/gmin.

For the last part of the theorem, we apply the shown inequality for / 0 = 0̃, between instants B = 0 and
C + Y (for a small Y > 0). We also use the multiplicative homogeneity of the continuous evolution operator
(Proposition 2.17) to obtain that �cont,# | C+Y0

[
0̃
]
= #�

cont | C+Y0

[
0̃
]
. Evaluating in −Y, we obtain

−
(
^1 (C + Y) + ^0

)
4̃ (−Y) 6 #�

cont | C+Y0

[
0̃
]
(−Y) −�disc,# | C+Y0

[
0̃
]
(−Y) 6

(
^1 (C + Y) + ^0

)
4̃ (−Y) .

Using the equation (2.8) and the two functions considered in the theorem, this is more conveniently
rewritten as

−
(
^1 (C + Y) + ^0

)
4 6 #I (C) − /# (C) 6

(
^1 (C + Y) + ^0

)
4 .

To finish, we divide all terms by # and observe that /# (C)/# − I (C) is a bounded function of C/# . s
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The double inequality of Theorem 2.19 is our most precise result in the sense that it is applicable
to any starting point B , however, the equation (2.10) provides the answer to our question. Under
bounded deviations assumptions, not only does the “rescaled” trajectory/# /# of the scaled-by-#
discrete net converges towards the trajectory I of the unscaled fluid net, but we also know with
which precision. In particular, even though it is not surprising to see the error between /# (C) and
I# (C) grow with C , asserting that this drift is at most linear shall be helpful to us when focusing
on the throughput of Petri nets in the Chapter 4.

3.2 THETHREEFOLD STOCHASTICMODEL. — In the same spirit as the Bounded Deviations set-
ting, we now want to study how applying a scaling factor affects the execution of discrete Petri
nets with stochastic behaviours. Recall that in the Section 3.3 of Chapter 1, we have explained
that multiple sources of nondeterminism could be considered in discrete Petri nets: stochastic
arrivals for inputs (typically Poisson), stochastic holding times for places, stochastic allocation for
preselection routings (that is to say Bernoulli routings). All these effects tremendously increase
the modeling power of Petri nets. However, even though they can be taken into account in counter
functions, the resulting equations are hard to work with analytically.

Interestingly enough, nothing prevents in the previous section to consider that the counters
(/#@ )@∈Q,# ∈N∗ are subject to stochastic behaviours for inputs or preselections, as long as the
bounded deviation assumptions hold (which is nevertheless not true for Poisson processes or
Bernoulli laws). Still, Theorem 2.19 teaches us that (/# )/# approaches the deterministic limit I
as # tends to ∞, suggesting that the continuous-relaxed approximation for Petri nets has a
regularizing power.

To investigate this hypothesis, let us place ourselves in a fairly general setting with all the
aforementioned stochastic effects, that we shall refer to as the Threefold Stochastic setting.
Similarly to our approach in Section 3.1, we consider two families of scaled-by-# discrete and
continuous Petri nets, such that

• As in the Bounded Deviations framework, all the considered Petri nets have identical topolo-
gies regardless of # . The arc multipliers are integer, the integer initial markings (and if
applicable their allocation in preselection routings) coincide in the scaled-by-1 discrete and
fluid instances, and get multiplied by # in scaled-by-# instances.

• For all @ in Qinput, the firing profile /̂#@ of the input transition @ in the scaled-by-# discrete
Petri net is a realization of a nonhomogeneous Poisson process with intensity #_@ , where
_@ is a measurable reference function from R>0 to itself. We assume that the counterpart
firing profile of @ in the scaled-by-# fluid Petri net is the deterministic nondecreasing function
Λ@ : C ↦→

∫ C
0
_@ (B) dB .

• We assume that all the conflicts in the discrete Petri nets are solved by Bernoulli routings
(identical for all # ), given for all places ? in Pconflict = Ppsel by probability vectors (c@?)@∈?out
that are also independent of the scaling factor. These routings induce random preselection
routing maps (Π̂?

@ )?∈Ppsel,@∈?out as in Chapter 1. In the continuous-relaxed models, conflicts are
solved by proportional preselection routings with same probabilities than the discrete models.

• Somehow most importantly, we assume that in the scaled-by-# discrete Petri nets, the holding
times of the places are stochastic, given by realizations of random variables (ĝ #? )?∈P,# ∈N∗ that
all draw i.i.d. values from a same distribution measure `? (in particular for two different values
of # , the generated holding times may differ but still have same law).
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This last aspect prompts us to determine a continuous-relaxed equivalent of the stochastic
holding times. We have seen with the equation (P2’) in Chapter 1 that in this setting, the
relation between .̂? and -̂? (in an unscaled discrete Petri net) is much more complex than the
mere .? (C) = -? (C − g?) given by (P2), and we need to resolve to the ∗ operation defined in
equation (1.6) to write .̂? = -̂? ∗ ĝ? . Remark that for nonhomogeneous Poisson processes and
Bernoulli routings, the deterministic continuous-relaxed counterparts that we have proposed
are given by expectations of these laws, so it is also natural to study the expected value of .̂? .
When -̂? is known and given by the nondecreasing function -? from R>0 to N with jump instants
(): ):∈N, it turns out that this computation is easy. It gives in particular exploiting (P2’) and the
fact that the infinite sums are actually finite for all C > 0:

E
(
.̂? (C) −<? | -̂? = -?

)
=

∞∑
:=1

E(1[):+ĝ (?):
,∞) (C)) =

∞∑
:=1

P(C > ): + ĝ (?):
) =

∞∑
:=1

∫ C−):

0
d`? (g)

=

∞∑
:=1

∫ ∞

0
1[0,C−): ] (g) d`? (g) =

∞∑
:=1

∫ ∞

0
1[):+g,∞) (C) d`? (g)

=

∫ ∞

0

[ ∞∑
:=1

1[):+g,∞) (C)
]
d`? (g) =

∫ ∞

0

(
-? (C − g) −<?

)
d`? (g) .

This results then suggests, at least as a heuristic, to assume that stochastic holding times for
discrete models of Petri nets degenerate in convolution operations in continuous-relaxed Petri
nets. This is consistent with the idea that distributed times bring an averaging or smoothing
effect (observe in addition that the relationship .? (C) = -? (C − g?) is retrieved by the above
form if `? is a Dirac measure concentrated on the value g? ). From a semantics point of view in
continuous-relaxed Petri nets, this behaviour would mean that each time a fluid-token is produced
in the place ? , it is divided in infinitely many small fluid tokens, each one being associated with a
different holding time according to the distribution `? . Remark that the above convolution form
explains why in Example 1.25 of Chapter 1, we could see a smooth junction between two affine
behaviour for counters -1 and /2.

Building on these ideas, we are finally able to propose two complete recursive equation sets
for both discrete and fluid scaled and compatible models of Petri nets, that we summarize in
the Table 2.8, specialized to an event l .

For the sake of simplicity, we shall restrict in what follows our analysis to cases were the
measures (`?)?∈P are nonsingular. In accordance with Lebesgue’s decomposition theorem for
measures on the real line (see for instance [Hal74, p. 182]), this means that for all ? in P, `? is
the sum of an absolutely continuous measure ` ac? and a pure point measure ` pp? . In other words,
there exists a measurable function 5`? from R>0 to itself (that is the density of ` ac? with respect to
Lebesgue’s measure) and a countable set m`? ⊂ R>0 (the charged points of ` pp? ) such that for all
Borel set � of the real line we have

`? (�) = ` ac? (�) + `
pp
? (�) =

∫
B∈�

5`? (B) dB +
∑
B∈m`?

`
pp
? ({B}) XB (�), with `? (R>0) = 1 . (2.11)

Another simplification that we make is that we will assume that for all ? in P, the support of
`? is included in [gmin,∞), or equivalently `? ( [0, gmin)) = 0. This can be seen as a non-Zeno
condition much stronger than the one proposed in Definition 1.18. We shall later discuss how
this hypothesis could be relaxed and made minimal.
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Type Counter equation in the discrete model (Threefold Stochastic setting)

@ ∈ Qinput /#@ (C ;l) is a (cumulative) nonhomogeneous Poisson process with intensity #_@

@ ∈ Qsync /#@ (C ;l) = min
?∈@ in

⌊
U−1@? .

#
? (C ;l)

⌋

@ ∈ Qpsel /#@ (C ;l) =
⌊
U−1@?

(
#<?,@ + Π?@

(
.#? (C ;l) − #<? ; l

) )⌋

? ∈ P

-#? (C ;l) = #<? +
∑
@∈? in

U?@ /
#
@ (C ;l)

.#? (C ;l) =
(
-#? ∗ g #?

)
(C ;l)

Type Counter equation in the continuous model (Threefold Stochastic setting)

@ ∈ Qinput I#@ (C) =
∫ C

0
#_@ (B) dB

@ ∈ Qsync I#@ (C) = min
?∈@ in

U−1@?

(
#<? +

∑
@′∈? in

U?@′

∫ ∞

0
I#@′ (C − g) d`? (g)

)

@ ∈ Qpsel I#@ (C) = U−1@?
(
#<?,@ + c@?

∑
@′∈? in

U?@′

∫ ∞

0
I#@′ (C − g) d`? (g)

)
Table 2.8: Dynamic equations followed by transitions counter functions

It also does not sound useless to detail a bit the sample space Ω involved here for the discrete
scaled Petri nets in Table 2.8. For the unscaled instance (# = 1), we draw one sequence of positive
interarrival times per input nonhomogeneous Poisson process to determine /̂@ (@ in Qinput), we
draw one sequence of holding times greater than gmin per place to determine the (ĝ (?)

:
)?∈P,:∈N∗ ,

and we draw |?out | sequences of {0, 1} to determine the Bernoulli routing of each ? in Ppsel, via
the ('̂ (@)

:
)@∈?out,:∈N∗ or equivalently the (Π̂?

@ )@∈?out (see Section 3.3 of Chapter 1). As a result we
have

Ω1 B
(
(R>0)N

∗ ) |Qinput | ×
(
( [gmin,∞))N

∗ ) |P | × (
{0, 1}N∗

) |Qpsel | ,

and because we can draw the random variables of all scaled models at the same time, we shall have
Ω B ΩN1 . All the random variables associated with a discrete Petri net model with a scaling factor
# are assumed to be independent with respect to all the ones corresponding to other scaled models.
For a given # in N∗, all the (/̂ #

@ )@∈Qinput , (ĝ
(?)
#,:
)?∈P,:∈N∗ , and ('̂ (@)#,: )@∈Q0

psel,:∈N∗
are assumed to be

mutually independent, so long as the subset Q0
psel of Qpsel does not feature two transitions with a

common upstream place. Our sample space Ω is formally made into a probability space (Ω,A, P)
by the Ionescu-Tulcea’s theorem (see for instance [Nev65, Proposition 5.1.1]), using the Poisson
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rates (_@)@∈Qinput , the holding times distributions (`?)?∈P and the Bernoulli probability systems
(c@?)?∈Ppsel,@∈?out .

In spite of the increased complexity of the equations of Table 2.8 compared to the classical
discrete and fluid models (systems Table 1.13 and Table 2.3), our assumption that the holding
times are deterministically greater than gmin easily allows us to state the following well-posedness
result on the trajectories /̂# B (/̂#@ )@∈Q\Qinput and I

# B (I#@ )@∈Q\Qinput of discrete and fluid
scaled-by-# Petri nets. As in the previous section, we write /̂ and I instead of /̂ 1 and I1 when
# = 1.

) Proposition 2.20. Under the complete knowledge of an event l in Ω, the discrete scaled equations
of Table 2.8 determine unique trajectories of all discrete scaled-by-# Petri nets with null initial
conditions (that is to say, /# (·, l) | (−∞,0) = 0̃).

Similarly, the fluid scaled equations of Table 2.8 determine unique trajectories of all fluid scaled-
by-# Petri nets with null initial conditions (such that I# | (−∞,0) = 0̃). In addition, these fluid solutions
verify the same scaling-homogeneity property of Proposition 2.17, and as a result for all # in N∗, we
have I# = #I.

Proof. The proof relies once again on the induction principle (I). Indeed, the knowledge of l and -? (· ;l)
on [−gmax, :gmin) allows one to compute .? (· ;l) on [−gmax, (: + 1)gmin), and then the /@ (· ;l) as well
up to (: + 1)gmin. For the continuous-relaxed setting, we use the fact that `? ( [0, gmin)) = 0 for all ? ∈ P,
as a result the integrals over [0,∞) are actually taken over [gmin,∞), which lets us apply (I). The
scaling-homogeneity is transparent and works exactly as in the proof of Proposition 2.17. s

We now roll up our sleeves and lay the grounds needed to prove an asymptotic result on the
model of Theorem 2.19. We know that it is possible that some events of Ω lead to trajectories of
discrete Petri nets that deviate a lot from an expected (or average) behaviour. However, these
possible cases should be negligible, and the best convergence type we can hope for should be that
rescaled dynamics of scaled-by-# discrete Petri nets converge almost surely towards a standard
unscaled dynamics of the fluid model as # grows. Recall that a property is verified almost surely
(abbreviated a.s.) when it is verified on a subset of Ω with measure 1. The fundamental tool to
deal with such problems is the strong law of large numbers, that will indeed be one of the main
ingredients of our proofs.

We state a first lemma that addresses the case of input profiles, whose behaviour is autonomous.

) Lemma 2.21. For all transitions @ in Qinput, we have

for all C > 0,
/̂#@ (C)
#

a.s.−→
#→∞

I@ (C) .

Proof. Let @ in Qinput, by assumption /̂#@ is the cumulative arrival function of a nonhomogeneous Poisson
process with (functional) rate #_@ . As in the Section 3.3 of Chapter 1, we introduce the primitive Λ@ of _@
such that

Λ@ (C) B
∫ C

0
_@ (B) dB .

We first show that for C > 0, /̂#@ (C) has the same law than
∑#
8=1 �̂8 (C), where the (�̂8 )1686# are random

variables given by the cumulative arrival functions of independent nonhomogeneous Poisson processes
with rate _@ . Recall that on one hand, we have by (1.11) that

∀: ∈ N, P
(
/̂#@ (C) = :

)
=

(
#Λ@ (C)

):
:!

4−#Λ@ (C )
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On the other hand, we have for : ∈ N that

P

( #∑
8=1

�̂8 (C) = :
)

=
∑

81+···+8# =:

P
(
�̂1 (C) = 81 and . . . and �̂# (C) = 8#

)
=

∑
81+···+8# =:

#∏
9=1

(
Λ@ (C)8 9
8 9 !

4−Λ@ (C )
)

=
Λ@ (C):

:!
4−#Λ@ (C )

∑
81+···+8# =:

:!
81! . . . 8# !

=
Λ@ (C):

:!
4−#Λ@ (C )#: ,

where we have successively used the decomposition of : as the sum of # nonnegative integers and mutual
exclusion of all the possibilities; mutual independence of the (�̂8 )1686# and the nonhomogeneous Poisson
law; factorization by common terms; and finally Newton’s multinomial law for #: = (1 + 1 + · · · + 1): .
We now know that (1/# )/̂#@ (C) has the same law than (1/# )∑#

:=1 �̂8 (C), however, as a mean of #
independent random variables with same law, the latter converges almost surely as # → ∞ towards
E(�̂1 (C)), that is to say Λ@ (C). This is also the (deterministic) value of I@ (C), hence the result. s

The objective of the next technical lemma is to delineate how the discrete “random time-shuffling”
operation ∗ defined in (1.6) morphs into convolution integrals in the fluid context. The proof
features in particular approximation of Lebesgue’s integrals by piecewise constant functions, and
dater-to-counter transformations, in addition to two instances of the strong law of large numbers.

) Lemma 2.22. Let (-̂# )# ∈N be a sequence of nondecreasing random piecewise constant functions
from R to N, such that for any # in N we have -̂# | (−∞,0) = 0̃ (deterministically). Let ) > 0
and G be a nondecreasing piecewise continuous function over R such that for all C < ) , we have
lim#→∞ -̂# (C)/# = G (C) almost surely.

In addition, we suppose that we have nonnegative random variables
(
ĝ#

)
# ∈N all with nonsingular

probability measure ` whose support is contained in [gmin,∞), and we denote .̂# B -̂# ∗ ĝ# for
all # in N. Then we have that

for all C < ) + gmin ,
.̂# (C)
#

a.s.−→
#→∞

∫ ∞

0
G (C − B) d` (B) .

Proof. Let C ∈ [0,) + gmin) (the proof is of course immediate if C < 0). First observe that the function G as
well is null over R<0, and ` ( [0, gmin)) = 0, hence we can write∫ ∞

0
G (C − B) d` (B) =

∫
B∈[gmin,C ]

G (C − B) d` (B) .

Let Y > 0. Our goal is to show that there is a subset ΩY of Ω and an integer #0 in N such that

P(ΩY ) = 1 and ∀l ∈ ΩY , ∀# > #0,

����.# (C ;l)#
−
∫
B∈[gmin,C ]

G (C − B) d` (B)
���� 6 Y

Let us denote by mG the (finite) set of discontinuities of the càdlàg and piecewise-continuous function G
over [gmin, C], i.e., mG B {B ∈ [gmin, C] | G (B) > G (B−)}, so that the function G2 defined by

G2 : B ↦→ G (B) −
∑
A ∈mG
(G (A ) − G (A−))1[A,∞) (B)

is continuous over [gmin, C]. Using the Heine-Cantor theorem, we know that there is X > 0 such that for all
(B, B ′) ∈ [gmin, C]2, |B − B ′ | 6 X implies |G2 (B) − G2 (B ′) | 6 Y/2.
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By assumption, the measure ` admits the form (2.11), so that denoting by m` B {B ∈ [gmin,∞) | ` ({B}) > 0}
the countable set of charged points of `, we have a continuous and nonnegative function 5` , such that for
any Borel set � of R, we have ` (�) =

∫
B∈� 5` (B) dB +

∑
B∈m` ` ({B})XB (�).

Let gmin = B0 < B1 < · · · < B!−1 < B! = C be a partition of [gmin, C] with step X adapted to G and `,
i.e., for all ℓ ∈ {0, 1, . . . , ! − 1}, verifying 0 < Bℓ+1 − Bℓ 6 X and also (mG ∪ m`) ∩ [gmin, C] ⊂ (X , where
(X B {Bℓ | 0 6 ℓ 6 !}. For all integer ℓ such that 0 6 ℓ < ! − 1, we denote �ℓ B [Bℓ , Bℓ+1), and
�!−1 B [B!−1, B!], so that

⊎!−1
ℓ=0 �ℓ = [gmin, C], i.e., the disjoint union of the (�ℓ )06ℓ6! indeed gives [gmin, C].

We denote by `X the discrete measure `X B
∑!−1
ℓ=0 ` (�ℓ )XBℓ . In addition, when a is a positive measure, we

denote by 〈a, G〉 the scalar
∫
[gmin,C ] G (C − B) da (B). This way, we have

〈`, G〉 =
∫
B∈[gmin,C ]

G (C − B) d` (B) and 〈`X , G〉 =
!−1∑
ℓ=0

G (C − Bℓ )` (�ℓ ) .

Observe that using the decomposition properties of `, 〈`, G〉 and 〈`X , G〉 can respectively be rewritten as

〈`, G〉 =

∫
B∈[gmin,C ]

G (C − B) 5` (B) dB +
∑

B∈m`∩[gmin,C ]
G (C − B)` ({B})

〈`X , G〉 =

!−1∑
ℓ=0

G (C − Bℓ )
( ∫
B∈�ℓ

5` (B) dB +
∑

B∈m`∩�ℓ
` ({B})

)
,

and therefore, building on integral’s additions and linearity properties, and because m` ∩ [gmin, C] ⊂ (X , we
have

〈`, G〉 − 〈`X , G〉 =
!−1∑
ℓ=0

∫
B∈�ℓ

(
G (C − B) − G (C − Bℓ )

)
5` (B) dB ,

and this last term is also given using the continuous function G2 by

!−1∑
ℓ=0

∫
B∈�ℓ

(
G2 (C − B) − G2 (C − Bℓ ) +

∑
A ∈mG
(G (A ) − G (A−))

(
1(−∞,C−A ] (B) − 1(−∞,C−A ] (Bℓ )

) )
5` (B) dB . (2.12)

However, since mG ⊂ (X , for all B ∈ [Bℓ , Bℓ+1), the term 1(−∞,C−A ] (B) −1(−∞,C−A ] (Bℓ ) is null (indeed we have
mG ∩ [Bℓ , Bℓ+1) ⊂ {Bℓ }). Only a possible discontinuity of G in B! = C could achieve a nonzero value of this
term, but because 5` is measurable and Lebesgue’s measure is diffuse, it does not change the value of the
integral. We can now use uniform continuity of G2 and because intervals ( [Bℓ , Bℓ+1))06ℓ6!−1 have length
inferior to X , we obtain��〈`, G〉 − 〈`X , G〉�� 6 !−1∑

ℓ=0

∫
B∈[Bℓ ,Bℓ+1)

���G2 (C − B) − G2 (C − Bℓ ) ��� 5` (B) dB 6 Y

2

∫ C

gmin

5` (B) dB 6
Y

2
.

Notice that we could also have defined `X B
∑!−1
ℓ=0 ` (�ℓ )XBℓ+1 , in which case all the terms “Bℓ ” in (2.12) would

have been replaced by “Bℓ+1”. The integrand in this modified equation still coincides almost everywhere
with G2 (C − B) − G2 (C − Bℓ+1), so the bound

��〈`, G〉 − 〈`X , G〉�� 6 Y/2 survives. Combining this last result with
the first one, we can finally state that

− Y
2
+
∫ ∞

0
G (C−B) d` (B) 6

!−1∑
ℓ=0

G (C−Bℓ+1)` (�ℓ ) and
!−1∑
ℓ=0

G (C−Bℓ )` (�ℓ ) 6
Y

2
+
∫ ∞

0
G (C−B) d` (B) . (2.13)

Let l ∈ Ω (here Ω = RN×N
∗

>0 × [gmin,∞)N×N
∗
). For all # ∈ N, we denote by ()#,: (l)):∈N the jump

instants of -# (· ;l), possibly repeated, and indeed countable because -# (·, l) is piecewise constant. We
also denote by (g#,: (l)):∈N the realizations of ĝ# for the event l , so that we have

-# (C ;l) =
∞∑
:=1

1[)#,: (l),∞) (C) and .# (C ;l) =
∞∑
:=1

1[)#,: (l) +g#,: (l),∞) (C) (2.14)
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Remark that we have the following equality and inequality:

.# (C ;l) =

!−1∑
ℓ=0

∞∑
:=1

1[)#,: (l) +g#,: (l),∞) (C) × 1�ℓ (g#,: (l))

6
!−1∑
ℓ=0

-# (C−Bℓ ;l)∑
:=1

1�ℓ (g#,: (l)) . (2.15)

The equality is a rewriting of the relation on .# (C ;l) in (2.14) using our partition of [gmin, C] and the
fact that holding times (g#,: (l)):∈N greater than C do not contribute to .# (C ;l). The inequality (2.15) is
obtained by remarking, for instance using the characterization of -# (C ;l) given in (2.14), that

)#,: (l) + g#,: (l) 6 C and g#,: (l) > Bℓ =⇒ )#,: (l) + Bℓ 6 C
=⇒ : 6 -# (C − Bℓ ;l) .

and as a consequence 1[)#,: (l) +g#,: (l),∞) (C) × 1�ℓ (g#,: (l)) 6 1[1,-# (C−Bℓ ;l)) (:) × 1�ℓ (g#,: (l)). Like-
wise, it holds that

: 6 -# (C − Bℓ+1;l) and g#,: (l) 6 Bℓ+1 =⇒ )#,: (l) 6 C − Bℓ+1 and g#,: (l) 6 Bℓ+1
=⇒ )#,: (l) + g#,: (l) 6 C .

As a result, we can derive a lower bound counterpart of inequality (2.15), providing after dividing all the
terms by # the double inequality

1
#

!−1∑
ℓ=0

bℓ+1 (C ;# ;l) 6 .# (C ;l)
#

6
1
#

!−1∑
ℓ=0

bℓ (C ;# ;l) , (2.16)

where bℓ (C ;# ;l) B ∑-# (C−Bℓ ;l)
:=1 1�ℓ (g#,: (l)).

Recall that -̂# (B)/# converges almost surely towards G (B) if B < ) , and for all ℓ ∈ N such that 0 6 ℓ 6 !,
we indeed have C − Bℓ < ) since C < ) + gmin and Bℓ > gmin. For such an ℓ , let us denote by Ω-

ℓ
a subset of

Ω such that P(Ω-
ℓ,Y
) = 1 and for all l ∈ Ω-

ℓ,Y
, lim#→∞ -# (C − Bℓ ;l)/# = G (C − Bℓ ). If G (C − Bℓ ) > 0, then

we also have that lim#→∞ -# (C − Bℓ ;l) = ∞. In particular, we have for # large enough that

∀l ∈ Ω-ℓ,Y ,
bℓ (C ;# ;l)

#
=
-# (C − Bℓ ;l)

#
× 1
-# (C − Bℓ ;l)

-# (C−Bℓ ;l)∑
:=1

1�ℓ (g#,: (l)) , (2.17)

in which we recognize an instance of the strong law of large numbers. Indeed, for all" in N∗, the quantity
F",ℓ (l) B (1/")

∑"
:=1 1�ℓ (g#,: (l)) gives the proportion of realizations of the (ĝ#,: )16:6" that fall in

the interval �ℓ . Since these are i.i.d., this average converges almost surely towards E(ĝ ∈ �ℓ ) = ` (�ℓ ), so we
have a subset Ωg

ℓ,Y
of Ω with measure 1 such that for all l ∈ Ωg

ℓ,Y
, lim"→∞F",ℓ (l) = ` (�ℓ ). Remark that

the second factor in (2.17) simply forms a subsequence of (F",ℓ (l))" ∈N∗ , as a result we have

∀l ∈ Ω-ℓ,Y ∩ Ωgℓ,Y , lim
#→∞

bℓ (C ;# ;l)
#

= G (C − Bℓ )` (�ℓ ) .

We then denote Ωℓ,Y B Ω-
ℓ,Y
∩ Ωg

ℓ,Y
and further, we denote ΩY B

⋂!
ℓ=0 Ωℓ,Y . The previous arguments

ensure that P(ΩY ) = 1, and we obtain

∀l ∈ ΩY ,
!−1∑
ℓ=0

G (C − Bℓ+1)` (�ℓ ) 6 lim inf
#→∞

.# (C ;l)
#

6 lim sup
#→∞

.# (C ;l)
#

6
!−1∑
ℓ=0

G (C − Bℓ )` (�ℓ ) ; (2.18)

(indeed, we have not shown yet that .# (C ;l)/# has a limit). Observe that if for some ℓ in [0, !] ∩ N,
we have G (C − Bℓ ) = 0, the property lim#→∞ bℓ (C ;# ;l)/# = G (C − Bℓ )` (�ℓ ) still holds for all l ∈ Ω-

ℓ,Y
,

thanks to the convergence of -# (C − Bℓ ;l)/# towards G (C − Bℓ ) = 0 and the boundedness of the sequence
(F",ℓ (l))" ∈N∗ .
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Using (2.18), we have the existence of some #0 in N such that

∀l ∈ ΩY , ∀# > #0,
.# (C ;l)

#
>
!−1∑
ℓ=0

G (C − Bℓ+1)` (�ℓ ) −
Y

2
and

.# (C ;l)
#

6
!−1∑
ℓ=0

G (C − Bℓ )` (�ℓ ) +
Y

2

We can thus finally reuse (2.13), to obtain

∀l ∈ ΩY , ∀# > #0, −Y +
∫ ∞

0
G (C − B) d` (B) 6 .# (C ;l)

#
6 Y +

∫ ∞

0
G (C − B) d` (B) ,

which achieves the proof, since P(ΩY ) = 1. s

We are now ready to state the main result of this section, that it would not be unreasonable to call
“Strong law of large numbers for Petri nets”. Alternatively, this theoremmakes continuous-relaxed
Petri nets arise as “mean-field approximations” of discrete stochastic Petri nets.

) Theorem 2.23. The rescaled trajectory of a scaled-by-# discrete Petri net in the Threefold
Stochastic setting converges pointwise and almost surely towards the trajectory of the equivalent
continuous-relaxed and fluid Petri net, i.e.,

for all C > 0,
/̂# (C)
#

a.s.−→
#→∞

I (C) .

Proof. We denote by (/̂# )# ∈N∗ the random trajectories of scaled-by-# discrete Petri nets and by I the
unique trajectory of the fluid unscaled Petri net. For any # in N∗, the values of /̂# are deterministically
zero over (−∞, 0), just like I, so the result is trivial for C < 0. This is the initial step to unravel the induction
principle (I) another time.

Let us suppose that the claim of the theorem is verified for all C ∈ (−∞, :gmin), with : ∈ N. We now choose
C ∈ [:gmin, (: + 1)gmin).
Using equations of Table 2.8, our induction hypothesis and the Lemma 2.21, we are able to say that for all
B < :gmin and for all ? ∈ P, we have

-̂#? (B)
#

a.s.−→
#→∞

<? +
∑
@∈? in

U?@ I@ (B) .

Applying the Lemma 2.22 to -̂# B -̂#? − #<? , ` B `? , ) B :gmin, G =
∑
@∈? in U?@I@ , we obtain since

C < ) + gmin that

∀? ∈ P,
.̂#? (C)
#

a.s.−→
#→∞

<? +
∫ ∞

0

∑
@∈? in

U?@ I@ (C − g) d`? (g) .

In what follows, we will denote by ΩC a subset of Ω with probability measure 1 on which the above limit is
indeed achieved.

Let us choose @ ∈ Qsync and l ∈ ΩC . Using the corresponding equation in Table 2.8, we can say that

/#@ (C ;l) = min
?∈@ in

⌊
U−1@? .

#
? (C ;l)

⌋
= min
?∈@ in

(
U−1@? .

#
? (C ;l)

)
+ �@ (C ;# ;l) ,

where �@ is a function bounded by 1, accounting for the error made approximating the integer-part of a
number by this number itself. It is thus clear that for all l ∈ ΩC , lim#→∞ /#@ (C ;l)/# exists and

∀l ∈ ΩC , lim
#→∞

/#@ (C ;l)
#

= min
?∈@ in

U−1@? lim
#→∞

.? (C ;l)
#

= min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′

∫ ∞

0
I@′ (C − g) d`? (g)

)
= I@ (C) .
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where we finished by identification using Table 2.8. Doing so for all C ∈ [:gmin, (: + 1)gmin), this completes
the induction for these transitions.

If we now choose @ ∈ Qpsel, and we call ? the unique upstream place of @, we write using Table 2.8 that

∀l ∈ ΩC ,
/#@ (C ;l)

#
= U−1@?

(
<?,@ +

Π
?
@

(
.#? (C ;l) − #<? ;l

)
#

)
+
�@ (C ;# ;l)

#
,

where we hid again a bounded-by-1 error term in the function �@ (C ;# ;l).

If
∑
@′∈? in U?@′

∫ ∞
0 I@′ (C − g) d` (g) is a positive number, we know that lim#→∞ .#? (C) −#<? = ∞. In this

case, we have for # large enough that

Π
?
@

(
.#? (C ;l) − #<? ;l

)
#

=
.#? (C ;l) − #<?

#
× 1

.#? (C ;l) − #<?

.#
? (C ;l)−#<?∑

:=1

'
(@)
:
(l) , (2.19)

where the random variables ('̂ (@)
:
):∈N∗ were defined in Section 3.3 of Chapter 1. What matters is that the

average 1
"

∑"
:=1 '̂

(@)
:

converges almost surely by the strong law of large numbers towards E('̂ (@)1 ) = c@? .
Hence we have a subset Ω@ of Ω such that P(Ω@) = 1 and for all l ∈ Ω@ , lim"→∞ 1

"

∑"
:=1 '

(@)
:
(l) = c@? .

Remarking that (2.19) features a subsequence of this sequence, we have

∀l ∈ ΩC ∩ Ω@, lim
#→∞

Π
?
@

(
.#? (C ;l) − #<? ;l

)
#

= c@?

∑
@′∈? in

U?@′

∫ ∞

0
I@′ (C − g) d` (g) .

If on the contrary we have
∑
@′∈? in U?@′

∫ ∞
0 I@′ (C − g) d` (g) = 0, the above still holds by boundedness of

the averaging sum. It readily follows that on this intersection that still has probability measure 1, we have
using Table 2.8 one last time that

lim
#→∞

/#@ (C ;l)
#

= U−1@?

(
<?,@ + c@?

∑
@′∈? in

U?@′

∫ ∞

0
I@′ (C − g) d` (g)

)
= I@ (C) .

Again, this can be done for any @ ∈ Qpsel and C ∈ [:gmin, (: + 1)gmin), hence the induction scheme is
completed. s

The result of Theorem 2.23 is a strong argument to legitimate the study and the use of continuous-
relaxed Petri nets (possibly involving non-constant holding times), as they constitute the best
and deterministic approximation of discrete twin Petri nets subject to many stochastic effects,
when conjugated by the application of a scaling-factor. By comparison to Theorem 2.19, observe
here that we have only obtained the limit (almost surely) of (/̂# )/# as # →∞, but no bound on
its difference with I. Deriving such an error term amounts to showing a “large deviations”-type
result, that sounds more challenging. Indeed, although we may control the deviation of “low-level”
random behaviours of Poisson processes, Bernoulli laws or stochastic holding times, determining
how the application of the dynamics alter these bounds is not trivial.

It is also worth-mentioning that we ended up uncovering a deterministic limit for (/̂# )/#
without resorting to the moments of /̂# , and notably E(/̂# ), that is after all the “best” determin-
istic estimate of /̂# . In particular, we do not have the relationship E(/̂# ) = I# = #I, and we
cannot show that the fluid dynamics is a good approximation of the discrete dynamics by simply
applying expectation operators to the discrete equations of Table 2.8! This has especially to do
with the fact that expectations do not mix too well with non-linear operators such as the minimum.
Intuitively, E(/̂ ) ≠ I can be explained by the fact that the discrete system is much less “fluid”
(in the sense that it works more slowly) than its continuous-relaxed counterpart, on account of
integrality phenomena, so we should indeed expect E(/̂ ) < I. For the case of timed event graphs,
positive mean ergodic results can be obtained on this aspect, see in particular [BL91].
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Note that we have considered only nonsingular measures for the distribution of stochastic holding
times. This is quite reasonable for many real-life usual laws, however we reckon that the more
general case could also be addressed, for instance since pure point measures are dense in the
space of probability measures over metrizable spaces [AB06, Theorem 15.10, p. 513], and only
the proof of Lemma 2.22 would need changing. In our Section 2.8 of the Chapter 3 to come, we
shall also discuss further how we could relax the assumption that the sojourn times distribution
supports do not contain 0 in their adherence and instead are included in [gmin,∞). Indeed, even
if gmin can be chosen arbitrarily small and therefore this condition is quite acceptable for many
applications, it is not much in line with our quest of taking into account null sojourn times.
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In this chapter, we momentarily leave aside models of Petri nets to better come back to it in the
next one. We focus here on the class of one-player stochastic games known as Markov decision
processes (abb. MDP) in which a decision-maker seeks to minimize cost criteria under uncertainty.
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More generally on the class of semi-Markov decision processes (abb. SMDP), in which the elapsing
of the physical time is involved.

Following the seminal work of Bellman on MDPs [Bel57], semi-Markov decision processes
(sometimes also referred to as Markov renewal programs) were introduced by Jewell [Jew63] and
De Cani [DC64] in the early 1960’s. These articles already featured the so-called finite-horizon
dynamic programming equations of SMDPs, characterizing optimality of strategies implemented
by the decision-maker to minimize his/her incurred overall cost when playing the SMDP for
a given period of time fixed in advance. As customary in stochastic control problems, these
dynamic programming equations are the gateway to both theoretical analysis of the random
processes at stake and algorithmic methods to compute optimal strategies. Refinements revolving
around these equations and extensions to milder cases include the work of Yushkevich [Yus82]
or Huang and Guo [HG11]. We also mention the book of Puterman [Put14] that is a detailed
introduction to MDPs and basic SMDP settings. The average-cost problem, in which one wants
to incur the least possible cost per unit of time when the game is played indefinitely, has received
a lot of attention in the MDP setting (see the survey [ABFG+93]) but also in the semi-Markov
framework. Average-cost optimality equations derived from the finite-horizon criterion as well
as related algorithmic aspects and analysis of convergence properties can be found in the work of
Denardo and Fox [DF68] or in a series of articles of Schweitzer and Federgruen [SF77, SF78, SF79].
We also refer to the work of Feinberg [Fei94] and Jaśkiewicz [Jaś04] for a treatment of the
problem in expressive contexts. In practice, SMDPs have been used in numerous applications,
including preventive maintenance [CT05], control of queuing systems [YT91] or production
scheduling [Sen89].

By contrast with the vast majority of the literature on SMDPs, we consider in this chapter
models in which the player can take decisions that do not require him/her to wait before the
next step of the game. This entails that several costs can be incurred over a zero time-period.
We state minimal non-Zeno conditions under which these instantaneous moves can only occur
finitely many times, so that classical cost criteria studied in the theory of SMDPs are still well-
defined. In this sense, and although their proof require a more delicate treatment and rely on
advanced operator-based techniques, the results of this chapter can mainly be seen as extensions
of well-known properties of SMDPs under weak non-Zeno conditions and the readers already
familiar with this literature should not be surprised by our statements. Another originality of our
approach though is to use a formalism borrowed from control theory and based on an evolution

Type of cost Notation Exists and is finite under

Total cost in finite-horizon C
(possibly with terminal and stopping costs) E∗(C) (3.5) Assumption A

Total discounted cost in finite-horizon C
(possibly with terminal and stopping costs) E∗W (C) (3.6) Assumption B

Average-cost in infinite-horizon 6∗ (3.25) Assumption A

Total cost in infinite-horizon D∗ (3.28) Assumptions A and C

Table 3.1: Cost criteria studied for semi-Markov decision processes in Chapter 3
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semigroup, which allows us to highlight the essential properties of the finite-horizon dynamic
programming equations and which facilitates a systematic treatment.

To help getting a clear picture of the cost criteria studied in this chapter from Section 2
onwards, we summarize them in the Table 3.1.

We devote Section 1 to preliminaries on Markov chains, since the analysis of MDPs and
SMDPs builds on their transient and stationary properties. Readers already acquainted with these
notions can easily skip this part. Our Section 2 introduces undiscounted and discounted finite-
horizon value functions before exhibiting minimal conditions under which they are well-posed.
It then focuses on the core of the SMDP machinery, that is, the dynamic programming equations
and the existence of solutions under the same weak non-Zeno assumptions. We also introduce
the corresponding evolution semigroup. The Section 3 deals with the asymptotic behaviour of
the undiscounted value function and provides interpretation in terms of affine solutions to the
dynamics induced by non-Zeno SMDPs. Finally, we extend in Section 4 to the semi-Markov
case the results of Bertsekas and Tsitsiklis [BT91] on the stochastic shortest path problem, so far
only stated for MDPs. This allows us to prove that solutions to SMDP dynamics converge under
appropriate conditions.

1 Basic terminology and recalls on Markov chains

The aim of this section is to introduce the notation and recall the notions that we shall use on
Markov chains, ranging from elementary definitions to little more advanced results on reducible
chains. The propositions and theorems stated below are given without proofs; for a complete
presentation on the topic, we refer the reader to the textbooks of Norris [Nor98], of Berman and
Plemmons [BP79] and Meyer [Mey00].

1.1 UNDERLYING RANDOM PROCESS AND STATES CLASSIFICATION. — We consider a ran-
dom process ( 8̂=)=∈N on a finite set ( B {1, 2, . . . , |( |}. This process is said to be a Markov chain,
or to verify the Markov property, if for all = in N and for all (80, 81, . . . , 8=) in (=+1, we have

P
(
8̂= = 8= | 8̂=−1 = 8=−1, . . . , 8̂1 = 81, 8̂0 = 80

)
= P

(
8̂= = 8= | 8̂=−1 = 8=−1

)
, (3.1)

in other words the value of the random process at any step depends only on its value at the
previous step. The set ( is called the state space of the Markov chain, and if for = in N we have
8̂= = 9 , we say that the chain is in state 9 at epoch (or step) =. We shall in addition always suppose
that the Markov chain is homogeneous, i.e., the quantity P

(
8̂= = 8= | 8̂=−1 = 8=−1

)
above is actually

independent of the epoch number =. This way, we can consider the |( | × |( | matrix % , defined by

for all 8, 9 in (, %8 9 B P
(
8̂= = 9 | 8̂=−1 = 8

)
regardless of = in N .

The matrix % is stochastic (i.e., it has nonnegative entries and %1 = 1) and it is customarily
referred to as the transition matrix of the Markov chain. For : in N, the matrix %: is still
stochastic, and using the Markov property, one can show that for any = in N, and 8, 9 in ( , we
have P

(
8̂=+: = 9 | 8̂= = 8

)
=
[
%:

]
8 9
, so that %: is the :-step transition matrix of the Markov chain.

In general, using the Bayes rule, we have for all = in N and (80, 81, . . . , 8=) in (=+1 that

P
(
8̂0 = 80, 8̂1 = 81, . . . , 8̂= = 8=

)
= P

(
8̂0 = 80

) =−1∏
9=0

%8 9 8 9+1 .
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Given two states 8 and 9 in ( , we say that 9 is accessible from 8 if there is some : in N such that
[%: ]8 9 > 0. We say that the states 8 and 9 communicate if 8 is accessible from 9 and 9 is accessible
from 8 . Communication between states defines an equivalence relation over ( , whose equivalence
classes are called the communication classes of ( ; they form a partition of ( by definition. In the
case where ( is made of a single communication class, we say that the Markov chain is irreducible.

Knowing if some state of ( shall be visited or not during the execution of the chain depending
on the initial state is a key question with many implications. To that purpose, it is useful to
introduce for all 8 in ( the return time )̂8 to 8 , which is a random variable giving the minimum
number of steps needed to hit 8:

for all 8 in (, )̂8 B inf
{
= ∈ N∗ | 8̂= = 8

}
.

We say that a state 8 in ( is recurrent if P
(
)̂8 < ∞ | 8̂0 = 8

)
= 1, otherwise it is called transient.

If it is visited once by the chain, a recurrent state will actually be visited infinitely many times
in average, while a transient state will in average be visited a finite number of times. If 8 in (
is recurrent, it is sometimes useful to distinguish whether E

(
)̂8 | 8̂0 = 8

)
< ∞ or not. If this

inequality holds, 8 is said to be positive recurrent, and null recurrent otherwise. However, in the
case of Markov chains over finite state spaces, recurrent states are necessarily positive recurrent.

If the state 8 in ( is recurrent, its period 3 (8) is defined by

3 (8) B gcd
{
= ∈ N∗ | P

(
8̂= = 8 | 8̂0 = 8

)
> 0

}
where gcd denotes the greatest common divisor of a collection of integers, so that any return to 8
must occur in multiples of 3 (8) steps. If 3 (8) > 1, we say that 8 is a periodic state of the Markov
chain, otherwise it is called aperiodic. In a communicating class, all states have the same period,
therefore we say that a class (or an irreducible Markov chain) is periodic (resp. aperiodic) when
its states are periodic (resp. aperiodic).

1.2 LONG-RUN BEHAVIOUR OF IRREDUCIBLE MARKOV CHAINS. — If two states of ( do
communicate, they are either both recurrent or both transient. In particular, since not all states
of the finite set ( can be transient, we know that all the states of an irreducible Markov chain
are positive recurrent. It is then a question of interest in this case to know if a “limiting” (or
steady-state) distribution exists, i.e., to know for 8 and 9 in ( if the quantity P

(
8̂= = 9 | 8̂0 = 8

)
admits a limit when = tends to∞. Based on the previous observations, it amounts to knowing
if the sequence

( [
%=

]
8 9

)
=∈N converges. In order to answer this question, it is useful to take

advantage of the following instance of the fundamental Perron–Frobenius theorem. Recall that
for a square matrix" , the spectral radius d (") of" is the greatest modulus of its eigenvalues
(and we already know if % is a stochastic matrix that d (%) > 1 since %1 = 1).

) Theorem 3.1 (Perron–Frobenius for stochastic matrices). If % in R(×(>0 is the transition matrix
of an irreducible Markov chain, then we have d (%) = 1 and 1 is a simple eigenvalue of % (which
means that is has algebraic and geometric multiplicities of one). In addition, there is a unique positive
vector ` in R(>0 such that `T% = `T and ‖`‖1 = 1. All the other left-eigenvectors of % associated
with the eigenvalue 1 are multiples of `, and no left-eigenvector of % associated with an eigenvalue
different than 1 is positive.

The vector ` above is called the invariantmeasure of the (irreducible)Markov chain. Intuitively,
if 1 is the only eigenvalue of % with modulus one, we expect (for instance using the Jordan form
of % ) that the sequence (%=)=∈N converges towards the outer product 1 `T, or in other words the
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|( | × |( | matrix with all rows equal to `T. However, the previous assumption is not always satisfied
if the Markov chain is periodic. Indeed, one can show that if all the states of an irreducible Markov
chain have period 3 in N∗, then the complex numbers (428:c/3 )06:63−1 of the unit circle are all
eigenvalues of % (in this case we say in Perron–Frobenius theory that % is not primitive). We
have the following proposition:

) Proposition 3.2. Let % be the transition matrix of an irreducible Markov chain, and ` its invariant
measure.

– If the chain is aperiodic, we have
lim
=→∞

%= = 1 `T .

– If the chain is periodic with period 3 in N \ {0, 1}, then for all 8 and 9 in ( , there exists an
integer 0 6 A 6 3 − 1 such that

lim
=→∞

[
%=3+A

]
8 9
= 3` 9 .

Although one may not reach a steady-state distribution due to periodic behaviours, we can
still wonder if the states of ( have an ultimate “visit frequency”. The aperiodic case discussed
in Proposition 3.2 indicates that for all 8 in ( , `8 gives the average fraction of time spent in state 8 .
Computing this average no longer involves focusing on the sequence (%=)=∈N, but on its associated
Cesàro sequence ((1/=)∑=−1

:=0 %
: )=∈N. The following proposition confirms that doing so has a

regularizing power, just like for sequences of real numbers.

) Proposition 3.3. Let % be the transition matrix of an irreducible Markov chain, and ` its invariant
measure. Then, denoting by %★ the Cesàro limit of the sequence (%=)=∈N, we have

%★ B lim
=→∞

1
=

=−1∑
:=0

%: = 1 `T .

When % is a stochastic matrix, the matrix %★ defined above always exists because its eigenvalues
with modulus one are necessarily semisimple (i.e., they have equal algebraic and geometric
multiplicities), see for instance [Mey00]. The matrix %★ is such that %%★ = %★% = %★, and also
(%★)2 = %★, it is therefore sometimes called the spectral projector of the Markov chain. Finally,
we may add that in the context of irreducible finite Markov chains, for all states 8 in ( , we have
`8 = 1/E

(
)̂8 | 8̂0 = 8

)
, so that the state 8 is visited in average once every E

(
)̂8 | 8̂0 = 8

)
steps. This

is consistent with the idea that the less the return time to 8 is, the more the visit frequency `8 is.

1.3 HANDLING MULTIPLE SUBCHAINS. — Not all finite Markov chains are irreducible, or equiva-
lently made of a single positive recurrent communicating class. Since two communicating states
are either both recurrent or both transient as recalled in the beginning of Section 1.2, the partition
of ( into communicating classes mentioned in Section 1.1 allows us to build a slightly coarser
partition of ( into the form

( = ) ] �1 ] �2 ] · · · ] �< for some < in N∗, (3.2)

where) is the set of transient states of the Markov chain (that may or may not communicate), and
the (�: )16:6< are communicating classes that by definition do not communicate with each other.
The (�: )16:6< are called the final classes (or sometimes the recurrent classes, or the ergodic
classes) of the Markov chain, because once a state of �: is visited for some 1 6 : 6 <, the
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random process is forced to stay in �: forever. Hence, the global Markov chain induces irreducible
subchains over its final classes. Since the irreducible case is well understood, this motivates the
following result, in which a convenient block-decomposition of the transition matrix % of the
whole Markov chain is introduced.

) Theorem 3.4. Let % be the transition matrix of a Markov chain. Then, up to relabeling the states
(or equivalently up to conjugation by a permutation matrix), % admits the following standard
form adapted to the decomposition (3.2)

% =

©«

&0 &1 &2 · · · &<

0 %1 0 · · · 0
0 0 %2 · · · 0
...

...
...

. . . 0

0 0 0 · · · %<

ª®®®®®®®¬
, (3.3)

where (%1, . . . , %<) are the (stochastic and square) transition matrices associated with the final classes
(�: )16:6< of the Markov chain. The square matrix &0 is strictly substochastic, in particular we have
d (&0) < 1.

The matrix &0 gives the probabilities that the random process initialized in a transient state
stays in ) in one step, while the (rectangular) matrices &1, &2, …, &< tell the probabilities for
the random process initialized in a transient state to directly move in a final class. Remark that
the eigenvalues of % are the eigenvalues of the matrices &0, %1, %2, …, %< , consequently d (%) = 1
and from the semisimplicity result mentioned before, 1 is an eigenvalue of % with algebraic and
geometric multiplicity<. It can easily be seen that if `1, `2, …, `< are the invariant measures of
the matrices %1, %2, …, %< , then for all 1 6 : 6 <, the vector

˜̀: B ( 0︸︷︷︸
|) |

, 0︸︷︷︸
|�1 |

, 0︸︷︷︸
|�2 |

, . . . , `T
:︸︷︷︸
|�: |

, . . . , 0︸︷︷︸
|�< |

)T

is an invariant measure of % . Actually, the set of invariant measures of % is a convex polytope
whose vertices are the ( ˜̀: )16:6< .

We shall need to use the following lemma later in the chapter. Although it is not difficult to
show, it is not exactly standard in the literature, thus its proof is given.

) Lemma 3.5. Let % be the transition matrix of a finite Markov chain. Let � be a subset of ( and % | � ×�
be the square submatrix of % restricted to states of � . Then, this submatrix has spectral radius 1 if
and only if it contains a stochastic submatrix, or alternatively

d
(
% | � ×�

)
= 1 ⇐⇒ ∃: ∈ {1, 2, . . . ,<}, �: ⊂ � .

Proof. We take advantage of the decomposition (3.3). It is clear that if we have �: ⊂ � for some 1 6 : 6 <,
we can find a right eigenvector associated with eigenvalue 1 for % | � ×� . Conversely, by irreducibility, any
strict submatrix of %1,…, %< is substochastic and then has spectral radius strictly less than 1, therefore
% | � ×� cannot admit an eigenvector associated with 1 if � doesn’t contain the whole support of some %: for
1 6 : 6 <, i.e., a final class of % . s

We now go back to the question of understanding the long-run behaviour of our random process
in case the Markov chain is not irreducible. To that purpose, we still study the spectral projector
introduced in Section 1.2 for irreducible chains. An essential difference with Proposition 3.3 is
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that there are now transient states that may have access to different final classes via the matrices
(&: )16:6< .

) Proposition 3.6. Let % be the transition matrix of a Markov chain in standard form (3.3), with
final classes �1, �2, …, �< and associated invariant measures `1, `2, …, `< . Then, the Cesàro limit %★

of the sequence (%=)=∈N exists and admits the standard form

%★ = lim
=→∞

1
=

=−1∑
:=0

%: =

©«

0 &★
1 &★

2 · · · &★
<

0 %★1 0 · · · 0
0 0 %★2 · · · 0
...

...
...

. . . 0

0 0 0 · · · %★<

ª®®®®®®®¬
. (3.4)

In accordance with Proposition 3.3, for all 1 6 : 6 <, the matrix %★
:
is given by 1 `T

:
. For all states 8

and 9 in ( , the coefficient %★8 9 gives the long-run fraction of time spent in state 9 if the random
process starts in 8 . For all transient states 8 in ) , the nonnegative scalar q�: ,8 B

∑
9 ∈�:

[
&★
:

]
8 9
is the

probability of absorption of the Markov chain in the final class �: if it starts in the state 8 , so that if
states of ) have labels 1, 2, …, |) |, we can also write

%★ =

|) |

xy
|�1 |

xy
|�2 |

xy
|�< |

xy

<←−−−−−−−−−−−−−−−−−−−−−−−−−−→©«

q�1,1 q�2,1 . . . q�<,1
...

...
. . .

...

q�1, |) | q�2, |) | . . . q�<, |) |

1 0 0 0

0 1 0 0
...

...
. . .

...

0 0 0 1

ª®®®®®®®®®®®®®®®¬

×

|( |
←−−−−−−−→©«

˜̀T1

˜̀T2
...

˜̀T<

ª®®®®®®®¬

xy
< .

Observe that the form (3.4) with |) | null columns is consistent with the fact the transient states
are only visited a finite number of times in average. Remark also that we could have defined
the absorption probabilities even for recurrent states (with q�: ,8 B

∑
9 ∈�: %

★
8 9 for 1 6 : 6 < and

8 in (), even though it gives trivial (either zero or one) results. Note that the Proposition 3.2
also admits a counterpart for reducible chains; indeed (%=)=∈N tends towards %★ if all states are
aperiodic. Later in Section 3, we shall drop the tilde notation and write (`: )16:6< instead of
( ˜̀: )16:6< .

To finish this section of recalls, we take a step aside the long-run visit frequencies of final
states to focus on a little finer aspect, namely the expected transience time before ending-up
“trapped” in a final class.

) Proposition 3.7. Let % be the transition matrix of a Markov chain. Then, the matrix � − % + %★ is
nonsingular, and if we denote

�★ B
(
� − % + %★

)−1 − %★ ,
then for all transient states 8 and 9 in ) , the coefficient �★

8 9 is the expected number of times at which
the Markov chain is in state 9 if it starts in 8 . In particular,

∑
9 ∈) �

★
8 9 is the expected number of steps

before the Markov chain reaches a final class if it starts in 8 .
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The matrix �★ is frequently referred to as the fundamental matrix of the Markov chain. Note that
it verifies %★�★ = �★%★ = 0, and %★+�★ = � +%�★. A key property that explains the importance
of �★ and why it allows one to gain more insight on the long-run behaviour of the Markov chain
beyond the mere knowledge of steady-state distributions is the following, for instance found
in [Ber11, Proposition 5.1.1].

) Proposition 3.8. If % is the transition matrix of a Markov chain, then for all U in (0, 1), the matrix
� − U% is nonsingular, and(

� − U%
)−1

=
U→1

1
1 − U %

★ + �★ + > (1 − U) .

2 The finite-horizon value of semi-Markov decision processes

We now discuss one of our main objects of interest in this thesis, the semi-Markov decision
processes (SMDPs). Since these are extensions of the usual Markov decision processes (MDPs),
we choose to directly state definitions and properties of SMDPs, that will be particularized to
MDPs when relevant.

2.1 DEFINITION OF THE GAME. — The models of semi-Markov decision processes found in
the literature can vary a little from one author to another, but they always revolve around the
following ground objects:

(1) A state space ( , that can be either finite, countably infinite, compact, or even a Borel set of a
topological space.

(2) For all states 8 in ( , a nonempty set �8 of playable actions from 8 , that can also range from
finite to continuous collections. Contrary to a common practice in the literature, we choose
without any loss of generality to impose that the (�8)8∈( are disjoint, so that action-dependent
objects can be non-ambiguously indexed by actions only, and not state–action pairs. We shall
denote by � the disjoint union

⊎
8∈( �8 of all the playable actions.

(3) For all actions 0 in �, a transition probability distribution ?0 over ( . In case the state space is
finite, ?0 is conveniently represented by a vector of R(>0.

(4) For all actions 0 in �, a nonnegative sojourn time C0 , that may be given as the realization of
a nonnegative random variable with a distribution a0 depending only on 0. If a0 is a Dirac
measure, we talk about deterministic sojourn time (C0 is constant)

(5) For all actions 0 in �, a real-valued cost 20 . This cost may be a combination of a real-valued
impulse cost 201 independent of C0 , and of a real-valued measurable rate of cost function 202
integrated between 0 and C0 , i.e., 20 = 201 +

∫ C0
0
202 (B) dB . If the sojourn time associated with an

action is deterministic, so is the corresponding cost.

Occasionally, the following modeling aspects can be used, and we will progressively discuss their
role in Section 2.3:

(6) For all 0 in �, a nonnegative discount factor W0 , taken into account to reflect the player’s
“preference for the present”. To this purpose, setting W0 B exp(−UC0) where U is a positive
constant is a canonical choice, but we may also allow other values, even greater than 1.
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(7) For all 8 in ( , a terminal costF (8, ·), that is paid by the player only once the game is finished
in state 8 . We will explain in Section 2.3 why it makes sense thatF (8, ·) is a function.

(8) For all 8 in ( , a stopping cost '(8, ·) (or leaving cost), that the player will pay if he/she decides
to prematurely stop playing the game at some point from state 8 . Once again, '(8, ·) is a
function whose modeling interest will be explained in Section 2.3

Let us now describe how the game proceeds, letting aside momentarily the occasional ob-
jects (6)–(8). When arriving in a state 8 of ( , the player must immediately choose an action
0 of �8 to play. By doing so, he/she immediately incurs the impulse cost 201 , and is held in state 8
during the (possibly nondeterministic) time C0 . Throughout this period, the player also pays a
cost determined by the rate 202 . After the sojourn time C0 is elapsed, the player instantaneously
goes to another state of ( according to the distribution probability ?0 (and beyond his/her control,
so that we often talk about this steps as “nature moves”) and the whole process starts again. The
time instants at which arrivals in states occur and therefore at which actions are picked are called
the decision epochs of the process.

Several authors (for instance [Sch92, HG11]) consider a more general model in which the
transition probability distributions attached to actions depend upon the sojourn time. To model
this entangled behaviour between time and transition probabilities, transition kernels ( 09 )0∈�,9 ∈(
may be introduced, in such a way that the probability to go to 8 from 9 in ( after C units of time
is  09 (C) when pulling the action 0 in �8 . In addition, we sometimes encounter models in which
transition probability distributions (?0)0∈� may be substochastic, i.e., with total measure less than
1, so that 1−

∫
9 ∈( d?

0 ( 9) gives the probability that the game stops after playing 0 (sometimes called
the death probability for 0). This case can handily be covered by properly stochastic transition
distributions up to adding a distinguished cemetery state that is absorbing.

We shall work in what follows with finite state space and finite playable actions sets. We
shall also consider unless specified otherwise that sojourn times are deterministic and that costs
are reduced to their impulse component. We also assume that transition probability distributions
are stochastic vectors (for all 0 in �,

∑
9 ∈( ?

0
9 = 1) that are independent of the time. We will

discuss in Section 2.8 how the properties we state extend to the case of stochastic sojourn times
– but yet impulse costs and time-independent transition probabilities. The following principle
epitomizes the core idea of SMDPs:

Semi-Markov decision processes are one-player games in which one evolves
in a stochastic way through states by choosing actions at real-valued deci-
sion epochs. The chosen actions determine some costs that the player in-
cur, as well as sojourn times holding him/her before continuing the game.

We talk about Markov decision processes when all the sojourn times are deterministically set
to one (for all 0 in �, C0 B 1). This greatly simplifies the setting, since neither the transition
probabilities nor the costs – reduced to their impulse part – associated with actions depend on
the decision epochs, and the latter precisely occur at epochs 0, 1, 2, 3,… A major difference
with far-reaching consequences between MDP and SMDPs is that the semi-Markov decision
processes run with respect to the physical time, contrary to Markov decision processes which
operate relatively to a logical time. This important aspect was already discussed in the Section 3.1
of Chapter 1.
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Example 3.9. We illustrate below in Figure 3.2 an SMDPwith state space {1, 2, 3} and playable
action sets �1 B {011, 012}, �2 B {021, 022} and �3 B {031, 032}. The states are depicted by
circles, and actions by squares attached to their parent states. Each action is labeled with
a pair (2, C) indicating the immediate cost and the sojourn time incurred by the player as a
result of choosing this action (in this example, we assume that there are no discount factors).
Thin arrows joining actions to states represent the stochastic moves that are possible after
pulling an action, the corresponding probabilities being given along these arrows if not equal
to one.

1

2

3

011 : (−2, 0)

0
12

:
(5
,0
)

021 : (1, 3)

022 : (2, 0)

031 : (−4, 1)

032 : (0, 2)

1/3

2/3

1/21/2

3/5
2/5

Figure 3.2: A semi-Markov decision process with three states and six actions

In this SMDP, observe that there are three “costly” actions 012, 021 and 022, while the two
actions 011 and 031 actually give the player rewards (negative costs). Playing the action 032
gives no cost or reward. Playing one of the three actions 011, 022 and 032 exposes to stochastic
moves, while the evolution after pulling one of the three actions 012, 021 and 031 is known in
advance. Finally remark that three actions (011, 012 and 022) cause no positive sojourn time,
making the player instantaneously move to the next state when they are selected, contrary to
actions 021, 031 and 032 which respectively impose to hold for 2, 1 and 3 units of time.

Any execution of the game in = epochs is characterized by the knowledge of the = + 1 first visited
states and the = first chosen actions. Indeed the knowledge of an action also determines the
corresponding transition probabilities, sojourn time, incurred cost and potential discount factor.
The chosen actions must at each epoch belong to the playable actions set of the parent state that is
also visited at this epoch; consequently it is useful to define the set - of admissible state–actions
pairs by

- B
{
(8, 0) ∈ ( ×� | 0 ∈ �8

}
.

For = in N∗, the set �= B -= × ( is called the set of histories of length = of the game, and any
element (80, 00, 81, 01, . . . , 8=−1, 0=−1, 8=) of�= is called a history of length =. Remark that if we were
working with non-deterministic sojourn times, we would have defined �= B (- × [0,∞))= × ( ,
for in this case the knowledge of the :-th chosen action is not sufficient to determine the :-th
sojourn time and this information needs adding specifically. We shall also denote by �∞ the set
of histories with infinite length, isomorphic to -N.
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2.2 STRATEGIES AND POLICIES. — The objective of a decision-maker playing the game described
by an SMDP will be to minimize his/her overall incurred cost, either over a finite or infinite
time period. To this purpose, some playing schemes naturally turn out to be more interesting
than others. Indeed, the central question is the following; knowing that from each state we have
possibly multiple choices of actions that in turn yield costs we incur, sojourn time during which
we cannot play, and stochastic moves to other states, what actions should we pick to minimize
our cost? This question actually hinges on somewhat subtle considerations, and we choose to
discuss them progressively in this subsection in order to draw the attention of non-expert readers
to the key aspects of the problem.

The simplest way to play is to apply a policy (in [Put14], the term decision rule is used instead),
which is a mapping f from ( to � such that for all states 8 in ( , f (8) is in �8 . If the decision-maker
adopts the policy f , it means that whenever he/she arrives in state 8 , he/she will always choose
to pull the action f (8). We denote byS the set of policies, and in the setting of finite state and
actions spaces, S is isomorphic to

∏
8∈( �8 . In particular we see that the number of policies

is exponential with respect to the size of ( or the (�8)8∈( . A policy f induces a homogeneous
Markov chain over ( , since anytime the state 8 in ( is visited, the probabilities (?f (8)

9
) 9 ∈( to evolve

towards state 9 as a result of choosing action f (8) are independent of the epoch. We shall denote
by %f B (?f (8)

9
)8, 9 ∈( the |( | × |( | transition matrix associated with the policy f , and since the

costs, sojourn times and discount factors incurred by applying a policy are only state-dependent
as well, we shall later use the notation 2f B (2f (8) )8∈( , Cf B (Cf (8) )8∈( and Wf B (Wf (8) )8∈( .

However, much more general playing schemes than policies can be made up. First, policies are
history-independent, in the sense that none of the previously visited states and chosen actions are
taken into account in the selection of the action to play at a current epoch, and we may rightfully
reckon that these extra pieces of information could yield a better action pick. Second, it is not
trivial that a single choice of action 0: at each epoch : is optimal; and in the “Do not put all your
eggs in one basket” spirit, the player might want to spread his/her choice over several actions
0:,1, 0:,2, …, 0:,< with different weights. These two issues are captured by the standard notion of
strategies (thoroughly discussed in [Put14, Section 2.1]).

Formally, a randomized and history-dependent strategy 5 of the game is a sequence (5=)=∈N
where for all = in N, 5= is a map from �= to the set of probability measures over �, so that if
ℎ= = (80, 00, . . . , 8=), then 5= (ℎ=) is a probability measure over�8= . Using the strategy 5 , the player
will choose the action 0 in �8= at epoch = with probability 5= (ℎ=) (0), often rewritten 5= (0 | ℎ=).
This way, all the past information is used to make present choices. Observe that for � is finite,
the set Δ of admissible probability measures over � is here isomorphic to a product of simplicies,
with Δ �

∏
8∈(

{
G ∈ R�8

>0 : ‖G ‖1 = 1
}
. We shall denote by F the set of all randomized and

history-dependent strategies.
The strategy 5 of F is called pure (or deterministic) if for all = in N, 5= (ℎ=) is a Dirac measure

over�8= , in other words 5= can be thought of as a map from�= to�. If for all= inN, the probability
measure 5= (ℎ=) does not depend on the whole past history ℎ= but only on the current state 8= , we
say that the strategy 5 is Markovian (as 5= (· | ℎ=) = 5= (· | 8=) echoes the Markov property (3.1)). A
Markovian strategy (5=)=∈N can be identified with a sequence of mappings from ( to the set Δ of
admissible probability measures over � (such that 5= (8) is concentrated on �8 for all 8 in (). We
say that a Markovian strategy is stationary if it does not depend upon the epoch =, meaning that if
the player hits the state 8 in ( at two different epochs, he/she will pick actions to play from�8 with
same probabilities at these two steps. Markovian strategies therefore write (50, 50, 50, . . . ), where 50
can be identified with a mapping from ( to the set of probability measures over�. Pure Markovian
strategies can be identified to a sequence of policies, and pure stationary (hence Markovian)
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strategies can be identified to a single policy. We respectively denote by FHD, FMR, FMD, FSR,
FSD the sets of: history-dependent deterministic strategies, Markovian randomized strategies,
Markovian deterministic strategies, stationary randomized strategies and stationary deterministic
strategies, with the classical inclusions FSD ⊂ FSR ⊂ FMR ⊂ F, FSD ⊂ FMD ⊂ FMR ⊂ F, and
FSD ⊂ FMD ⊂ FHD ⊂ F.

In the coming sections, we will wonder if some strategies are “optimal” in the sense that they
minimize the incurred cost of the player. In particular, we will be interested in the sufficiency
of some subsets of F, for example, can the very specific pure stationary strategies can do as
well as the very general randomized and history-dependent strategies? In what follows, we
shall encounter cases where we need to use history-dependent strategies, and we point out that
allowing randomized strategies is for instance essential in constrained Markov decision problems,
not considered here (see [Alt99]). A question related to the sufficiency problem is to wonder,
what are the minimal information to keep from complete past histories to still obtain optimal
strategies? This issue is of particular interest when the game has to be played during a known
finite period of time, called the planning horizon, i.e., when the game stops at the first epoch
for which the accumulation of sojourn times incurred as a result of picking actions exceeds this
horizon (or equivalently, the game may continue but costs collected beyond this point are not
taken into account). The notion of policy (or of pure stationary strategy) is by design blind to the
concept of planning horizon, because identical decisions are always taken from identical states.
On the contrary, choices of actions in a more general strategy may vary if we are close from the
end of the game, for at this stage we may prefer riskier and more quickly rewarding actions.

It is classical in the field of MDPs or in stochastic control problems in general to show that
optimal strategies for overall costs incurred in finite-horizon depend on the remaining number
of decisions to take. In the SMDP setting, replacing the logical time by the physical time, one
expects a similar outcome based on the remaining time to play. Miller shows such a result in his
work [Mil68], see also the additional references provided by Mamer in [Mam86]. We may then be
tempted to authorize strategies to explicitly depend on the planning horizon, seen as a contextual
parameter. Yet, for a fixed planning horizon C > 0, a randomized and history-dependent strategy
that has no explicit knowledge of C can emulate a strategy which does. To clarify this question in
the next sections, we shall adopt a formalism with augmented histories, on the model of [HG11].
For = in N ∪ {∞}, instead of considering a generic element of the set �= to be of the form ℎ= =

(80, 00, 81, 01, . . . , 8=−1, 0=−1, 8=), we shall rather write ℎ= = (80, B0, 00, 81, B1, 01, . . . , 8=−1, B=−1, 0=−1, 8=),
where for all 1 6 : 6 =, B: B

∑:−1
ℓ=0 C

0ℓ is the total physical time elapsed at the beginning of epoch
: for this history (and by convention B0 = 0). The (B: )16:6= are clearly redundant information
(and they would also be in presence of non-deterministic sojourn time since in this case the
(C0: )16:6= are included in the histories), but we choose to keep them for the important role that
they will play; adding the (B: )16:6= in the histories indeed allow the strategies of F to explicitly
use them.

A strategy 5 in F and an initial state 8 in ( give rise to a random process ( 8̂=, 0̂=)=∈N over - of
visited states and chosen actions (with 8̂0 = 8). The random process ( 8̂=)=∈N is not a Markov chain
in general. Equivalently, thinking of the set �∞ of all infinite histories of the SMDP as a sample
space, the ( 8̂=)=∈N and the ( 0̂=)=∈N can be seen as random variables over �∞, defined if ℎ in �∞
writes ℎ = (80, 00, 81, 01, . . . ) by 8̂= (ℎ) B 8= and 0̂= (ℎ) B 0= for all = in N. Similarly, we define
for all = in N and ℎ in �∞ the random variables 2̂= (ℎ) B 20= , Ĉ= (ℎ) B C0= , B̂= (ℎ) B

∑=−1
ℓ=0 C

0ℓ and
Ŵ= (ℎ) B W0= .

Denoting A the f-algebra associated with �∞ (in our case the power set of -N), we know
by the Ionescu-Tulcea’s theorem (see again [Nev65, Proposition 5.1.1] or [BS78, Proposition 7.8])
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that a strategy 5 = (5=)=∈N in F and an initial state 8 in ( induce a unique probability measure P 5
8

on A such that P 5
8

(
8̂0 = 8

)
= 1 and for all = in N, ℎ= in �= , 9 in ( and 0 in �, we have

P
5

8

(
0̂= = 0 | ℎ̂= = ℎ=

)
= 5= (0 | ℎ=) and P

5

8

(
8̂=+1 = 9 | ℎ̂= = ℎ= , 0̂= = 0

)
= ?09 ,

where for ℎ = (80, 00, 81, 01, . . . ) in �∞, ℎ̂= refers to the random variable defined by ℎ̂= (ℎ) B
(80, 00, 81, 02, . . . , 8=−1, 0=−1, 8=). We will denote by E 5

8
the expectation operator associated with P 5

8
.

We refer to [Jaś04] for similar constructions if the sojourn times are non-deterministic.

2.3 THE DIFFERENT FINITE-HORIZON CRITERIA. — We now want to formalize the idea pre-
viously touched upon that different strategies applied by the player result in different incurred
costs, and we want to find out if some strategies can achieve a minimal cost. Recall that even if
we apply a fixed strategy, we are subject to stochastic moves, which is the reason why we shall
only talk about costs of strategies through expectation operators. The total cost of a strategy
also depends on how long the game is played, i.e., the planning horizon, and also on the starting
state. These elements motivate the introduction of the value function E∗ of an SMDP, which is a
function from ( × R to R such that for 8 in ( and C in R, E∗(8, C) denotes the minimum expected
cost (over all strategies) incurred by the player up to time C , by starting in state 8 at the instant 0:

E∗(8, C) B inf
5 ∈F
E
5

8

( #̂C∑
:=0

2̂:

)
, (3.5)

where #̂C is the random variable from �∞ to N such that for all ℎ in �∞

#̂C (ℎ) B sup
{
= ∈ N | B̂= (ℎ) =

∑=−1
:=0 Ĉ: (ℎ) 6 C

}
,

since the cost 2̂= is incurred at time B̂= , therefore we count only costs collected up to epoch #̂C
included. In the MDP case where all sojourn times equal one, we retrieve for any integer-valued
epoch C in N that #̂C = C . By convention on empty sums, remark that the equation (3.5) implies
E∗(8, C) = 0 for all 8 in ( and C < 0, so we shall mainly focus on cases where C > 0.

The value function E∗ can be thought of as the most elementary and basic cost criterion that a
decision-maker would like to minimize. Alternatively, as announced in Section 2.1, the model can
be enriched by several aspects leading to alternative cost criteria. To begin with, recall that we can
take discount factors in consideration. Collecting the discount factor W > 0 at epoch = in N means
that all the future costs (2: ):>= will be multiplied by W to the eyes of the player. Since in general
we take W 6 1, it often amounts to have a preference for some gain in the present than the same
gain in the future, and we customarily say that discounted models lead to short-sighted choices
(important costs in the future finally do not matter much if shrunk by discount factors). Note that
the effect is cumulative, in the sense that the real cost 2= incurred at epoch = will in fact weigh
W00W01 · · ·W0=−12= for the player. On the model of (3.5), we can then introduce the discounted value
function E∗W , such that for all 8 in ( and C in R

E∗W (8, C) B inf
5 ∈F
E
5

8

( #̂C∑
:=0

( :−1∏
ℓ=0

Ŵ:

)
2̂:

)
. (3.6)

The value function E∗, that we may also call “undiscounted value function” can be seen as a
particular case of the discounted value function E∗W . For the sake of generality, we will state results
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on both undiscounted and discounted value functions until the end of Section 2.6. From Section 2.7
onwards, we will only focus on undiscounted settings.

Another modification of the cost criterion occurs when the player has to pay a terminal cost
when the game ends, i.e., when the planning horizon C is exceeded. Indeed, remark that a last
action is chosen at epoch #̂C (equivalently at physical time B̂

#̂C
6 C ), and therefore a last action

cost 2̂
#̂C

is incurred, which makes the player arrive in a last state 8̂
#̂C+1 at physical time B̂

#̂C+1 > C .
At this point, no more action can be pulled since the horizon has been crossed, but we can still
take into account a last payment F ( 8̂

#̂C+1) that represents the cost of terminating the game in
state 8̂

#̂C+1. A low (resp. high) value of F (8) for 8 in ( would encourage (resp. discourage) the
player to finish his/her ride in 8 and consequently modify the endgame strategy. It is in fact also
reasonable to allow this last payment to depend upon the overshooting B̂

#̂C+1 − C of the horizon,
in order to penalize or reward the fact of exceeding C by far. This leads to the definition of the
value function E∗F with terminal costF for all 8 in ( and C in R:

E∗F (8, C) B inf
5 ∈F
E
5

8

( #̂C∑
:=0

2̂: +F
(
8̂
#̂C+1, C − B̂#̂C+1

) )
(3.7)

whereF is a function of [−Cmax, 0) → R( and Cmax B max0∈�{C0} is the greatest sojourn time of
the SMDP (remark indeed that −Cmax 6 C − B̂#̂C+1 < 0). Up to slightly changing the definition of

#̂C , we can convene that when C < 0, we have #̂C B −1 so that E∗F andF coincide on [−Cmax, 0).
Criteria of the form (3.7) were already considered by Yushkevich [Yus82].

A final modeling aspect frequently found in stochastic control problems is the possibility to
stop the game prematurely (see for instance [Zuc78] in the semi-Markov case), meaning, at some
given epoch" in N, to decide not to pull any action in �8̂" , and consequently to stop incurring
costs of actions, but in exchange paying the stopping cost (or leaving cost) '( 8̂" , C − B̂" ). Here
again, it makes sense that this stopping payment depends on the remaining time of the game
C − B̂" , so that it accounts not only for an abandonment penalty in state 8 but also for a penalty of
undershooting with respect to the horizon, and we can then discourage the player to abandon the
game too early. The associated total cost criterion is the value function E∗

'
with stopping costs ',

defined for all 8 in ( and C in R (and denoting by ∧ the minimum operand between two numbers)
by

E∗' (8, C) B inf
5 ∈F
" ∈N

E
5

8

( #̂C∧("−1)∑
:=0

2̂: + '
(
8̂" , C − B̂"

) )
, (3.8)

where ' is a function from [0,∞) to (R∪ {∞})( . Having '(8, C) = ∞ for some state 8 in ( formally
means that is the player cannot stop the game in state 8 if it remains C units of time to play.

As frequently done in the MDP and sometimes in the SMDP literature, the discount factors,
the terminal costs and the stopping costs can merrily be combined together. We shall not focus
specifically on every one of the eight possible combinations, but we reckon it is worth writing
the formal definition of the value function E∗

F,'
with terminal and stopping costs. By definition,

the player can stop the game only if the latter is not already terminated, so that we have for all 8
in ( and C in R

E∗F,' (8, C) B inf
5 ∈F
" ∈N

E
5

8

( #̂C∧("−1)∑
:=0

2̂: + F
(
8̂
#̂C+1, C − B̂#̂C+1

)
1
">#̂C

+ '
(
8̂" , C − B̂"

)
1
"6#̂C

)
. (3.9)
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The Example 3.10 below will in particular illustrate this definition and explain why it is well-
founded relatively to our model. We simply mention the most general cost criterion allowed
by our framework, the value function E∗

W,F,'
with discount factors, terminal and stopping costs

defined by

E∗W,F,' (8, C) B inf
5 ∈F
" ∈N

E
5

8

( #̂C∧("−1)∑
:=0

W [:−1]2̂: +W [#̂C ]F
(
8̂
#̂C+1, C−B̂#̂C+1

)
1
">#̂C

+W [" ]'
(
8̂" , C−B̂"

)
1
"6#̂C

)
with for short W [: ] B W00W01 · · ·W0: . The elementary value function E∗ is recovered from E∗

W,F,'
by

letting W0 = 1 for all 0 in �,F = 0 and ' = ∞.

Example 3.10. We illustrate in Figure 3.3 three trials resulting from playing the game
described by the SMDP of Figure 3.2. These histories can for instance be obtained by applying
the randomized and stationary strategy that selects from each state one of its two playable
actions with a fifty-fifty probability. We suppose that the game has to be played in finite
horizon C = 8 units of time (typically seconds) and always starts in state 3.

C B 8 s

F (2, 1)' (2, 4)

3 2 1

2

1

3

2

031
021

011

021

012

032

First trial, #̂C = 5

F (2, 2)' (1, 3)

3 3 2 1

2

2

1

3

2

031 031
021

011

022
021

012

032

Second trial, #̂C = 7

F (1, 2)' (3, 3)

3 2 1

3

2 1

032
021

012

032
021

Third trial, #̂C = 4

0 1 2 3 4 5 6 7 8 9 10
B

0 1 2 3 4 5 6 7 8 9 10
B

0 1 2 3 4 5 6 7 8 9 10
B

Figure 3.3: Three trials resulting from playing the SMDP of Figure 3.2
in finite-horizon

In the first trial, the player begins by pulling the action 0̂0 = 031 from state 8̂0 = 3, hence
incurs a cost of 2̂0 = −4, waits Ĉ0 = 1 second and goes to state 8̂1 = 2. He/she activates the
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action 0̂1 = 021, pays 2̂1 = 1, waits Ĉ1 = 3 and arrives in state 8̂2 = 1 at time B̂2 = Ĉ0 + Ĉ1 = 4. The
game goes on, with sometimes moves achieved in null sojourn times, so that the physical time
does not progress (here we have B̂3 = B̂2 because Ĉ3 = 0). When the player is in state 8̂5 = 3 at
epoch 5, he/she plays the action 0̂5 = 032, incurs a cost 2̂5 = 0 and arrives in state 8̂6 = 2 at
the physical time B̂6 = 9. Because the sixth epoch is the first to strictly exceed the planning
horizon, we have #̂C = 5.

If the terminal costF is taken into account, the player has to pay the terminal costF (2, 1),
since the game stopped in state 2 with an overshoot of 1 unit of time. The total cost of this
trial is

∑5
:=0 2̂: +F (2, 1) = 3 +F (2, 1). Alternatively, the player may have preferred to stop

playing at epoch " = 3 from state 8̂3 = 2 at physical time B̂3 = 4, i.e., keeping his/her gains∑2
:=0 2̂: , not choosing actions any further, but paying the cost '(2, 4) for stopping C − B̂3 = 4

units of time before the planned end of the game in state 2, which represents a total cost of
−1 + '(2, 4) for the trial.

Two other trials of the game are presented. We let the reader check that they are respec-
tively such that #̂C = 7 and #̂C = 4. These three sample trials would all intervene (weighed by
suitable probabilities) in the computation of E∗

F,'
(3, 8), the minimum expected cost of playing

the game in horizon C = 8 and starting from state 3 knowing that there are terminal costsF
and stopping costs '. Observe also that for the second trial, there are three visited states at
the physical time B = 5, owing to two moves in null time.

2.4 EXISTENCE OF THE VALUE FUNCTIONS IN PRESENCE OF NULL SOJOURN TIMES. —
In the SMDP literature, most authors either suppose that the sojourn times of the game are
deterministic and all positive, or if they are stochastic that we always have a positive probability
Y to draw sojourn times greater than a positive value X . An originality of our setting is that we
have chosen in Section 2.1 to work with deterministic and nonnegative sojourn times (C0)0∈�,
therefore allowing “always null” times. This automatically questions the well-posedness of the
value functions introduced previously, even for the basic definition of E∗ in (3.5). Indeed if too
many zero sojourn times are encountered for some history, we may accumulate infinitely many
costs in a null time period (based on Figure 3.3, imagine states piling up indefinitely for some
physical instant). In addition these costs can be either nonnegative or nonpositive, so it may
lead to an infinite sum that fails to have a limit. We shall refer to this undesirable phenomenon
as the Zeno behaviour for SMDPs. Note that it is totally specific to the semi-Markov case, with
no equivalent issue in the MDP framework. If we work with E∗W in the discounted setting, this
effect may in some cases be counterbalanced by the geometric shrinking brought by discount
factors when they are smaller than one. On the other hand, discount factors greater than one
worsen the problem since the weight of costs incurred in zero time increases. Observe that as far
as the well-posedness of the criteria is concerned, the terminal or stopping costs do not cause any
particular difficulties, therefore we focus only on E∗ and E∗W in this section.

To prevent Zeno behaviours, we shall restrict ourselves to the SMDPs verifying adequate
non-Zeno conditions. The Assumption A that follows will be used to tackle the undiscounted
problem. Its statement only uses the concept of policies introduced in the beginning of Section 2.2
and basic tools from the field of Markov chains (see Section 1.3, and recall that policies induce
Markov chains over the state space ().

) Assumption A. For all policies f inS, for all final classes � of the Markov chain induced by f ,
there is at least one state 8 in � with Cf (8) > 0, i.e. with positive sojourn time attached to the chosen
action f (8) from 8 .
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This assumption, milder than imposing a positive sojourn time for all actions of the game, is
the same as the one that Schweitzer and Federgruen considered in their study [SF78] of an
average-cost criterion for SMDPs. However, to our knowledge, it was never used to show the
well-posedness of the finite-horizon value (3.5). The core idea behind Assumption A is that when
we apply a policy f , we end up only visiting the states of some final class of the Markov chain
induced by f , and we want to rule out the possibility that this irreducible final chain is travelled
through in zero time. What happens before reaching a final class is actually not relevant for the
well-posedness of the value function, since from Proposition 3.7, this phase is expected to last
only for a finite number of steps.

Until the end of this subsection, we are going to show that under Assumption A, we have
sup5 ∈F E

5

8
(#̂C ) < ∞, so that the quantity E∗(8, C) in (3.5) is finite for all 8 in ( and C in R (recall

that we work in a model where there is a finite number of actions with real costs, hence it suffices
to control E5

8
(#̂C ) to bound E5

8
(∑#̂C

:=0 2̂: )). The more general case of E∗W will be addressed in a
second phase. The main challenge is to control the Zeno actions, that is to say actions in the
set �/ B {0 ∈ � | C0 = 0} which do not make the physical time progress. Alternatively, the
state space ( of the SMDP can be partitioned into two sets (/ and (#/ , respectively the possibly
Zeno states, so that (/ B {8 ∈ ( | ∃0 ∈ �8 , C0 = 0} and the necessarily non-Zeno states
(#/ B {8 ∈ ( | ∀0 ∈ �8 , C0 > 0}. Intuitively, for Zeno behaviours to be prevented, it suffices that
states of (#/ are “positive recurrent” (in a sense similar to Section 1.1, meaning that they have
finite average return times).

Instead of tackling the problemwith probabilistic tools only, we choose to develop an approach
that stays close from the initial SMDP, with a couple of intermediary results that although
sometimes technical do highlight the difficulties of handling null sojourn times and in this light
shall be reused later. Our proof begins by considering an auxiliary undiscounted Markov Decision
Process (in which neither the time nor the discount factors are taken into account) with larger
state space and equipped with a layered structure. We formally introduce it in the following
paragraphs, and illustrate our construction in Figure 3.4, by representing the layered MDP built
from the SMDP of Figure 3.2.

Let  be a positive integer, and define for all : in {1, 2, . . . ,  } the states of the :-th layer:

( (:) B
{
8
(:)
1 , 8

(:)
2 , . . . 8

(:)
|( |

}
.

We may think of all these layers as exact copies of the initial state space ( of our SMDP. Conse-
quently, we have natural projections (c: : ( (:) → ()16:6 mapping a state of any layer to the
state of ( from which it is derived (we shall drop the index : and only denote these projections by
c when nonambiguous). We also introduce a cemetery state denoted by ⊥, so that the complete

state space (̃ of our new MDP writes (̃ B
( ⋃ 

:=1 (
(:)

)
∪ {⊥}. The decomposition of ( between

possibly Zeno states and necessarily non-Zeno states carries over to the layers (( (:) )16:6 and
we shall later use the partitions ( (:) = ( (:)

/
∪ ( (:)

#/
for all : in {1, 2, . . . ,  }.

We impose that from the cemetery state, only one action0⊥ can be pulled (and then �̃⊥ = {0⊥}).
From any other state 8 (:) within the :-th layer, the player can pick exactly as many actions as in
�c (8 (: ) ) :

�̃8 (: ) B
{
0
(:)
1 , 0

(:)
2 , . . . 0

(:)
|�

c (8 (: ) ) |

}
.

Similarly to the states, the actions of the original SMDP are here copied  times, so that each
layer has the same state-action structure than the SMDP. Once again there are natural projections
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Layer 1

Layer 2

Layer K

Cemeterylayer

8 (1)1

8 (1)2

8 (1)3

0 (1)
11

0 (1)
12

0 (1)
21

0 (1)
22

0 (1)
31

0 (1)
32

1/3
2/3

1/2
1/2

2/5
3/5

8 (2)1

8 (2)2

8 (2)3

0 (2)
11

0 (2)
12

0 (2)
21

0 (2)
22

0 (2)
31

0 (2)
32

1/3
2/3

1/2
1/2

2/5
3/5

8 (3)1

8 (3)2

8 (3)3

0 (3)
11

0 (3)
12

0 (3)
21

0 (3)
22

0 (3)
31

0 (3)
32

1/3
2/3

1/2
1/2

⊥
0⊥

Figure 3.4: The layered MDP corresponding to the SMDP of Figure 3.2
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from these newly created sets of playable actions towards those of the original SMDP, and for the
sake of simplicity we still denote these maps by c .

For all 8 (:) in ( (:) , the transition probabilities (?09 ) 9 ∈(̃ governing the evolution towards other

states of (̃ after playing action 0 in �̃8 (: ) are defined by

if Cc (0) > 0, then ?09 B


?
c (0)
c ( 9) if : <  and 9 ∈ ( (:+1)

1 if : =  and 9 = ⊥
0 otherwise

if Cc (0) = 0, then ?09 B

{
?
c (0)
c ( 9) if 9 ∈ ( (:)

0 otherwise

and finally ?0⊥⊥ = 1 (the cemetery state is absorbing).

In other words, all actions in the new game derived from Zeno actions in the original SMDP
make the player stay in the current layer, while picking some new action derived from a non-Zeno
initial action forces to dive into the next layer (and to join the cemetery state if already in the  -th
layer). We attach unit rewards A0 B 1 to all the actions 0 in �̃ \ {0⊥} of this new MDP except in
the cemetery state ⊥ where we impose that no more rewards can be earned, hence A0⊥ B 0.

Observe that the admissible trajectories associated with this new layered game correspond to
histories of the initial SMDP, until potentially hitting ⊥ after which a single action can be chosen,
so the strategies of the original game precisely induce all the strategies of the new one. Since any
5 in F and initial state 8 in (̃ define a random process (8, 0̂0, Â0, 8̂1, 0̂1, Â1, . . . ), we can introduce the
vector # [ ] of R(̃>0 where

for all 8 in (̃, # [ ] (8) B sup
5 ∈F
E
5

8

( ∞∑
:=0

Â:

)
. (3.10)

Because Â: = 1 if and only if we are not in the cemetery layer, # [ ] (8) can be interpreted as the
maximum (over all strategies) expected number of moves to play before reaching ⊥ by starting
in state 8 of (̃ . If there is a strategy for which ⊥ is never attained, it implies # [ ] (8) = ∞. The
following lemma explains how # [ ] is tied to our problem of controlling the quantity E5

8
(#̂C ) for

the original SMDP. We denote by Cmin the smallest positive sojourn time of this SMDP, that is,
Cmin B min{C0 | 0 ∈ �, C0 > 0}.

) Lemma 3.11. Let C > Cmin and denote  B dC/Cmine. We have for all 8 in ( that

# [1] (8 (1) ) 6 sup
5 ∈F
E
5

8
(#̂C ) 6 # [ ] (8 (1) ) ,

where the second inequality actually holds for all C > 0.

Proof. From what precedes, we understand that for all 8 in ( and : in {1, 2, . . . ,  }, the quantity # [ ] (8 (:) )
gives in the original SMDP the maximum expected number of moves starting from 8 and before performing
 + 1 − : non-Zeno moves.

In particular for any admissible trajectory of the process, the number #̂C of moves performed in this original
SMDP before exceeding a total physical elapsed time C must be less than the number of moves before
pulling  non-Zeno actions (costing a total time of at least  Cmin > C units of time), hence the second
inequality. On the other hand if C > Cmin, it requires to pull at least one non-Zeno action before possibly
exceeding a total physical elapsed time of C , hence the first inequality. s
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Let us denote by S̃ B
∏
8∈(̃ �̃8 the set of policies in our new layered MDP. Similarly to the original

SMDP, for all policies f̃ , the matrix with entries (?f̃ (8)
9
)
8, 9 ∈(̃ is denoted by % f̃ . It is interesting to

remark that up to reordering the states of (̃ , any % f̃ has the form

©«

ª®®®®®®®®®®®®®®®®®®®®®®®®®¬

%
(1)
/,/

%
(1)
/,#/

&
(1)
/,/

&
(1)
/,#/

· · · 0 0 0 (
(1)
/

0 0 %
(1)
#/,/

%
(1)
#/,#/

· · · 0 0 0 (
(1)
#/

0 0 %
(2)
/,/

%
(2)
/,#/

· · · 0 0 0 (
(2)
/

0 0 0 0 · · · 0 0 0 (
(2)
#/

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · %
( )
/,/

%
( )
/,#/

&
( )
/,⊥ (

( )
/

0 0 0 0 · · · 0 0 1 (
( )
#/

0 0 0 0 · · · 0 0 1 ⊥

(
(1)
/

(
(1)
#/

(
(2)
/

(
(2)
#/

· · · (
( )
/

(
( )
#/

⊥

where all the blocks depend on f̃ . Indeed, we already justified that playing actions from necessarily
non-Zeno states forces to join the next layer, while playing actions from possibly Zeno states can
either result in staying on the current layer (if a Zeno action is chosen) or going to the next one
(otherwise).

To show finiteness of the (# [ ] (8 (1) ))8∈( , let us first introduce the self-map � of R(̃\{⊥} by

for all G in R(̃\{⊥}, �(G) B 1 +max
f̃ ∈S̃

{
% f̃

��
((̃\{⊥})×((̃\{⊥}) G

}
, (3.11)

where the maximum is taken componentwise. We have the following:

) Lemma 3.12. The vector # [ ] with its ⊥-coordinate dropped is a fixed-point of �:

# [ ]
��
(̃\{⊥} = �

(
# [ ]

��
(̃\{⊥}

)
.

Proof. We recognize in (3.10) an expected total reward as defined in [Put14, Section 7.1.1]. All the rewards
are nonnegative so [Put14, Theorem 7.1.3] applies and we know that # [ ] verifies the optimality equation

# [ ] = max
f̃ ∈S̃

{
A f̃ + % f̃# [ ]

}
, (3.12)

Remark that the vector A f̃ does not actually depend on f̃ ∈ S̃ (it has only unit components except on the
last coordinate where it is null). By the definition (3.10), we know that # [ ] (⊥) = 0. This last fact gives(
% f̃# [ ]

) ��
(̃\{⊥} = %

f̃
��
((̃\{⊥})×((̃\{⊥})#

[ ] ��
(̃\{⊥} , hence the result of the lemma using (3.12). s

The Lemma 3.12 does not show that # [ ] has finite entries, however it prompts us to focus on the
properties of the operator � instead. The latter belongs to the wider class of piecewise-affine maps,
and the following proposition, resulting from operator-based and nonlinear Perron–Frobenius
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techniques of [AGN11, AGQS19] provides a sufficient condition for such maps to be contractions
in weighted sup-norm, and therefore to admit unique fixed-points. Recall that for D in R=>0, the
application ‖ · ‖D : G ↦→ sup1686= |G8/D8 | is a norm over R= , referred to as the weighted sup-norm
associated with D. Recall also that for 0 6 _ < 1 that a self-map � over R= is a _-contraction
relatively to the norm ‖ · ‖ if for all G and ~ in R= , we have ‖� (G) − � (~)‖ 6 _‖G − ~‖. Weighted
sup-norm contractions play a central role in dynamic programming, see for instance the review
of Bertsekas [Ber12c].

) Proposition 3.13. Let = in N∗ and let E be a finite set. Let (� (:) ):∈E be matrices of R=×=>0
and (3 (:) ):∈E be vectors of R= . We introduce the following two piecewise-affine self-maps of R= :

for all G in R=, �max(G) B max
:∈E

{
� (:)G + 3 (:)

}
and �min(G) B min

:∈E

{
� (:)G + 3 (:)

}
,

where the maximum and the minimum operate componentwise. For (:1, . . . , :=) in E= , we denote
by � (:1 · · ·:=) the (= × =)-matrix whose 8-th row is given by the 8-th row of � (:8 ) .

If all matrices (� (:1 · · ·:=) ) (:1,...,:=) ∈E= have a spectral radius strictly less than one, then there
exists _ in [0, 1), and D in R=>0 such that �max and �min are _-contracting in weight sup-norm ‖ · ‖D ,
and thus both �max and �min admit a (unique) fixed-point in R= .

Proof. We suppose that for all (:1, · · · , :=) in E= , we have d
(
� (:1 · · ·:=)

)
< 1 and we want to show that

�max and �min admit a fixed-point.

We first introduce the homogeneous part �̌max (resp. �̌min) of operator �max (resp. �min) defined by
�̌max (G) B max:∈E {� (:)G} (resp. �̌min (G) B min:∈E {� (:)G}) for G in R= . We want to apply [AGQS19,
Theorem 1], which claims that for _ > 0 and D ∈ R=

>0, the order-preserving operator �max (resp. �min) of
R= is _-contracting in weighted sup-norm ‖ · ‖D if and only if �̌max (D) 6 _D (resp. �̌min (D) 6 _D). Actually,
since for all G in R=>0, we have 0 6 �̌min (G) 6 �̌max (G), we shall just focus on �̌max in what follows.

Although it is not linear (as a supremum of linear maps), we may define a notion of spectral radius for
�̌max by

d (�̌max) B sup
{
_ > 0

�� ∃G ∈ R=>0 \ {0}, �̌max (G) = _G
}

Since all the maps G ↦→ � (:)G are order-preserving on R=>0, we obtain according to [AGN11, Proposition
8.1] that

d (�̌max) = max
(:1,...,:=) ∈E=

d
(
� (:1 · · ·:=)

)
.

(indeed, to satisfy the selection property needed in [AGN11, Proposition 8.1], we must here take into
account all the matrices with rows shuffled).

Therefore, our initial assumption entails that d (�̌max) < 1. However, from the generalized Collatz–Wielandt
theorem (see [AGN11, Theorem 1.1]), it also holds that

d (�̌max) = inf
{
_ > 0

�� ∃G ∈ R=>0, �̌max (G) 6 _G
}
,

so by taking a specific _ in [d (�̌max), 1), we know that there exists a positive vector D such that 0 6
�̌max (D) 6 _D. From our previous bound on �̌min and by applying [AGQS19, Theorem 1], we conclude
that the (no longer homogeneous) operators �max and �min are _-contracting in the weighted sup-norm
relative to D with 0 6 _ < 1. It immediately follows that both of them admit a (unique) fixed-point in R=

by usual iterating schemes on contraction mappings. s

Building on Proposition 3.13, we can now connect the properties of � together with the transition
matrices of our layered MDP and of our initial SMDP, to finally go back to the Assumption A. It
stands out here that what matters to avoid Zeno behaviours is to have contraction properties of
the policies’ transition matrices on the possibly Zeno states, while no restrictions are needed on
the necessarily non-Zeno states.
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) Proposition 3.14. The following are equivalent:

(1) the operator � admits a (unique) finite positive fixed-point,

(2) for all f̃ in S̃, d
(
% f̃

��
((̃\{⊥})×((̃\{⊥})

)
< 1,

(3) for all f inS, d
(
%f

��
(/×(/

)
< 1,

(4) the conditions of Assumption A are fulfilled.

Proof. The implication (1) =⇒ (2) is an application of Proposition 3.13 to the particular case of the operator
� defined in Lemma 3.12, observing that working with policies causes the collection (% f̃ )

f̃ ∈S̃ to already
contain all the matrices that can be constructed by the row-selection procedure. The unique fixed-point
G of � must first lie in R=>0 since it can be obtained as the limit of a sequence of nonnegative vectors

of type (�= (0))=∈N. But more precisely, G must be in R=
>0, since there exists a policy f̃ ∈ S̃ such that

G = 1 + % f̃
��
((̃\{⊥})×((̃\{⊥})G .

We prove (2) =⇒ (1) by supposing that � admits a finite positive fixed-point G and assuming by contradiction
that there is a particular f̃ in S̃ such that d

(
% f̃

��
((̃\{⊥})×((̃\{⊥})

)
= 1. By Lemma 3.5, the latter matrix

contains a stochastic square submatrix, which then admits an invariant measure (i.e., a nonnegative left
eigenvector for the eigenvalue 1). Up to completing this invariant measure with zeroes, we can construct a

nonnegative left eigenvector ` ∈ R(̃\{⊥}>0 for the value 1 for % f̃
��
((̃\{⊥})×((̃\{⊥}) . On the other hand, the

fixed-point property guarantees that

G > % f̃
��
((̃\{⊥})×((̃\{⊥})G + 1 .

Taking the dot-product with the nonnegative vector ` on both sides leads to `) G > `) G + `) 1, and thus
0 > 1 hence the contradiction.

To obtain (2) ⇐⇒ (3), we remark for example by computing the characteristic polynomial of the big
triangular matrix written before the Lemma 3.12 that for f̃ ∈ S̃, we have by denoting (f1, . . . , f ) ∈ S 

the restrictions of f̃ to layers (( (:) )16:6 that

d
(
% f̃

��
((̃\{⊥})×((̃\{⊥})

)
= max

16:6 
d
(
%
(:)
/,/

)
= max

16:6 
d
(
%f:

��
(/×(/

)
,

and as a result
max
f̃ ∈S̃

d
(
% f̃

��
((̃\{⊥})×((̃\{⊥})

)
= max
f ∈S

d
(
%f

��
(/×(/

)
.

The equivalence (3) ⇐⇒ (4) follows from Lemma 3.5 (with � = (/ ) since by negating its claim for all
policies we have

∀f ∈ S, d
(
%f

��
(/×(/

)
< 1 ⇐⇒ ∀f ∈ S, ∀� ∈ F (f), � ⊄ (/ ,

the last assertion corresponding exactly to any final class of any policy having at least one positive sojourn
time, that is to say, Assumption A. s

The previous results allow us to conclude on the well-posedness of E∗ in (3.5). It also covers the
case of the undiscounted value functions with terminal or stopping costs defined with (3.7), (3.8)
and (3.9). Interestingly, the following theorem shows that Assumption A cannot be weakened.

) Theorem 3.15. The undiscounted value function E∗ is well-defined if and only if Assumption A
holds.

Proof. Suppose that Assumption A holds. Then, by Proposition 3.14, the operator � defined by (3.11) admits
a unique positive fixed-point, which is finite. However, Lemma 3.12 tells us that this fixed-point coincides
with # [ ]

��
(̃\{⊥} . It follows that # [ ] is finite for all  in N∗. The Lemma 3.11 therefore guarantees for all

8 in ( and C > 0 that sup5 ∈F E
5

8

(
#̂C

)
< ∞.

Conversely, if Assumption A is not verified, we reuse Proposition 3.14 to conclude that # [1] must have
non-finite value on some coordinate 8 in ( . Lemma 3.11 entails that for the same 8 and some C > Cmin we
have sup5 ∈F E

5

8

(
#̂C

)
= ∞. s
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When working with the discounted value function E∗W , the quantity that should stay finite is no

longer sup5 ∈F E
5

8

(
#̂C

)
but sup5 ∈F E

5

8

( ∑#̂C

:=0

∏:−1
ℓ=0 Ŵ:

)
. If some of the discount factors (W0)0∈� are

bigger than one, this is not implied by Assumption A. Building on the complete line of proof
of Theorem 3.15, we can thus propose a stronger assumption for the general discounted case. For
a policy f inS, we will use the notation Γf B diag

(
(Wf (8) )8∈(

)
.

) Assumption B. For all policies f inS, we have d
(
(Γf%f )

��
(/×(/

)
< 1.

The Assumption B cannot be interpreted simply in terms of sojourn times in the same way
as Assumption A, because it deals with the mixed effect of these sojourn times and the discount
factors. However, it stills constrains the choice of the parameters only on possibly Zeno states,
that is to say (/ . We have a result equivalent to Theorem 3.15 in the discounted case:

) Theorem 3.16. The discounted value function E∗W is well-defined if and only if Assumption B holds.

Proof. It suffices to adapt the whole reasoning carried out for E∗. We still work with an auxiliary layered
MDP but this time with discount factors derived from the original SMDP. The criterion (3.10) has to be
replaced by

for all 8 ∈ (̃, # [ ] (8) B sup
5 ∈F
E
5

8

( ∞∑
:=0

( :−1∏
ℓ=0

Ŵ:

)
Â:

)
,

in which case (3.12) becomes # [ ] = max
f̃ ∈S̃

{
A f̃ +

(
Γf̃% f̃

)
# [ ]

}
. The contraction properties of the(

(Γf%f )
��
(/×(/ )f ∈S are then used in lieu of those of the

(
%f

��
(/×(/ )f ∈S before. s

2.5 COMPUTING THE VALUE FUNCTION. — The definitions of type (3.5) and (3.6) are of little
use in practice. On the contrary, and as customarily done in dynamic programming, it is fruitful
to exploit a set of recursive optimality equations that the value functions satisfy. Although a
great part of the SMDP literature deals with infinite-horizon problems, such equations for the
finite-horizon case were for instance stated in [Jew63, DC64, Sch80, Yus82] for varied models.
These authors do not establish the optimality equations in the particular presence of deterministic
zero sojourn times, and it will be the object of Corollary 3.19 to show that the undiscounted value
function E∗ satisfies the equations (DP):

∀C > 0, ∀8 ∈ (, E (8, C) = min
0∈�8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C0)
}
, (DP)

and that the discounted value function E∗W satisfies the equations (DP-W ):

∀C > 0, ∀8 ∈ (, EW (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 EW ( 9, C − C0)
}
. (DP-W )

The dynamic programming equations (DP) tell us that the minimum expected cost E∗(·, C) that
we can incur in horizon C is related to the same quantity at prior horizons (E∗(·, C − C0))0∈� in
a “one-step-of-the-game” fashion. Indeed, for 8 in ( , E∗(8, C) is given by choosing among all the
actions of �8 an action 0 that minimizes the immediate cost 20 on top of a “terminal” cost that is
the expectation

∑
9 ∈( ?

0
9 E
∗( 9, C − C0) of the cost subsequent to the choice of 0. The same goes for

E∗W where the terminal part gets discounted by W0 .
In the (undiscounted) Markov decision process setting (C0 = 1 for all 0 in �), the optimality

equations are conveniently written under vector form and using policies as:

∀C ∈ N, E (C) = min
f ∈S

{
2f + %f E (C − 1)

}
, (DP-MDP)
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where E (C) B (E (8, C))8∈( . On the contrary, the distinct sojourn times considered in the semi-
Markov case lead to some asynchronicity phenomena, which prevents us from writing such a
compact formula.

Optimality equations can be applied recursively in order to “go back in time” as long as
nonnegative physical instants are involved (note indeed that these equations are only valid
for C > 0). It is instructive to study how the nature of the sojourn times (C0)0∈� affects the
computation effort needed to obtain a solution E of (DP). For example, the equation (DP-MDP)
shows for MDPs that for all C in N, E (C) is entirely determined by E (C − 1). The vector E (C) can
thus be computed from E (−1) by applying C + 1 times the so-called Bellman operator ) , which is
the self-map of R( defined by

∀G ∈ R( , ) (G) B min
f ∈S

{
2f + %f G

}
. (3.13)

According to the discussion following the introduction of the criterion E∗F in Section 2.3, remark
that the vector E (−1) coincides with a terminal cost vector, although it is here used as the initial
condition for applying the dynamic programming method and recover E (C) = ) C+1(E (−1)) (as
usual with this type of methods, see for instance [Ber12b]). This computational technique is
known as the value iteration algorithm.

In the case where the sojourn times take positive integer values, the decision epochs still
lie in N, but stricto sensu, we leave the MDP setting owing to the non-uniformity of the (C0)0∈�.
However, we can easily reduce to it by considering an augmented vector of the form Ẽ (C) B
(E (C), E (C − 1), E (C − 2), . . . , E (C − Cmax + 1)), where Cmax denotes the maximal sojourn time. This
way, Ẽ (C) is determined by Ẽ (C − 1), and we can apply a MDP-type scheme in larger dimension;
in particular we shall eventually need to know the terminal costs E (−1), E (−2), …, E (−Cmax),
corresponding to overshooting a planning horizon for respectively 1, 2, …, Cmax units of time.
Going a step further, if the sojourn times took positive rational values and � denoted the least
common multiple of denominators of the (C0)0∈�, we could still apply the MDP iterative technique
to a large vector Ẽ (C) = (E (C − :/�))06:<�Cmax by steps of �−1 for all C in �−1N, and any value of
E (C) could be determined by the “sole” knowledge of the (E (−:/�))16:6�Cmax .

When sojourn times take arbitrary nonnegative real values though, we find ourselves in
a “proper” semi-Markov framework where we cannot resolve to finite dimension settings of
the previous forms. Indeed, computing E over an interval of R>0 using (DP) iteratively will in
general require the knowledge of E over the whole interval [−Cmax, 0) as an initial condition of
the method; even computing E (C) only for all admissible decision epochs C requires to know
E over [−Cmax, 0) ∩

∑
0∈� C

0Z, that is in general a dense set, and quite equivalent to [−Cmax, 0)
itself if we impose elementary regularity conditions on E . This motivates the introduction of an
infinite dimensional space that is more natural to work with, namely the spaceV of bounded
|( |-dimensional vector functions over [−Cmax, 0). For the sake of simplicity we will also suppose
that these functions are piecewise-continuous. These functions shall act as initial conditions for
computing a solution of (DP) (or (DP-W )) iteratively, but they are in fact terminal cost functions as
discussed in Section 2.3.

The following proposition shows that, given such an initial condition inV , there is a unique
“trajectory” satisfying the dynamic programming equations (either undiscounted or discounted).
The challenge again comes from the presence of null sojourn times in our model. Indeed, the
equations (DP) and (DP-W ) that are usually explicit turn out to be implicit if for some 8 in ( we
have 0 in �8 such that C0 = 0, meaning that components of E (C) appear on both sides of some
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equation. We tackle this issue by building on contraction properties (in weighted sup-norm)
similar to those used to demonstrate Theorem 3.15.

Recall from Chapter 1 that a function of a real variable is càdlàg if it is right-continuous and
has left-limits everywhere.

) Proposition 3.17. Let E0 be an initial condition in V . Under Assumption A, there is a unique
function E defined on [−Cmax,∞) with values in R( satisfying the dynamic programming equa-
tion (DP) and E (C) = E0(C) for all C in [−Cmax, 0). In addition, if E0 is càdlàg (resp. piecewise-constant,
piecewise-affine), then E is càdlàg (resp. piecewise-constant, piecewise-affine).
The same is true replacing (DP) by (DP-W ) and Assumption A by Assumption B.

Proof. We show the result for the discounted value function E∗W under Assumption B, since it also proves
the result for E∗ by setting the discount factors to one.

Our line proof is it to show correctness of the following inductive scheme: “let C0 > 0, if E is known on
[−Cmax, C0), then E is uniquely determined on [C0, C0 + Cmin)”, since it suffices to apply this reasoning step by
step for C0 ∈ CminN to prove the proposition.

Suppose then that C0 > 0 is fixed and E is known on [−Cmax, C0). Let C ∈ [C0, C0 + Cmin) be a fixed instant as
well. We reuse the partition of the state space ( = (/ ] (#/ introduced in the Section 2.4. We shall also
denote �8,/ B {0 ∈ �8 | C0 = 0} ≠ ∅ the set of Zeno actions playable from 8 if 8 is in (/ .

If 8 ∈ (#/ , E (8, C) is explicitly determined by the knowledge of E on [−Cmax, C0) and the (DP-W ) equation

E (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}
, (3.14)

for by definition, all the (C0)0∈�8
are positive and greater than Cmin, consequently the (C − C0)0∈�8

lie in
[−Cmax + C0, C0). However, the restriction E/ (C) B (E (8, C))8∈(/ of E to states of (/ is solution of the implicit
equation

E/ (C) = iC (E/ (C)) B min
(
�/,C (E/ (C)) , 1C

)
,

where we have

for all 8 ∈ (/ ,
[
1C
]
8
B min

0∈�8\�8,/

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}
,

for all 0 ∈
⊎
8∈(/

�8,/ , 20C B 20 + W0
∑
9 ∈(#/

?09 E ( 9, C) , and

for all 8 ∈ (/ ,
[
�/,C (G)

]
8
B min

0∈�8,/

{
20C + W0

∑
9 ∈(/

?09 G 9

}
.

Observe that 1C actually depends upon C only via positive time-delays, and so do the (20C ) because we can
reinject expressions previously computed for states of (#/ . Therefore, they are explicitly determined by
the knowledge of E on [−Cmax, C0) as well. We keep the index “C” nevertheless to emphasize that we shall
determine E/ pointwise on [C0, C0 + Cmin).
Observe that �/,C can be written in the compact form

�/,C (G) = min
f ∈S/

{
2fC

��
(/
+
(
Γf%f

) ��
(/×(/ G

}
,

whereS/ B
∏
8∈(/ �8,/ and by an abuse of notation, for f inS/ , 2fC

��
(/

(resp.
(
Γf%f

) ��
(/×(/ ) denotes

the vector (2f (8)C )8∈(/ (resp. the matrix with entries (Wf (8)?f (8)
9
)8, 9 ∈(/ ) (indeed, the use of the restriction

bars is actually not correct but we keep them to help visualizing the dimensions of the objects at stake).

In particular, we recognize that�/,C has the form�min studied by Proposition 3.13. Because Assumption B
is verified, we obtain following a result of the type of Proposition 3.14 the existence of _ ∈ [0, 1) and
D ∈ R(/

>0 such that �/,C is _-contracting in weighted sup-norm ‖ · ‖D . This property extends to iC , (since
taking the minimum with the constant application 1C does not modify the contraction rate of �/,C ). As a
result, E/ (C) arises as the unique fixed-point of iC , not necessarily positive but still finite. This shows that
E (C) is uniquely determined for all C in [C0, C0 + Cmin), hence achieving our inductive scheme.
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Now that we have proved the uniqueness of E (C) and in particular the one of E/ (C), we can present for the
latter a more convenient form. Indeed, we know that E/ (C) satisfies the following implicit relation:

E/ (C) = min

(
min
f ∈S/

{
2fC

��
(/
+
(
Γf%f

) ��
(/×(/ E/ (C)

}
, 1C

)
. (3.15)

Equation (3.15) holds if and only if for all f in S/ , we have E/ (C) 6 2fC

��
(/
+
(
Γf%f

) ��
(/×(/ E/ (C) and

also E/ (C) 6 1C , with an equality achieved for each coordinate. Since by Assumption B, we have
d (

(
Γf%f

) ��
(/×(/ ) < 1 for all f of S/ , the first set of inequalities can be replaced by E/ (C) 6 (� −(

Γf%f
) ��
(/×(/ )

−12fC
��
(/

for all f in S/ (we can use a series expansion to show that this inverse matrix
has only nonnegative entries and thus is order-preserving). We therefore obtain the following explicit
expression:

E/ (C) = min

(
min
f ∈S/

{(
� −

(
Γf%f

) ��
(/×(/

)−1
2fC

��
(/

}
, 1C

)
. (3.16)

If E is the function determined by E0 ∈ V and (DP-W ), we easily show that if E0 is càdlàg (resp. piecewise-
affine, piecewise-constant), then is so is E , by supposing that E is indeed càdlàg (resp. piecewise-affine,
piecewise-constant) on [−Cmax, C0) for C0 > 0 and extending this property on [C0, C0 + Cmin) using equa-
tions (3.14) and (3.16) which preserve the càdlàg character (resp. piecewise-affine, piecewise-constant) and
the fact that C ↦→ (20C )0∈�/

and C ↦→ 1C are càdlàg (resp. piecewise-affine, piecewise-constant) mappings of
[C0, C0 + Cmin) as well. s

The proof of Proposition 3.17 shows that we can successfully determine a solution of (DP) or (DP-W )
over [0,∞) from an initial condition ofV by applying an induction scheme very close from the
induction principle (I) of Chapter 1, except that there is this time an implicit part to handle. We
choose once again to highlight this fact in order to reproduce it later.

) Induction Principle (I/ ). In a semi-Markov decision process verifying Assumption A (resp.
Assumption B), denoting by Cmin B min0∈�{ C0 | C0 > 0 } and Cmax B max0∈�{ C0 | C0 > 0 }, the
properties of a solution of the dynamic programming equations (DP) (resp. (DP-W )) over [0,∞)
can be studied by induction from an initial condition defined over [−Cmax, 0), since for all : in N,
and after possible inversion of an implicit “Zeno-part” of the system, the restriction of a solution
over [:Cmin, (: + 1)Cmin) is explicitly given by its restriction over [:Cmin − Cmax, :Cmin).

Building on Proposition 3.17, we are now going to establish that E∗F defined by (3.7) as the
minimum expected cost with terminal costF over all strategies in finite-horizon satifies (DP). As
a particular case, we will obtain that E∗ (value function with no terminal cost) also satisfies (DP).
LetF be a terminal cost function inV; we have justified in Section 2.3 that E∗F | [−Cmax,0) = F . We
are actually going to show that E∗F coincides over [−Cmax,∞) withF , the solution of (DP) uniquely
determined byF . The fact thatF satisfies the dynamic programming equations gives us for all 8
in ( and C > 0 a choice f (8, C) of action in �8 that realizes the minimum in (DP), i.e., such that

∀C > 0, ∀8 ∈ (, F (8, C) = 2f (8,C ) +
∑
9 ∈(

?
f (8,C )
9

F ( 9, C − Cf (8,C ) ) . (3.17)

For a fixed value of C , (f (8, C))8∈( can be identified with a policy of S. In addition, f can be
chosen to be a piecewise-constant and càdlàg application from ( × R>0 to S, since F is itself
piecewise-continuous càdlàg according to Proposition 3.17 andS is a discrete set.

If the planning horizon C > 0 is known, then f allows us to define the particular strategy
5 ∗ = (5 ∗= )=∈N of F, by letting for all epochs = in N and all histories ℎ= of length = of the form
ℎ= = (80, B0, 00, 81, B1, 01, . . . , 8=−1, B=−1, 0=−1, 8=) in �= (see Section 2.2 for a detailed discussion on
the form of the histories):

5 ∗= (ℎ=) B f (8=,max(C − B=, 0)) .
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The strategy 5 ∗ is pure but it is not strictly speaking Markovian. It does depend on the history
only through the current state and the current total elapsed time since 0, or equivalently the time
remaining to play before hitting the planning horizon C . As a consequence 5 ∗ is not a stationary
strategy; observe although that it still has some form of stationarity. Indeed, the choice of actions
to play at different epochs varies but does not depend on the epoch number itself, therefore the
same horizon-dependent rule is applied at all epochs, and it is “Whatever the epoch, pick the
action given by f evaluated in the current state and the time remaining to play”. Huang and Guo
call these strategies “horizon-relevant stationary” (see [HG11]). We can now state the following
expected result in the undiscounted setting.

) Theorem 3.18. Under Assumption A, the function E∗F , that is by (3.7) the undiscounted value
function in finite-horizon with terminal costF , is the unique function coinciding withF on [−Cmax, 0)
and that verifies the dynamic programming equations (DP). Moreover, it is achieved by the strategy 5 ∗.

Proof. When 5 is a strategy of F, we define:

E 5 (8, C) B E5
8

( #̂C∑
:=0

2̂: +F
(
8̂
#̂C+1, C − B̂#̂C+1

) )
= E

5

8

( ∞∑
:=0

2̂:1B̂:6C +F
(
8̂
#̂C+1, C − B̂#̂C+1

) )
.

Our goal is to prove that for all 8 in ( and C > 0, we haveF (8, C) = inf 5 ∈F E
5 (8, C).

We are first going to prove that E 5
∗
verifies (DP). To insist on the key fact that 5 ∗ has the knowledge of the

planning horizon, we write 5 ∗C instead of 5 ∗ (only in this part of the proof). Let 8 in ( and C > 0. We have

E 5
∗
(8, C) = E 5

∗
C

8

(
2̂0106C

)
+ E 5

∗
C

8

( ∞∑
:=1

2̂:1B̂:6C +
∞∑
:=0

F ( 8̂:+1, C − B̂:+1)1B̂:6C<B̂:+1
)

= 2f (8,C ) + E 5
∗
C

8

(
E
5 ∗C
8

( ∞∑
:=1

2̂:1B̂:6C +
∞∑
:=0

F ( 8̂:+1, C − B̂:+1)1B̂:6C<B̂:+1
��� B̂0, 8̂0, 0̂0, B̂1, 8̂1))

= 2f (8,C ) +
∑
9 ∈(

?
f (8,C )
9

E
5 ∗C
8

( ∞∑
:=1

2̂:1B̂:6C +
∞∑
:=0

F ( 8̂:+1, C − B̂:+1)1B̂:6C<B̂:+1
��� 0̂0 = f (8, C), 8̂1 = 9

)
where the first equality is obtained separating the first term from the sum and using the characterization
of #̂C ; the first bit of the second equality follows from the fact that 2̂0 is deterministically equal to 2f (8,C )

under the application of the strategy 5 ∗C starting from state 8 , the other transformation used to obtain the
second equality is the application of the law of total expectation; and finally the third equality is entailed
by the fact that B̂0, 8̂0, 0̂0 and B̂1 are deterministic under the choice of 8̂0 = 8 and under the strategy 5 ∗C . As a
first case, we are going to suppose that C − Cf (8,C ) > 0, so that the condition C < B̂1 is false, and we can get
rid of the first term in the sum with the terminal cost.

Consider an admissible random process ( 8̂0, B̂0, 0̂0, 8̂1, B̂1, 0̂1, . . . ) (called “process A”) generated by the
initial state 8 ∈ ( and the strategy 5 ∗C and such that 8̂1 = 9 for 9 ∈ ( fixed. Then, the random process
( 8̂0′, B̂0′, 0̂0′, 8̂1′, B̂1′, 0̂1′, . . . ) B ( 8̂1, B̂1 − Cf (8,C ) , 0̂1, 8̂2, B̂2 − Cf (8,C ) , 0̂2, . . . ) (that we may call “process B”) has
the same law as the random process generated by initial state 9 and the strategy 5 ∗

C−Cf (8,C ) . Indeed the :-th

chosen action in process B is given by f ( 8̂:′, C − Cf (8,C ) − B̂:′), coinciding with f ( 8̂:+1, C − B̂:+1), the (: + 1)-th
chosen action in process A. Hence

E 5
∗
(8, C)

= 2f (8,C ) +
∑
9 ∈(

?
f (8,C )
9

E
5 ∗
C−Cf (8,C )
9

( ∞∑
:=1

2̂:−1
′ 1Cf (8,C )+B̂:−1′ 6C +

∞∑
:=1

F ( 8̂:′ , C − Cf (8,C ) − B̂:′ )1B̂:−1′ 6C−Cf (8,C )<B̂:′
)

= 2f (8,C ) +
∑
9 ∈(

?
f (8,C )
9

E
5 ∗
C−Cf (8,C )
9

( ∞∑
:=0

2̂:
′1B̂:′6C−Cf (8,C ) +

∞∑
:=0

F ( 8̂:+1′ , C − Cf (8,C ) − B̂:+1′ )1B̂:′ 6C−Cf (8,C )<B̂:+1′
)

= 2f (8,C ) +
∑
9 ∈(

?
f (8,C )
9

E 5
∗
( 9, C − Cf (8,C ) )
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This identity allows us to prove using induction principle (I/ ) that E 5
∗
and F that we already know to

coincide on [−Cmax, 0) actually coincide on [−Cmax,∞). In particular, E 5
∗
, satisfies equations (DP). We

would have obtained the same equality in case C − Cf (8,C ) < 0 since in this case we would have directly
written an identity featuring the terminal costF .

We now want to conclude thatF = E 5
∗
6 E∗ = inf 5 ∈F E

5 . Using computations similar to the previous ones,
we can demonstrate that if 5 = (50, 51, 52, . . . ) is a randomized and history-dependent strategy, we have for
all 8 in ( and C > 0

E 5 (8, C) =
∑
0∈�8

50 (0 | 8)
(
20 +

∑
9 ∈(

?09 E
5 ′0 ( 9, C − C0)

)
, (3.18)

where for 8 in ( and 0 in �8 , 5 ′0 denotes the randomized and history-dependent strategy (5 ′
0,0, 5

′
0,1, . . . )

such that for all : in N and ℎ: in �: , 5 ′0,: (ℎ: ) B 5:+1 ((8, 0, ℎ: )). This equation is hard to work with, but
becomes much simpler if 5 is a Markovian strategy, i.e. when 5: (ℎ: ) = 5: (8: ), because in this case all the
(5 ′0 )0∈� coincide with the strategy 5 (1) B (51, 52, . . . ). Hopefully, we can take advantage of the fact that
for any randomized history-dependent strategy 5 in F, there is a randomized Markovian strategy 5MR in
FMR so that the random processes generated by 5 and 5MR have the same law (see [Put14, Theorem 5.5.1]),
and as a result inf 5 ∈F E 5 = inf 5 ∈FMR E 5 .

We now apply induction principle (I/ ) to show that inf 5 ∈FMR E 5 (8, C) > E 5 ∗(8, C) for all 8 in ( and C > 0.
We do that by supposing that this inequality holds for all C in [−Cmax, C0) and proving that it carries over if
C ∈ [C0, C0 + Cmin). Let 5 ∈ FMR, according to our previous remark, (3.18) takes the form

E 5 (8, C) =
∑
0∈�8

50 (0 | 8)
(
20 +

∑
9 ∈(

?09 E
5 (1) ( 9, C − C0)

)
. (3.19)

Since (3.19) features a sum of |�8 | quantities weighted by probabilities (50 (0 | 8))0∈�8
, we can bound below

the whole sum by its minimum term, and we get

E 5 (8, C) > min
0∈�8

(
20 +

∑
9 ∈(

?09 E
5 (1) ( 9, C − C0)

)
. (3.20)

Similarly to the proof of Proposition 3.17, we distinguish the “easy and explicit case” where 8 ∈ (#/ and the
“more intricate and implicit case” where 8 ∈ (/ . Indeed, if 8 ∈ (#/ , we can apply our induction hypothesis
to 5 (1) (that is a Markovian history-dependent strategy) since we have C − C0 6 C0 for all 0 ∈ �8 , and
heredity step of (I/ ) is accomplished since E 5

∗
verifies (DP). Let us focus on the restriction E 5

/
(C) of E 5 to

states of (/ . Still like the proof of Proposition 3.17, we can introduce the self-map i∗C on R( defined by[
i∗C

]
8
(G) B min

(
min

0∈�8\�8,/

{
20 +

∑
9 ∈(

?09 E
5 ∗ ( 9, C − C0)

}
, min
0∈�8,/

{
20 +

∑
9 ∈(#/

?09 E
5 ∗ ( 9, C − C0) +

∑
9 ∈(/

?09 G 9

})
,

such that we have thanks to our induction hypothesis E 5
/
(C) > i∗C (E

5 (1)

/
(C)). Denoting by 5 (=) the strategy

(5=, 5=+1, 5=+2, . . . ) if = is in N, we obtain by immediate induction for i∗C is order-preserving that for all =

E
5

/
(C) >

(
i∗C

)= (
E
5 (=)

/
(C)

)
.

Note the difference with the fixed-point equation E 5
∗

/
(C) = i∗C

(
E
5 ∗

/
(C)

)
satisfied by E 5

∗

/
(C). Now denote for

short G= B E
5 (=)

/
(C), G∗ B E

5 ∗

/
(C) and i B i∗C , we claim that we still have lim=→∞ i= (G=) = G∗. Indeed

as seen in Proposition 3.17, we have D ∈ R>0 such that i is _-contracting in weighted sup-norm ‖ · ‖D
and admits G∗ as a fixed-point. Also observe that following Lemma 3.11, we have an upper bound of the
form ‖G= ‖D 6 " (we could for instance take " B max(D)max8∈(/ {# [dC/Cmine] (8 (1) )}max0∈�{|20 |}). So
we have for = in N that Y= B ‖i= (G=) − G∗‖D 6 _= ‖G= − G∗‖D 6 2"_= . Since lim=→∞ Y= = 0, we deduce

that for all 5 in FMR, E 5
/
(C) > lim=→∞

(
i∗C

)= (
E
5 (=)

/
(C)

)
= E

5 ∗

/
(C), which shows correctness of our inductive

scheme (I/ ) also on the Zeno part.

We can finally conclude by the inequalities E 5
∗
(8, C) 6 inf

5 ∈FMR
E 5 (8, C) = inf

5 ∈F
E 5 (8, C) = E∗ (8, C) 6 E 5

∗
(8, C) that

the value function E∗F is given by the unique solution of the equations (DP) with initial conditionF . s
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We state below a corollary concerning the value function E∗ and give without demonstration the
similar result for the discounted value function E∗W , since its proof is syntactically equivalent to
the one of Theorem 3.18.

) Corollary 3.19. Under Assumption A, the undiscounted value function in finite-horizon E∗ de-
fined by (3.5) is the unique function null on [−Cmax, 0) that verifies the dynamic programming
equations (DP), and it is achieved by a strategy depending at each epoch only on the current state
and the time remaining to play.

Proof. As mentioned in Section 2.3, the value function E∗ is recovered from E∗F by takingF = 0̃. s

) Theorem 3.20. Under Assumption B, the discounted value function in finite-horizon E∗W defined
by (3.6) is the unique function null on [−Cmax, 0) that verifies the dynamic programming equa-
tions (DP-W ), and it is achieved by a strategy depending at each epoch only on the current state and
the time remaining to play.

The Theorems 3.18 and 3.20 enlighten in particular the discussion in Section 2.2 on the
sufficiency of some subsets of strategies. In the context of finite-horizon problems, it is sound
to work only with pure (or deterministic) strategies, however considering only (Markovian)
stationary strategies is not sufficient to achieve a minimal expected cost. It would be a little
misleading to say that we cannot avoid working with pure history-dependent strategies of FHD,
since it is actually sufficient to consider strategies depending at each epoch on the current state
and the time remaining to play, which is a set much smaller than FHD. The following example
illustrates the strategy 5 ∗ used in practice.

Example 3.21. We depict in the Figure 3.5 a simple SMDP with states {1, 2, 3} and actions
{01, 02, 12, 03, 13}. Like in Figure 3.2, actions are labeled with pairs of a cost (for instance in
dollars) and a sojourn time (typically in seconds).

1

23

01 : (1, 40)

02 : (5, 20)

12 : (3, 50)

03 : (4, 30)

13 : (2, 60)

1/2

1/2

Figure 3.5: A semi-Markov decision process with four policies

Since |�1 | = 1 and |�2 | = |�3 | = 2, there is a total of four policies, that we can enumerate in
the form

S = {(01, 02, 03), (01, 12, 03), (01, 02, 13), (01, 12, 13)} .

Observe that the player has no leverage on the minimization of his/her total incurred cost
when starting in state 1, since he/she is bound to play action 01 indefinitely and stay in state 1.
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The dynamic programming equations (DP) verified by E∗ write

E∗(1, C) = 1 + E∗(1, C − 40)

E∗(2, C) = min
(
5 + E∗(1, C − 20) , 3 + E∗(2, C − 50)

)
(3.21)

E∗(3, C) = min
(
4 + E∗(1, C − 30) , 2 + 1

2
E∗(2, C − 60) + 1

2
E∗(3, C − 60)

)
The Figure 3.6 represents the three components of E∗ for planning horizons ranging from 0
to 300 seconds. Recall that E∗(C) is null if C < 0, therefore, E∗(0) is given by the minimum
costs that we can obtain by playing the game in zero time. Since all actions of the SMDP are
time-consuming, this amounts to doing a single move, and we naturally choose actions with
the smallest costs, i.e., we play (01, 12, 13) to obtain a total cost E∗(0) = (1$, 3$, 2$). These
three actions form the most interesting policy to play for C 6 100.

-60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Planning horizon C

0

2

4

6

8

10

12

14

M
in
im

u
m

ex
p
ec
te
d
co
st

(0
1
,1

2
,1

3
)

(0
1
,0

2
,1

3
)

(0
1
,0

2
,0

3
)

(0
1
,0

2
,1

3
)

(0
1
,0

2
,0

3
)

E (1, C )

E (2, C )

E (3, C )

Figure 3.6: Finite-horizon value function of the SMDP of Figure 3.5.

Indeed, if the planning horizon is in [100, 120) the player ought to play 02 by starting in state
2, hence incurring a more important cost to begin with, but smaller costs afterwards (first 5$,
but after 20 seconds, 1$ every 40 seconds, which is better than 3$ every 50 seconds). Mind
that it does not mean that the player should always pick 02 from state 2 at any moment of the
game if the latter lasts 100 seconds, but that the player should pick 02 from state 2 in every
game whenever it remains 100 seconds to play. This way, for any value B 6 C inferior to the
horizon C , there is always an optimal policy f∗(C − B) to play when it remains C − B seconds to
play, as it was introduced in (3.17).

The vertical bars separate the physical instants at which f∗ switches to a different policy.
In this example, we see that the player should always apply policy (01, 02, 03) if it remains
more than 160 seconds to play and the policy (01, 12, 13) if it remains less than 100 seconds
to play, which well illustrates the difference between short-term and long-term decisions.
Inbetween, the action 02 from state 2 is always chosen, but the choice from state 3 varies.
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We also retrieve on the Figure 3.6 that the value function is piecewise-constant and càdlàg, as
stated in Proposition 3.17 since the initial condition 0̃ is constant over [−Cmax, 0).

To finish this section, we come back to the last modeling aspect left aside in this section so
far, the stopping costs. The corresponding value function of this problem still verifies dynamic
programming equations, but that take into account these stopping options at each epoch. This
form is well-known in the context of MDPs, see for instance [Ber11, Section 4.4], or [TVR99].

) Theorem 3.22. Under Assumption A, the undiscounted value function E∗
'
in finite-horizon with

stopping cost ' defined by (3.8) verifies the dynamic programming equation

∀C > 0, ∀8 ∈ (, E (8, C) = min

(
min
0∈�8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C0)
}
, '(8, C)

)
. (DP-Stop)

Proof. To preclude an indigestion of too many similar proofs, we only give the ingredients of demonstration
that differ from the proof of Theorem 3.18. We still leverage on the existence of a unique solution
to (DP-Stop) given an initial condition inV (and the knowledge of the function '), and on the existence of
an application f : ( ×R→ � that minimizes the non-stopping part of (DP-Stop). This induces a strategy 5 ∗

of F. Applying this strategy starting from 8 , we still have the choice on the stopping time" . If we take it to
be null, the game stops directly and we get '(8, C), otherwise we get 2f (8,C ) +∑9 ∈( ?

f (8,C )
9

E 5
∗ ( 9, C − Cf (8,C ) ),

hence the apparition of the minimum of the two quantities, and we can show that 5 ∗ coincides with the
solution of (DP-Stop). The second part of the proof is analogous to the one of Theorem 3.18. s

As mentioned in Section 2.3, observe that taking ' = ∞ (which de facto forbids the player to stop)
allows us to recover the dynamic programming equations of the setting with no stopping costs.
Such as the end of Section 2.3, we do not state further results on all the possible combinations of
models involving discount factors, terminal and stopping costs, since Theorems 3.18, 3.20 and 3.22
suffice to figure out by syntactic analogy the dynamic programming equations of all these settings.

2.6 BACKWARD OF FORWARD PROPAGATION?. — This subsection is optional, but we reckon it
is worth commenting further on the form of the dynamic programming equations (DP) that we
study, and more particularly on the fact that we express values of E∗ in the present based on values
in the past. Some readers that are more familiar with problems using dynamic programming
algorithms might have expected to find an equation in which the present values are expressed in
terms of values in the future.

To avoid reintroducing the notation of the basic and general problem of stochastic control
(presented as such for instance in [Ber11, Section 1.3]), let us discuss the particular case of Markov
Decision Processes in horizon C (with C in N∗) and with terminal costs. A decision-maker wants
to minimize his/her total cost resulting from visiting states 8̂0, 8̂1, …, 8̂C−1, 8̂C , and pulling actions
( 0̂: )06:<C (with 0̂: lying in�8̂: for all 0 6 : < C ), hence determining costs ( 2̂: )06:<C , knowing that
finishing in state 8̂C at epoch C yields a terminal cost A ( 8̂C ). We introduce the optimal cost-to-go
� C
:
(8) when we are in state 8 of ( at epoch 0 6 : 6 C by � C

:
(8) B inf 5 ∈F E

5

8

(
A ( 8̂C ) +

∑C−1
ℓ=:

2̂ℓ
)
(in

particular the terminal costs are such that � CC (8) = A (8)).
What we are really interested in is to determine the vector � C0 B (� C0 (8))8∈( of the minimum

costs that we can expect from each starting state when there are C decision epochs ahead of
us. The dynamic programming principle ensures that a strategy that is optimal from 0 to C is
also optimal when truncated from : to C , with 0 6 : 6 C . Applied step-by-step, it gives us
that � C

:
= ) (� C

:+1) for all 0 6 : 6 C , where ) is the Bellman operator such that for all G in R( ,
) (G) = minf ∈S

{
2f + %fG

}
, as defined before by (3.13). Since the value � CC = A is known for the
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Figure 3.7: Backward and forward propagation are two mirrored methods

last epoch, it suffices to apply C times the operator ) to go backward in time and determine � C0 ,
i.e., the total cost-to-go for the initial epoch.

In this setting, the horizon C is fixed in advance and does not change, so “going backward in
time” actually refers to the intermediary time-steps 0 6 : 6 C , and not to the horizon itself. To
determine the total cost-to-go function for two different horizons C1 and C2, we must start our
algorithm twice from the same value � C1C1 = �

C2
C2

= A , and go backwards from C1 steps in one case
and from C2 steps in the other case. Actually, if C1 6 C2, it is not necessary to redo the C1 first steps
to compute � C20 and according to the optimality principle, it suffices to perform C2 − C1 steps from
�
C1
0 = �

C2
C2−C1 .

On the other hand, when we want to focus on the influence of the horizon C , we can let
E∗ : C ↦→ � C0 to be the value function that maps any finite-horizon C to the minimum expected
cost in C decision epochs. In that case, E∗(C) = � C0 = ) (� C1 ) = ) (� C−10 ) = ) (E∗(C − 1)), so that E∗

is computed using a forward time scheme, now genuinely relatively to the horizons and not
to intermediary steps. Compared to the dynamic programming algorithm, the value function
somehow “sets back the time in the correct physical direction”. In particular, what was in the latter
a terminal cost of the practical underlying model can now be interpreted as an initial condition of
the computation scheme.

The Figure 3.7 illustrates these two sides of the same coin, based on the minimum expected
cost of state 2 in Figure 3.5 earlier, when studying two different horizons C1 = 80 s and C2 = 150 s.
Figure 3.7a shows the iterative and backward dynamic programming procedure (by steps of 10
seconds), starting with the terminal cost from C1 or C2 and going back to 0, i.e., computation
ends when hitting the initial instant of the game. The Figure 3.7b shows that it suffices to
mirror this method to retrieve the value function E∗. Note a subtlety here, although the general
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dynamic programming algorithm described in this informal subsection is played in horizon C ,
the problem (DP-MDP) in Section 2.5 is actually played in horizon C + 1 (with E (C) recovered by
applying C + 1 times the operator ) from E (−1)), explaining why there is an initial step from the
null terminal cost to the costs-to-go � 8080 = � 150150 = 2 on Figure 3.7a. We chose to keep this hiatus to
insist on the fact that our propagation schemes working with SMDPs do not propagate a scalar
value, but propagate a function ofV; recall indeed from the discussion in Section 2.5 that a scalar
initial condition at C = −1 in the simplified setting of MDP corresponds to a functional initial
condition given over [−Cmax, 0) in the context of SMDPs.

2.7 THE EVOLUTION SEMIGROUP APPROACH. — We want in this section to understand and
characterize the fundamental properties of the solutions of the dynamic programming equa-
tions (DP) in the undiscounted semi-Markov setting and in the absence of stopping costs. Until
the end of the chapter, we assume that Assumption A is satisfied. The Proposition 3.17 is already
a key result, as it proves that it is well-founded to talk about solutions of (DP), and that these are
entirely determined by their restriction over [−Cmax, 0). In the same logic as the one presented
in the Section 2.2 of Chapter 2, we adopt here a more high-level look on the dynamics (DP) by
studying its action over the set ofV of initial conditions. To that purpose, we define the following
evolution semigroup.

) Definition 3.23. For C > 0, we define the operator �C by

�C :


V −→ V

E0 ↦−→
{
[−Cmax, 0) → R(

B ↦→ E (C + B)
(3.22)

where E is the function uniquely determined by the initial condition E0 and the equations (DP), in
accordance with Proposition 3.17.

We first establish that (�C )C>0 is a semigroup:

) Proposition 3.24. The family (�C )C>0 forms a one-parameter semigroup, meaning that �0 = idV
and for all C, C ′ > 0, we have �C+C ′ = �C ◦�C ′ .

Proof. The fact that �0 is the identity mapping of V is direct. Then, take nonnegative numbers C and
C ′, a test function E0 inV and B in [−Cmax, 0). The value (�C ◦�C ′)

[
E0
]
(B) is equal to E ′(C + B), where E ′

is the solution of the dynamics equations determined by the initial condition �C ′
[
E0
]
, but the latter is

given by A ↦→ E (C ′ + A ) for A in [−Cmax, 0) where E is the solution of the dynamics equations determined
by E0. Since E ′ and A ↦→ E (C ′ + A ) coincide on [−Cmax, 0), they are also equal on [−Cmax,∞) and we obtain
E ′(C + B) = E (C ′ + C + B). As a result, �C ◦�C ′ = �C+C ′ . s

Recall from Theorem 3.18 and Corollary 3.19 that the value functions E∗F (with terminal costF )
and E∗ (with no terminal cost) for SMDPs are respectively the unique solution of (DP) that
coincide withF over [−Cmax, 0) and the solution of (DP) that is null over [−Cmax, 0). As a result,
the minimum expected cost with terminal payments E∗F (C) in finite-horizon C can be expressed
as E∗F (C) = �C+Y [F] (−Y) for all Y sufficiently small (any value Y in (0, Cmax) convenes), while its
counterpart with no terminal cost E∗ is such that E∗(C) = �C+Y [0̃] (−Y), where 0̃ denotes as usual
the null function ofV . Recall that functions ofV cannot be evaluated at the instant 0, hence the
use of Y. The operator �C for SMDPs with C > 0 plays the exact same role as the C-fold iterate ) C

of the Bellman operator for MDPs (with in that case C in N), where ) is defined by (3.13). The
same way that ) needs to be applied C + 1 times to recover E∗(C) based on the initial condition
E∗(−1) in the context of MDPs (see Section 2.5), it is not surprising to see that the dynamics (DP)
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need to be unraveled during a period strictly greater than C to find out what the value E∗(C) is.
Due to these similarities, we still refer to the application of the semigroup (�C )C>0 to an initial
condition ofV as the value iteration algorithm for semi-Markov decision processes.

As explained in Section 2.2 of Chapter 2, the good way to think as the operator (�C )C>0 is to
picture it as an “initial condition transportation” operator, an idea that we detail in the following
example.

Example 3.25. The Figure 3.8 gives a solution E of the system (3.21) built from the SMDP
of Figure 3.5 in the Example 3.21, but this solution is not the value function E∗ since it is not
initialized with the null function over [−gmax, 0) (recall here that gmax = 60 s). Instead, we
choose as initial condition a function E0 inV such that E0(1, B) = B/40 for all B in [−Cmax, 0),
which will ensure by (3.21) that we will have E (1, C) = C/40 for all C > 0. The components
E0(2, ·) and E0(3, ·) are set to two shifted sine functions.
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Figure 3.8: Dynamics (3.21) applied to a non-zero initial condition.

Applying the dynamics (DP) yields a solution E that seems for short horizons pretty erratic,
with several discontinuities and a behaviour hard to predict. However, for long horizons
(C > 220), the solution E stabilizes to an affine behaviour.

For C > 0, the effect of �C can be visualised by drawing a local frame between C − Cmax

(included) and C (excluded). The values taken there by E are (up to translation to put back the
function over [−Cmax, 0)) precisely those of�C

[
E0
]
. We illustrate on the figure the composition

property of the semigroup. It is equivalent starting from E0 to unravel the dynamics first for
165 seconds, hence obtaining E1, and then for another 125 seconds from E1, than to start from
E0 and apply the dynamics for 165+125=290 seconds.

We list below some important properties of the operators (�C )C>0. We equip the spaceV with
the usual pointwise partial ordering 6, and with the sup-norm

E0∞ B supB∈[−Cmax,0)
E0(B)∞.

We denote as before by 1̃ the constant function ofV with all coordinates equal to 1.



Section 2: The finite-horizon value of semi-Markov decision processes 119

) Proposition 3.26. Let C > 0, E0 and E ′0 be two initial conditions in V . The operator �C is

(1) additively homogeneous:

∀U ∈ R, �C

[
E0 + U 1̃

]
= �C

[
E0
]
+ U 1̃ ,

(2) monotone (or order-preserving):

E0 6 E ′0 =⇒ �C

[
E0
]
6 �C

[
E ′0

]
,

(3) nonexpansive: �C [E ′0] −�C [E0]∞ 6 E ′0 − E0∞ ,
(4) continuous for both the uniform and pointwise convergence topologies.

Proof. To show that the evolution semigroup is additively-homogeneous and order-preserving, we reuse
the induction principle (I/ ) and some of the notation defined in the proof of Proposition 3.17, being
understood that all the discount factors are here taken equal to one.

We first prove the additively-homogeneous character. Suppose E0 and E ′0 are inV , denote E and E ′ the
functions they uniquely determine on [−Cmax,∞). In the particular case where E ′0 = E0 + U 1̃ with U in R,
if we suppose that E ′(C) = E (C) + U1 for all C in [−Cmax, C0), then we easily see that this property still holds
on [C0, C0 + Cmin) for non-Zeno states using explicit expression (3.14). On Zeno states, we make use of the
explicit expression (3.16). Following from the non-Zeno part, it is clear that 1 ′C = 1C + U1, and for all f inS,
we also have 2fC

′ = 2fC + U%f |(#/×(/ 1. However for %f |(#/×(/ 1 + %f |(/×(/ 1 = 1 (fundamental property
of stochastic matrices), we also have 2fC

′ = 2fC + U (� − %f |(/×(/ )1, and it follows readily from (3.16) that
E ′
/
(C) = E/ (C) + U1, which completes the proof of the additively homogeneous character.

For the monotonicity, take E ′0 > E0 and let us suppose that E ′ > E on [−Cmax, C0). Using explicit ex-
pression (3.14), we still obtain that this carries along on [C0, C0 + Cmin) for non-Zeno states. On states
of (/ , observe that for a fixed C in [C0, C0 + Cmin) we have 1 ′C > 1C and 20C

′ > 20C for all 0, hence explicit
expression (3.16) provides E ′

/
(C) > E/ (C) by order-preserving character of the inverse matrices at stake.

The nonexpansiveness itself is a consequence of both the additively homogeneous and order-preserving
characters, as it was shown by Crandall and Tartar in [CT80].

It is clear that �C is continuous for the uniform topology for all C > 0 from the nonexpansiveness, for the
latter amounts to the 1-Lipschitz property. The continuity with respect to the pointwise convergence is
a little more subtle. We build on the fact (for instance following from the proof of Proposition 3.17 by
induction once again) that for all C > 0 and B ∈ [−Cmax, 0), the number �C

[
E0
]
(B) continuously depend on

finitely many values taken by E0 ∈ V . Indeed, we can write

�C

[
E0
]
(B) = kC+B

({
E0 (g)

��� g ∈ (
C + B −

∑
0∈�

C0N
)
∩ [−Cmax, 0)

})
,

the mapping kC+B is continuous because it is obtained by taking minimums and linear combinations
(including inversions of Cramer systems, see equations (3.14) and (3.16)), and the number of values of E0

used is finite as the intersection of a discrete countable set (whose points are all isolated) and a bounded
interval. We then use the sequential characterization of the continuity to deduce that if (E0(:) ):∈N converge

pointwise towards E0∞ as functions of V , then for all C > 0 and for all B in [−Cmax, 0), the sequence
(�C

[
E0(:)

]
(B)):∈N converges towards �C

[
E0∞

]
(B). s

In Section 3 and Section 4, we will build on these properties to derive rich convergence results
on the solutions of (DP). Remark that we have implicitly used the fact that the dynamics (DP) is
autonomous to define the semigroup (�C )C>0. Had we considered a problem with stopping cost ',
we would have been compelled to use the dynamics (DP-Stop) instead, that is non-autonomous
since it relies on the knowledge of '. Hence, we would have had to resort to the more general
formalism of the evolution operator discussed in the Section 2.2 of Chapter 2.
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) Remark 3.27. It shall turn convenient in Chapter 4 to consider an SMDP induced by a subset
of actions. This may also require to restrict ourselves to an adequate subset of states. To that
purpose, we say that a pair (( ′, �′ B ⊎

8∈(′ �
′
8 ) with ( ′ ⊂ ( and ∅ ≠ �′8 ⊂ �8 for all 8 in ( is a

consistent subset of states and actions if for all 0 ∈ �′, we have
∑
9 ∈(′ ?

0
9 = 1.

If (( ′, �′) is such a pair, the equations (DP) restricted to actions of �′ and to states of ( ′

induce an evolution semigroup that we may denote by
(
�C

��
(′, �′

)
C>0 on the set of “initial condition”

functions with suitable dimension, as set out in Proposition 3.17 and Definition 3.23. Any restricted
semigroup of this form also enjoys the properties listed in Proposition 3.26.

2.8 EXTENSION TO THE CASE WITH NON-CONSTANT SOJOURN TIMES. — To finish this
section on the finite-horizon value functions, we discussmore informally how the preceding results
are affected in the case where the sojourn times of the SMDP are random variables and follow
action-dependent probability distributions (a0)0∈�. We consider here only the undiscounted case.
We still want the value functions to be well-defined, while allowing some sojourn times to be
deterministically null (i.e., a0 = X0 for some actions 0 in �). As noted in [HG11], the mildest
condition needed for the undiscounted value-function (3.5) to be well-posed at all horizons is that
B̂∞ B

∑∞
:=0 Ĉ: is almost surely infinite for all strategies and starting states. This way, for all C > 0,

there exists : in N such that #̂C = : .
Let us write down several SMDP “well-posedness” conditions:

(i) there exists Cmin > 0 such that for all actions 0 in �, a0 ( [Cmin,∞)) = P(Ĉ0 > Cmin) = 1

(ii) for all actions 0 in �,
∫
R>0

B da0 (B) = E(Ĉ0) > 0

(iii) for all policies f , for all final classes � in F (f), there exists 8 in � such that af (8) ({0}) < 1

(iv) for all states 8 in ( and strategies 5 in F, P 5
8
( B̂∞ = ∞) = 1.

The condition (i) is here the strongest. It is clear that it prevents any non-Zeno behaviour, but it
does not allow one to model null sojourn times. The condition (ii) is more general, and is the one
very frequently made in the SMDP literature (the requirement that the average sojourn time E(Ĉ0)
is positive is equivalent to the existence of positive scalars X and Y such that P(Ĉ0 > X) > Y)), see
for instance [Jew63, Fei94, Yus82, Jaś04]. Although (ii) allows the sojourn times to sometimes take
null values, almost surely zero sojourn times are also forbidden. On the model of Assumption A,
we thus propose the condition (iii) above, which demands that the hypothesis (ii) is verified only
at least for one state per final class of any policy (the condition a0 ({0}) < 1 being equivalent to
E(Ĉ0) > 0). We have (i) =⇒ (ii) =⇒ (iii)⇐⇒ (iv), as a result (iii) appears to be a good setting to
work with SMDPs with finite state and action sets (the equivalence (iii)⇐⇒ (iv) is elementary for
pure stationary strategies associated with policies, while general lines of proof are close to those
of Theorem 3.15).

With stochastic sojourn times and under any of the above conditions, we can establish that
the value function in finite horizon (with or without terminal cost) satisfies the following dynamic
programming equations:

∀C > 0, ∀8 ∈ (, E (8, C) = min
0∈�8

{
20 +

∑
9 ∈(

?09

∫ C

0
E ( 9, C − B) da0 (B)

}
. (DP’)

The equation (DP’) is the stochastic-times counterpart of (DP), where the generic delayed term
E ( 9, C − C0) has been replaced by a convolution integral.



Section 3: Long-run properties of solutions of semi-Markov dynamics 121

It remains to study the well-posedness of this new system, i.e., showing existence and uniqueness
of solutions, the same way we have done in this section for the system (DP). Under the previous
condition (i), the convolution integral in (DP’) is actually taken over [Cmin, C], hence it is still
possible to resolve to an induction principle and determine E (C) explicitly in terms of E | [−Cmax,C−Cmin ] .
But as we have said before, it does not include the case of null sojourn times. If 0 is in the support
of some measures (a0)0∈�, then the system (DP’) features an implicit part again.

When |�8 | = 1 for all states 8 in ( , (DP’) takes the form of a system of so-called renewal
equations, studied by Bellman and Cooke in [BC63, Chapters 7 and 8]. They prove if the (a0)0∈�
are absolutely continuous that there exists a unique solution of this system, and precise further
that it also holds if the (a0)0∈� admit a pure point part (that is, these distributions are nonsingular).
More generally, this type of equations belongs to the class of system of Volterra equations of the
second kind, in this case linear, for which the continuity of the kernels is often required to prove
the existence of solutions (we refer on this topic to the book of Brunner [Bru17]). Showing that
the condition (iii) suffices or not for (DP’) to have unique trajectories seems nontrivial and is left
for future work, and so is the more general case where |�8 | > 1 for some states 8 in ( . This indeed
provides nonlinear renewal equations, for which fixed-point results used in the linear case should
be adapted, or reduction to the linear case by means of time-dependent and piecewise-constant
choices of policies could be implemented.

3 Long-run properties of solutions of semi-Markov dynamics

The (undiscounted) value function E∗ defined in (3.5) actually gives the solutions of a continuum
of optimization problems, indeed, for all finite horizons C > 0, E∗(C) yields the minimum expected
cost when an SMDP has to be played during C units of time. In this section, we are interested in
the behaviour of E∗(C) when C tends to∞, and more generally to the behaviour of E (C) for large
values of C , when E is a solution of (DP) (not necessarily E∗, which means that nonzero terminal
costs are taken into account).

In most cases, we expect that limC→∞ E∗(C) = ∞, for instance if all the action costs in the
SMDP are positive and hence we are doomed to lose more and more money. Conversely if all the
costs are negative (so that they are actually rewards), we can have limC→∞ E∗(C) = −∞ and get
infinitely rich. Alternatively, taking into account discount factors (W0)0∈� that are strictly smaller
than one in order to increase (resp. reduce) the importance of costs incurred in short horizons
(resp. far horizons) is a way to deal with a criterion that remains finite when C approaches infinity
(indeed, we have in this case −∞ < lim infC→∞ E∗W (C) 6 lim supC→∞ E

∗
W (C) < ∞).

3.1 AFFINE REGIMES AND AVERAGE-COST VECTOR. — In the absence of discount factors, the
most natural quantity to study is the ultimate rate of cost that the player incurs per unit of time
depending of his/her starting state, i.e., the vector lim infC→∞ E∗(C)/C . More generally, since any
solution of (DP) can be expressed using an initial condition E0 inV and the dynamics semigroup
(�C )C>0, we want to characterize the rate of cost lim infC→∞�C

[
E0
]
(B)/C , where B is in [−Cmax, 0).

The following proposition teaches us a good property of this limit.

) Proposition 3.28. Let E0 be an initial condition of V and B in [−Cmax, 0). Then, the vector

lim inf
C→∞

�C

[
E0
]
(B)

C

is independent of both E0 and B .
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Proof. Let E0, E ′0 be inV and B , B ′ be in [−Cmax, 0). Without loss of generality, let us suppose that B ′ > B .
First remark that for all C > 0, we have thanks to the Definition 3.23 and the Proposition 3.24 that

�C

[
E ′0

]
(B ′) −�C

[
E0
]
(B) = �C

[
�B′−B

[
E ′0

] ]
(B) −�C

[
E0
]
(B) .

The result claimed by the proposition is a key consequence of the nonexpansiveness of the semigroup
(�C )C>0, shown in Proposition 3.26–(3). Indeed, we have for all C > 0 that�C [�B′−B [E ′0] ] −�C [E0]∞ 6 �B′−B [E ′0] − E0∞ ,
hence, we obtain for all C > 0 (componentwise)

−1
C
×
�B′−B [E ′0] − E0∞1 6 �C

[
E ′0

]
(B ′)

C
−
�C

[
E0
]
(B)

C
6

1
C
×
�B′−B [E ′0] − E0∞1 ,

which in turn yields by taking the lim inf when C →∞

lim inf
C→∞

�C

[
E ′0

]
(B ′)

C
= lim inf

C→∞
�C

[
E0
]
(B)

C
.

s

The fact that the ultimate rate of cost does not depend upon the initial condition E0 inV has a
natural explanation when we think about E0 as the terminal cost of the problem (3.7). Indeed,
for the game is played over a horizon that gets bigger and bigger, the relative importance of
the terminal cost fades away. Because this ultimate rate of cost depends only the parameters
of the game (sojourn times, costs of actions, transition probabilities) or equivalently on the
dynamics (DP) governed by the semigroup (�C )C>0, it is licit to denote it by j (�), or in other
words

j (�) B lim inf
C→∞

E∗(C)
C

= lim inf
C→∞

�C

[
E0
]
(B)

C
regardless of E0 in V, B in [−Cmax, 0) . (3.23)

It is enlightening to look at the special case of Markov decision processes, in which all the
sojourn times are equal to one, since in this case we can write E∗(C) = ) C (E∗(0)) for all C in N,
using the Bellman operator ) defined by (3.13). The quantity j (�), that we may as well denote
by j () ) in this special case, arises as the escape rate of the self-map ) of R( (still unique by
nonexpansiveness). The following theorem of Kohlberg guarantees the existence and the finiteness
of limC→∞) C (E∗(0))/C .

) Theorem 3.29 (Kohlberg, [Koh80]). Let = in N and suppose � : R= → R= is piecewise-affine and
nonexpansive (in any norm). Then, there exists two vectors 6 and ℎ in R= such that B ↦→ B6 + ℎ
(with B in R>0) is an invariant half-line of � , i.e., for all B > 0 we have � (B6 + ℎ) = (B + 1)6 + ℎ.

For ) is piecewise-affine and nonexpansive in sup-norm, we know that j () ) coincides with
the vector 6 of Theorem 3.29. Coming back to the general case of semi-Markov decision processes,
we may want to look for an equivalent result on (�C )C>0. Given two vectors 6 and ℎ in R( , we
shall say that the affine function Eaff : C ↦→ 6C + ℎ of V is an affine regime of the SMDP (or an
invariant half-line) if the affine function C ↦→ 6C + ℎ of [−Cmax,∞) → R( (still denoted by Eaff) is
solution of (DP). For affine regimes, applying the dynamics of the SMDP amounts to a translation
in time, because for all C > 0 and B in [−Cmax, 0), we have �C

[
Eaff

]
(B) = Eaff(C + B). The following

result is somehow standard in the SMDP literature but not customarily presented in this form,
therefore it is given with a proof (see [DY79] for close statements in the MDP case).
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) Proposition 3.30. Let 6 and ℎ be two vectors of R( . The following are equivalent:

(i) there exists a nonnegative number C0 such that C ↦→ 6(C + C0) +ℎ is an affine regime of the SMDP,

(ii) 6 and ℎ are solution of the two optimality equations (OE1)–(OE2)

6(8) = min
0∈�8

{∑
9 ∈(

?09 6( 9)
}

(OE1)

ℎ(8) = min
0∈�∗

8

{
20 − C06(8) +

∑
9 ∈(

?09 ℎ( 9)
}

(OE2)

where for all 8 in ( , �∗8 is the subset of �8 where the minimum is achieved in (OE1).

Proof. We proceed by double implication.

Suppose that (i) holds, by definition the function C ↦→ 6(C + C0) + ℎ satisfies (DP) and we have

∀C > 0, ∀8 ∈ (, 6(8) (C + C0) + ℎ(8) = min
0∈�8

{
20 +

∑
9 ∈(

?09 6( 9)C +
∑
9 ∈(

?09

(
6( 9)

(
C0 − C0

)
+ ℎ( 9)

)}
.

The function in the right-hand side is ultimately affine, so we have for any 8 in ( and C large enough that

6(8) (C + C0) + ℎ(8) = min
0∈�8

{
20 +

∑
9 ∈(

?09 6( 9)C +
∑
9 ∈(

?09

(
6( 9)

(
C0 − C0

)
+ ℎ( 9)

)}
= min

0∈�8

{∑
9 ∈(

?09 6( 9)
}
C + min

0∈�∗
8

{
20 +

∑
9 ∈(

?09

(
6( 9)

(
C0 − C0

)
+ ℎ( 9)

)}
= min

0∈�8

{∑
9 ∈(

?09 6( 9)
}
C + min

0∈�∗
8

{
20 + 6(8) (C0 − C0) +

∑
9 ∈(

?09 ℎ( 9)
}
,

where we have used for the last inequality the fact that 0 ∈ �∗
8
implies

∑
9 ∈( ?

0
9
6( 9) = 6(8). At the end of

the day, we just need to identify the slope and the intercept of two ultimately affine functions, and we
obtain that 6 and ℎ satisfy (OE1) and (OE2).

Conversely, assume that (ii) is true, i.e., 6 and ℎ verify (OE1) and (OE2), and we want to prove that
C ↦→ 6(C + C0) + ℎ is solution of (DP) for some C0. Equivalently, we need to show that

∀C > 0, ∀8 ∈ (, min
0∈�8

{(∑
9 ∈(

?09 6( 9) − 6(8)
) (
C + C0

)
+
(
20 − 6(8)C0 +

∑
9 ∈(

?09 ℎ( 9) − ℎ(8)
)}

= 0 . (3.24)

Let 8 ∈ ( and 0 ∈ �8 . If 0 achieves the minimum in (OE2), so that it also achieves the minimum in (OE1),
then the two terms in the right-hand side of (3.24) vanish and the equality holds. If 0 achieves the
minimum in (OE1) but not in (OE2), then the coefficient of (C + C0) in (3.24) still vanishes, and by (OE2),
20 − 6(8)C0 +∑9 ∈( ?

0
9
ℎ( 9) − ℎ(8) > 0. Finally, if 0 does not achieve the minimum in (OE1), this entails that

the gap X B
∑
9 ∈( ?

0
9
6( 9) − 6(8) is positive. Hence, since C > 0, the expression in (3.24) can be bounded

below by � + C0X for some real constant � , and as a consequence, for C0 large enough, this expression takes
a nonnegative value, which entails that (3.24) holds. s

The equations (OE1)–(OE2) are the average-cost optimality equations that were extensively
studied by Schweitzer and Federgruen in their work [SF78], see also the work of Schäl [Sch92].
These equations play a fundamental role in identifying the minimal solutions of the average-cost
criterion 6∗ defined for all 8 in ( by

6∗(8) B inf
5 ∈F

lim inf
C→∞

1
C
E
5

8

( #̂C∑
:=0

2̂:

)
, (3.25)
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in which we recognize a definition very close from the one of the undiscounted value function (3.5)
(note that different notions of average-costs can be defined, see for instance [Ros70], [Fei94],
or [JX04] for a recent review of the literature on the topic).

When studying average-cost criteria, it is important to take into account the underlying chain
structure of the SMDP. Recall from Section 2.2 that every policy f inS induces a Markov chain
on ( , with associated transition matrix that we have already denoted by %f . For f inS, let us
denote by F (f) the set of final classes of the Markov chain induced by the policy f , defined
in Section 1.3. If each policy admits a unique final class (i.e., |F (f) | = 1 for all f inS), we say that
the configuration of the SMDP is unichain. This means that if we apply the stationary strategy
corresponding to any policy, we shall eventually end up in a single irreducible class (possibly after
having visited some transient states) and in this case, the ultimate rate of cost incurred by the
player only depends on the chosen policy and not on the initial state. Otherwise, we say that the
SMDP is multichain. This means that the final class of the game in which the player eventually
ends up when applying the stationary strategy associated with some policy can depend on the
choice of the initial state, via the access probabilities (q�,8)� ∈F(f),8∈( defined in Proposition 3.6.

In what follows, we reuse from Section 1.3 the notation (`f
�
)� ∈F(f) to denote the (zero-padded)

invariant measures of the final classes of the Markov chain associated with policy f , and the nota-
tion (qf

�,8
)� ∈F(f),8∈( to denote the access probabilities of these final classes starting from any state

of ( . For f inS, we also respectively denote by (%f )★ and (�f )★ the spectral projector and the
fundamental matrix associated with the Markov chain induced by f (see Proposition 3.3 and Propo-
sition 3.7 in Section 1). Finally, we use the symbol � to denote the Hadamard (componentwise)
product of two vectors.

) Theorem 3.31 (Schweitzer and Federgruen, [SF78]). Suppose that Assumption A holds. Then,

(1) there is a pure stationary strategy in FSD achieving minimal average-cost in (3.25),

(2) any solution (6,ℎ) of (OE1)–(OE2) verifies 6 = 6∗, and we have

6∗(8) = min
f ∈S

∑
� ∈F(f)

qf�,8

〈`f
�
, 2f 〉

〈`f
�
, Cf 〉 , (3.26)

(3) for all scalars U , V in R, the vectors (6∗, ℎ∗ + U1 + V6∗) are solutions of (OE1)–(OE2), where

ℎ∗ B min
f ∈S∗

(
(�f )★ + (%f )★

)
(2f − 6∗ � Cf ) ,

and S∗ B {f ∈ S | %f6∗ = 6∗}.

Remark how the Assumption A that our Theorem 3.15 proved to be minimal for the finite-horizon
value function to be well-defined is here also the right condition for the ratios in (3.26) to exist.
In the special case where the SMDP is unichain, we verify for instance thanks to the matrix
forms featured in Proposition 3.6 that 6∗ is uniform and arises as a ratio of costs by sojourn
times, weighed by the invariant measure of the sole final class of an optimal policy, i.e., the
long-run fraction of time spent in each state of this final class. The formula (3.26) expresses that
this phenomenon partially survives in the multichain case, but different final classes can lead to
different ultimate rates of cost, hence the weighted sum depending upon the access probabilities.
Remark that in the unichain case, since 6∗ is uniform, the equation (OE1) is actually trivial. It is
also worth-mentioning that a solution of (OE1)–(OE2) can be found constructively, as Denardo
and Fox showed in [DF68] for instance by proving termination in a finite number of steps of
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Howard’s policy iteration algorithm (see [How60]). The item (3) of the theorem gives us a glimpse
on the degrees of freedom on ℎ, while 6 must be unique. The vector ℎ can typically have up to
|F (f) | degrees of freedom if f is inS∗; we refer to [SF78] for advanced and subtle discussion on
these aspects.

The links with our questions on the long-run behaviour of solutions of (DP) is established by
the following corollary of Theorem 3.31.

) Corollary 3.32. Suppose that Assumption A holds. Then,

(1) there are affine regimes of the SMDP, with rate (or slope vector) j (�) = 6∗,

(2) for all initial conditions E0 in V and B in [−Cmax, 0), we have

�C

[
E0
]
(B) =

C→∞
j (�)C + $ (1) . (3.27)

Proof. The first item is a consequence of the existence of solutions of (OE1)–(OE2) by Theorem 3.31 and
the equivalence of (3.30). Let us take an affine regime Eaff : C ↦→ 6∗C + ℎ, by definition of j (�), we have
j (�) = lim infC→∞�C

[
Eaff

]
(B)/C = lim infC→∞ Eaff (C + B)/C = lim infC→∞ (6∗ (C + B) + ℎ)/C = 6∗, where

we have also used the defining property of affine regimes. Finally, we have already shown in the proof
of Proposition 3.28 that there is a constant � such that −�1 6 �C

[
E0
]
(B) − �C

[
Eaff

]
(B) 6 �1, hence the

result of the second item because �C
[
Eaff

]
(B) = j (�) (C + B) + ℎ. s

Observe that the equality j (�) = 6∗ can be thought of as a “limit inversion”-type result, compar-
ing (3.23) and (3.25). We invite the reader to take another look at Examples 3.21 and 3.25 in the
light of Corollary 3.32. Indeed, Example 3.25 was already featuring an affine regime of the SMDP
of Figure 3.5, although it emerged only from the instant C = 220 s in Figure 3.8. In Example 3.21,
no proper affine regime was reached but the value function still admitted a pseudo-affine growth
from the instant C = 160 s in Figure 3.5, with similar slope than Example 3.25. We shall thoroughly
explain in the next chapter how to determine this slope based on (3.26).

) Remark 3.33. When we work in SMDP models where the sojourn times are non-deterministic,
it is remarkable that the optimality equations (OE1) and (OE2) still take the same form, replacing
for all 0 in � the constant time C0 by its expectation

∫ ∞
0
B da0 (B) (see again [Sch92]). This means

that the average sojourn times associated with the actions are representative of the expected
escape rate of the dynamics. In particular, this allows us to extended Corollary 3.32 in the
context of stochastic sojourn times, provided the evolution semigroup is well-posed as discussed
in Section 2.8.

3.2 SECOND ORDER RESULTS IN CASES REDUCIBLE TO MDP. — Obtaining finer convergence
results than (3.27) is in general difficult. In the Section 4 to come, we shall focus on a particular
case of interest that remains in the semi-Markov setting. On the other hand, we present in this
subsection a couple of results that can be applied to the MDP framework, and more generally to
situations where the sojourn times are multiple of a same positive real number, see the discussion
on the reductions in Section 2.5. Hence, we focus again on operators that share common properties
with the Bellman operator) , and as in the previous subsection we write j () ) instead of j (�) for
the escape rate of the MDP-type dynamics.

On the model of Proposition 3.2 presented in Section 1, the evolution of the value function
often involves periodic phenomena. First, the next theorem addresses the case in which j () ) = 0.
We denote by Sym(=) the symmetric group (set of permutations) on = letters.
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) Theorem 3.34 ([Mar89, LN12], [LS05] and [AG03]). Suppose that ) : R= → R= is nonexpansive
in a polyhedral norm and that the orbits {): (G) | : ∈ N} of ) are bounded for all G in R= . Then,
for every G in R= , there exists an integer 2 bounded only as a function of the norm such that ):2 (G)
converges as : →∞. Moreover, if ) is order-preserving and nonexpansive in weighted sup-norm,
then 2 6

(
=
b=/2c

)
. If in addition ) is concave, then 2 is the order of an element of Sym(=).

The first part of the theorem was proved in [Mar89] and in several other works, see the
discussion in [LN12]. The bound of 2 in the order-preserving and sup-norm nonexpansive case
is established in [LS05]. The bound in the concave case is established in [AG03]. The following
result deals with a special case of dynamics where j () ) is a scalar multiple of 1, which typically
occurs in the theory of unichain Markov decision processes as explained before. Recall that for G
in R= , the quantity ‖G ‖� B max1686={G8} −min1686={G8} is called the Hilbert seminorm of G .

) Theorem3.35. Suppose that ) : R= → R= is order-preserving and additively homogeneous. Suppose
in addition that for all G in R= , the sequence of Hilbert’s seminorms (‖): (G)‖� ):∈N is bounded.
Then, for all G in R= , there exists an integer 2 that can be bounded as in Theorem 3.34 such that for
all 0 6 A 6 2 − 1, ):2+A (G) − j () ) (:2 + A ) converges as : →∞.

Proof. It follows from [GG04a] that ) has an additive eigenvector, meaning that there exists D ∈ R= and
_ ∈ R such that) (D) = D + _1. Then, the map� B ) − _1 has a fixed-point, and it is still order-preserving
and sup-norm nonexpansive. It follows from Theorem 3.34 that for every G ∈ R= , there exists an integer 2
such that �:2 (G) converges as : →∞.

Since � is continuous, �:2+A (G) = ):2+A (G) − (:2 + A )_1 = ):2+A (G) − (:2 + A )j () ) also converges as
: →∞. The bounds on 2 follow from the ones of Theorem 3.34. s

The next theorem is stated in [SF77] for operators of multichain Markov decision processes. We
provide a more abstract (equivalent) statement.

) Theorem 3.36 (Schweitzer and Federgruen, [SF77]). Suppose that ) : R= → R= is concave,
order-preserving, additively homogeneous, and piecewise linear. Then, for all G in R= , there exists
an integer 2 that is the order of an element of Sym(=), such that for all 0 6 A 6 2 − 1, the
sequence ):2+A (G) − (:2 + A )j () ) converges as : →∞.

By comparison with Theorem 3.35, the map ) is required in addition to be concave and
polyhedral. The concavity assumption leads to a refined explicit formula on the period 2 (given
by a combinatorial invariant of a certain critical graph depending only on optimal stationary
randomized policies, see [AG03]). The polyhedrality assumption allows one to avoid the restriction
to maps whose orbits are bounded in Hilbert’s seminorm.

4 Stochastic Shortest Path configurations

In general and as illustrated by Corollary 3.32–(2), taking the limit (or the limit inferior for the
sake of definition) of the value function in (3.5) when C tends to ∞ leads to a non-finite result,
which is why one often studies the discounted cost or the average-cost criteria, as they remain
finite over an infinite horizon. However, in their article [BT91], Bertsekas and Tsitsiklis have
identified a subclass of Markov decision processes and a set of assumptions under which the
criterion

D∗(8) B lim inf
C→∞

E∗(8, C) (3.28)

stays finite for all 8 in ( .
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4.1 TOPOLOGICAL AND COST-RELATED RESTRICTIONS. — Following the terminology intro-
duced by Bertsekas and Tsitsiklis, we say that an MDP is in Stochastic Shortest Path configuration
(abb. SSP configuration) if there is a distinguished state of ( denoted by 0 such that any playable
action from state 0 has null cost and forces to stay in 0 (for all 0 in�0, 20 = 0 and ?00 = 1). Although
we are not aware of any study of the stochastic shortest path problem in the semi-Markov setting,
the notion of SSP configuration is essentially topological and carries over to SMDPs. To have
compatibility with Assumption A, we may only impose that C0 > 0 for all 0 in �0.

It can be seen that as soon as a decision-maker reaches state 0while playing the game described
by an SMDP in SSP configuration, he/she will stay in state 0 indefinitely. Due to the null costs,
his/her total accumulated cost no longer evolves from this moment onwards. Hence the game
virtually stops and it makes sense to introduce (3.28). The “stochastic shortest path” denomination
comes from the fact that if we are bound to reach 0 from state 8 in ( , the limit (3.28) of the value
function corresponds to the minimal cost of going from 8 to 0, knowing that we are subject to
some non-deterministic moves after picking actions. If these transition probabilities were zero or
one, we would retrieve the well-known shortest path problem in a graph.

The mere SSP configuration in terms of topology is not sufficient to obtain the finiteness
of D∗. To ensure that the SSP problem is well-posed and that ultimate reachability of state 0 is
guaranteed, the notion of proper policy is often introduced.

) Definition 3.37.We say that a policy f in S is proper if for all 8 in ( , lim
=→∞

[ (
%f

)=]
80 = 1. A

non-proper policy is called improper.

An equivalent formulation of the fact that the policy f inS is proper is that F (f) =
{
{0}

}
,

meaning that, the singleton {0} is the unique final class of the Markov chain induced by f .
This way, we almost surely end up “trapped” in state 0 when we apply the stationary strategy
associated with f , regardless of the initial state. It remains to guarantee that proper policies are
more interesting to play than improper ones. Indeed, a player has no interest in preferring a
proper policy if an improper one gives him/her negative costs (that is, positive rewards) in the
long term. Alternatively, one can see based on Corollary 3.32–(2) that a restriction is in order
to ensure j (�) = 0, that is a necessary condition for (3.28) to be defined. These ideas justify
the second item of the Assumption C enounced by Bertsekas and Tsitsiklis in [BT91], where the
cost of a policy is understood as the expected cost of the stationary strategy associated with this
policy, see Section 2.2.

) Assumption C. The SMDP is in SSP configuration, and is such that

(1) there exists a proper policy,

(2) every improper policy yields a cost of +∞ for at least one initial state.

One of the main results on SSP configurations, shown by Bertsekas and Tsitsiklis for the MDP
case, is the following.

) Theorem 3.38 (Bertsekas and Tsitsiklis, [BT91]). Suppose that Assumption C holds for a Markov
decision process in SSP configuration. Then, the equations

∀8 ∈ ( \ {0}, D (8) = min
0∈�8

{
20 +

∑
9 ∈(

?09 D ( 9)
}

and D (0) = 0

(3.29)

admit a unique solution in R( , which coincides with the value D∗ defined in (3.28).
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In other words, Theorem 3.38 claims that the criterion D∗ of (3.28) is finite, and that it arises as
the unique fixed-point D of the Bellman operator ) for the MDP problem defined in (3.13) such
that D (0) = 0. Note actually that the SSP value (3.28) in [BT91] is only defined in terms of pure
Markovian strategies (that is to say elements of FMD), but Bertsekas recalls in his book [Ber11] the
adequacy of Markovian strategies and in the joint work with Yu [BY13] justifies that randomized
strategies do not improve the criterion defined over pure ones. As a consequence, Theorem 3.38
does apply to the definition (3.28), where an infimum over F is hidden.

4.2 CONVERGENCE IN THE SEMI-MARKOV SETTING. — The other key result shown in [BT91]
is that in the MDP setting, we have for all G in R( that limC→∞) C (G) = D∗ if G0 = 0, in other
words, the total cost D∗ arises as the limit of the value iteration procedure applied to any starting
vector (when the latter has a null coordinate associated with state 0).

We want to determine if an equivalent result holds in the framework of semi-Markov decision
processes, where sojourn times are involved and knowing that we still authorize some sojourn
times to be null. In this subsection, we suppose that we study an SMDP in SSP configuration and
we denote by (�C )C>0 its corresponding evolution semigroup. Because the state 0 is cost-free, the
set of initial conditions on which this semigroup naturally acts is the subsetV0 ofV defined by
V0 B {E ∈ V | E0(B) = 0 for all B ∈ [−Cmax, 0)}.

We will now follow a line of proof that is close to the one of [BT91, Proposition 2] although
resorting to the semigroup formalism, which avoids some cumbersome steps. In what follows, we
denote by D̃∗ the constant function ofV0 that is equal to the vectorD∗ determined by Theorem 3.38.

) Lemma 3.39. Suppose that Assumptions A and C hold. If E0 inV0 is a fixed-point of �C for all C > 0,
then E0 = D̃∗. Conversely, D̃∗ is a fixed-point of �C for all C > 0.

Proof. We begin by proving the first assertion. Suppose we have such a E0, so that

∀C > 0, ∀B ∈ [−Cmax, 0), �C

[
E0
]
(B) = E0 (B) .

By Definition 3.23, letting C = −B in the above yields E0 (B) = E (0) for all B ∈ [−Cmax, 0) where E is the
function uniquely determined by E0 and (DP). As a result E0 is constant. Reusing the notation (�8,/ )8∈(
from the proof of Proposition 3.17, the same (DP) relationship tells us what this constant value is, since
E (0) verifies that for all 8 ∈ ( ,

E (8, 0) = min
0∈�8,/

{
20 +

∑
9 ∈(

?09 E ( 9, 0)
}
∧ min
0∉�8,/

{
20 +

∑
9 ∈(

?09 E
0 ( 9,−C0)

}
= min
0∈�8

{
20 +

∑
9 ∈(

?09 E ( 9, 0)
}
,

where we have reused the fact that E0 (B) = E (0) for B in [−Cmax, 0). Thus, not only do we have that E is null
on state 0, but we also have E (0) = ) (E (0)). Since the Bellman operator) admits a unique fixed-point with
null component on state 0 according to Theorem 3.38, we have E (0) = D∗, hence E0 = D̃∗.

Conversely, we can apply the induction principle (I/ ) to show that �C [ D̃∗] = D̃∗ for all C > 0. Let us call E
the function uniquely determined by D̃∗ and (DP), we suppose that there is C0 > 0 such that E (B) = D∗ for
all B in [−Cmax, C0). If C ∈ [C0, C0 + Cmin), we have using (3.14) that E (8, C) = D∗ (8) for all non-Zeno state 8 in
(#/ . By replacing these information in the equations (3.16), given by (DP) for the possibly Zeno states,
we see that E/ (C) is solution of the dynamics if and only D B (D∗ |#/ , E/ (C)) satisfies D = ) (D), hence
E/ (C) = D∗ |/ , so the induction is shown. s

The following lemma relies on a large extent on the fact that the evolution semigroup is order-
preserving, and is the only place where we need to use its continuity with respect to the pointwise
topology.
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) Lemma 3.40. Suppose that Assumptions A and C hold. If there is E0 in V0 such that for all C > 0,
we have D̃∗ 6 �C

[
E0
]
6 E0, then �C

[
E0
]
converges pointwise towards D̃∗. The result also holds if

conversely, we have E0 6 �C

[
E0
]
6 D̃∗.

Proof. Suppose that we have for all C > 0 the pointwise inequality D̃∗ 6 �C

[
E0
]
6 E0 inV . By monotonicity

of the semigroup (Proposition 3.26–(2)) and by the fixed-point property of D̃∗ (Lemma 3.39), we have
for all C ′ > 0 that D̃∗ 6 �C+C ′

[
E0
]
6 �C ′

[
E0
]
. If follows that for all B ∈ [−Cmax, 0), C ↦→ �C

[
E0
]
(B) is

a non-increasing and bounded from below function. Therefore, �C
[
E0
]
converges pointwise towards a

functionF ∈ V0. Taking the limit when C ′ →∞ in�C+C ′
[
E0
]
= �C [�C ′

[
E0
]
] 6 �C ′

[
E0
]
yields by pointwise

continuity of the semigroup (Proposition 3.26–(4)) �C [F] 6 F for all C > 0. On the other hand, forF is a
non-increasing limit we have for all C, C ′ > 0 that F 6 �C+C ′

[
E0
]
= �C [�C ′

[
E0
]
]. Letting C ′ → ∞ entails

F 6 �C [F] for all C > 0. As a result,F is a fixed-point of �C inV0 for all C > 0, so we must haveF = D̃∗
by Lemma 3.39. s

We now state that the value iteration algorithm also converges for SMDPs in SSP configurations.

) Theorem 3.41. Suppose that Assumptions A and C hold. Then, for all initial conditions E0 in V0

and for all B in [−Cmax, 0), we have

lim
C→∞

�C

[
E0
]
(B) = D∗ .

Proof. Take E0 inV0. We let X B ‖E0 − D̃∗‖∞ and denote by Δ ∈ R( the vector such that Δ0 = 0 and Δ8 = X
if 8 ∈ ( \ {0}. We denote by Δ̃ the constant function B ↦→ Δ ofV0. By definition we have −Δ̃ 6 E0 − D̃∗ 6 Δ̃
(finer than a double inequality involving X 1̃ since E0 and D̃∗ are both null on coordinate 0).

We introduce the two functions E and E inV0 defined by E B D̃∗ − Δ̃ and E B D̃∗ + Δ̃. It is clear that we
have

E 6 E0 6 E and E 6 D̃∗ 6 E .

The monotonicity of the semigroup for all C > 0 (Proposition 3.26–(2)) and the fixed-point property of D̃∗
(Lemma 3.39) lead to

�C [E ] 6 �C

[
E0
]
6 �C [E ] and �C [E ] 6 D̃∗ 6 �C [E ] .

By non-expansiveness of the evolution semigroup (Proposition 3.26–(3)), we have

‖�C [ D̃∗] −�C [E ] ‖∞ 6 ‖ D̃∗ − E ‖∞

which we can rewrite as follows using the monotonicity of the semigroup (we recall thatV0 is stable under
the action of �C for all C > 0), the fact that D̃∗ − E = Δ̃ and �C [ D̃∗] = D̃∗ > �C [E ]:

0̃ 6 �C [ D̃∗] −�C [E ] 6 Δ̃ .

By the fixed-point property once again, the right inequality above provides E = D̃∗ − Δ̃ 6 �C [E ].
Conversely, we also have by similar arguments that

‖�C [ D̃∗] −�C [E ] ‖∞ 6 ‖ D̃∗ − E ‖∞

which leads to the double inequality

−Δ̃ 6 �C [ D̃∗] −�C [E ] 6 0̃

where we retain the left inequality to obtain �C [E ] 6 D̃∗ + Δ̃ = E .

We have satisfactorily shown that for all C > 0, we have

E 6 �C [E ] 6 D̃∗ 6 �C [E ] 6 E ,

we can then invoke Lemma 3.40 for both E and E , and we obtain that the limits of �C [E ] and �C [E ]
when C tends to ∞ do exist and are equal to D̃∗. Using the bounds stated on �C

[
E0
]
, we conclude that

limC→∞�C

[
E0
]
= D̃∗. s
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Remark how the Theorem 3.41 states that the minimum ultimate total expected cost of an SMDP in
SSP configuration is the same than in a corresponding MDP with identical topology and costs but
with unit sojourn times. Although counter-intuitive in the first place, this result is a consequence
of the fact that the criterion (3.28) is a time-indifferent quantity, as an infinite-horizon limit. This
means that if a player wants to minimize his/her total cost in an SMDP in SSP configuration,
he/she should play exactly the same optimal strategy than if all the sojourn times were equal to
one, for he/she actually does not care on the horizon. Naturally, another (horizon-dependent)
strategy would be used if the game had to be played in finite-horizon, but this is not the case here.
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We arrive at the cornerstone chapter of the thesis. At this point, the reader who has had a careful
reading of the previous chapters may already have guessed what is on our mind.

The dynamical equations of the fluid models of Petri nets that we have discussed in Chapter 2
(with no priority rules) indeed bear much resemblance with the dynamic programming equations
of the semi-Markov decision processes introduced in Chapter 3. The first goal of this chapter is to
dig into this direction and study what these two families of models have in common, which takes
the form of four correspondence theorems. The first stone of this approach was laid by Cohen,
Gaubert and Quadrat in the articles [CGQ98, CGQ95]. The second objective in this chapter is
to reap the benefits of these correspondences, stating what the known properties on SMDPs
can bring to the realm of Petri nets. In particular, the correspondence theorems enable us to
derive precise results on the most insightful measure of performance of the long-run behaviour
of Petri nets, their throughput. By comparison with [CGQ95] who only studied the unichain
case, we derive more general characterizations of the throughput vector, valid in the multichain
case and. We refine further their asymptotic expansion of the Petri net trajectories, also derived
by Gaujal and Giua in [GG04b] under milder assumptions. Most importantly, our more general
correspondence theorems with SMDPs allow us to accurately deal with inputs of Petri nets.

More remarkable than the first-order estimate that is the throughput, we are also able to
obtain results on the transience regimes of controlled Petri nets and compute upper bounds on the
time needed for these nets to reach an input-driven regime. These quantitative techniques and
other second-order results take the analysis of monotonic fluid Petri nets a stage further. Before,
the question of convergence to a periodic or stationary regime has received much attention for
the subclass of timed event graphs (that we talked about in Section 1 of Chapter 1) – see for
instance [BCOQ92, Theorem 3.109] and also [HOvdW05, Chapters 8 and 9] with an application
to the Dutch railway network. For such models, the duration of the transient behaviour, also
sometimes called the “coupling time”, has been extensively studied, in particular by techniques
of max-plus spectral theory [BG01, SS12, MNS14, MNS21]. The same problem has arisen in
the setting of deterministic dynamic programming [HA99], and in the analysis of distributed
algorithms [CBFN13].

Here, we extend these results passing from timed event graphs to fluid timed Petri nets with
proportional preselection routings, or equivalently, passing from deterministic (semi-)Markov
decision processes to stochastic (semi-)Markov decision processes. By comparison with the
“deterministic” case, our proofs require new tools. Theorem 4.13 for instance exploits techniques
of non-linear Perron–Frobenius theory [AGN11, AGQS19] in order to characterize the property
of convergence in finite time of the value iteration algorithm for SMDPs. To our knowledge, no
characterization of the finite time convergence was known, even in the setting of MDPs. Note
that estimating the speed of convergence to the stationary regime for Markov decision processes
is indeed a difficult and classical issue. General asymptotic convergence results, like the ones
of [SF77, SF78, SF79], show that a convergence does occur with an ultimately geometric rate.
However, they lead to bounds and speed estimates that are nonconstructive. An explicit bound of
the time needed to enter in the geometric convergence regime was given in [Bon07], for stochastic
shortest path configurations, supposing that all costs are positive. In contrast, we consider here
the property of finite time convergence, leading to different bounds.

We endeavour to illustrate our theoretical results on a simple model of an idealized emergency
call center presented in Section 1, originating from a real-life application and partnership with
the medical emergency “SAMU” services of Paris area. This case-study shall be referred to
extensively throughout the chapter and we hope that these interludes will give the reader an
in-depth understanding of it. We would like to insist on how extraordinary fruitful this apparent
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toy model has been in the development of our correspondence results, and again thank the
SAMU for their help and support. The Section 2 is dedicated to the establishment of formal
correspondence theorems between timed Petri net and SMDP models. The most salient elements
of these correspondences are summarized in the Table 4.1. We then analyze the throughput vector
of Petri nets by means of our correspondence tools in Section 3. In order to focus on transient
regimes of Petri nets, we show in Section 4 that it suffices to study the convergence of the value
iteration for SMDPs in stochastic shortest path configurations. Our original convergence results
for both the general and hierarchical cases are presented in Section 5 (with explicit bounds given
for the latter). We finish this chapter in Section 6 with an illustration of the practical staffing
recommendations we have delivered to the four SAMU of AP-HP (SAMU 75, 92, 93 and 94)
in [ABG20b], building on our analytical formulas.

Timed Petri nets Semi-Markov decision processes

Transitions States

Places Actions

Holding times Sojourn times

Initial markings Costs

Physical time Planning horizon

Counter functions Finite-horizon value function

Synchronization Multiple playable actions

Meeting places Probabilistic moves

Throughput Average-cost

Bottleneck places Optimal policies

Congestion phases Cells of the average-cost complex

Input catch-up times Convergence time of value iteration

Table 4.1: Correspondence between Petri nets and semi-Markov decision processes
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1 A running example: an emergency call center for medical needs

So far, the only place in the thesis where we have talked about models of call centers was
the Example 2.6 in Chapter 2, where a “single-tier” organization was introduced, represented by
means of a continuous-relaxed Petri net, and its dynamics was simulated in three simple cases.

We present in this section models of Petri nets that are a little more complex and represent
real-life medical emergency call centers. They are drawn from a partnership with the Emergency
Medical Services (EMS) of Paris and its inner suburbs, also called SAMU.1 We refer the reader
to the Section 2 of the Introduction where we give a more detailed view of the different French
emergency services. In this section, we only detail the call handling procedures that are useful to
understand the case of Parisian EMS.

1.1 DESCRIPTIONOFTHE SAMUMODEL. — In case of medical distress or need for urgent medical
advice, French people can call the nation-wide phone number 15, and the calls are then dispatched
to regional call centers located in hospital facilities. The calls are first answered by a pool of
operators referred to as medical regulation assistants (MRA). These agents are not physicians, but
are trained to categorize the requests and direct the patients to the correct interlocutor. Indeed,
after taking note of essential personal information, medical regulation assistants transfer the calls
to one of the following two types of physicians, depending on the estimated severity of the case:

(i) an emergency doctor, able to dispatch Mobile Intensive Care Units or first-responding
ambulances and to swiftly send the patient to the most appropriate hospital unit;

(ii) a general practitioner (GP), who can dispatch ambulances and provide medical advice.

Alternatively, a MRA may also handle the call without transferring it, if a conversation with a
physician is not needed (report from a medical partner, dial error, etc.).

There is a major difference of treatment between cases (i) and (ii). When dealing with a
life-threatening or severe situation (case (i)), the MRA must wait for an emergency physician to
be available before transferring the call, in order to report the details of the request. In this way,
the patient is constantly kept on line with an interlocutor – this mechanism may be referred to as
“escorted transfer”. In case (ii), patients are left on hold in a phone waiting room, and general
practitioners pick up the calls in the order of arrival once they are available.

We depict in Figure 4.2 a Petri net that represents this organization. We describe its behaviour,
insisting in particular on the “nature” of the tokens, since as underlined in Section 1.2 of Chapter 1,
tokens in different places of a Petri net can model objects of different types. We use the color
blue (resp. purple, resp. red) to highlight the circuits involving the MRAs (resp. the GPs, resp. the
emergency physicians). For the sake of readability, patient exits are not shown.

The uppermost transition of the net is an input transition, that controls the arrivals of inbound
calls, represented by the counter function I0 (to keep notation light, we do not give labels anymore
to transitions and refer to them directly by their counters). The arrived calls are stocked in a
first place before being picked up by medical regulation assistants. The total number of MRAs is
#�, and they are initially in a pool waiting for calls to arrive, modeled by means of a place with
zero holding time. When a call token and a MRA token are both available, they are consumed to
produce a “patient+MRA” token in a place with zero holding time and ruled by preselection with
three downstream transitions, so that this token is immediately directed towards one of the three
main lanes of the system, according to long-run proportions c�, c� and c% .

1 In French Service d’Aide Médicale Urgente.



Section 1: A running example: an emergency call center for medical needs 137

#�

#�

g2

g1,� g1,� g1,%

g3,%

g3,�

c� c� c%

#%

I0

I1

I2,� I2,%I2,�

I3,� I3,� I3,%

I4,%

I5,%I4,�

I5,�

Figure 4.2: A medical emergency call center with two types of physicians

The calls that are not transferred to emergency physicians or GPs are counted by I2,�. After a
short time g1,� spent in a conversation place, these calls are hung up by MRAs who go back to
their pool (returns counted by I3,�), i.e., the “patient+MRA” token is consumed to produce an MRA
token again. The counter I2,� gives the number of calls picked up by MRAs and directed to the
lane of general practitioners. MRAs need a time g1,� to collect basic information on patients and
send them in the waiting room (with count I3,� ), this last operation consumes a “patient+MRA”
token and produces one MRA token in their pool place, and one patient token in the waiting room.
The latter is by essence a place with no holding time and as soon as GPs (#� doctors in total), are
available from their base pool, they can pick up calls from the waiting room, thus incrementing
the count I4,� (this creates a “patient+GP” token by consuming a GP token and a patient token).
After a consultation with duration g3,� , patients leave the system and GPs re-enter their pool (i.e.,
transition I5,� counts the number of times where a “patient+GP” token is consumed to produce a
GP token).

Finally, calls allocated to emergency physicians, in amount I2,% , take an instruction time
g1,% to MRAs, and after this time is elapsed (which means that the “patient+MRA” token is
mature), an additional wait may be experienced before the availability of an emergency physician
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in the pool with staffing #% . At this point, a “patient+MRA” token and an emergency doctor
token are consumed, which increments I3,% and produces a “patient+MRA+physician” token
in the place with holding time g2. This duration represents the time needed by the MRA to
give the emergency physician a very short briefing on the call. By firing the transition I4,% , a
“patient+MRA+physician” token is split into an MRA token on one hand, who can return in the
MRA pool, and a “patient+physician” token on the other hand, which enters a consultation place
with holding time g3,% . At the end of this conversation, the patient is released from the system,
and the physician becomes ready again to pick up new calls.

The holding times that are considered here are constant. It surely is not very realistic, but
for several reasons that we shall discuss in Section 2 and in Remark 4.6, it is a fruitful first
approximation. As introduced in Section 3.3 of Chapter 1, we can alternatively suppose that the
handling times of the calls are stochastic, drawn from place-dependent distributions.

In addition, and similarly to the single-tier call center of Example 2.6, we assume that the
callers have an infinite patience in the places with zero holding time, meaning that they do not
hang up on their own. This can be seen as the main blind spot of our model. In our Part II where
call centers are studied using numerical simulation and the real patience of callers is taken into
account, we shall see that analytical results derived from infinite-patience models remain very
good approximations of realistic-patience models in many cases. We will thoroughly discuss
there (see in particular the Section 5 of Chapter 7 and the Section 3 of Chapter 8) the impact of
the patience in practice.

1.2 A SIMPLIFIED MODEL. — A few simplifications can be brought to the Petri net of Figure 4.2
without quite altering its dynamics. To begin with, the place ruled by preselection (downstream of
transition I1) that dispatches the picked up calls in the three lanes is convenient to account for the
different handling times by the MRA of the three types of calls,2 but on the other hand produces
more parameters to work with. In addition, this place is somehow an artefact since in practice, the
flow of picked up calls is split after the conversation with the MRA. An alternative design is then
to have a single place of handling by the MRA with time g1, still ruled by preselection to distribute
the calls in the lanes. To ensure consistency between the two models, we would typically take
g1 B c�g1,� + c�g1,� + c%g1,% when working with constant holding times, or construct an average
distribution if working with stochastic holding times.

Besides, we will want as a first step to focus on the coupling between the answering operator
and the emergency physician; indeed the synchronization step at transition I3,% can be seen to be
the most critical link of the system, the only one involving two different agents. On the other
hand, we remark that the circuit of general practitioners is quite independent of the rest of the
system, and from the MRA point of view, finishing the instruction of a call handed over to a GP or
not transferred to a physician at all is equivalent; they just go back to their pool. As a result, we
will consider in what follows a simplified model where these two lanes are “merged” and where
GPs are ignored. In this call center, only two types of inbound calls can occur, the ones which
require the MRA to wait for an emergency physician, and the ones which do not. Again, to keep
consistency with the previous model, these two types of calls would arise in proportions c% and
c� + c� .

2 Based on the data analysis of emergency call logs from four different SAMU call centers, it turns out that it takes less
time to handle calls not transferred to physicians (g1,�), and that it is longer for an MRA to complete the instruction
of a case to be passed to an emergency physician (g1,% ) than to a general practitioner (g1,� ). Typical values are
g1,� ' 60 s, g1,� ' 110 s and g1,% ' 130 s.
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Figure 4.3: The medical emergency call center EMS-A,
simplified version of the one in Figure 4.2

This simplified model is depicted in Figure 4.3. We still denote by #� (resp. #% ) the total number
of MRAs (resp. emergency doctors). The fraction of calls requiring a transfer to emergency
physicians (formerly c% ) is denoted by c . Medical regulation assistants need a characteristic
holding time g1 to handle inbound calls, a time g2 to transfer cases to emergency doctors, and the
latter need a time g3 to conduct a phone consultation with patients. Remark that the transition I3
is downstream of a place ruled by preselection, and that it admits another upstream place, this
pattern is thus to be understood in the sense of the reduction of Figure 1.6.

Although the real call center is subject to integrality constraints (there are no such things as
half a call or half an agent), we choose to study its continuous-relaxed dynamics. As justified
in Chapter 2, this is a sound approximation whose validity increases with the size of the model
(number of tokens navigating through it). Applying the fluid equations of Table 2.3 gives the
following dynamical model governing the Petri net of Figure 4.3. We use the symbol ∧ to denote
the minimum operator (i.e., G ∧ ~ = min(G,~)).



I1(C) = I0(C) ∧
(
#� + I2(C) + I4(C)

)
I2(C) = (1 − c)I1(C − g1)
I3(C) = cI1(C − g1) ∧

(
#% + I5(C)

)
I4(C) = I3(C − g2)
I5(C) = I4(C − g3)

(EMS-A)

In the rest of the thesis, we will refer to this system of equations as (EMS-A). Note that this model
is priority-free. An alternative organization of a SAMU call center, implementing priority rules,
will be presented in Section 3 of Chapter 5, and referred to as (EMS-B) by comparison.
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2 The finite-horizon correspondence theorems

We are now going to establish a formal correspondence between monotonic fluid Petri nets
and SMDPs. In the whole chapter, the Petri net models are supposed to be priority-free (hence
associated with standard monotonic dynamics as highlighted in Section 2 of Chapter 2), and in
what follows we use the terms fluid or continuous-relaxed indifferently. To get a full understanding
of the results presented here, it is important to have in mind the objects introduced in Chapters 2
and 3. Moreover, we encourage the reader to read all the proofs of the current section.

2.1 STATEMENTOF THE RESULTS. — Our first correspondence theorem compares in particular the
recursive equations of Table 2.3 in Chapter 2 verified by the counters of a fluid Petri net (a priori
controlled, i.e., that admits input transitions) and the dynamic programming equations (DP-Stop)
featured in Chapter 3 for SMDPs with stopping costs.

) Correspondence Theorem 1. The counter function dynamics of the transitions in a continuous-
relaxed and non-Zeno timed Petri net is equivalent to the discounted finite-horizon dynamic pro-
gramming equations of a semi-Markov decision process with stopping costs.

Proof. Because the Petri net is priority-free, we have Pprio = ∅. According to the conflict-free transforma-
tion introduced in Section 1.3 of Chapter 2, we can suppose up to considering an equivalent conflict-free
net that Ppsel = ∅ as well without changing the dynamics, as shown by Proposition 2.7. We are thus left
with a timed Petri net such that Q = Qinput ∪ Qsync and |?out | 6 1 for all places ? in P. The Table 2.3
of Chapter 2 gives us the dynamics equations followed by transitions of Qsync:

∀C > 0, ∀@ ∈ Qsync, I@ (C) = min
?∈@ in

{
U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g? )
)}
. (4.1)

Recall from Section 1.5 of Chapter 1 that without loss of generality, each input transition admits a unique
downstream place, that in turn admits a single downstream transition of Qsync. Conversely, if we denote
by Pinput B

⋃
@∈Qinput @

out , we can assume that for all @ ∈ Q we have |@ in ∩Pinput | 6 1, that is to say any
internal transition is constrained by at most one input. Moreover, up to changing the input profiles, we
can suppose that multipliers involving places of Pinput are unitary and that the associated initial markings
and holding times are null. The previous equation can consequently be refined in the form

∀C > 0, ∀@ ∈ Qsync, I@ (C) = min
?∈@ in

?∉Pinput

{
U−1@?

(
<? +

∑
@′∈? in
@′∈Qsync

U?@′ I@′ (C − g? )
)}
∧ min

@′∈Qinput

@ in∩@′ out≠∅

{
I@′ (C)

}
, (4.2)

where ∧ denotes the minimum as before, and the last minimum in the right-hand side is taken either on
the empty set (hence it equals∞) or on a singleton.

Introducing for all ? ∈ P \ Pinput with unique downstream transition @ the nonnegative quantities
1? B U−1@?<? , ^

? B U−1@?
∑
@′∈? in U?@′ and for all @′ ∈ ? in the quantity V?

@′ B ^−1? U−1@?U?@′ , we obtain that

(V?
@′)@′∈Q is a probability vector, and equation (4.1) can be rewritten as

∀C > 0, ∀@ ∈ Qsync, I@ (C) = min
?∈@ in

?∉Pinput

{
1? + ^?

∑
@′∈Q

V
?

@′ I@
′ (C − g? )

}
∧ min

@′∈Qinput

@ in∩@′ out≠∅

{
I@′ (C)

}
. (4.3)

This last equation needs to be compared with the generic dynamic programming equation of a discounted
SMDP with stopping costs (see equations (DP-W ) and (DP-Stop)):

∀C > 0, ∀8 ∈ (, E (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}
∧ '(8, C)

in which we see the following exact one-to-one correspondence; the counter functions of the Petri net follow
the dynamic programming equations of an SMDP with |Q \ Qinput | states, from the state corresponding to
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@ ∈ Q \ Qinput there are |@ in ∩ (P \ Pinput) | playable actions, each one of these actions correspond to an
upstream place ? of @, yielding a cost 1? , a sojourn time g? , a discount factor ^? and transition probabilities
(V?
@′)@′∈Q , while there is also a possible stopping cost I@′ , where @′ ∈ Qinput is the only input transition

directly upstream of @ (if such an input transition does not exist, it disappears of the equation). s

The proof of Correspondence Theorem 1 and in particular the equation (4.3) shows that the
transitions (resp. the places) of a Petri net are in formal correspondence with the states (resp.
the actions) of an SMDP. More specifically, the upstream places of a transition in a Petri net
correspond to the playable actions from a state in an SMDP, so that this is actually a backward
correspondence (recall that tokens of a Petri net are produced in downstream places of transitions,
and fire downstream transitions of places). The Figure 4.4 shows how the most elementary pattern
from transition @1 to transition @2 with one intermediary place in a Petri net corresponds to a
pattern going from state 2 to state 1 via one playable action in �2 in the SMDP setting.

@1 @2

.

(a)

1 2

(b)

Figure 4.4: The Petri net / SMDP correspondence goes backward

It also readily follows from the proof of Correspondence Theorem 1 that the input profiles of
the input transitions of the Petri net correspond to stopping costs in the SMDP setting. Before
discussing any further the common features of monotonic fluid Petri nets and SMDPs, let us
recall from Chapter 2 that although this is essential to our application, taking into account these
externally-prescribed input profiles for Petri nets (or theses stopping costs for SMDPs) increases
the cumbersomeness of our formalism. We are however going to focus on the particular case
where the input profiles (or the stopping costs) are affine functions. In the context of Petri nets
it amounts to constant-rate arrivals of fluid-tokens, and it is a sane approximation of discrete
(homogeneous) Poisson arrivals (see Section 3.2 of Chapter 2). Actually, studying the affine case
is also much informative on the general case since any admissible input profile (nondecreasing
function from R>0 to R>0) can ultimately be bounded above or below by an affine function
(depending on if it is superlinear of sublinear). The following proposition shows in the context of
SMDPs that exogenous stopping costs that are affine in the planning-horizon can be emulated by
endogenous extra states.

) Proposition 4.1. The dynamic programming equations of an SMDP with state space ( , actions �
and affine stopping costs coincide with the dynamic programming equations of an SMDP with
augmented state space ( ∪ (⊥ and augmented action space � ∪�⊥, with no stopping costs but with
suitable terminal costs and such that all the states of (⊥ are absorbing.

Proof. As recalled at the end of the proof of Correspondence Theorem 1, the generic dynamic programming
equation of a discounted SMDP with stopping cost ' writes

∀C > 0, ∀8 ∈ (, E (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}
∧ '(8, C) . (4.4)

Let us suppose that the stopping costs are affine functions, which means that for all 8 ∈ ( , we either have
two scalars _8 and [8 such that '(8, C) = _8C + [8 for all C > 0, or '(8, C) = ∞ for all C > 0. We denote
(<∞ B {8 ∈ ( | '(8, ·) < ∞} the set of states where the stopping costs are effective.

For all 8 in (<∞, we introduce a new absorbing state 8⊥, and we denote (⊥ B {8⊥ | 8 ∈ (<∞}. For all 8 in
(<∞, we introduce a unique playable action 08⊥ (so that �8⊥ is a singleton), with cost _8Cmax, sojourn time
Cmax and unit discount factor (recall that Cmax B max0∈�{C0}). To ensure that these states are absorbing,
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we have in addition ?
0 9
9

= 1 for all 9 ∈ (⊥. Finally, for all 8 in (<∞, we augment the set of playable actions�8
by allowing an additional action with zero cost and zero sojourn time making the player deterministically
join the state 8⊥.

The dynamic programming equations of this modified SMDP are the following:

∀C > 0,



∀8⊥ ∈ (⊥, E (8⊥, C) = _8Cmax + E (8⊥, C − Cmax)

∀8 ∈ (<∞, E (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}
∧ E (8⊥, C)

∀8 ∈ ( \ (<∞, E (8, C) = min
0∈�8

{
20 + W0

∑
9 ∈(

?09 E ( 9, C − C
0)
}

.

(4.5)

Now, we add to the model specifications the terminal cost F : [−Cmax, 0) → R(∪(⊥ , such that for all 8 in
(<∞, we haveF (8⊥, C) = _8C + [8 for all C ∈ [−Cmax, 0). We can reuse the first equation of (4.5) to conclude
that E (8⊥, C) = _8C + [8 = '(8, C) for all C ∈ [−Cmax,∞), and it guarantees that a solution of (4.5) restricted to
states of ( coincides with the solution of the initial dynamic programming equations (4.4). s

We can combine Correspondence Theorem 1 and Proposition 4.1 to deduce that the dynamics
of a continuous-relaxed Petri net (that is non-Zeno and priority-free) whose inputs have affine
profiles are equivalent to the dynamic programming equations of a discounted SMDP with no
stopping costs. In a sense, the Proposition 4.1 extends the Proposition 2.11, because it tells us
that we can describe the dynamics of timed Petri net with affine inputs by means of an evolution
semigroup and not necessarily using the more general evolution operator, as if there were no
inputs (these two formalisms having been introduced in the Section 2.2 of Chapter 2).

The following result, stated directly under the assumption that the input profiles are affine,
articulates a very suitable setting in which the correspondence between Petri nets and semi-
Markov decision processes takes its full dimension. It hinges on the existence of a stoichiometric
invariant of the continuous-relaxed Petri net (see Definition 2.13), or equivalently if the latter is
conflict-free, on the existence of a T-invariant (see Definition 1.6 and Proposition 2.15).

) Correspondence Theorem 2. The counter function dynamics in a continuous-relaxed timed
Petri net with affine inputs and that admits a positive stoichiometric invariant is equivalent to the
finite-horizon dynamic programming equations of an undiscounted semi-Markov decision process.

Proof. Let 4 be a positive stoichiometric invariant of the net (that we again suppose conflict-free for
convenience), i.e., according to Definition 2.13, a vector in RQ

>0, such that

∀@ ∈ Qsync, ∀? ∈ @ in, 4@ = U−1@?
∑
@′∈? in

U?@′4@′ .

We have recalled in the proof of Correspondence Theorem 1 that without loss of generality each transition in
Q \Qinput admits at most one upstream place in Pinput and the latter admits a single downstream transition,
with unit multipliers. Hence, again without loss of generality, for all @input ∈ Qinput and @ ∈ Q \ Qinput, it
holds that @ in ∩@ outinput ≠ ∅ =⇒ 4@input = 4@ . For ? ∈ P \ Pinput such that ?out = {@} and for all @′ ∈ Q, we

introduce the quantity b ?
@′ B U−1@?U?@′4@′/4@ . It is direct that b ? B (b

?

@′)@′∈Q\Qinput is a probability vector.

Now, we start back from the equation (4.2) of the proof of Correspondence Theorem 1, and we are able to
write that for all C > 0,

∀@ ∈ Qsync, I@ (C) = min
?∈@ in

?∉Pinput

{
U−1@?<? +U−1?@

∑
@′∈Q

U?@′4@′
(
I@′ (C − g? )/4@′

)}
∧ min

@′∈Qinput

@ in∩@′ out≠∅

{
I@′ (C)

}
.
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and as a result, for all C > 0,

∀@ ∈ Qsync, I@ (C)/4@ = min
?∈@ in

?∉Pinput

{
U−1@?<?/4@ +

∑
@′∈Q

b
?

@′
(
I@′ (C −g? )/4@′

)}
∧ min

@′∈Qinput

@ in∩@′ out≠∅

{
I@′ (C)/4@′

}
. (4.6)

We are now in the situation where the counters (I@/4@)@∈Qsync follow a dynamics that is syntactically
equivalent to the one of an undiscounted SMDP, still with stopping costs. Because the (I@)@∈Qinput are
affine, it suffices to build on Proposition 4.1 to obtain that the evolution of the counters (I@/4@)@∈Q can
also be represented by dynamic programming equations of an undiscounted SMDP with no stopping costs
in which input transitions correspond to absorbing states. s

The proof of Correspondence Theorem 2 points out the fact that when 4 is a positive stoichio-
metric invariant of the continuous-relaxed Petri net, the appropriate objects to look at are the
renormalized counters (I@/4@)@∈Q . This is consistent with the fact that in the context of Petri
nets, the vector 4 plays the same role as the vector 1 for SMDPs. Recall indeed from the remark
subsequent to Proposition 2.14 that the Petri net fluid dynamics are additively homogeneous
with respect to 4 , while those of SMDPs are additively homogeneous with respect to 1 according
to Proposition 3.26–(1).

The most important comment to make is once again that transitions of the Petri net correspond
to states of the SMDP, that places of the Petri net correspond to actions of the SMDP, and that
the correspondence goes backward. In the light of (4.6), we are able to precise further that the
actions of the SMDP have a sojourn time equal to the holding times of their corresponding places
in the Petri net, and have immediate costs equal to the initial markings of their corresponding
places up to renormalization by the stoichiometric invariant and places’ post-multipliers. The
transition probabilities after playing an action of the SMDP are determined by the arc multipliers
of the Petri net, “conjugated” by the stoichiometric invariant.

In addition, observe how elementary incidence patterns in Petri nets discussed in Section 1.3
of Chapter 1 correspond to meaningful counterpart patterns in SMDPs. A synchronization
transition in Petri nets, that have multiple upstream places, will correspond in the world of
SMDPs to a state from which multiple actions can be played. Conversely, a “join” place that
admits multiple upstream transitions corresponds to an action leading to multiple state, that is
to say proper probabilistic moves, while places with unique upstream transitions correspond to
actions with deterministic evolution. Finally, the conflict (or fork) patterns for places in Petri
nets, equivalently represented by concurrency patterns for transitions using the conflict-free
transformation, correspond to several actions (playable from different states) that lead to a same
state. The correspondence elements discussed so far allow us to fill the first part of the Table 4.1
featured in the chapter introduction.

The Correspondence Theorems 1 and 2 explain quite naturally why we had to face for both
Petri nets and semi-Markov decision processes identical difficulties in the treatment of Zeno
phenomena, when null holding times or sojourn times are involved. However, the Assumption A
uncovered in Chapter 3 for SMDPs using the notion of policies and final classes is more general
than the Definition 1.18 of non-Zeno Petri nets, where a more naive condition on total holding
times over circuits was required. Building on the Correspondence Theorem 2, the Assumption A
appears to be the correct (and minimal) setting to work with non-Zeno Petri nets admitting
stoichiometric invariants as well. Likewise, it is not surprising that we resorted to the two very
close induction principles (I) for Petri nets and (I/ ) for SMDPs, the latter being a bit more
general since it uses weaker non-Zeno assumptions.

Observe further that the syntactic correspondences exposed by Correspondence Theorems 1
and 2 also carry over cases where holding times of Petri nets or sojourn times of SMDPs are
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non-deterministic. Indeed, compare the generic “mean-field” dynamical equation for stochastic
Petri nets found out in Section 3.2 of Chapter 2

I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′

∫ ∞

0
I@′ (C − g) d`? (g)

)
,

being understood in this case that I@ (C) = 0 for all @ in Qsync and C < 0, versus the generic dynamic
programming equation much studied in the SMDP literature and recalled in the Section 2.8
of Chapter 3

E (8, C) = min
0∈�8

{
20 +

∑
9 ∈(

?09

∫ C

0
E ( 9, C − B) da0 (B)

}
.

It is clear in this setting that our two correspondence theorems still apply, with identical definition
of costs, transition probabilities, and discount factor. We see in addition that for a place of a
Petri net with holding time distribution `, the sojourn time distribution a of the corresponding
action in the twin SMDP is such that ` = a almost everywhere. Although we mainly focus in
what follows on Petri nets with constant holding times, it is worth remembering that some of the
coming properties can also be stated for the more general class of stochastic models.

In the rest of the chapter, we will present and discuss many implications of Correspondence
Theorem 2. Because we have justified that monotonic fluid Petri nets and SMDPs are essentially
the same, we will use in parallel both formalisms, switching from one to another whenever it is
more convenient. These acrobatics are eased up by the fact that their respective notation have
almost no collision (the letter ? that designates a place in Petri nets but transition probabilities in
SMDPs shall always have a clear meaning from the context).

2.2 ILLUSTRATION ON THE EXAMPLE EMS-A. — Let us now detail how Correspondence Theo-
rem 2 applies to our running example (EMS-A). To begin with, observe that the positive vector
4 B (1, 1, 1 − c, c, c, c)T is a stoichiometric invariant of the Petri net represented in Figure 4.3
(recall that c gives the proportion of inbound calls transferred to the emergency physician), since
it is in the right-nullspace of the incidence matrix� of the net below and that the ratios 42/41 and
43/41 agree with the proportions of the preselection routing:

�4 =

©«

1 −1 0 0 0 0
0 −1 1 0 1 0
0 1 −1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 0 1

ª®®®®®®®®¬

©«

1
1

1 − c
c

c

c

ª®®®®®®®®¬
= 0 .

The Figure 4.5 depicts the equivalent conflict-free Petri net of the net of Figure 4.3 (in accordance
with the conflict-free transformation introduced in Section 1.3 of Chapter 2, the place upstream
of the proportional preselection routing has been duplicated). The same figure also shows the
corresponding SMDP, whose actions are labeled with cost and sojourn time pairs in the same
manner as Chapter 3. As set out by the correspondence theorems, each transition of the Petri
net (still directly labeled by their counters I0, I1, I2, I3, I4 and I5) corresponds to a state of the
SMDP, so that the state space of the latter is {0, 1, 2, 3, 4, 5}, and we can verify that each place of
the Petri net (there are seven in total) corresponds to an action of the SMDP. Observe once again
how the direction of the arcs are flipped, and how the transition I0 that is a source in the Petri
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Figure 4.5: The (conflict-free) Petri net (EMS-A) (left)
and the corresponding undiscounted SMDP (right).

net formalism becomes a sink in the SMDP one. Remark also as an effect of the renormalization
by 4 how the probabilities c and 1 − c get moved, and how the initial marking #% (number of
emergency physicians) is increased by a factor 1/c . We let the reader appreciate in the light
of these figures the previous discussion on the correspondence between incidence patterns of
Petri nets and SMDPs. Finally, observe how the input transition I0 with a prescribed affine
profile C ↦→ _C in the Petri net is replaced by an absorbing state with a cost-rate _, consistently
with Proposition 4.1 and its proof.

Applying the formulas of Chapter 3 and still using the symbol ∧ to denote the minimum, the
dynamic programming equations of the SMDP of Figure 4.5 are the following

E (1, C) = E (0, C) ∧
(
#� + (1 − c)E (2, C) + c E (4, C)

)
E (2, C) = E (1, C − g1)
E (3, C) = E (1, C − g1) ∧

(
#%/c + E (5, C)

)
E (4, C) = E (3, C − g2)
E (5, C) = E (4, C − g3)

(4.7)

that is exactly the same system as (EMS-A) after renormalization by 4 .

In the same spirit as Examples 1.22, 1.25, 2.6 and 2.10 for Petri nets and Examples 3.21 and 3.25
for SMDPs, we represent in the Figure 4.6 the trajectory of the Petri net (i.e., the counter functions)
and of its twin SMDP (i.e., the value function) of our running example. In what follows, we
concisely comment the behaviour of the solutions, highlighting phenomena that we will explain
in details in Section 3.
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We always suppose that the characteristic handling time g1 of an inbound call by the MRA is
g1 B 150 s, the typical transfer time between the MRA and the emergency doctor is g2 B 20 s and
the duration of a consultation between the doctor and the patient is g3 B 200 s. In addition, we
suppose that the calls arrive with a constant rate _ and there is no initial stock, so that E (0, C) = _C
for all C > 0. We choose _ = 0.025 s−1, corresponding to one call every 40 seconds, or 90 calls
per hour, and we assume that three tenth of them require a consultation with the physician,
or in other words c B 0.3. However, we consider four different scenarios for the call center
staffing, with the pair (#�, #% ) (numbers of MRAs and emergency physicians) taking values in
{(4, 2), (3, 2), (4, 1), (3.5, 1.5)}. The trajectories are given in the first 20 minutes of the execution.
We mark all the break of slopes of the trajectories by a tick on the time axis, while we symbolize
by a dotted vertical line a change of minimizing term in the systems (EMS-A) or (4.7).

In the first case where #� = 4 and #% = 2, one can see that the trajectories are exactly
affine. Naturally, the trajectory of the SMDP is a rescaled version of the one of the Petri net,
and since all profiles are parallel for the SMDP, we directly read that we have I0(C) = I1(C) = _C ,
I2(C) = (1−c)_(C −g1), I3(C) = c_(C −g1), I4(C) = c_(C −g1 −g2) and I5(C) = c_(C −g1 −g2 −g3).
This means, exactly such as the first experiment of Example 2.6 for a single-tier call center, that
all the inbound calls are picked up and handled as soon as possible at each step, since the delays
between the counters of transitions are the incompressible holding times of their upstream places.

The second scenario involves #� = 3 MRAs and #% = 2 emergency physicians. It can be seen
that all the inbound calls are picked up by MRAs until 120 s, after which I1 stays constant for a bit,
because all the MRAs are busy on the phone at this instant. In particular the minimum in the first
equation of (EMS-A) or (4.7) is no longer determined by the arrivals of calls. From this moment
forward, not all calls are immediately handled and the difference I0(C) − I1(C) gives the amount
of pending calls. The trajectory of the Petri net shows an oscillating profile on top of an affine
growth, similar to the second experiment of Example 2.6, with slopes proportional to 4 since it
appears on the SMDP trajectory that all states of {1, 2, 3, 4, 5} have the same growth-rate, smaller
than _. Observe that ultimately, the break of slopes occur only at regular instants, multiple of 10
seconds.

The third simulation supposes that #� = 4 and #% = 1. On the rescaled trajectory for the
SMDP, one can see that the growth of E (3, ·) stops at 283.33 s, indicating that there are not enough
emergency physicians to treat all the calls handed over by the MRAs. This also affects the MRAs
who cannot pick up all calls from the instant 316.67 s, moment at which the counters I0 and I1
consequently start to differ. It is worth mentioning that the counters I3, I4 and I5 admit ultimate
profiles with distinct and long plateaus, while I1 and I2 are much smoother.

Finally, the fourth and last situation is intermediary to the previous ones, with #� = 3.5
MRAs and #% = 1.5 physicians; these numbers are of course not realistic but yet permitted in the
continuous-relaxed framework. The particularity of this example is its high number of switches
in the dynamics, recall indeed that each dashed vertical line marks a change in one minimizing
terms of (EMS-A) or (4.7). It is here very difficult to predict which part of the dynamics will be
limiting for horizons between 300 s and 1200 s! In addition, the trajectories suffer many break of
slopes (precisely 189 in this figure) over short times (up to 0.028 s) and at non-trivial instants.

So why do small changes in the staffing impact that much the solutions of the call center
dynamics? Can these behaviours be predicted and quantitatively analyzed? Those are questions
that we shall now answer.
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Figure 4.6: Simulation of counters and value functions for the Petri net
and the SMDP of Figure 4.5
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3 Studying the throughput of fluid Petri nets through SMDP tools

In this section, our goal is to study and characterize the throughput of continuous-relaxed and
priority-free timed Petri nets, defined to be the ultimate number of firings per unit of time of the
transitions of the net, or more formally as the vector d of (R>0 ∪ {∞})Q such that

d B lim
C→∞

I (C)
C

,

where I B (I@)@∈Q andwhen the limit exists. The Figure 4.6 (specifically its left column) illustrates
four situations in which the trajectory of the Petri net is pseudo-affine, and therefore where d
seems to be finite; we are going to show that this is actually true in general. However, the
throughput differs from one case to another, and we want to precisely explain why.

The throughput of Petri nets, as the first-order estimate of the trajectories of the system
and one of the performance measures with the most practical interest, has already received
much attention in the literature. The originality of our approach is nevertheless to analyze the
throughput of timed Petri nets in the light of the following essential key result, which states a
correspondence between the throughput of a Petri net and the average-cost vector of an SMDP.
Recall that � denotes the Hadamard (componentwise) product (conversely, we shall soon use the
symbol � to denote the Hadamard quotient).

) Correspondence Theorem 3. The throughput d of a continuous-relaxed non-Zeno timed Petri
net with affine inputs and that admits a positive stoichiometric invariant 4 verifies

d = j (�)4 � 4 , (4.8)

where j (�)4 is the ultimate rate-of-cost vector (3.23) of the undiscounted semi-Markov decision
process with no stopping costs that corresponds to the Petri net according to Correspondence Theorem 2.

Proof. We reuse the result of Correspondence Theorem 2, telling us that I = E � 4 , where E is the value
function of the SMDP. We apply Corollary 3.32–(2) to this value function, to obtain that limC→∞ E (C)/C =
j (�), and therefore d = j (�) � 4 . s

We have purposively added the subscript 4 to insist on the fact that the undiscounted SMDP
built by Correspondence Theorem 2 has costs and transition probabilities that depend upon 4 .
However, the whole right-hand side of (4.8) is homogeneous in 4 , in the sense that scaling 4 by a
positive scalar (that still yields a positive stoichiometric invariant) does not change the result. In
fact, we have mentioned in the Section 2.2 of Chapter 2 that the set of positive stoichiometric
invariants can have multiple degrees of freedom (which trivially happens for Petri nets with
multiple connected components, but can also arise in connected nets). Nonetheless, while j (�)4
and 4 change, their product remains the same.

Note also that (4.8) is not inconsistent with the fact that d is nonnegative, because Correspon-
dence Theorem 2 showed that the costs of an SMDP corresponding to a Petri net are rescaled
markings, thus they are nonnegative and so is j (�)4 .

3.1 EXISTENCE AND UNIVERSALITY. — The first consequence of Correspondence Theorem 3 is
the existence and finiteness of the throughput vector of Petri nets, stated in the following corollary.
Recall from Theorem 1.23 and the discussion in Section 2.2 of Chapter 2 that the solutions of the
dynamical equations of continuous-relaxed, non-Zeno and priority-free Petri net are uniquely
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determined by seed functions defined over [−gmax, 0), that are elements of �, and we refer to
these complete solutions over [−gmax,∞) as trajectories of a Petri net.

) Corollary 4.2. In a continuous-relaxed non-Zeno Petri net that admits a stoichiometric invariant,

(i) there exists an affine stationary regime, i.e., two vectors (d,D) in (R>0)Q × RQ such that,
initializing the dynamics with the seed function I (C) = dC +D for C in [−gmax, 0), we end up with
the affine trajectory I (C) = dC + D for all C > 0;

(ii) the vector d in (i) is universal, i.e., the solution I of the dynamics initialized with any seed
function of � satisfies

I (C) =
C→∞

dC +$ (1) .

Proof. Both items are consequences of Corollary 3.32 and naturally Correspondence Theorem 3. s

Observe the implications in practice of Corollary 4.2–(ii), for example on our emergency call
center model (EMS-A). The insensitivity of the throughput to the initial condition means that
whatever the size of the queues of calls when the execution of the call center starts, the latter
will always reach an ultimate handling speed exclusively determined by its internal parameters:
arrivals rate, conversation times, proportions of the different types of calls, and number of agents.

Compared to [CGQ95], the existence of the throughput in Corollary 4.2 is proved in a multi-
chain setting, that is to say, the corresponding semi-Markov decision process does not necessarily
have a strongly connected underlying structure, and therefore d may not be uniform (i.e., a
multiple of 1). In addition, the second item of the corollary can be seen as a second-order result
since it tells us that the deviation I (C) − dC of the trajectory to its ultimate growth-rate is bounded,
which is more informative that the equality limC→∞ I (C)/C = d featured in [CGQ95] and also
studied in [GG04b].

) Remark 4.3. Let us briefly come back to the original “discrete” models of Petri nets introduced
in Chapter 1. Recall indeed that in Chapter 2, we have shownwith Theorem 2.19 that the trajectory
/# of a scaled-by-# Petri net differed at most from the trajectory I# of the counterpart continuous-
relaxed net by an affine function C ↦→ ^1C + ^0, provided both inputs and preselection mappings
verified so-called bounded deviations conditions. In addition, we had I# = #I. As a consequence,
we know that there exists a constant ^ > 0 such that |/# (C)/#C − I (C)/C | 6 ^/# . This does not
prove the existence of the throughput limC→∞ / (C)/C for discrete Petri nets (see the discussion
in [GG04b, Section 5] on this aspect), however we can define ddisc

#
B lim infC→∞ /# (C)/#C to

be a minimum rescaled throughput of the scaled-by-# discrete net. Our bound guarantees that
|ddisc
#
− d | 6 ^/# , in particular even for the scaled-by-1 instance we know that the real growth

rate of the discrete Petri net cannot be too far away from the throughput of the equivalent fluid
Petri net. Further, we retrieve the fact that the continuous-relaxed approximation is more and
more precise as # grows, with lim#→∞ ddisc#

= d . This is illustrated by the diagram below.

/# (C)
#C

I (C)
C

ddisc
#

d

lim
#→∞

lim
#→∞

lim inf
C→∞

lim
C→∞

∈
[
d − ^/#, d + ^/#

]
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3.2 THEOPTIMALITYEQUATIONS.— We are now interested inmethods to compute the throughput
vector. The following result makes it arise as the solution of a set of 2 × |Q| optimality equations.

) Corollary 4.4. In a continuous-relaxed non-Zeno and conflict-free timed Petri net with affine
inputs (C ↦→ _@C + [@)@∈Qinput and that admits a stoichiometric invariant, the throughput d is the
unique vector of (R>0)Q such that d@ = _@ for all @ in Qinput and such that there exists a vector D
in RQ verifying for all @ in Q \ Qinput :

d@ = min
?∈@ in

{
U−1@?

∑
@′∈Q

U?@′d@′
}

(L1)

D@ = min
?∈@ in

∗

{
U−1@?<? − d@g? + U−1@?

∑
@′∈Q

U?@′D@′
}

(L2)

where @ in∗ is the subset of @ in for which the minimum is achieved in (L1).

Proof. Let us denote by 4 a positive stoichiometric invariant. The Correspondence Theorem 3 and the The-
orem 3.31 ensure that d is the throughput vector of the Petri net if and only if there exists a vector D such
that d � 4 and D � 4 are solutions of the equations (OE1)–(OE2) of SMDPs, i.e.,

d@/4@ = min
?∈@ in

{
U−1@?

∑
@′∈Q

U?@′4@′4
−1
@

(
d@′/4@′)

}
D@/4@ = min

?∈@ in
∗

{
U−1@?<?/4@ − g?d@/4@ + U−1@?

∑
@′∈Q

U?@′4@′4
−1
@

(
D@′/4@′)

}
.

It suffices to multiply these equations by 4@ on both sides to obtain the equations (L1)–(L2) for all @ ∈ Qinput.
Further, emulating the input transitions by absorbing states as done in Proposition 4.1 provides for all
@ ∈ Qinput the extra equation (d@, D@) = (d@, _@gmax − d@gmax + D@), which indeed implies d@ = _@ . The
value of D@ is not constrained for @ ∈ Qinput. s

In [ABG21], we have shownwithout using the notion of stoichiometric invariant that the existence
of a solution (d,D) of (L1)–(L2) is equivalent to the existence of an ultimately affine solution of
the form C ↦→ dC + D of the dynamics of the Petri net – with a proof syntactically identical to the
one of Proposition 3.30. The Corollary 4.4 actually tells us that the existence of a stoichiometric
invariant is a sufficient condition for (L1)–(L2) to have a solution.

The Corollary 4.4 deals with conflict-free Petri nets, which is handy to treat the transitions
ruled by proportional preselection routing or mere synchronization under the same formalism
(the routing proportions become integrated in the arc multipliers). In practice, we may rather
want to keep track of each parameter of the original Petri net, before it has been transformed in a
conflict-free net. To avoid distinguishing the cases of transitions in Qsync and Qpsel, it is licit to
set c@? B 1 for all @ in Qsync and ? in @ out. Further, the two optimality equations (L1) and (L2)
can be compacted into a single equation by using the lexicographic order on real tuples; for two
tuples (G,~) and (G ′, ~ ′) in R2, we shall write (G,~) 6 (G ′, ~ ′) if and only if G 6 G ′, or G = G ′ and
~ 6 ~ ′. Denoting by minlex the minimum operation relatively to this lexicographic ordering, we
obtain the throughput optimality equation, valid for all transitions @ in Q \ Qinput:

(d@, D@) = min
?∈@ in

lex
{(
c@?U

−1
@?

∑
@′∈Q

U?@′d@′ , c@?U
−1
@?<? − d@g? + c@?U−1@?

∑
@′∈Q

U?@′D@′
)}
. (L)

Remark how the lexicographic minimum exactly encodes the fact that for all @, the term D@ in (L2)
is only determined by upstream places of @ realizing the minimum in (L1).
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Gathering all the equations of type (L) together provides a lexicographic system that it is possible
to solve by an enumerative approach, consisting in choosing in each equation which tuple on the
right-hand side achieves the minimum. These equalities lead to a value of the throughput, while
the non-minimizing terms yield inequalities that are validity conditions under which the chosen
tuple candidates are indeed minimizing terms.

∗
∗ ∗

Let us illustrate this optimality system on our running example (EMS-A) in which all the arc
multipliers are equal to one in the original model (or alternatively only two arcs have nontrivial
weight in the conflict-free model). When working on real tuples like below, we also use the
operator ∧ to stand for the lexicographic minimum. Applying the equation (L) to our idealized
call center provides 

(d1, D1) = (_,D0) ∧ (d2 + d4, #� + D2 + D4)
(d2, D2) = ((1 − c)d1, (1 − c)D1 − d2g1)
(d3, D3) = (cd1, cD1 − d3g1) ∧ (d5, #% + D5)
(d4, D4) = (d3, D3 − d4g2)
(d5, D5) = (d4, D4 − d5g3)

.

Consistently with Corollary 4.4, the rate _ of inbound calls arrivals appears in the equation derived
from I1 since the latter is the only transition constrained by the input. The simple equations
relative to I2, I4 and I5 enable us to eliminate six variables by substitution, and to focus on the
reduced system{

(d1, D1) = (_, D0) ∧
(
(1 − c)d1 + d3, #� + (1 − c) (D1 − d1g1) + D3 − d3g2

)
(d3, D3) = (cd1, cD1 − d3g1) ∧

(
d3, #% + D3 − d3(g2 + g3)

)
,

(4.9)

in which only the four variables d1, d3,D1 andD3 are to be determined. The variable d1 corresponds
to the throughput of I1, i.e., the number of emergency calls picked up by the medical regulation
assistants per unit of time. Similarly, d3 gives the pick up rate of calls needing a consultation with
an emergency doctor. These two indicators arguably are the most important of the organization!

Let us detail the complete resolution of the system (4.9) with the enumerative approach, by
first writing the four inequalities (on real tuples) associated with the previous lexicographic
system (we label them based on the transition index and cost-like variables that appear on the
right-hand side).

(d1, D1) 6 (_, D0) (E1._)

(d1, D1) 6
(
(1 − c)d1 + d3, #� + (1 − c) (D1 − d1g1) + D3 − d3g2

)
(E1.A)

(d3, D3) 6 (cd1, cD1 − d3g1) (E3.0)

(d3, D3) 6
(
d3, #% + D3 − d3(g2 + g3)

)
(E3.P)

Since either one of the inequalities (E1._) or (E1.A) is an equality, and likewise either one of the
inequalities (E3.0) or (E3.P) is an equality, we have four cases in total to study.
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Minimum reached by (E1._) and (E3.0). — We derive from the d-parts of (E1._) and (E3.0) that
d1 = _ and d3 = c_. However, looking at the d-part of (E1.A), we see that (1 − c)d1 + d3 = _ as
well, so the minimum between (E1._) and (E1.A) is in fact arbitrated by their D-parts. The same
phenomenon occurs for (E3.0) and (E3.P) that have identical d-values (respectively cd1 and d3,
here both equal to c_).

Since we assumed that the D-parts of (E1._) and (E3.0) achieve the minimum, the D-part
of (E3.0) gives the equality D3 = cD1 − d3g1 = cD1 − c_g1, that we can re-inject in the inequality
D1 6 #� + (1 − c) (D1 − _g1) + D3 − c_g2 brought by the D-part of (E1.A) to conclude that
#� > _(g1 + cg2). Finally, the D-part of (E3.P) gives the inequality D3 6 #% + D3 − c_(g2 + g3) or
equivalently #% > c_(g2 + g3).

Minimum reached by (E1.A) and (E3.0). — Using the d-part of (E3.0), we know that d3 = cd1.
Therefore, the d-part of (E1.A) just amounts to the trivial relation d1 = d1. However, we can use
the D-part of the same (E1.A) to obtain the equality D1 = #� + (1−c)D1 − (1−c)d1g1 +D3 −cd1g2.
On the other hand, we haveD3 = cD1−cd1g1 according to theD-part of (E3.0), thus by combination
we obtain d1 = d� (and still d3 = cd�) where d� is the shorthand notation

d� B
#�

g1 + cg2
.

The d-part of (E1._) gives the inequality d1 6 _, that we can write as #� 6 _(g1 + cg2) or d� 6 _.
As in the previous case, the D-part of (E3.P) still leads to #% > d3(g2 + g3), and since d3 = cd�, we
have cd� 6 d% , where d% is the shorthand notation

d% B
#%

g2 + g3
.

Minimum reached by (E1._) and (E3.P). — The d-part of (E1._) ensures that d1 = _, while the
D-part of (E3.P) provides D3 = #% +D3 − d3(g2 + g3) so d3 = d% . On one hand, remark that we have
the inequality d3 6 cd1 6 c_ by the d-part of (E3.0), but on the other hand we know from the
d-part of (E1.A) that _ 6 (1 − c)_ + d3, so d3 > c_. As a result we have d3 = c_ and in particular
#% = c_(g2 + g3).

Remark that we have D3 6 cD1 − d3g1 according to the D-part of (E3.0), hence the inequality
D1 6 #� + (1−c) (D1−_g1) +D3−d3g2 becomesD1 6 #� + (1−c)D1− (1−c)_g1+cD1−d3g1−d3g2.
We can reuse the fact that d3 = c_ to obtain #� > _(g1 + cg2), or equivalently d� > _.

Minimum reached by (E1.A) and (E3.P). — We use the D-parts of both (E1.A) and (E3.P) that
respectively yield the equalities D3 = #% + D3 − d3(g2 + g3) and d1 = (1 − c)d1 + d3, so we have
d3 = d% and d1 = d%/c .

The d-part of (E1._) gives d1 6 _ so it follows that d3 6 c_, and in particular #% 6 c_(g2 +g3)
(alternatively we may have written d% 6 c_). We have the equality D1 = #� + (1−c) (D1 − d1g1) +
D3 − d3g2 given by the D-part of (E1.A), in which we can inject the inequality D3 6 cD1 − d3g1
coming from the D-part of (E3.0). We obtain D1 6 #� + D1 − d1g1 + cd1g1 − d3g1 − d3g2 which
means that #� > d1(g1 + cg2) and therefore that d% 6 cd�.

We postpone the interpretation of these throughput values to the next subsection, where
an alternative method to obtain them is introduced. However, we let the reader observe that in
this resolution, we did find solutions only for the vector d , and not for the vector D. Trying to
do so is in general pointless, and this is due to the fact that optimality equations (OE1)–(OE2)
for SMDPs can have multiple independent ℎ-solutions, as discussed in the remark subsequent to
the Theorem 3.31. Observe also that the value D0 did not play any role in our resolution.
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3.3 THE THROUGHPUT COMPLEX. — Recall once again that Correspondence Theorems 1 and 2
establish that the transitions of Petri nets and their upstream places correspond to states of semi-
Markov decision processes and their playable actions. We have seen in Chapter 3 that the notion
of policies plays a key role in the average-cost problem, therefore it prompts us to also define
policies for Petri nets. Building on the correspondences, we keep the same notation than the ones
for SMDPs, saying that a map f from Q to

∏
@∈Q @

in is a policy of the Petri net (equivalently, f is
a map of Q → P such that the place f (@) lies in @ in for all @ in Q) and denoting byS the set of
all policies. Defined this way, a policy of the Petri net is nothing more than a choice of upstream
places for all transitions. Remark that such a choice is non-trivial only for transitions @ in Q
such that |@ in | > 1 (which in priority-free nets is only allowed for synchronization transitions,
elements of Qsync).

To each policy f ofS of the Petri net is associated the stochastic matrix %f of the policy f in
the corresponding SMDP. It enables us in particular to talk about the final classes of a Petri net
(as subsets of Q) under a certain policy, defined in Section 1.3 of Chapter 3. We shall indifferently
denote by F (f) the final classes of a Petri net or those of its twin SMDP under the policy f . In the
Petri net context, the invariant measures of f (as vectors of RQ) are still denoted by (`f

�
)� ∈F(f) ,

and the absorption probabilities by (qf
�,@
)� ∈F(f),@∈Q . We can further define for the Petri net the

vectors<f B (<f (@) )@∈Q and g f B (g f (@) )@∈Q , that are the initial markings and holding times
vector seen under the policy f . In fact, consistently with the construction of Proposition 4.1, if @
lies in Qinput, then<f (@) (resp. gf (@) ) refers to the virtual marking _@gmax (resp. virtual holding
time gmax).

) Corollary 4.5. In a continuous-relaxed non-Zeno timed Petri net with affine inputs and that
admits a positive stoichiometric invariant 4 , the throughput d is given by

∀@ ∈ Q, d@ = 4@ min
f ∈S

∑
� ∈F(f)

qf�,@

〈`f
�
, �f<f〉
〈`f
�
, g f〉 , (4.10)

where the minimum is taken componentwise and for all f inS, �f is the diagonal matrix defined
by �f B diag((4−1@ U−1@f (@)c@f (@) )@∈Q).

Proof. This is a consequence of Correspondence Theorem 3 and Theorem 3.31–(2), adapting the notation
to the Petri net formalism. The matrices (�f )f ∈S are used to transform the initial marking in the form
of (4.6) (recall that c@? B 1 whenever @ ∉ Qpsel). s

Contrary to the optimality system (L) of which the throughput d is the solution, the expres-
sion (4.10) is a closed form that gives d as a function of all the parameters of the Petri net. If
features explicitly the input rates, the initial markings and the holding times, and featuring
“implicitly” the arc multipliers or the routing proportions via the different Markov chain analysis
quantities (observe once again that scaling the stoichiometric invariant 4 of the formula still
does not change the result, since the matrices (�f )f ∈S contravariantly depends upon 4). The
formula (4.10) holds in the much general multichain setting, hence it refines the throughput
expression of “unichain” Petri nets that was stated in [CGQ95].

We know by Theorem 3.31–(1) that there exists a policy f∗ ofS that realizes the throughput
in (4.10) (and the SMDP average-cost in (3.26)). This minimizing policy has a clear interpretation,
for all @ in Q, f∗(@) is the bottleneck upstream place of @, that will ultimately not contain enough
fluid-tokens and effectively constrain the throughput of @.

The expression (4.10) also shows that the throughput d@ of the transition @, as a minimum of
linear forms, is a nondecreasing, concave, and piecewise-affine function of the initial marking
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vector < of (R>0)P . As is customary in polyhedral geometry, we associate with this map a
polyhedral complex (i.e., a collection L of polyhedra such that for all ! in L, any face � of ! is also
in L and for !1 and !2 in L, the polyhedron !1 ∩ !2 is a face of both !1 and !2, see [DLRS10]). If
Σ is a set of policies, we define the polyhedral cell CΣ to be the set of initial markings< such that
the argument of the minimum in (4.10) is Σ (note that the cell CΣ may be empty for some choices
of Σ). The space (R>0)P is covered by the cells of maximal dimension, that can be interpreted as
congestion phases, or equivalently to a choice of bottleneck places for each @ in Q (non-trivial as
soon as such that |@ in | > 1).

) Remark 4.6. As stressed in the Remark 3.33, even though the formula (4.10) and the optimality
equations (L1)–(L2) are stated here for holding times that are constant, they are in virtue of the
more general correspondence stated in Section 2 also valid in the much more expressive setting
of stochastic holding times, replacing the constant values by the average holding times of the
places. This “free lunch” result is very advantageous and legitimizes our choice to focus mainly
on frameworks with constant times to study throughput estimates, since final expressions are the
same.

∗
∗ ∗

We come back to our example (EMS-A) again to illustrate Corollary 4.5. Instead of using the
formula (4.10) to directly compute the throughput of the Petri net, we are going to compute the
average-cost j (�)4 of the SMDP of Figure 4.5 using (3.26) and then Correspondence Theorem 3
with the relation d = j (�)4 � 4 . Because there are two states of the SMDP with two playable
actions (states 1 and 3), there are four policies. They naturally correspond to the four cases studied
in Section 3.2, since the method employed there was actually to enumerate all the choices of
bottleneck upstream places. We label these four policies in accordance with the four equations
featured in Section 3.2, that is,S = {(_, 0), (�, 0), (_, %), (�, %)}, corresponding to selecting the
pairs of action that respectively make the inequalities (E1._)–(E3.0), (E1.A)–(E3.0), (E1._)–(E3.P)
and (E1.A)–(E3.P) become equalities.

We detail in Tables 4.8 and 4.9 all the quantities involved in the computation of j (�)4 for the
stoichiometric invariant 4 = (1, 1, 1−c, c, c, c)T, that is to say for every one of these four policies:
the transition matrix, the spectral projector, the cost vector, the sojourn time vector, the final
classes with their invariant measures and absorption probabilities, and finally the average-cost of
this specific policy. We also reuse the shorthand notation d� and d% introduced in Section 3.2.

Observe that under the policy (_, 0), there is a unique final class, and it is reduced to the
singleton {0}, therefore with trivial invariant measure and absorption vector. For all the other
policies, {0} remains a final class but there is always another one, that is either {1, 2, 3, 4} or
{3, 4, 5}. This shows that (EMS-A) features a multichain structure. Taking the minimum of the
average-cost of each one of the four policies allows us to recover the global throughput vector d
of the Petri net:

d =
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Figure 4.7: The throughput complex (or congestion diagram) of the (EMS-A) system
(right), seen as the linearity regions of the map (#�, #% ) ↦→ d∗ (left)

where we denote for short

d∗ B _ ∧ d� ∧ (d%/c) = _ ∧
#�

g1 + cg2
∧ #%

c (g2 + g3)
.

We retrieve the exact same result as in Section 3.2, indeed we let the reader check using the
validity conditions that we always had d1 = d∗ and d3 = cd∗ (and the above values of d2, d4 and
d5 would have easily followed).

We depict in Figure 4.7 the nondecreasing, concave and piecewise-affine map d∗ as a function
of the initial markings #� and #% , since d∗ alone suffices to characterize all the (d@)@∈Q . As
claimed after the Corollary 4.5, we can associate with this map a polyhedral complex given by the
domains on which it is linear. This throughput complex, that from an operational point of view is
better thought of as a congestion diagram, is represented in Figure 4.7 as well.

We interpret this diagram as follows. The “handling speed” d1 of the medical regulation
assistants (MRAs) and d3 of the emergency physicians are always entangled and depend on three
key dimensioning parameters: the arrival rate of inbound calls _, the maximum MRA throughput
d� = #�/(g1 + cg2) and the maximum physician throughput d% = #%/(g2 + g3). These two terms
correspond to the number of agents of a given type (MRA or physician) divided by their respective
characteristic handling time for a single call.

Based on the solution (4.11), if #� > # ∗
�
B _(g1 + cg2) and #% > # ∗

%
B _c (g2 + g3),

we have d� > _ and d%/c > _, and therefore d∗ = _, which means that all inbound calls
are ultimately handled, because both groups of agents work at their maximum speed and are
only constrained by the arrivals of calls. These two inequalities delineate the green phase
in Figure 4.7, and we may refer to this situation as the congestion-free phase. If #� 6 # ∗� and
#�/(g1 + cg2) 6 #%/c (g2 + g3) (equivalently, d� 6 d%/c ) there are too few MRAs to pick up all
arriving calls, and as a consequence they impose their maximum handling speed d� to the whole
system (recall that emergency physicians wait for MRAs to pass them a fraction c of the calls).
Conversely, if #% 6 # ∗% and #%/c (g2 + g3) 6 #�/(g1 + cg2) (that is, d%/c 6 d�), there are too
few emergency physicians to answer the severe calls, and they impose their handling speed to
the whole system again (MRAs are waiting for doctors to take their calls and be released). These
two different situations of congestion are shown in red in Figure 4.7.

Observe that there are three different regimes in the Figure 4.7 although there are four
policies. As shown in Section 3.2, the policy (_, %) in fact determines a one-dimensional phase
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Table 4.8: Transition matrices and spectral projectors

associated with the four policies of (EMS-A)
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Table 4.9: Times and cost vectors, final classes and average-costs

associated with the four policies of (EMS-A)
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in this two-dimensional space, for it achieves the minimum throughput of the complex only if
#% = c_(g2 +g3). The policies (_, 0), (�, 0) and (�, %) respectively determine the full-dimensional
congestion-free, slowed down by MRAs and slowed down by physicians phases. The throughput
is strictly achieved (i.e., by exactly one policy) if (#�, #% ) is taken in the interior of one of these
three polyhedra.

A congestion diagram like Figure 4.7 can be very profitable for a real-life organization whose
behaviour can be modeled by means of timed Petri nets. In our application (EMS-A), it can
be used to estimate what long-run throughput d∗ of the system a staffing (#�, #% ) of the call
center will achieve. Conversely and above all, it can be used to determine minimal staffing
recommendations. For such an emergency call center and considering that calls arrive with rate _,
at least d_(g1 + cg2)e MRAs and d_c (g2 + g3)e emergency physicians are needed. We will develop
this aspect in the Section 6.

In the light of this case-study, we finally go back to the Figure 4.6 and explain why the different
choices of #� and #% lead to very different behaviours. Reusing the numerical values that were
adopted for these simulations, we obtain # ∗

�
= 3.9 and # ∗

%
= 1.65. As a result, choosing #� = 4

and #% = 2 for the first scenario ensures that the long-run throughput vector is d = _4 , which
is what we indeed obtain. In the second case where #� = 3 and #% = 2, we are in the situation
where the policy (�, 0) is ultimately active (here as soon as C > 120 s), and MRAs are limiting.
On the contrary when #� = 4 and #% = 1, we have enough MRAs (which is why there is no
difference between I0 and I1 for quite a long time) but not enough emergency physicians, so that
the policy (_, %) is applied between C = 283.33 s and C = 316.67 s and the policy (�, %) is applied
from C = 316.67 s onwards. It is interesting to note that even though the policy (_, %) is in practice
never observed to realize the minimum ultimate throughput of the net, it can still be encountered
during the execution, before the system reaches a final stable phase. The last situation #� = 3.5
and #% = 1.5 appears to be more chaotic than the others because we are located in the bottom red
phase of Figure 4.7 but very close from the frontier d� = d%/c . Hence, we have many oscillations
between the two policies (�, 0) and (�, %). The system does nevertheless reach a final phase (from
C = 1495.71 s, which is outside of the charts of Figure 4.6), where (�, %) is active consistently with
the congestion-diagram.

) Remark 4.7. It seems important to notice that the minimum values # ∗
�
and # ∗

%
we compute

here take the form of what is frequently referred to as the offered load in queueing theory. These
minimum number of agents ensuring stability of the system are indeed the product of the arrival
rate _ and an average handling time g . It is well-known that Little’s law (see [Lit61] or [CL08,
p. 457]) predicts that queues with such parameters have an average length of # ∗ = _g customers,
and need at least # ∗ servers to reach stability. It is not very surprising, yet fortunate to retrieve
that Petri net models and queues agree on this aspect.

) Remark 4.8. Observe also that the minimum staffing that we obtain are safe lower bounds for
the initial discrete Petri nets. Indeed, we computed these values based on continuous-relaxed
nets that are typically “more fluid” than the discrete systems. Hence, our minimum staffing
recommendations may be insufficient (by a slight amount) but definitely are necessary to prevent
congestion in real systems.

3.4 LINEAR PROGRAMMING FORMULATION. — In addition to the Corollaries 4.4 and 4.5 which
provide two methods to compute analytically the throughput vector d , we now consider the
associated computational complexity problem. Indeed, solving the optimality equation (L) using
an enumerative technique is in general exponential in the size |P | × |Q| of the net, and the same
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complexity is hidden in the expression (4.10) since a minimum is taken on all the policies. The
following result guarantees that these enumerative schemes can be avoided, as linear programs
can be solved in (weak) polynomial time, for instance by the ellipsoid or interior point methods.

) Corollary 4.9. In a continuous-relaxed non-Zeno and conflict-free timed Petri net with affine
inputs and that admits a stoichiometric invariant, the throughput d can be computed in polynomial
time by solving the following linear program:

max
∑
@∈Q

d@ s.t.


d@ 6 U

−1
@?

∑
@′∈Q

U?@′d@′, ∀@ ∈ Q, ∀? ∈ @ in

D@ 6 U
−1
@?<? − d@g? + U−1@?

∑
@′∈Q

U?@′D@′, ∀@ ∈ Q, ∀? ∈ @ in

in which d and D in RQ are the variables. More precisely, if (d,D) is any optimal solution of this
program, then d coincides with the throughput vector.

Proof. This is an application of a theorem of Denardo and Fox [DF68, Theorem 2] on undiscounted SMDP.
They indeed prove that for any positive vector a ∈ R( , the average-cost vector 6∗ is solution of the linear
program whose criterion is

∑
8∈( a868 and whose feasibility set is defined by inequalities 68 6

∑
9 ∈( ?

0
9
6 9

and ℎ8 6 20 − C068 +
∑
9 ∈( ?

0
9
ℎ 9 for all 8 ∈ ( and 0 ∈ �8 . Switching to Petri net variables (d,D) in

view of Correspondence Theorem 2 so that 6∗ = j (�)4 and choosing a = 4 gives the announced result
by Correspondence Theorem 3. s

Observe that the constraints of the linear program (4.9) are derived from the optimality equa-
tions (L1)–(L2), even though the fact that the minimum in (L2) has to be achieved for upstream
places that already achieve minimum in (L1) does not appear explicitly – see to this purpose the
discussion of Schäl in [Sch92] on the two forms of the second optimality equation for SMDPs.

In their work [GG04b], Gaujal and Giua derived the same linear program to characterize the
throughput of continuous-relaxed Petri nets. What is interesting is that they built the feasible set
and its constraints directly by considering instances of Little’s law, i.e., maximizing the flow of
fluid-tokens under validity of the semantics rules. The Corollary 4.9 shows on the other hand that
this linear program also naturally emerges from the theory of semi-Markov decision processes.

4 Deviation to a congestion-free regime

Now that we have characterized the throughput of monotonic Petri nets, that is according
to Corollary 4.2–(ii) the first-order estimate of the long-run trajectories, we want to focus on
second-order estimates. In the case where the holding times of the places of the Petri net are
a multiple of a same positive value, we point out that the results presented in the Section 3.2
of Chapter 3 can be directly applied, owing to Correspondence Theorem 2. In a more general
and proper semi-Markov setting however, deriving such results is more difficult. In particular, it
involves arithmetic phenomena due to the possible periodic character of certain classes in the
SMDP problems.

In what follows, we are going to study a subproblem of this class. We are particularly interested
in dealing with Petri net systems that have to meet a known inbound demand. Similarly to our
model (EMS-A), it is desirable that the system is congestion-free (or input-driven), meaning that
only the inputs are ultimately limiting, and not the “internal” system itself. In this section, we
are going to focus only on single-input Petri nets, i.e., for which |Qinput | = 1. Our objective is to
characterize the congestion-free phase and to see if finer results than Corollary 4.2–(ii) can be
obtained.
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4.1 REDUCTION TO A STOCHASTIC SHORTEST PATH PROBLEM. — For the sake of simplicity,
let us denote by @0 the input transition of the generic single-input Petri net considered in this
section, and by I0 its counter function. When this Petri net admits a positive stoichiometric
invariant 4 (element of RQ

>0), it is convenient to use the normalized vector 4̄ B 4−10 4 with unit
value for @0. On the other hand, not choosing 40 = 1 is a sound way to control the homogeneity
of our expressions, which is why we will use 4−10 4 instead of 4̄ in some proofs.

In view of Correspondence Theorem 1 and Proposition 4.1, if I0 is affine with rate _, the input
transition @0 can be modeled by an absorbing (or sink) state 0 with cost _4−10 g0 and sojourn time
g0 in the corresponding semi-Markov decision process (g0 is an arbitrary positive time, but the
choices g0 = 1 or g0 = gmax are canonical).

The Assumption D below delineates two conditions under which we can reasonably hope that
our single-input Petri net is congestion-free. Let us explain how we derive them. First, the global
behaviour of the net shall be driven by the input only if @0 indirectly constrains all the transitions
of the net. This is a so-called “starvation” hypothesis, meaning that if the input flow stops, so
will the entire net. Equivalently, and reusing the control theory terminology of the Section 2
of Chapter 2, this a minimal controllability assumption. In terms of Petri net structure, it amounts
to requiring that @0 has access to @ for all @ in Q \ {@0}, in the sense that there exists : in N∗,
transitions@80, @81 , @82 ,…, @8: inQ:+1 and places ?80 , ?81 , …, ?8:−1 in P: such that@80 = @0, @8: = @ and
for all 0 6 ℓ 6 : , ?8ℓ is in @ out8ℓ

and @8ℓ+1 is in ?
out
8ℓ

. According to our Proposition 2.16, it guarantees
that the Petri net admits at most one positive stoichiometric invariant (up to a multiplicative
constant). This justifies the use of 4̄ , that is the only canonical stoichiometric invariant provided
it exists.

In addition, and as shown by (4.5) assuming that there is a positive stoichiometric invariant
4 , the whole Petri net can reach a congestion-free regime with a throughput d = _4̄ only if the
initial markings of the internal places (or equivalently the internal throughputs of the system)
are large enough. Observe that because the state {0} of the corresponding SMDP is absorbing, it
is always a final class of any policy and it yields an SMDP average-cost (_4−10 g0)/g0 = _4−10 , or
equivalently a Petri net throughput d0 = _. Contrarily, the internal throughputs of the system
correspond to the average-costs of the policies ofS on final classes different than {0}, so it is
sound to define the minimal internal throughput dint by

dint B min
f ∈S

min
� ∈F(f)
�≠{@0 }

{ 〈`f
�
, �f<f 〉
〈`f
�
, g f〉

}
, (4.12)

where we have reused the notation of Section 3.3, in particular for all policies f inSwe have�f B
diag((404−1@ U−1@f (@)c@f (@) )@∈Q). Our second condition to guarantee a congestion-free behaviour of
the Petri net will then be dint > d0 = _.

We can now formally state these two conditions; we will in fact particularly focus on cases
where the internal throughput is strictly greater than the input pace to prevent any “quasi-
congestion”.

) Assumption D. The Petri net is continuous-relaxed, non-Zeno, admits a single input transition @0
with affine profile of rate _, and a positive stoichiometric invariant 4 . In addition,

(1) The input transition @0 has access to every other transition @ in Q \ {@0},

(2) The internal throughput is strictly greater than the input pace, i.e., dint > _.

In view of Correspondence Theorem 2, the Assumption D–(2) also has a clear interpretation in the
undiscounted SMDP that corresponds to our Petri net with affine input and positive stoichiometric
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invariant. It means that if the decision-maker who plays the game described by the SMDPwants to
minimize his/her ultimate average-cost, the best strategy that he/she can find is to look for choices
of actions that make him/her end up in state 0, where the average-cost is _. Any other strategy
in which 0 is not reached will for some starting states lead the player in a final class � different
than {0} where an average-cost strictly bigger than _ is incurred. Conversely, Assumption D–(1)
ensures that 0 can be reached in this SMDP, as we are soon going to show.

In order to investigate how the trajectory I of our Petri net behaves under the Assumption D
(that we have designed to describe a congestion-free situation) relatively to C ↦→ _C4̄ (the candidate
function for the ultimate growth of a congestion-free solution of the dynamics), we introduce the
reduced counters (ΔI)@∈Q by ΔI (C) B I (C) − _C4̄ for all C > 0. We are now ready to state our last
correspondence theorem. We encourage the reader to have a look at the first part of the proof
which details how this new correspondence arises.

) Correspondence Theorem 4. Suppose that our continuous-relaxed and non-Zeno Petri net
admits a single input transition @0 with affine profile of rate _, and a positive stoichiometric invariant 4 .
Then, the evolution dynamics of the reduced counters ΔI is equivalent to the dynamic programming
equations of an undiscounted semi-Markov decision process in stochastic shortest path configuration.

In addition, this SMDP in SSP configuration satisfies the two conditions of Assumption C if and
only if the original Petri net satisfies the two conditions of Assumption D.

Proof. We first show how the SSP configuration emerges.

Recall from the proof of Correspondence Theorem 1 the dynamics verified by the counters (I@)@∈Q in the
case where Qinput = {@0} and still focusing on the simplified conflict-free setting:

∀@ ∈ Qsync, I@ (C) = min
?∈@ in

?∉Pinput

{
U−1@?<? +U1@?

∑
@′∈Q

U?@′I@′ (C − g? )
}
∧ min
@ in∩@ out

0 ≠∅

{
I0 (C)

}
. (4.13)

Equivalently, reusing the notation of Correspondence Theorem 2, the renormalized counters (I@/4@)@∈Q
of the Petri net satisfy for all C > 0 the relations

∀@ ∈ Qsync, I@ (C)/4@ = min
?∈@ in

?∉Pinput

{
U−1@?<?/4@ +

∑
@′∈Q

b
?

@′
(
I@′ (C − g? )/4@′

)}
∧ min
@ in∩@ out

0 ≠∅

{
I0 (C)/40

}
. (4.14)

As already stated by the Correspondence Theorem 2, these are the dynamic programming equations of an
undiscounted SMDP with generic dynamic programming equations (DP):

∀C > 0, ∀8 ∈ (, E (8, C) = min
0∈�8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
}
, (4.15)

where consistently with the Proposition 4.1, the input term I0 (C)/40 = _C4−10 distinguished in (4.14) has been
integrated in the autonomous dynamics of (4.15), by letting �0 B {00}, 200 B _gmax4

−1
0 , C00 B gmax and

knowing that there is some (unique) state 8 in (\{0} such that�8 contains an action leading deterministically
to 0 with null cost and null sojourn time.

Let us suppose that I0 (C) = _C + [0. The dynamics of the reduced counters ΔI simply write using the
definition ΔI B I − _C4−10 4 and (4.14) as (for all C > 0 and @ ∈ Qsync):

ΔI@ (C)/4@ = −_C4−10 + min
?∈@ in

?∉Pinput

{
U−1@?<?/4@ +

∑
@′∈Q

b
?

@′
(
ΔI@′ (C − g? )/4@′ + _(C − g? )4−10

)}
∧ min
@ in∩@ out

0 ≠∅

{ _C + [0
40

}
.

Since for all ? ∈ P \ Pinput, we have
∑
@′∈Q b

?

@′ = 1, all the terms _C4−10 cancel out and we are left with the
dynamic programming equations of an undiscounted SMDP with reduced costs; indeed in SMDP form we
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have

∀C > 0, ∀8 ∈ (, ΔE (8, C) = min
0∈�8

{(
20 − _4−10 C0

)
+
∑
9 ∈(

?09 ΔE ( 9, C − C
0)
}
, (4.16)

where ΔE B ΔI � 4 . Most importantly, in this SMDP model, the absorbing state 0 is now cost-free since
200 −_4−10 C00 = _gmax4

−1
0 −_4

−1
0 gmax = 0, and therefore this SMDP is exactly in shortest path configuration.

To be complete, let us remark that a constant terminal cost [04−10 is incurred in state 0.

We now establish that Assumption C and Assumption D are equivalent. We first prove C(1) ⇐⇒ D(1).
Building on Correspondence Theorem 1 and its backward one-to-one correspondence between the above
(P,Q) Petri net and the ((,�) SMDP, the accessibility of any @ ∈ Q \ {@0} from @0 amounts to the
accessibility of 0 from any 8 in ( \ {0}, in the sense of Section 1.1 of Chapter 3. However, recall from this
same section that if 8, 9 ∈ ( , then the accessibility of 9 from 8 amounts to the existence of a particular
policy f inS and an integer = in N such that (%f )=

8 9
> 0. In this sense, the implication C(1) =⇒ D(1) is

direct, because the existence of proper policy exactly tells us that 0 is accessible from any state. Conversely,
suppose that D(1) holds, so that the state 0 is accessible from any other state 8 of ( , and let T be a directed
spanning tree with root 0 of the graph G, whose nodes set is ( and whose arcs set contains (8, 9) ∈ G2 iff
there exists 0 ∈ �8 such that ?0

9
> 0 (such a spanning tree can be constructed using depth-first search).

We now construct a proper policy state-by-state: for any 8 in ( , there is by assumption a path of the form
8 → 8 ′ → · · · → 0 in T , we then choose for f (8) any action in �8 such that ?0

8′ > 0. The accessibility
property and the fact that state 0 is absorbing guarantee that (%f | ((\{0})×((\{0}) ) |( | is strictly substochastic,
hence d (%f | ((\{0})×((\{0}) ) < 1 and we have lim=→∞ (%f | ((\{0})×((\{0}) )= = 0, so that f is proper, hence
the implication D(1) =⇒ C(1).
We continue by showing D(2) =⇒ C(2). Assume D(2) holds, so that dint > _. In SMDP notation, it
means that

min
f ∈S

min
� ∈F(f)
�≠{0}

{
〈`f
�
, 2f 〉

〈`f
�
, Cf 〉

}
> _4−10 , or equivalently j B min

f ∈S
min

� ∈F(f)
�≠{0}

{
〈`f
�
, 2f − _4−10 Cf 〉
〈`f
�
, Cf 〉

}
> 0 ,

in other words our undiscounted SMDP with reduced costs whose dynamics is given by (4.16) has a
positive average-cost if it ends up in a final class different from {0}. Let us take an improper policy f in
S of this SMDP. By definition, because f is improper, it admits a final class � that is not {0}. According
to Theorem 3.31, playing the stationary strategy associated with this policy starting from a state in � hence
forces the player to incur an expected cost with growth rate bigger than j . As a result, applying this policy
over an infinite horizon yields positive infinite total cost starting in states of � , that is the requirement C(2).

To conclude the proof, we show that C(1)∧¬D(2) =⇒ ¬C(2), since it brings C(1)∧C(2) =⇒ C(1)∧D(2).
If D(2) does not hold, it means by (4.12) (converted in SMDP notation with our reduced costs) that there
exists a policy fI ofS and a final class � of fI such that 〈`fI

�
, 2fI − _4−10 CfI 〉/〈`fI

�
, CfI 〉 6 0. However, if C(1)

also holds, it means that we have a proper policy fP inS. We can therefore introduce the new policy f in
S such that for all 8 in � , f (8) B fI (8) and for all 8 in ( \ � , f (8) B fP (8). Let us denote ( ′ B ( \ ({0} ∪ � ),
then since %f |(′×(′ is extracted from %fP |(\{0}×(\{0} that have a spectral radius strictly inferior than 1, it
cannot contain any stochastic submatrix according to Lemma 3.5, which means that the policy f admits
only {0} and � as final classes. The fact that � ≠ {0} is a final class of policy f naturally means that f
is improper. Finally, by Theorem 3.31 and Corollary 3.32, we know that for all 8 in ( , the expected cost
Ef (8, C) incurred by playing the stationary strategy associated with f up to horizon C starting from 8 in our
SMDP in SSP configuration with the reduced costs (4.16) is such that Ef (8, C)=C→∞j8C +$ (1), where j8 is
a nonnegative linear combination of 0 and 〈`fI

�
, 2fI − _4−10 CfI 〉/〈`fI

�
, CfI 〉.

Hence, we have exhibited an improper policy f which does not yield an infinite total cost, whatever the
starting state is, so C(2) is false. s

It is enlightening to compare Assumption C and Assumption D in view of Correspondence
Theorem 4. Indeed, we see that having an input which imposes starvation in the context of Petri
net corresponds to the ability to (virtually) stop the game by reaching the state 0 from any starting
state (after some stroll) in the world of SMDPs. Similarly, not being limited by the internal part
of the Petri net is equivalent to loose money if we do not stop the game described by the SMDP.
This leads to the following important corollary.
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) Corollary 4.10. Under Assumption D and supposing that the input profile is I0(C) = _C + [0 for
all C > 0, the solution I of the Petri net dynamics satisfies

I (C) =
C→∞

_C4̄ + [ + > (1)

regardless of the seed function of � it is initialized with, where the vector [ of RQ is the unique
solution of the equations

∀@ ∈ Q \ {@0}, G@ = min
?∈@ in

{
U−1@?c@?

(
<? +

∑
@′∈Q

U?@′G@′
)
− _g?4@4−10

}
and G0 = [0

. (4.17)

The function C ↦→ _C4̄ + [ is an affine regime of the Petri net in the sense of Corollary 4.2–(i), and
in addition the places achieving the minimum of (4.17) form a proper policy of the corresponding
SMDP in SSP configuration.

Proof. Denoting by ΔE = I � 4 − (_C + [0)4−10 1, we obtain by computation identical to the beginning
of the proof of Correspondence Theorem 4 that ΔE is the value function of an undiscounted SMDP in
SSP configuration and with null terminal costs, that follows the dynamic programming equations (4.16).
We can thus apply Theorem 3.41, saying that under Assumption C (that is here verified for this SMDP
since Assumption D is verified for the Petri net), the trajectory of this SMDP converges towards the unique
solution D∗ of the equations

∀8 ∈ ( \ {0}, D (8) = min
0∈�8

{
20 − _4−10 C0 +

∑
9 ∈(

?09 D ( 9)
}

and D (0) = 0

(4.18)

derived from (3.29) of Theorem 3.38. Multiplying by 4 , we get that I (C)−_C4̄ admits the limit [ B D∗�4+[04̄
when C →∞. Switching back to Petri net notation introduced in the proof of Correspondence Theorem 2
provides the system (4.17) on [.

The fact that C ↦→ _C4̄ + [ is an affine regime of the Petri net follows by the remark subsequent to
the Corollary 4.4, since the tuple (_4̄, [) is solution of the lexicographic system (L). The final assertion of
the theorem on the fact that [ is determined by a proper policy is a consequence of Theorem 3.38. s

This corollary has major consequences for applications. To begin with, observe that it indeed
refines Corollary 4.2–(ii) in which only the asymptotic growth I (C) =

C→∞
_C4̄ +$ (1) was obtained.

In this sense, the (large) inequality of Assumption D(2) effectively characterizes the congestion-
free regime, in which only the input with rate _ constrains the whole system. But in addition,
the strength of Corollary 4.10 is mostly the fact that the trajectory converges towards an affine
function that does not depend on the initial conditions. This precisely means that the internal
system catches up the input regardless of its own starting state. This behaviour is enabled by the
fact that Assumption D–(2) ensures that the system is strictly in the congestion-free phase, so
that the internal part goes strictly faster than the input and can indeed catch it up. The vector [
featured in the Corollary 4.10 plays the role of a delay between the internal system and the input,
more particularly for all @ in Q \ {@0}, the scalar [@ − [0 gives an indication of how long it takes
the input to access @.

To wrap things up, we let the reader appreciate how in the asymptotic expansion of the Petri
net trajectory, we have first characterized the first-order term by an average-cost problem on
SMDPs and the second-order term by a stochastic shortest path problem, two classical questions
in this literature.
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Model
Defining
equation

Ultimate behaviour

Single-input
monotonic
Petri net

(4.13)
�

PN
C

[
A ↦→ _A4̄ + [

]
(B) = _(C + B)4̄ + [

∀I0 ∈ �, �
PN
C

[
I0
]
(B) =

C→∞
_(C + B)4̄ + [ + > (1)

Corresponding
undiscounted

SMDP
(4.15)

�
SMDP
C

[
A ↦→ (_A + [0)4−10 1 + D∗

]
(B) = (_(C + B) + [0)4−10 1 + D∗

∀E0 ∈ V, �
SMDP
C

[
E0
]
(B) =

C→∞
(_(C + B) + [0)4−10 1 + D∗ + > (1)

Reduced
SMDP in

SSP config.
(4.16)

�
SMDP−Δ
C

[
A ↦→ D∗

]
(B) = D∗

∀E0 ∈ V0, �
SMDP−Δ
C

[
E0
]
(B) =

C→∞
D∗ + > (1)

Table 4.10: Affine regimes and long-run behaviour of our three models
under Assumption D (or the equivalent Assumption C)

We reckon it can be useful at this point to summarize in the Table 4.10 the journey that we have
made from Petri net models to SMDP models, and what it means in terms of their respective
dynamics. Recall that the Correspondence Theorem 2 stated that the dynamics of the counter
functions of a monotonic fluid Petri net coincide with the dynamic programming equations of
an undiscounted SMDP with no stopping costs. Implicitly, it enabled us in the single-input case
with I0(C) = _C + [0 for all C > 0 to describe the dynamics (4.13) of the Petri net by an evolution
semigroup (�PN

C )C>0 acting on the seed functions � B ℱ( [−gmax, 0),RQ\{@0 }). This semigroup
coincides via scaling by the stoichiometric invariant 4 with the evolution semigroup (�SMDP

C )C>0
of the corresponding SMDP with dynamics (4.15) and designed to act on the initial conditions
V B {E ∈ ℱ( [−gmax, 0),R( ) | ∀B ∈ [−gmax, 0), E (0, B) = _(B + [0)4−10 }. Under the Assumption D
that the Petri net behaves in a congestion-free (or input-driven) regime, the Corollary 3.32 and
the Correspondence Theorem 3 gave us that �PN

C

[
I0
]
(B) ∼ _C4̄ and �SMDP

C

[
E0
]
(B) ∼ _C4−10 1 when

C → ∞, for all I0 in � and E0 in V . But we have in fact successfully found the next term of
the asymptotic expansion, because we considered a reduced SMDP with costs (20 − _4−10 C0)0∈�,
satisfying the dynamics (4.16) and associated with the semigroup (�SMDP−Δ

C )C>0 acting on the
initial conditions of V0 B {E ∈ ℱ( [−gmax, 0),R( ) | ∀B ∈ [−gmax, 0), E (0, B) = 0}. Indeed, this
new SMDP in SSP configuration admitted by design an average-cost (or growth-rate) of 0, and
the constant function A ↦→ D∗ ofV0 appeared as a fixed-point (special case of affine regime) of
�

SMDP−Δ, where D∗ is the solution of the system (4.18). Because the Theorem 3.41 ensured that
the dynamics of this reduced-cost SMDP converged towards D∗, we have been able to go back up
the chain and prove that the non-reduced SMDP dynamics (resp. Petri net dynamics) converged
towards the affine regime A ↦→ _A4−10 1+[04−10 1+D∗ (resp. A ↦→ _A4̄ +[ with [ B ([04−10 1+D∗) � 4)
regardless of the initial conditions.

∗
∗ ∗
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We illustrate the Correspondence Theorem 4 on our (EMS-A) call center model, reusing the
positive stoichiometric invariant 4 = (1, 1, 1−c, c, c, c)T. It is easy to verify on the Figure 4.5 that
the input transition of the Petri net has access to all the transitions of the system (or in the SMDP
version of the model, that all the states have access to 0). We verify further that when all the costs
(20)0∈� of the SMDP are reduced in the form (20 − _C0)0∈�, the state 0 becomes cost-free. The
internal throughput has been computed in Section 3.3 and verifies dint = d� ∧ (d%/c), reusing the
notation of Section 3.2. Our medical emergency call center therefore is in (strict) congestion-free
regime if and only if d� > _ and d% > c_. Moreover, it is clear from Table 4.9 that the policy
(_, 0) is the only proper policy of the system (because it is the only one which only admits {0}
as a final class). Consequently, the vector [ featured in Corollary 4.10 is characterized by the
equations 

[1 = [0

[2 = (1 − c)[1 − (1 − c)_g1
[3 = c[1 − c_g1
[4 = [3 − c_g2
[5 = [4 − c_g3 ,

so that we have [ = [04−_(0, 0, g1, g1, g1+g2, g1+g2+g3)T �4 , and whatever the starting conditions
of the system (the number of pending calls), the trajectory I of the Petri net verifies

I (C) =

©«

I0(C)
I1(C)
I2(C)
I3(C)
I4(C)
I5(C)

ª®®®®®®®®¬
=

C→∞
[04 +

©«

_C

_C

(1 − c)_(C − g1)
c _(C − g1)
c _(C − (g1 + g2))
c _(C − (g1 + g2 + g3))

ª®®®®®®®®¬
.

We retrieve the ultimate affine regime that we were able to read in the first scenario of Figure 4.6.

4.2 TRANSIENCE TIME NEEDED TO CATCH UP THE INPUT. — As mentioned before, the Corre-
spondence Theorem 4 can be interpreted as a systematic convergence of the trajectory of our Petri
net towards the input-driven affine regime Iaff : C ↦→ _C4̄ +[. The next question that comes in mind
is naturally… how quick does the convergence occur? Another way to rephrase the problem is the
following. Suppose that the system is already in the regime Iaff (which entails little loss of gener-
ality precisely since this behaviour is always ultimately reached), and that at the instant C > 0 the
input profile suffers a temporary surge of total magnitude" > 0. Any such perturbation can actu-
ally be (crudely) bounded above by an instantaneous extra demand of" , in a step-perturbation (or
Heaviside) fashion, so that our total input profile will be I0(C) = _C +[0 +"1[C,∞) (C) (see [LGO18]
for finer analytical models of bursts in the arrival process). Owing to the input catch-up property,
we know that under Assumption D the trajectory I of the system (whose existence in ensured
by Theorem 2.5) shall asymptotically verify I (C) =

C→∞
_C4̄ + [ +"4̄ + > (1). In this context, we

introduce the catch-up times (or transience times) (\@)@∈Q of the Petri net by

∀@ ∈ Q, \@ B inf
{
C > C

�� I@ (C) = _C4̄@ + [@ +"4̄@} , (4.19)

that are naturally still independent on the choice of 4 . Note that we may as well have defined \@
by the time needed for I@ (C) to approach (_C +")4̄@ + [@ up to a chosen precision Y; the exact
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convergence choice (4.19) will although be justified in Section 5. Still denoting by D∗ the solution
of (4.18), and denoting by 1(\{0} = 1 − 1{0} the vector of R( with all unit coordinates except the
first one associated with state 0, the following characterization of the catch-up times holds.

) Theorem 4.11. Suppose that Assumption D is verified. Let E be the function uniquely determined
by the initial condition B ↦→ D∗ −"4−10 1(\{0} in V0 and the dynamics (4.16) of the reduced-costs
SMDP in SSP configuration featured in Correspondence Theorem 4.

Then, for all corresponding transition-state pairs (@, 8) in Q × ( , we have

\@ = C + inf
{
C > 0 | E (8, C) = D∗(8)

}
.

Proof. Let us reuse the notation of the Table 4.10, detailed at the end of Section 4.1. The core equality that
we have to justify is that for all C > C and B in [−gmax, 0) such that C + B > C , we have

I (C + B) = �
PN
C−C

[
A ↦→ _(A + C)4̄ + [ +"1{0}

]
(B) . (4.20)

Indeed, we know that without the perturbation added at C = C we would have had I (C + B) = �
PN
C

[
Iaff

]
(B) =

�
PN
C−C

[
�
PN
C

[
Iaff

] ]
(B) = �

PN
C−C

[
A ↦→ _(A + C)4̄ +[

]
(B), since the dynamics are initialized with the affine regime

Iaff : A ↦→ _A4̄ + [. However, from C = C the input changes, hence the introduction of the difference"1{0} .
This correctly models the new input and does not affect the other coordinates, since the input controls the
single transition it is directly connected to with no time delay (see (4.2)). Everything actually happens as if
the input I0 was already shifted by " from the instant C − gmax, but this is only revealed to the internal
part of the system at the physical time C , that prior to this instant had pursued along the affine regime Iaff.

Let us define the reduced function F (C) = I (C + C) � 4 − (_(C + C) + [0)4−10 1. With the same reductions
than from the proof of Correspondence Theorem 4, we have for all C > 0 and all B in [−gmax, 0) such that
C + B > 0 that

F (C + B) = �
SMDP−Δ
(C+C )−C

[
A ↦→ D∗ +"4−10 1{0}

]
(B) .

Now, the (constant) initial condition A ↦→ D∗ +"4−10 1{0} is not inV0, the natural seed space of �SMDP−Δ,
because its first coordinate is nonzero. But we can leverage on the additively homogeneous character of
this semigroup (see Proposition 3.26–(1)) to transform this “positive shift” in a “negative shift”, and write

F (C + B) = �
SMDP−Δ
C

[
A ↦→ D∗ −"4−10 1(\{0}

]
(B) +"4−10 1 = E (C + B) +"4−10 1 ,

where we have now recognized the function E defined in the claim of the theorem. Because Assumption D
is satisfied for the Petri net, the Assumption C is satisfied for the reduced SMDP in SSP configuration, and
we know by Theorem 3.41 that limC→∞F (C) = D∗ +"4−10 1.

To sum it up, we have for all C > C that I (C) = _C4̄ + [04̄ +"4̄ +F (C − C) � 4 , we can confirm using this
equality that I (C)=C→∞ (_C +")4̄ + [ + > (1), but also that for all @ ∈ Q, I@ (C) = (_C +")4̄@ + [@ if and only
if E (8, C − C) = D∗ (8), where 8 is the state of ( corresponding to @; hence the result. s

In otherwords, the Theorem 4.11 tells us that the catch-up times associatedwith a step perturbation
of magnitude" affecting the input of a monotonic fluid Petri net correspond to the (state-by-state)
convergence times of the value iteration algorithm in an SMDP in SSP configuration, to reach its
value D∗ starting from the initial condition D∗ −"4−10 1(\{0}.

∗
∗ ∗

We illustrate the Theorem 4.11 on the Figure 4.11, choosing a number #� = 6 of medical regulation
assistants and #% = 2 of emergency physicians for the model (EMS-A). Consistently with the
analysis in Section 3.3, this ensures that we are in the congestion-free regime. The inbound
demand begins with I0(C) = _C still with _ = 0.025 s−1 (one call every 40 seconds).

First have a look at the Petri net counters I in Figure 4.11a. The system is not initialized in the
affine regime exhibited in Section 4.1 but just like shown in the first scenario of Figure 4.6, this
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(a) Evolution of the Petri net counters before and a�er the bulk
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(b) Evolution of the SMDP value a�er the bulk (emulated by a virtual seed)
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(c) Evolution of the reduced-SMDP value a�er the bulk
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Figure 4.11: Illustration of the input catch-up after a perturbation, in (EMS-A).

regime is reached from the physical time C = 370 s onwards. The same evolution than the latter
scenario would actually continue along if it was not for the bulk of" = 8 calls arising at C = 500 s,
so that I0 is discontinuous at C (we have I0(C−) = 12.5 and I0(C) = 20.5). Before the bulk, all the
calls were picked upwith no delay and there was even a number#�−# ∗� = #�−_(g1+cg2) = 2.1 of
idle agents, which explains why I1 can instantaneously jump to the value I1(C) = 12.5+2.1 = 13.6.
But then, all the MRAs are busy and only the progressive returns of previously occupied MRAs
can make I1 grow. All the further jumps correspond to call pick ups by MRAs or emergency
doctors that were idle before C .

We depict in Figure 4.11b the evolution of the value function E of the (non-reduced) SMDP
corresponding to the Petri net (recall that it is represented in Figure 4.5) from the initial condition
A ↦→ _(A + C)4−10 1 + D∗ +"1{0} in V . This chart is easier to read since all the slopes are equal.
Although this initial condition is purely virtual, it does successfully emulate the behaviour of
the renormalized counters (I@/4@)@∈Q for C > C as shown in the proof of Theorem 4.11. Remark
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that since D∗(1) = D∗(0) = 0 in this example, the value E (0,−gmax) − E (1,−gmax) reduces to
−" . The input catch-up can be effectively seen in this figure; the transience regime occurs as
long as the “value function beam” shrinks and is over when the size of the beam only amounts
to D∗. This arises from an extra time of 1690 s after the bulk, corresponding to C = 2190 s for
the original system. Observe that the catch-up occurs in multiple phases, because the MRAs
have absorbed all the extra inbound calls at the instant C = 1250 s (or 750 s after the bulk). The
rest of the transient regime is only caused by the emergency doctors, for which the margin
#% − # ∗% = #% − c_(g2 + g3) = 0.35 was thin. At the time C = 1970 s though, the last call of the
bulk that arose at C is taken for transfer by an emergency doctor, so that I3 is all caught up. The
associated consultation indeed ends at C = 2190 s and the whole peak has been handled.

The Figure 4.11c provides the same information than Figure 4.11b however normalized by
the quantity _(C + C). In other words, it exactly depicts the convergence towards D∗ of the value
function ΔE of the SMDP with reduced costs (20 − _C0)0∈� that is in SSP configuration when the
terminal costs are D∗ −"1(\{0} – this seed can be seen in the shaded area [−gmax, 0).

5 Convergence time of the value iteration algorithm for semi-Markov
SSP problems

As suggested by Theorem 4.11 and its subsequent remark, we are going to focus on the convergence
time of the value iteration procedure for SMDPs in SSP configuration, in the hope of getting
more insight on the catch-up times of Petri nets that are in congestion-free phases. We shall be
particularly interested in knowing if a finite-time convergence can be obtained, because it is a
very desirable property of the systems we study in our applications – notably emergency call
centers in which we would like the peak of calls to be absorbed in a short duration.

In all this section, we let a bit aside the Petri net models that correspond to SMDPs and
we mainly focus on a generic non-Zeno undiscounted SMDP in SSP configuration, meaning
that Assumption A and Assumption C hold. We suppose with no loss of generality that a single
action 00 is playable from the absorbing and cost-free state 0.

5.1 THE DIFFERENT CONVERGENCE PHASES. — Recall as stated in Theorem 3.41 that a function
determined by an initial condition E0 inV0 and satisfying the dynamic programming equations
of an SMDP in SSP configuration converges towards D∗, when the planning horizon approaches
infinity. We first provide a quantitative description of the associated speed of convergence.

For all 8 in ( \ {0}, we denote by �∗8 the nonempty subset of �8 composed of optimal actions,
that is to say those achieving minimality in (3.29). Similarly, we introduceS∗ B �0 ×

∏
8∈(\{0} �

∗
8

the set of optimal policies, included in S. Observe that optimal policies must be proper (for
improper policies yield infinite costs for some starting states). In accordance with the Remark 3.27,
optimal actions induce an evolution semigroup �

∗ which corresponds to applying only optimal
policies. The following theorem shows that there is always an instant C∗ such that: (i) before C∗,
either optimal or non-optimal actions can be picked, and thus the evolution of the dynamics
amounts to applying the semigroup�; (ii) after C∗, only optimal actions are chosen, so that the finer
dynamics associated with the semigroup�∗ are actually used. Moreover, the second phase induces
a geometric speed of convergence controlled by the spectral radii of the probability matrices
of optimal policies. Once again, we leverage on techniques from non-linear Perron–Frobenius
theory to control the contraction aspects of the dynamics.
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) Theorem 4.12. Suppose Assumptions A and C hold. Let E0 in V0 and denote by E the solution
of (DP) it determines. Then, there exists C∗ > 0 such that for all C > C∗ and all B in [−Cmax, 0), we
have

E (C + B) = �
∗
C−C∗

[
�C∗

[
E0
] ]
(B) .

Moreover, if we define
a B max

f ∈S∗
d
(
%f

��
((\{0})×((\{0})

)
< 1 ,

then for all Y > 0 small enough, there is a weighted sup-norm in which �
∗
Cmax

is a contraction of
rate a + Y.

Proof. We start by showing the ultimate restriction to the optimal dynamics.

We know that E satisfies the equation (DP), which means that

∀8 ∈ (, ∀C > 0, E (8, C) = min
0∈�∗

8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
}
∧ min
0∈�8\�∗8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
}
.

In addition, in view of Theorem 3.41, limC→∞ E (C) = D∗, whereD∗ is characterized by the equationsD (0) = 0
and ∀8 ∈ ( , D (8) = min0∈�∗

8

{
20 +∑9 ∈( ?

0
9
D ( 9)

}
(see (3.29)). By definition of the optimal actions, we know

that
∀8 ∈ (, ∀0 ∈ �8 \�∗8 , D∗ (8) < 20 +

∑
9 ∈(

?09 D
∗ ( 9) .

Let Y∗ B min8∈( min0∈�8\�∗8
{
20 +∑9 ∈( ?

0
9
D∗ ( 9) −D∗ (8)

}
> 0. We know that there exists C0 > 0 such that

∀C > C0, ∀8 ∈ ( , |E (8, C) − D∗ (8) | 6 Y∗/2. In particular

∀C > C0 + Cmax, ∀8 ∈ (, ∀0 ∈ �8 \�∗8 , 20 +
∑
9 ∈(

?09 E ( 9, C − C
0) > 20 +

∑
9 ∈(

?09 (D
∗ ( 9) − Y∗/2) > Y∗/2 +D∗ (8)

which proves that only optimal actions are played from the time C∗ B C0 + Cmax.

For the second part of the claim, let us consider the self-map ) ∗ of R(\{0} that is defined by ) ∗ (G) =
maxf ∈S∗

{
%f

��
(\{0}×(\{0}G

}
(that can be seen as the Bellman operator ) of MDPs restricted to optimal

policies and non-terminal states). Recall as detailed in the proof of Proposition 3.13 that the generalized
Collatz–Wielandt theorem (see [AGN11, Theorem 1.1 and Proposition 8.1]) provides

inf
{
ℓ > 0

�� ∃G ∈ R(\{0}
>0 , ) ∗ (G) 6 ℓG

}
= max
f ∈S∗

{
d
(
%f

��
(\{0}×(\{0}

)}
= a .

Taking Y > 0 such that a +Y < 1, we obtain the existence of a vectorF in R(\{0} such that) ∗ (F) 6 (a +Y)F .
We still denote byF the augmented vector (0,F) in R( , and we denote by F̃ the constant function ofV0
such that F̃ (B) = F for all B ∈ [−Cmax, 0). Let us now take an initial condition E0 in V0, and U > 0. We
want to show that �∗Cmax

is subhomogeneous with respect to the function F̃ and the factor a + Y, which
means that �∗Cmax

[
E0 + UF̃

]
6 �

∗
Cmax

[
E0
]
+ U (a + Y)F̃ . Denoting by E (resp. EU ) the solution of the optimal

dynamics (equation (DP) replacing �8 by �∗8 ) determined by the seed E0 (resp. E0 + UF̃ ), we recall that for
B ∈ [−Cmax, 0), the vectors �∗Cmax

[
E0 + UF̃

]
(B) and �

∗
Cmax

[
E0
]
(B) are respectively equal to EU (Cmax + B) and

E (Cmax + B). We are going to show that EU (Cmax + B) 6 E (Cmax + B) + U (a + Y)F by finite induction over B .
First suppose that all the (C0)0∈� are positive and let  B bCmax/Cminc.
Let B ∈ [−Cmax,−Cmax + Cmin) (initialization of the finite induction). In this case, we have using the optimal
dynamics that for all 8 in ( \ {0}

EU (8, Cmax + B) = min
0∈�∗

8

{
20 +

∑
9 ∈(

?09 EU ( 9, Cmax + B − C0)
}
= min
0∈�∗

8

{
20 +

∑
9 ∈(

?09
(
E0 ( 9, Cmax + B − C0) + UF ( 9)

)}
,

where we have used the fact that Cmax + B − C0 < 0 to make the initial condition E0 + UF̃ appear. We then
observe that for all 0 in �∗

8
, it holds that

∑
9 ∈( ?

0
9
F ( 9) 6 maxf ∈S∗

[
%f |(\{0}×(\{0}F

]
8
6 (a + Y)F (8). The

remaining term min0∈�∗
8

{
20 +∑9 ∈( ?

0
9
E0 ( 9, Cmax + B − C0)

}
coincides with E (8, C). Hence, we indeed have

EU (Cmax + B) 6 E (Cmax + B) + U (a + Y)F for all B ∈ [−Cmax,−Cmax + Cmin).
Let us now assume that EU (Cmax + B) 6 E (Cmax + B) + U (a + Y)F holds for all B ∈ [−Cmax,−Cmax + :Cmin)
where : is an integer such that 1 6 : 6  − 1. We choose B fixed in [−Cmax + :Cmin,−Cmax + (: + 1)Cmin)
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(and B < 0). We can still write thanks to the optimal dynamics that for all 8 in ( \ {0}

EU (8, Cmax + B) = min
0∈�∗

8

{
20 +

∑
9 ∈(

?09 EU ( 9, Cmax + B − C0)
}
. (4.21)

We distinguish to sub-cases. First, if 0 ∈ �∗
8
is such that C0 > Cmax + B (recall that Cmax + B is always

nonnegative), then the term EU ( 9, Cmax + B − C0) in (4.21) can be replaced by E0 ( 9, Cmax + B − C0) + UF ( 9) =
E ( 9, Cmax + B − C0) + UF ( 9). Otherwise, if 0 ∈ �∗

8
is such that C0 6 Cmax + B , then we use the fact

that B 6 −Cmax + (: + 1)Cmin and C0 > Cmin to obtain that B − C0 lies in [−Cmax,−Cmax + :Cmin). Our
induction hypothesis guarantees that the term EU ( 9, Cmax + B − C0) in (4.21) can be bounded above by
E ( 9, Cmax + B − C0) + U (a + Y)F ( 9) or further by E ( 9, Cmax + B − C0) + UF ( 9) (recall that a + Y < 1). In both
cases, we have

20 +
∑
9 ∈(

?09 EU ( 9, Cmax + B − C0) 6 20 +
∑
9 ∈(

?09
(
E ( 9, Cmax + B − C0) + UF ( 9)

)
6 20 +

∑
9 ∈(

?09 E ( 9, Cmax + B − C0) + U (a + Y)F (8) ,

and we get EU (8, Cmax+B) 6 E (8, Cmax+B) +U (a +Y)F (8), regardless of B in [−Cmax+:Cmin,−Cmax+ (:+1)Cmin),
which completes the induction scheme. If Zeno phenomena were at stake, we would have use the induction
principle (I/ ), first handling at each step the necessarily non-Zeno states and then the Zeno-states,
recovering the above inequality in the same way as the proof of Proposition 3.26.

Now that we have �∗Cmax

[
E0 + UF̃

]
6 �

∗
Cmax

[
E0
]
+ U (a + Y)F̃ (regardless of E0 and U), let us recall how to

derive the contraction result. We choose two functions E1 and E2 inV0, and define

‖E1 − E2‖∞,F B sup
9 ∈(\{0}

B∈[−Cmax,0)

����E1 ( 9, B)F ( 9) −
E2 ( 9, B)
F ( 9)

���� so that E1 6 E2 + ‖E1 − E2‖∞,F F̃ ,

where the last inequality stands in V0. Applying the operator �∗Cmax
that is order-preserving (as shown

in Proposition 3.26–(2)), we obtain

�
∗
Cmax

[
E1] 6 �

∗
Cmax

[
E2
]
+ (a + Y)‖E1 − E2‖∞,F F̃ .

The converse inequality (with E1 and E2 swapped) holds as well, and it follows that regardless of E1 and E2,
we have �∗Cmax

[
E1
]
−�∗Cmax

[
E2
]
∞,F 6 (a + Y)‖E1 − E2‖∞,F ,

which is the contraction result claimed. s

We point out that this proposition is reminiscent of the different phases of convergence of the
deviation E (C) − j (�)C in the case of MDPs when this quantity admits a limit, established by
Schweitzer and Federgruen in their work [SF79]. They showed in particular that after elimination
of non-optimal actions, the convergence is geometric. It is worth noting that in Theorem 4.12,
we could only control the contraction rate of �∗Cmax

, and not �∗C for C 6 Cmax. This is characteristic
of the semi-Markov setting, since in the worst case we must wait for a time Cmax until the full
dynamics switch on.

We now come back to the question of the finite time convergence of the value iteration. The
next theorem tells us that it cannot be expected unless all probability matrices associated with
optimal policies restricted to states of ( \ {0} are nilpotent, hence making the rate of geometric
convergence a featured in Theorem 4.12 null and effectively calling off the last phase. This
nilpotency condition is also equivalent to some restrictions on the SMDP topology, that we may
interpret as requiring a form of hierarchy within the set of states. It must be compatible with
the moves made by the optimal policies; these should always “descend” in the hierarchy until
finally reaching 0, the minimal element. To our knowledge, these characterizations of finite-time
convergence of the value iteration in SSP configurations are new even in the simpler MDP setting.
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) Theorem 4.13. Suppose Assumptions A and C hold. Then, the following are equivalent:

(i) for all E0 in V0 and associated solution E of the dynamics (DP), there exists C∗ in R such that
for all C > C∗, E (C) = D∗;

(ii) for all optimal policies f inS∗, we have d
(
%f

��
((\{0})×((\{0})

)
= 0 ;

(iii) there exists a partial ordering (<) on ( such that for all f in S∗ and for all 8 in ( \ {0},
{ 9 ∈ ( | ?f (8)

9
> 0} ⊂ { 9 ∈ ( , 9 < 8}.

Proof. We will prove (i) =⇒ (ii) =⇒ (iii) =⇒ (i), but we begin by stating a first-order decomposition lemma.

Let us reuse the positive scalar Y∗ B min8∈( min0∈�8\�∗8
{
20 +∑9 ∈( ?

0
9
D∗ ( 9) − D∗ (8)

}
> 0 introduced in

the proof of Theorem 4.12, and let U B Y∗/3. We claim that

∀ℎ0 ∈ V0,
ℎ0∞ 6 U =⇒ ∀C > 0, �C

[
D̃∗ + ℎ0

]
= �C

[
D̃∗

]
+�′C

[
ℎ0

]
= D̃∗ +�′C

[
ℎ0

]
, (4.22)

where (�′C )C>0 denotes the semidifferentiate semigroup of (�∗C )C>0 at point D̃∗ (constant function of V0
equal to D∗), defined as in the Definition 3.23 but according to the dynamical equations

∀8 ∈ (, ℎ(8, C) = min
0∈�∗

8

{∑
9 ∈(

?09 ℎ( 9, C − C
0)
}
. (4.23)

To establish (4.22), it suffices to apply the induction principle (I/ ) to work step-by-step with the dynamic
programming equations, to use the specific value of U to show that only optimal actions can achieve
the minimum (as in Theorem 4.12), and finally the fixed-point property satisfied by D̃∗ (see Lemma 3.39).
Similarly to �, the semidifferentiate semigroup �

′ is a nonlinear self-map ofV0, however it is positively
homogeneous (but still non-linear). Note that (4.22) is an asymptotic expansion that is actually exact owing
to the fact that the dynamics (DP) are piecewise-affine.

We now show (i) =⇒ (ii). Because (i) holds, we know that convergence of the dynamics towards D∗

for the specific initial condition E0 (B) B D∗ − U1(\{0} (B ∈ [−Cmax, 0)) occurs in finite time, so we have
some C0 > 0 such that �C0

[
E0
]
= D̃∗. According to (4.22), we have �

′
C0

[
A ↦→ −U1(\{0}

]
= 0̃, or even

�
′
C0

[
A ↦→ −1(\{0}

]
= 0̃ via positive homogeneity of �′.

Denote by ℎ the solution of the optimal semidifferentiate dynamics (4.23) uniquely determined by the
initial condition B ↦→ −1(\{0} , take an optimal policy f ∈ S∗ and let us show that for all C > 0, we

have ℎ(C) 6
(
%f

) dC/Cmin e (−1(\{0}), by induction on C supposing that all the sojourn times are positive
(otherwise we would still use the induction principle (I/ )). If C ∈ [0, Cmin), the result is direct by using
the dynamics (4.23) restricted to the policy f and the initial condition. Suppose the result holds for
C ∈ [0, :Cmin) for some : ∈ N∗ and take C ∈ [:Cmin, (: + 1)Cmin). If 8 is in ( \ {0}, we have by (4.23) that
ℎ(8, C) 6 ∑

9 ∈( ?
f (8)
9

ℎ( 9, C − Cf (8) ). However, C − Cf (8) lies in [−Cmax, :Cmin), hence we can bound above

the term ℎ( 9, C − Cf (8) ) by
[ (
%f

): (−1(\{0})] 9 (either using the induction assumption if C − Cf (8) > 0 or

the initial condition otherwise). It follows that ℎ(8, C) 6
[ (
%f

):+1 (−1(\{0})]8 and the induction scheme is
completed.

In particular, for all optimal policies f ∈ S∗, for all C > 0 and B ∈ [−Cmax, 0) such that C + B > 0, we have

�
′
C

[
−1(\{0}

]
(B) 6

(
%f

)⌈ C+B
Cmin

⌉
(−1(\{0}). Applying this result to C = C0, we know that there exists an integer

:0 ∈ N∗ such that 0 = �
′
C0

[
−1(\{0}

]
(−Cmax) 6

(
%f

):0 (−1(\{0}) 6 0 (the last inequality has been obtained

by order-preserving character of stochastic matrices). We deduce that
(
%f

):01(\{0} = 0, or equivalently

forgetting about the component associated with state 0 that
(
%f |(\{0}×(\{0}

):01 = 0. Still by the order-

preserving character of the linear map associated with this matrix (to show that
(
%f |(\{0}×(\{0}

):0 maps
some open ball to 0), it entails that %f |(\{0}×(\{0} is nilpotent or equivalently d

(
%f |(\{0}×(\{0}

)
= 0. This

holds for any f ∈ S∗, which is our item (ii).

Let us prove the implication (ii) =⇒ (iii). Observe to this purpose that we can interpret the assumption
maxf ∈S∗ d

(
%f |(\{0}×(\{0}) = 0 by the fact that the (generalized) spectral radius of the application ) ∗

defined in the proof of Theorem 4.12 is zero as well, which in terms of the Collatz–Wielandt property
gives us inf

{
ℓ > 0

�� ∃G ∈ R(\{0}
>0 , ) ∗ (G) 6 ℓG

}
= 0. As a result we know that for all ℓ > 0, there is some
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Fℓ ∈ R(\{0}>0 such that ) ∗ (Fℓ ) 6 ℓFℓ , or equivalently %f |(\{0}×(\{0}Fℓ 6 ℓFℓ for all f ∈ S∗. Introducing
% B (1/|S∗ |)∑f ∈S∗ %f |(\{0}×(\{0} , we naturally still have %Fℓ 6 ℓFℓ . Because such an inequality can
be written for all ℓ > 0, we can reuse the Collatz–Wielandt characterization of the spectral radius and
conclude that the (linear) operator % is also nilpotent. This entails that the accessibility graph � associated
with % (with nodes set included in ( \ {0}) does not contain any circuit. We can thus associate a partial
order (<) with this graph, such that each node 8 ∈ ( \ {0} has only access to nodes { 9 ∈ (, 9 < 8}. However
by definition of % (that can be thought of as a randomization of all policies), the accessibility graph �f of
%f |(\{0}×(\{0} is included in � for all f ∈ S∗. It follows that for all optimal policies and states 8 ∈ ( \ {0},
we have { 9 ∈ ( | ?f (8)

9
> 0} ⊂ { 9 ∈ (, 9 < 8}, that is to say (iii).

To finish, we focus on (iii) =⇒ (i), that is easier to prove. Let E0 ∈ V0. Recall from Theorem 4.12 that there
is some C∗ from which only optimal actions are used. According to the item (iii), each time an optimal
action is pulled from a state in ( \ {0}, the player goes to a state strictly inferior in the hierarchy, as a
result after C∗ + |( |Cmax we know that the state 0 is reached, and that the value function has stabilized to
D∗. Remark that the time C∗ needed to approach D̃∗ from E0 to a precision U is in fact only controlled by
‖E0 − D̃∗‖∞. s

Observe that the condition in item (ii) cannot be strengthened to require that all proper policies
induce nilpotent transition probability matrices on ( \ {0}, as shown in the next example.

Example 4.14. Consider the simple SMDP of Figure 4.12 that is actually an MDP since all
the sojourn times are taken equal to one.

0 1

00 : (0, 1)
01 : (20, 1)

0′1 : (21, 1)

U1−U

Figure 4.12: A 2-state SMDP with two proper policies but only one optimal policy

The state 0 is cost-free and absorbing, and from the state 1, the player can either choose to
pay the cost 20 and go to state 0 (hence the game stops), or to pay the cost 21 and come back
to 1 with the probability 0 < U < 1. The fact that U < 1 guarantees that both policies (00, 01)
and (00, 0′1) are proper, and we easily compute that starting from state 1, they respectively
induce total costs equal to 20 and 21/(1 − U).

Let us suppose that 20 < 21/(1 − U). In this MDP context, the value iteration procedure
consists in computing the sequence (E (1, C))C ∈N defined by E (1, C) = 20 ∧ (21 + UE (1, C − 1)) for
all C in N and the initial condition E (1, C = −1) = " with" in R. Clearly, if for some C0 in N
the action 01 becomes minimizing, it remains minimizing for all C > C0 and the convergence
of the value towards 20 happens in finite time. Suppose for contradiction that 01 is never
minimizing, and therefore that E (1, C) = 21 + UE (1, C − 1) for all C in N. This is a classic
arithmetico-geometric sequence, and we obtain E (1, C) = "UC+1 + 21(1 − UC+1)/(1 − U). But
with X = (21/(1 − U) − 20)/2, and C∗ B (log(X) − log( |" − 21/(1 − U) |))/log(U), we get
E (1, C) > 20 for C + 1 > C∗, which contradicts the dynamic programming equation. Hence 00
becomes minimizing for some C 6 C∗ and convergence towards the SSP value always happens
in finite time for this Markov decision process.

Since the matrix %f |(\{0}×(\{0} associated with the (proper but not optimal) policy (00, 0′1)
reduces to the scalar U > 0, we see that it is not nilpotent. Hence, although it is sufficient, it is
not necessary that all proper policies give nilpotent transition matrices over ( \ {0} to obtain
a finite-time convergence of the value iteration regardless of the initial condition.
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5.2 HIERARCHICAL SSP CONFIGURATIONS. — According to the Theorem 4.12, the setS∗ of
optimal policies controls the ultimate rate of convergence. It is in general not known, and depends
on the costs and sojourn times attached to the actions of the SMDP – as illustrated for instance
in Example 4.14. It can be desirable to identify conditions of a more topological nature under
which finite time convergence occurs regardless of the optimal character of some policies, that
however need to remain proper. Building on the statement of Theorem 4.13–(iii), we choose to
enforce the existence of a partial ordering (6) on ( such that applying some actions necessarily
makes the order strictly decrease. This is formalized in the next assumption, where whenever 0 is
an action of �, we denote its support {8 ∈ ( | ?08 > 0} by supp(0).

) Assumption E. There is a partial ordering (6) on ( , such that for all states 8 in ( , the set �8 of
playable actions from 8 admits a partition of the form �8 = �

−
8 ]�+8 , with the condition that

if 0 ∈ �−8 , then ?09 > 0 =⇒ 9 < 8 (equivalently supp(0) ⊂ { 9 < 8}) and

if 0 ∈ �+8 , then ?09 > 0 =⇒ 8 6 9 (equivalently supp(0) ⊂ {8 6 9}),

where 9 < 8 means 9 6 8 and 9 ≠ 8 . In addition, �−8 ≠ ∅ for all 8 in ( \ {0}.

In other words, Assumption E requires that actions either strictly “descend” or weakly “ascend”
relatively to the states hierarchy, the first case being always possible. In what follows, we shall
refer to 0 in �−8 (resp. 0 in �+8 ) as a “descending action” (resp. an “ascending action”). Remark that
imposing in Assumption E that �−8 ≠ ∅ for all 8 in ( \ {0} implies the Assumption C(1), since
any policy which only makes use of descending actions is proper. This implication turns into
an equivalence (i.e., any proper policy must only make use of descending actions) if the next
condition is also met.

) Assumption F. For all f inS, if there exists 8 in ( such that f (8) is in �+8 , then f is improper.

Under Assumptions E and F (stronger than the condition (iii) of Theorem 4.13), we obtain that
�∗8 ⊂ �−8 for all 8 in ( . It implies that optimal policies, that are proper, must also use only strictly
descending actions, and according to Theorem 4.13, convergence towards D∗ arises in finite time.

∗
∗ ∗

In the case of the medical emergency call center first depicted on Figure 4.5 and reproduced
in Figure 4.13a, the two hierarchical assumptions E and F are satisfied with the partial ordering
(6) such that 0 6 1 6 2 and 0 6 1 6 3 6 4 6 5 (the other pairs of states do not need to be
comparable). Observe that this states hierarchy is the one naturally given by the (partial) order
in which the different tasks are performed in the Petri net of Figure 4.5. We verify that (strictly)
descending actions (labeled by means of the “−” symbol) can be played for all states in ( \ {0}.
There are only three ascending actions here (labeled by means of the “+” symbol), the action from
0 that makes the decision-maker stay in 0, the action from 1 that sends him/her stochastically to
2 or 4, and the action from 3 that forces to evolve in 5. Consistently with the discussion based on
the Table 4.9, the policy that picks the descending actions in �1 and �3 is the only proper policy
(and thus it is optimal).

Observe how a slight modification of the SMDP topology can make the Assumption F violated.
Indeed, in the Figure 4.13b, the policy that picks the ascending action from state 1 and the
descending action from state 3 becomes proper (the player will necessarily end up in state 0 by
applying this policy starting from any state). It may be optimal for suitable choices of costs and
sojourn times as in Example 4.14, but convergence towards D∗ will happen geometrically.
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Figure 4.13: Two SMDPs in SSP configuration verifying Assumption E,
but only the first one verifies Assumption F

5.3 CONVERGENCE BY ABOVE. — Now that we have exhibited conditions under which the
convergence of the dynamics of an SMDP in SSP configuration towards its value D∗ occurs in
finite time, we are interested in finding an upper bound of the (state-by-state) convergence times
(\8)8∈( defined by

for all 8 in (, \8 B inf{C > 0 | E (8, C) = D∗(8)} , (4.24)

where E is the solution of (DP) determined by an initial condition E0 inV0. Although we shall not
write it explicitly, the (\8)8∈( depend on E0.

A somehow easy case to analyze occurs when the initial condition E0 is above the limit D∗,
i.e., E0(B) > D∗ for all B in [−Cmax, 0). Recall from Section 2.3 of Chapter 3 that E (8, C) gives the
minimum expected cost by starting the game in state 8 and playing during C units of time; knowing
that terminating the game in state 8 with a horizon “overshoot” of B costs E0(8,−B) > D∗(8) (and
this terminal cost is null in state 0 because E0 is inV0). In that case, the key is that terminating
in state 9 ≠ 0 starting from state 8 is more costly than rushing directly towards 0 (the cost of
travelling from 8 to 9 plus incurring at least D∗( 9) at the end exceeds the cost of going from 8 to 0
and stop playing there). As a result, each state has interest to join state 0 using an optimal policy
as soon as possible.

Bertsekas has already observed this fact for Markov decision processes (SMDPs with sojourn
times equal to one) in SSP configuration in his study of the value iteration algorithm [Ber11,
Section 3.4.1] when the transition probability graph of some optimal policy is acyclic, taking in
particular an initial condition with E0(8) = ∞ for all 8 in ( \ {0}. In the same spirit, we are going
to take advantage of the states hierarchy to propose an inductive scheme to bound the (\8)8∈( .
Indeed, the state 0 is the bottom element of the order (6), and the states that lie in low layers of
the hierarchy shall have “quicker” access to 0 than those located higher in the hierarchy (since
the latter may need to pass through the former). From this perspective, if 8 is a state of ( , it is
natural to focus on the convergence time \8 after the states located lower than 8 in the hierarchy
already converged themselves. It amounts to determining the (\8)8∈( by following an inductive
scheme given by the partial ordering (6).
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) Proposition 4.15. Suppose that the SMDP satisfies the hierarchical assumptions E and F. Suppose
in addition that E0(B) > D∗ for all B in [−Cmax, 0). Then we have \0 = 0 and for all 8 in ( \ {0}, \8
consistently verifies by induction:

\8 6 min
0∈�−

8

{
C0 + max

9 ∈supp(0)
\ 9
}
.

Proof. We first deal with a particular case where E0 is of the form E0 (B) = D∗ + "1(\{0} for all B in
[−Cmax, 0) and some" > 0 (so that we indeed have E0 > D̃∗). We still denote by E the function determined
by this particular initial condition, and as a first step we show below that E is nonincreasing. Indeed, for
C ∈ [0, Cmin) and B ∈ [−Cmax, 0), we have (supposing for the sake of simplicity that all the sojourn times are
positive) for all 8 ∈ ( \ {0} that

E (8, C + B) = �C

[
E0
]
(B)8 = min

0∈�8

{
20 +

∑
9 ∈(

?09 E
0 ( 9, C + B − C0)

}
= min

0∈�8

{
20 +

∑
9 ∈(

?09
(
D∗ ( 9) +"19≠0

)}
6 D∗ (8) +"

and in addition E (0, C + B) = 0. Therefore for all C ∈ [0, Cmin), we have D̃∗ 6 �C

[
E0
]
6 E0. This double

inequality can be propagated for all C > 0 by applying the induction principle (I/ ); which we also resort
to in the case where some sojourn times are null, still with similar schemes than those of Chapter 3. We
can now apply the Lemma 3.40 whose proof guarantees that E is nonincreasing, bounded below by D∗ and
converges towards D∗. In particular, we necessarily have C > \8 =⇒ E (8, C) = D∗ (8) for all 8 ∈ ( , meaning
that as soon as E (8, C) has reached once its final value D∗ (8), it stays constant.
We show the result of the theorem by proving by induction that the property P(8): “the bound on \8
in the theorem is valid” holds for all states 8 in ( . To this purpose, it suffices to show that P(0) is true
(initialization), and that if P( 9) holds for all 9 < 8 , then P(8) holds as well (heredity). Indeed, although
not all states are comparable relatively to the partial ordering (6), the state 0 is a minimal element and
any state can reach 0 using only descending actions (following from Assumption E). Finally, all states are
comparable within such a path.

It is immediate to obtain that P(0) is true, i.e. \0 = 0, since for all C > 0, we have E (0, C) = 0 (recall thatV0
is stable under evolution equations associated with SSP configurations).

In what follows, we let 8 ∈ ( \ {0} and suppose that P( 9) is true for all 9 ∈ ( such that 9 < 8 . Cases are
distinguished based on the existence or absence of ascending actions from 8 .

Let 8 ∈ ( \ {0} such that �+
8
= ∅, so that by (DP), for all C > 0,

E (8, C) = min
0∈�−

8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
}
.

Let us take C = max0∈�−
8

{
C0 + max9 ∈supp(0) \ 9

}
. For all 0 in �−

8
, we have for all 9 in supp(0) that

E ( 9, C − C0) = D∗ ( 9), by the monotonic character of E shown in the beginning of the demonstration. As a
result, we have

E (8, C) = min
0∈�−

8

{
20 +

∑
9 ∈(

?09 D
∗ ( 9)

}
where we recognize the right-hand side of (3.29), which provides E (8, C) = D∗ (8). As a result we must have
by minimality \8 6 max0∈�−

8

{
C0 +max9 ∈supp(0) \ 9

}
.

Let us now take 8 ∈ ( \ {0} such that �+
8
≠ ∅. The (DP) equation here gives us for all C > 0 and 8 ∈ ( \ {0}

that
E (8, C) = min

(
min
0∈�−

8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
}
, min
0∈�+

8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
})
. (4.25)

Denote for short Θ8 B max0∈�−
8

{
C0 +max9 ∈supp(0) \ 9

}
, and choose C > Θ8 . Just like the previous part of

the proof, we know that E ( 9, C − C0) = D∗ ( 9) for all 0 ∈ �−
8
and 9 ∈ supp(0). In addition, by monotonicity

of E again and the fact that E (C) > D∗ for all C > −Cmax, we have E ( 9, C − C0) > D∗ ( 9) if 9 ∈ ( and 0 ∈ �+
8
.
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Hence, (4.25) becomes

E (8, C) = min
(
min
0∈�−

8

{
20 +

∑
9 ∈(

?09 D
∗ (8)

}
︸                          ︷︷                          ︸

=D∗ (8)

, min
0∈�+

8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)︸                       ︷︷                       ︸

>D∗ (8)

})
. (4.26)

As a result, if C > Θ8 , the first term of the minimum in (4.26) is active and we get E (8, C) = D∗ (8), which
proves that \8 6 Θ8 , and achieves the induction scheme on the states.

To finish, let us come back to the general case where E0 is any bounded function ofV0 such that E0 > D∗.
Denoting " B supB∈[−Cmax,0)

{
E0 (B) − D∗

}
, we obtain that D∗ 6 E0 (B) 6 D∗ +"1(\{0} with " > 0. This

double inequality extends to the dynamics continuation of these three initial conditions, and when the 8-th
coordinate of C ↦→ �C+Y

[
A ↦→ D∗ +"1(\{0}

]
(−Y) has reached its final value D∗ (8), so has the 8-th coordinate

of C ↦→ �C+Y
[
E0
]
(−Y), hence the conclusion. Remark that the bounds on the (\8 )8∈( actually do not depend

upon" . s

The following corollary that focuses on the total convergence time C∗ B max8∈( \8 is a coarser
version of Proposition 4.15, but it highlights the tree structure of hierarchical configurations by
featuring its depth 3 . Its proof is immediate.

) Corollary 4.16. Under the conditions of Proposition 4.15, denote by 3 the maximal length of a
descending path in ( relatively to the ordering (6). Then, finite-convergence of E towards D∗ occurs
in a time C∗ such that

C∗ 6 3 × Cmax .

This claim is consistent with the result of Bertsekas who showed still in [Ber11, Section 3.4.1]
that the value D∗ could be computed in |( | steps of the value iteration algorithm for MDPs by
starting with a positive infinite initial condition (since in this case 3 6 |( | and Cmax = 1).

∗
∗ ∗

The top chart of the Figure 4.14 illustrates the Proposition 4.15 for the SMDP in SSP configuration
associated with our running example (EMS-A), for quite an eccentric choice of initial condition but
that respects the requirement of being aboveD∗. We can verify that after the time C∗ = g1+g2+g3 =
370 s, corresponding with the time-length of the longest branch of the system, the final regime
(constant equal to D∗) is reached. During this transient regime, only the single proper policy (_, 0)
of the SMDP has been played.

5.4 CONVERGENCE BY BELOW. — Bounding the (\8)8∈( in the converse case where the initial
condition is below the limit, (meaning that E0(B) 6 D∗ for all B in [−Cmax, 0)) is a different kettle of
fish. Indeed, joining state 0 from state 8 as soon as it becomes possible (and thus accumulating
a total cost of D∗(8)) may not be the best choice, since terminating in another state with low
terminal cost can compensate the costly decision of not joining 0. For bigger horizons though,
we know by Assumption C(2) that not leaving ( \ {0} results in accumulating positive costs,
which will eventually mitigate the benefit of terminating in ( \ {0}. For instance on the bottom
graph of Figure 4.14, a simultion of (EMS-A) with an initial condition below D∗ shows that we
have no interest in pulling all the optimal actions until C = 724.78 s. It is only after this instant
that not leaving ( \ {0} is always more costly than going towards 0. This figure confirms the
intuition that convergence by below is typically more complex and takes more time to happen
than convergence by above.

The possible adverse behaviour that we have just described prompts us to focus on the
evolution of E if one decides not to join state 0 from some state. Let us consider the collection of
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Figure 4.14: Convergence of the dynamics of the SMDP in SSP configuration associated
with (EMS-A), for two different initial conditions

state-accessibility graphs of our SMDP in which a particular state cannot use descending actions.
More precisely, given 8 in ( \ {0} such that �+8 ≠ ∅, we denote by G (8)

(
the graph with nodes (

and with edges set {(:, ℓ) ∈ (2 | ∃0 ∈ �: \�−8 s.t. ?0ℓ > 0}. In other words, G (8)
(

describes the
alternative SMDP in which 8 is forced to use actions in �+8 , all the descending actions playable
from other states being still available. We denote by C(8) the strongly connected component of 8
in the graph G (8)

(
. The next lemma proves that evolving in G (8)

(
, that is to say not selecting actions

in �−8 , amounts to staying within states of C(8) with no way of joining 0.

) Lemma 4.17. Suppose that Assumptions C, E and F hold. For all 8 in ( \ {0} such that �+8 ≠ ∅, the
following properties hold:

(i) 0 is not accessible from 8 in G (8)
(

,

(ii) every state accessible from 8 in G (8)
(

also has access to 8 via descending actions.

Proof. Remember that relatively to the graph G( with no removed actions, the state 0 is accessible from
any other state, according to the Assumption E, and in addition, an accessibility walk can be achieved using
only actions in

⋃
8∈( �

−
8
, the whole set of descending actions.

The subgraph G (8)
(

represents only improper policies by Assumption F. Thus, there is a state 9 that has not
access to 0. This entails that any path connecting 9 to 0 in the original graph G( (possibly obtained by
only descending actions) had to go through state 8 (the only state from which actions have been ruled out),
otherwise these paths would still be available. It follows that 8 itself has not access to 0, otherwise 9 could
reach 0 again, which proves (i). Property (ii) follows since if 9 is a state accessible from 8 in G (8)

(
, then 9 has

no longer access to 0 in G (8)
(

, and the above argument shows that 9 has access to 8 . s
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Figure 4.15: The SMDP of (EMS-A) in hierarchical SSP configuration, and the remaining
sub-graphs when ruling out actions of �−1 or �−3 , with strongly connected components

C(1) and C(3) outlined in blue.

We illustrate on the Figure 4.15 the construction of the graphs (G (8)
(
)8∈(,�+

8
≠∅ and the subsets

(C(8))8∈(,�+
8
≠∅ for the SMDP associated with (EMS-A), recalled in Figure 4.13a. We let the reader

check that the two items of Lemma 4.17 apply on these examples.
After having “topologically” described what happens to a decision-maker who decides to

make use only of descending actions in a state 8 such that �+8 ≠ ∅, we now specify what it implies
cost-wise. Let us first denote by j the minimum average-cost of all the final classes (except {0})
of improper policies, defined by

j B min
f ∈S

min
� ∈F(f)
�≠{0}

{ 〈`f
�
, 2f 〉

〈`f
�
, Cf 〉

}
. (4.27)

As showed by the proof of Correspondence Theorem 4, the Assumption C(2) is equivalent to
j > 0. In addition, observe that the pair (C(8), �C(8) ), with �C(8) B �+8 ]

⊎
9 ∈C(8)\{8 } � 9 is

a consistent subset of states and actions in the sense of Remark 3.27. We thus introduce the
evolution semigroup

(
�C

��
C(8), �C(8 )

)
C>0 portraying the associated reduced dynamics, denoted for

short by (�(8)C )C>0. This evolution semigroup describes the costs collected by a player over time
when he/she starts in some state of C(8) and cannot play actions of �−8 .

) Lemma 4.18. Suppose Assumptions E and F hold. Let 8 in ( such that �+8 ≠ ∅. Then, the growth
rate of �

(8) (defined by (3.23)) is uniform on C(8), i.e., of the form j (8)1, where j (8) > j .

Proof. Let f be a policy of
S8 B �+8 ×

∏
9 ∈C(8)\{8 }

� 9

that realizes the minimal average-cost vector j (�(8) ) of �(8) , and let � be a final class associated with f
included in C(8) such that 〈`f

�
, 2f 〉/〈`f

�
, Cf 〉 = j (8) B min9 ∈C(8) j (�(8) ) 9 .

Observe that j (8) > j by definition of the latter in (4.27). If for all 9 ∈ C(8), we have qf
�,9

= 1 (so

that � is the only final class of f in C(8)), we directly obtain j (�(8) ) = j (8)1. Otherwise, since C(8) is
strongly connected, we may construct a policy f ′ ∈ S8 (identical to f on � ) such that f ′ admits � as its
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unique final class and as a consequence j (8)1 as optimal cost vector. By minimality of j (�(8) ), we obtain
j (�(8) ) 6 j (8)1 and it follows that j (�(8) ) = j (8)1. s

We are now ready to compute quantitative upper bounds on the state-by-state convergence
times (\8)8∈( of the value iteration algorithm for SMDPs in SSP configuration, when the initial
condition E0 is below D∗. To our knowledge, this result is also new in the context of MDP in
SSP configuration. The crux of the proof is to bound below the evolution of E (the trajectory
determined by E0 and the dynamic programming equations (DP)) by an affine regime of the
dynamics associated with improper policies, characterized by a positive average-cost.

) Theorem 4.19. Suppose that the SMDP satisfies the hierarchical assumptions E and F. Suppose in
addition that E0(B) 6 D∗ for all B in [−Cmax, 0) and denote " B supB∈[−Cmax,0)

{
D∗ − E0(B)

}
.

Then we have \0 = 0 and for all 8 in ( \ {0}, \8 consistently verifies by induction:

\8 6 max
0∈�−

8

{
C0 + max

9 ∈supp(0)
\ 9
}
+ "

j (8)
1�+

8
≠∅,

where for all 8 in ( such that �+8 ≠ ∅, j (8)1 denotes the growth rate vector of the evolution semigroup
�
(8) introduced in Lemma 4.18.

Proof. The proof of this theorem greatly follows the lines of the one of Proposition 4.15.

We first consider the particular case where E0 (B) B D∗ −"1(\{0} for all B ∈ [−Cmax, 0), for some given
" > 0. By the same arguments than the proof of Proposition 4.15, this initial condition ofV0 determines a
solution E that is nondecreasing, bounded above by D∗ and that converges towards D∗. For all 8 ∈ ( , the
property C > \8 =⇒ E (8, C) = D∗ (8) also survives.

We implement the same induction scheme on the states than in the proof of Proposition 4.15, that is to
say, we let 8 ∈ ( \ {0} and suppose that P( 9) is true for all 9 ∈ ( such that 9 < 8 . Our goal is to prove that
P(8) is true as well. If �+

8
= ∅, we are in the “easy” case and P(8) is established exactly as in the proof

of Proposition 4.15.

The novelty (and the difficulty!) arises if �+
8
= ∅. Indeed, we can apply the same techniques than the proof

of Proposition 4.15 until the equation (4.26), which as a reminder claims that

∀C > Θ8 , E (8, C) = min

(
D∗ (8) , min

0∈�+
8

{
20 +

∑
9 ∈(

?09 E ( 9, C − C
0)
})

where Θ8 B max0∈�−
8

{
C0 + max9 ∈supp(0) \ 9

}
. This time, the second term in the minimum is no longer

always greater than D∗ (8). However, still by monotonicity of E , we know that the minimum is attained
by the rightmost term if C < \8 . Suppose then that \8 > Θ8 (the opposite leads to the same upper bound
\8 6 Θ8 as before).

For all C such that Θ8 6 C < \8 , only actions of �+
8
are used from state 8 to determine E (C) based on the

values of E at prior times. In addition, it is necessary and sufficient to focus on the states of C(8) to analyze
the evolution of E (8, C) for the particular state 8 , since by Lemma 4.17–(ii), this class is fully autonomous
under the action of the dynamics when it is forbidden to play actions in �−

8
. In particular, reusing the

semigroup �
(8) studied in the Lemma 4.18, we have

∀B ∈ [−Cmax, 0), E (C + B)
��
C(8) = �

(8)
C−Θ8

[
F
]
(B) . (4.28)

whereF is the function of [−Cmax, 0) to RC(8) such that ∀B ∈ [−Cmax, 0),F (B) B E (B + Θ8 )
��
C(8) .

Invoking monotonicity of E , we can boundF below using our initial condition:

∀B ∈ [−Cmax, 0), F (B) > −"1 + D∗
��
C(8) (4.29)

According to Corollary 3.32–(1), the semigroup �
(8) admits an affine regime, with the throughput j (8)1

mentioned in Lemma 4.18. Let us denote by ℎ (8) a bias vector of RC(8) so that C ↦→ j (8)C1 +ℎ (8) is an affine
regime of �(8) . Using the fact given by Lemma 4.18 and Assumption C(2) that j (8) > 0, we can also bound
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F below by this affine regime, up to shifting it by a constant. Formally, we can write for all B in [−Cmax, 0):

F (B) > j (8)B1 + ℎ (8) −
(
" + max

:∈C(8)

{
ℎ
(8)
:
− D∗ (:)

})
︸                               ︷︷                               ︸

U

1

Unravelling the dynamics by applying the operator �(8)
C−Θ8

as done in (4.28) has just the effect of a shift in
time of magnitude C − Θ8 for this last affine function, as explained just before Proposition 3.30 and owing
to the additively homogeneous character of the evolution semi-group (see Proposition 3.26–(1)). Building
on the order-preserving character of the latter (see Proposition 3.26–(2)), we obtain from (4.28) that for all
B in [−Cmax, 0):

E (C + B)
��
C(8) > (C + B − Θ8 )j

(8)1 + ℎ (8) − U1 . (4.30)

Now suppose by contradiction that \8 > Θ8 + "/j (8) so that for Y > 0 sufficiently small, we can let
C = Θ8 +"/j (8) + Y in (4.28) and then evaluate the result in B = −Y, to get using the inequality (4.30) that

E
(
Θ8 +"/j (8)

) ��
C(8) > ℎ

(8) − max
:∈C(8)

{
ℎ
(8)
:
− D∗ (:)

}
1 .

But by denoting 9 a state of C(8) such that max:∈C(8)
{
ℎ
(8)
:
− D∗ (:)

}
= ℎ
(8)
9
− D∗ ( 9), we end up with

E
(
9,Θ8 +"/j (8)

)
> D∗ ( 9) , from which we derive \ 9 6 Θ8 +"/j (8) (4.31)

We are left with showing that for all 9 in C(8), we have \ 9 > \8 . Indeed for such a 9 , the dynamic
programming equation (DP) evaluated in \ 9 implies:

D∗ ( 9) = E ( 9, \ 9 ) = min
0∈� 9

{
20 +

∑
:∈(

?0
:
E (:, \ 9 − C0)

}
6 min
0∈�−

9

{
20 +

∑
:∈(

?0
:
E (:, \ 9 − C0)

}
.

However by monotonicity of E which is nondecreasing and tends towards D∗, we have by using the
fixed-point property in (3.29) verified by D∗ that

min
0∈�−

9

{
20 +

∑
:∈(

?0
:
E (:, \ 9 − C0)

}
6 min
0∈�−

9

{
20 +

∑
:∈(

?0
:
D∗ (:)

}
= D∗ ( 9) .

As a result we obtain the equality

min
0∈�−

9

{
20 +

∑
:∈(

?0
:
E (:, \ 9 − C0)

}
= min
0∈�−

9

{
20 +

∑
:∈(

?0
:
D∗ (:)

}
. (4.32)

Invoking monotonicity still, it is easily seen that there exists a particular 0 in �−
9
in both argmins above, i.e.

such that
20 +

∑
:∈(

?0
:
E (:, \ 9 − C0) = 20 +

∑
:∈(

?0
:
D∗ (:) = D∗ ( 9)

(otherwise we could find an action in the right-hand side argmin of (4.32) and not in the left-hand side
argmin, which would contradict nondecreasingness of E). The bounds on E are satured, hence for all : in
supp(0), we have E (:, \ 9 − C0) = D∗ (:). We deduce that for all : in supp(0), we have \: 6 \ 9 − C0 6 \ 9 .
Recall in addition that since 0 is in �−

9
, supp(0) is included in {: ∈ ( | : < 9}, and if 9 ≠ 8 , then supp(0) is

also included in C(8) (indeed according to Lemma 4.17, going through state 8 via a descending action is the
only manner of leaving C(8)). Therefore, if 8 is in supp(0), it is clear that \8 6 \ 9 , otherwise it suffices to
reapply this reasoning (finitely many times) for all : in supp(0) until eventually hitting 8 .

We can therefore safely conclude from (4.31) that \8 6 Θ8 + "/j (8) , which contradicts our hypothesis
\8 > Θ8 +"/j (8) . We have consequently the bound announced by the theorem, which achieves to show
that P(8) is true, making the induction scheme on the states hierarchy complete.

Dealing with the general case where E0 is not of the form D∗ −"1(\{0} is immediate and done just like
in the proof of Proposition 4.15. In particular, our transience bound is only governed by the distance
" B supB∈[−Cmax,0)

{
E0 (B) − D∗

}
and the specific values of E0 do not matter much. s
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As done after the Proposition 4.15, we propose in the following corollary a coarser version
of Theorem 4.19 on the global convergence time C∗ B max8∈( \8 that emphasizes the tree structure
of hierarchical SMDPs. We still denote by 3 the maximal length of a descending path in ( relatively
to the ordering (6), and we denote by 3 + the maximal number of states with non-empty set of
ascending playable actions along a descending path.

) Corollary 4.20. Under the conditions of Theorem 4.19, finite-convergence of E towards D∗ occurs
in a time C∗ such that

C∗ 6 3 × Cmax + 3 + ×
(
"/j

)
.

We highlight the fact that both upper bounds stated in Theorem 4.19 or Corollary 4.20 are
essentially governed by the ratio"/j , i.e., the convergence time of the value iteration algorithm
is proportional to the distance of the initial condition relatively to D∗, and inversely proportional
to the (positive) average-cost of the inner part of the system. Such forms echo the expressions
derived in the field of network calculus for similar problems, see for instance [LBT01, Chapter 2]

These bounds are generally not tight. In addition of bounding the initial condition E0 by a
function of the form B ↦→ D∗ −"1(\{0}, an important error can arise in the inequality (4.29) since
this lower bound uses the initial values of E (that is to say E0) over sets of the form (C(8))8∈(,�+

8
≠∅,

not taking into account the fact that during the previous steps of the induction, the function
E has grown. In particular, we reckon that the degree 3 + featured in Corollary 4.20 is highly
overestimated. Another way to improve the result of Theorem 4.19 would be to consider the
“numerical hierarchy” of the average-costs (j (8) )8∈(,�+

8
≠∅ in addition of the states “topological

hierarchy”. We will propose in the particular case of (EMS-A) below a refined bound in this spirit.
However, dealing with these aspects in general is a challenge left for future work.

∗
∗ ∗

Consistently with Table 4.9, we have for our SMDP with reduced costs associated with the
system (EMS-A) that j (1) = d� ∧ d%/c − _ and j (3) = d%/c − _. Consequently, we can state
building on Theorem 4.11 and Theorem 4.19 that the total absorption time of a peak of" calls in
the congestion-free regime (i.e., d� > _ and d%/c > _) is less than C∗, with

C∗ =
"

(d� ∧ d%/c) − _
+ g1 +

"

d%/c − _
+ g2 + g3 . (4.33)

Remark again how the quantity dint − _ with dint B d� ∧ d%/c expresses the difference between
an intrinsic throughput of the system and the input throughput. From a dynamical systems point
of view, the quantity dint − _ plays the role of a second lowest eigenvalue. From the practical
point of view though, it can be interpreted as a margin of security to overcome a sudden peak of
calls, that is null if (#�, #% ) = (# ∗�, # ∗% ) and that increases when taking extra agents.

More specifically in the transience bound (4.33), we identify three terms coming from the
mere communication delays between states (the times g1, g2 and g3), and two terms originating
from the states that could play ascending actions. The term "/(d� ∧ d%/c − _) corresponds
to a maximum time needed for the MRAs to catch-up the input and pick up all the extra calls
arrived since the bulk. We check that it is proportional to the size of the bulk and is governed by
the minimum residual handling speed of agents after they performed all the usual tasks, i.e. the
throughput on class C(1) of the semigroup (�(1)C )C>0, given by either d�−_ or d%/c−_ depending
on which policy realizes the minimal average-cost between (�, 0) and (�, %). Similarly, the term
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"/(d%/c −_) bounds the time needed for the emergency physicians to handle all the calls passed
by the MRAs after the latter have caught up with the input. The denominator corresponds to the
throughput on the class C(3) = {3, 4, 5} of the semigroup (�(3)C )C>0 (applying policy (_, %)).

A numerical application of the Theorem 4.19 in the case #� = 6, #% = 2 and " = 8 which
gave the trajectory depicted in Figure 4.13 leads to C∗ = 3386 s. This is much more than the
real convergence time value 1690 s observed in the chart. As explained in the discussion after
the Theorem 4.19, having two terms depending on " in (4.33) is too conservative. The next
proposition is specific to our example (EMS-A) but presents a refined bound C∗. It still uses an
inductive scheme on the states hierarchy, but contrarily to Theorem 4.19, the growth of the value
function is retained between the first and the second step.

) Proposition 4.21. The convergence times (\8)8∈(,�+
8
of the value iteration algorithm for the SMDP

in SSP configuration associated with (EMS-A) can be bounded by

\1 6
"

(d� ∧ d%/c) − _
and


\3 6 \1 + g1 if d� 6 d%/c

\3 6 \1 + g1 +
d� − d%/c
d%/c − _

(g1 + cg2
c

)
if d� > d%/c

So that C∗ 6
"

dint − _
+ g1 +

d� − dint
d%/c − _

(g1 + cg2
c

)
+ g2 + g3, with dint B d� ∧ d%/c .

Proof. Recall that we work in the SMDP of Figure 4.5 with reduced costs (so that it is in SSP configuration).
The policy previously denoted by (_, 0) is the unique proper policy in this SSP, in particular it provides a
null average-cost, and applying the stationary strategy associated with (_, 0) gives the player an expected
total cost D∗. As mentioned before, the constant function C ↦→ D∗ is an affine regime of the dynamics
semigroup � of the complete SMDP, which we indicate below in the average-cost and bias form.

Policy f Average-cost j Bias ℎ

(_, 0) 0 −_

©«

0
0
g1
g1
g2
g3

ª®®®®®®®¬

©«
(= D∗)

To control the growth of the function E determined by E0 and (DP), let us introduce the dynamics semigroup
�
(1) , which does not use the descending action from 1. In other words,�(1) uses only the policies (�, 0) and
(�, %). When restricted to C(1) = {1, 2, 3, 4, 5}, these two policies admit only one final class (see Table 4.9),
hence the average-cost on C(8) is uniform, and the bias vector of the affine regime has a single additive
degree of freedom over C(8) (as shown by [SF78]). The average-cost and the bias of affine regimes of �(8)

naturally depend on which policy is average-cost optimal between (�, 0) and (�, %), which amounts to
comparing d� and d%/c .
Regardless of which one of d� or d%/c is minimum, let us denote by j (1)1 and ℎ (1) the pair of vectors
in the table below that gives an affine regime of �(1) . We denote byF0 the affine initial condition ofV0
satisfyingF0 (0, B) = 0 andF0 (B) |C(1) B j (1)B1 + ℎ (1) −"1 for all B ∈ [−gmax, 0) and byF the function
from [−gmax,∞) to R( uniquely determined byF0 and the complete dynamics �. Using the property that
the dynamics �(1) are in fact applied (and therefore that the affine regime (j (1) , ℎ (1) ) carries over) until
the value for state 1 catches-up D∗ (1), we derive the exact expressionF (C) = (j (1)C1 +ℎ (1) −"1) ∧D∗ for
all C > −gmax.
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Policy f
Average-cost j

restricted to {1, 2, 3, 4, 5} Bias ℎ restricted to {1, 2, 3, 4, 5}

(�, 0) (d� − _)1 −d�

©«
0
g1
g1
g2
g3

ª®®®®®¬
©«

(�, %) (d%/c − _)1 −d%/c

©«
0
g1
g1
g2
g3

ª®®®®®¬
©«
+ (d%/c − d�)

(g1 + cg2
c

) ©«
0
0
1
1
1

ª®®®®®¬
©«

Since D∗ − "1(\{0} > F0 (B) for all B ∈ [−gmax, 0), we know that E (C) > F (C) for all C > −gmax. In
particular, denoting by \1 B "/j (1) , we have E (\1) > ℎ (1) ∧ D∗ = ℎ (1) (indeed, whether d� or d%/c is
minimum, we always have ℎ (1) 6 D∗). However, because E (1, \1) > ℎ (1)1 = 0 = D∗ (1) and that on the other
hand we knew that E (1, ·) 6 D∗ (1), it means that E (1, \1) = D∗ (1) and as a result \1 6 \1, which is the
bound promised by the proposition claim.

We now study the system evolution for C > \1. It is sufficient to only focus on the states of C(3) = {3, 4, 5},
since E (1, C) = D∗ (1) already and E (2, C) = D∗ (2) as soon as C > \1 + g1. Recall that E (3, C) = (E (1, C − g1) −
_g1) ∧ (#%/c + E (5, C)), and depending on which term is minimizing, either the policy (_, 0) or the policy
(_, %) is applied. Let us suppose that (_, %) and the associated dynamics �(3) are used. The following table
provides an affine regime of this policy over C(3) (once again, this class is strongly connected so there is
only one degree of freedom)

Policy f
Average-cost j

restricted to {3, 4, 5} Bias ℎ restricted to {3, 4, 5}

(_, %) (d%/c − _)1 −d%/c
©«

0
g2

g2 + g3

ª®¬©«
The first part of the proof gives us E (B) |C(3) > j (1) (B−\1)1+ℎ (1) |C(3) for all B in [−gmax+\1, \1] (replacing
in the expression ofF the term −"1 by −j (1)\11). If j (3)1 and ℎ (3) are the average-cost and bias vectors
of (_, %) in our last table and if U > 0 is such that j (1) (B − \1)1 + ℎ (1) |C(3) > j (3) (B − \1)1 + ℎ (3) − U1 for
all B in [−gmax + \1], then by propagation of the dynamics to this lower affine bound we obtain for all 8 in
{3, 4, 5} and C > \1 that E (8, C) >

(
j (3) (C − \1) + ℎ (3) (8) − U

)
∧ D∗ (8). Actually since j (3) > j (1) always

holds, it suffices to choose U such that ℎ (1) |C(3) > ℎ (3) − U1.

Suppose first that d� 6 d%/c . Comparing the expressions of ℎ (1) |C(3) and ℎ (3) , we find that U B d�g1

convenes. Since ℎ (3) (3) = 0, we obtain E (3, \3) = D∗ (3) for the instant \3 B \1 + (d� − _)g1/(d%/c − _).
However, d� 6 d%/c implies \3 6 \1 + g1, so that we were wrong about assuming that (_, %) was played,
and we had E (3, C) = E (1, C − g1) − _g1 for C > \1. In particular, \3 6 \1 + g1.
Suppose now that d%/c 6 d� . This time, we find thatU B (d%/c)g1+(d�−d%/c) (g1+cg2)/c convenes. As
a result we are ensured that E (3, \3) = D∗ (3) for the instant \3 B \1+g1+ (d�−d%/c)(g1+cg2)/(d%/c −_),
which is indeed greater than g1. By definition of \3, we have \3 6 \3.

It suffices to add the times g2 (resp. g2 + g3) to \3 to derive an upper bound on \4 and \5, and in this case
we have C∗ = \5. The final expression of C∗ in the claim covers all the cases regardless on which of d� and
d%/c attains the minimum. s

This new bound leads to a value of C∗ = 2678 s for the experiment depicted in Figure 4.13, that
is much better than the previous one, but still far from the real value 1670 s. In fact, the bound
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of Proposition 4.21 is tight whenever the initial condition is ℎ (1) −"1(\{0} instead ofD∗−"1(\{0},
where ℎ (1) is the bias vector of the dynamics semigroup �

(1) featured in the proof (such that
ℎ (1) (1) = 0). Unfortunately, bounding D∗ below by ℎ (1) can bring a significant starting error.

The Figure 4.16 illustrates the tight bounds computed by Proposition 4.21 when the initial
condition is of the form ℎ (1) −"1(\{0}, for a first case where #� = 6 and #% = 2 (so that dint = d�)
and for a second case where #� = 5 and #% = 3 (which gives dint = d%/c ), with still" = 8. The
upper bounds on the (\8)16865 are represented by the five vertical lines on each graph, and the
lower dashed lines give the affine regime C ↦→ j (1)C + ℎ (1) .

Remark that the expression of the bound of Proposition 4.21 depends on the sign of d� − d%/c .
We retrieve the frontier equation d� = d%/c between the two slowed down phases of the
congestion diagram of Figure 4.7. This suggests that just like the throughput vector, we can also
associate to the catch-up times a polyhedral complex, however constrained to be a subdivision of
the congestion-free phase of the throughput complex.
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Figure 4.16: Visualization of the upper bounds computed in Proposition 4.21 that are tight
if the initial condition is of the form ℎ (1) −"1(\{0}
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6 Application to a staffing problem of the SAMU

We finish this chapter by illustrating what operational recommendations can be drawn from our
analytical formulas. As previously mentioned, the model (EMS-A) was indeed designed with the
physicians of the four SAMU (medical emergency services) of Paris area. A key question of theirs
was to know if they were understaffed and what staffing levels would arise from the mathematical
modeling.

To address this problem, we computed the throughput diagram of Figure 4.7 and deduced
minimal numbers # ∗

�
of MRAs and # ∗

%
of emergency physicians needed to be in the congestion-

free phase. However, we had to amend these theoretical formulas by an occupancy factor. Indeed,
our model assumes not only that the agents are infinitely divisible, but also that they can work
without any interruption. In actual fact, health professionals recommend that occupancy rates of
MRAs (fraction of their time spent on the phone) should not go over [� B 40 % (see [MP19]) to
guarantee satisfying work conditions (sufficient level of vigilance, more time to pick up new calls
immediately…). Emergency physicians as well must keep low online occupancy. It is considered
that their occupancy level for the handling of inbound calls should stay below [% B 20 %, in order
to account for the fact that they have back-office tasks to do (for instance finding the most adapted
hospital facilities to receive the patient) and also other calls to handle (reports from dispatched
teams, etc.).

In order to determine staffing levels #� and #% for MRAs and physicians that achieve occu-
pancy rates [� and [% , we choose to divide our minimal frontiers # ∗

�
and # ∗

%
by [� and [% , thus

obtaining

#� =
# ∗
�

[�
=
_(g1 + cg2)

[�
and #% =

# ∗
%

[%
=
c_(g2 + g3)

[%
. (4.34)

The logic is that taking #� = # ∗
�
would represent a 100 % occupancy level for MRAs, that choosing

twice as more agents #� = 2# ∗
�
would make them work under a 50 % occupancy, and so on. This

rule is empirical but we show in the Section 3.1 of Chapter 8 that it is in practice a very good
approximation. Notice that this choice falls in the category of the “quality-driven” staffing rules
(see [GMR02]), where the number of agents # equals the offered load # ∗ plus a safety percentage,
so that # = (1 + W)# ∗, with W to tune (recall from Section 3.3 that our congestion-free frontiers
coincide with the offered load of queueing theory). Less conservative staffing rules exist, like the
so-called “square-root principle” (see [KM02]) where # = # ∗ + V

√
# ∗ (and V is a parameter to

adjust), but are better suited for commercial call centers and not emergency response.
We verify that the recommended staffings in (4.34) are proportional to the arrival rate of

inbound calls and inversely proportional to the occupancy factors. These formulas can in fact be
used in two manners:

– either we know the throughput _ of inbound calls that we want to cope with, and the target
occupancy factor [ that a pool of agents has to remain under, and we use (4.34) to determine
minimal number of agents in this pool;

– either we do not have the choice on # that is already given, and since _ is exogenous as well
we use (4.34) to compute the actual occupancy undergone by our # agents.

The first approach allows us to obtain staffing maps, indicating for all possible values of _ and [
the minimal number of agents to take in the continuous-relaxed model. The iso-staffing values
of these maps are lines going through the origin, according to the expression (4.34). We depict
on the Figure 4.17 such a map for both the medical regulation assistants and the emergency
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Figure 4.17: Staffing maps #� and #% as functions of the rate of arrivals of inbound calls
and occupancy rate (the example of the SAMU 94)

physicians, using real parameters measured in the SAMU 94 call center using the phone call logs
of more than 10,000 emergency calls received in February 2019. Conversely, we have measured
the number of logged agents in the SAMU 94 call center (averaged over windows of 15 minutes).
Using the corresponding values of the arrival rate _ (averaged on the same timespans), we also
depict in Figure 4.17 the estimated occupancy level of agents based on the formula (4.34).

The first map for MRAs tells us that to handle an average throughput _ of 57 calls per hour
and not exceed a 40 % occupancy rate, there should be at least 4.3 MRAs in the call center. This is
close from the most typical staffing of four agents, with a little understaffing that therefore yields
an undergone occupancy rate of 44 % when facing the average demand. However, it is insufficient
to only look at this mean arrival rate (taking into account all slots of the day from 7 am to 9 pm),
and we can see that there are sometimes up to 75 calls per hour. For this high solicitation, 4 MRAs
will experience a 58 % occupancy, which is too much with respect to the official recommendations.
To stay below the 40 % limit with 75 calls per hour, we find that 6 answering agents should be
present in the call center. As far as emergency physicians are concerned, the typical number of
two doctors handling the most severe calls is sufficient in average to stay below the 20 % limit of
occupancy, but an additional specialist is needed for the periods of high demand.

These results, that we have adapted in [ABG20b] for each SAMU of Paris area taking into
account their specificities, were taken into account by the emergency doctors we work with to
raise the staffing policies. They confirmed that our computations matched their own operational
observations.
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The previous chapters have given us a deep understanding of monotonic fluid Petri nets. The
analysis conducted there allowed us to characterize several measures of performance of such
nets, with a great level of confidence. Indeed, and to name just these two positive results, recall
from Section 3 of Chapter 4 that under good assumptions, monotonic fluid Petri nets admit ultimate
throughputs whose dependence upon the resources is well-described by a polyhedral complex
(the congestion diagram), and that in addition the behaviour of such nets is a fair approximation
of more realistic discrete Petri nets – even subject to non-deterministic events (see the Section 3
of Chapter 2).

In this chapter, we come back to a modeling aspect discussed in Chapter 1 and mostly left aside
afterwards, the priority routing. As discussed there, priorities are essentially non-monotonic, and
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loosing this good property makes the associated dynamics much harder to study. In particular,
the correspondence results with semi-Markov decision processes established in Chapter 4 do
not hold anymore. However, in view of the rich modeling interest of priority rules to describe
real-life organizations by means of Petri nets, and especially emergency call centers, we want to
evaluate to which extent the results and techniques derived for the monotonic case carry over the
non-monotonic one.

This chapter builds very much on the work of Allamigeon, Bœuf and Gaubert [ABG15] who
introduced the counter equations for two-level priority routings in Petri nets, already featured
in Chapter 1. The study of these mechanisms was one of the main aspects of the dissertation
of Bœuf [Bœu17]. The approach that these authors developed was inspired by a work of Farhi,
Goursat and Quadrat [FGQ11], who built a min-plus model for a road traffic network and used
the idea of representing priorities by rational min-plus dynamics in the discrete-time case. The
treatment of the continuous time case was addressed in [ABG15] using a symbolic perturbation
technique, working with a semifield of germs. This method has also been used in [GG98] for
algorithmic purposes, see also [AFG+14].

In Section 1, we recall the approach used by Allamigeon, Bœuf and Gaubert to compute
stationary regimes of non-monotonic fluid Petri nets. In contrast with [ABG15], we deal with a
case allowing an arbitrary number of priority levels and also under general arc multipliers; we
also briefly discuss the associated open problems. The rest of the chapter is much more applied
and focuses on various systems of emergency call centers. In Section 2, we recall the simple
model of a so-called “bilevel” emergency call center studied in [ABG15, Bœu17], designed and
used nowadays by the police and rescue forces of the Paris area to handle the calls of three
different emergency numbers. Although the analysis of this particular system is not new from the
theoretical point of view, it comes convenient in order to illustrate the computation techniques
used in this chapter. Above all, the results derived here shall be reused in the Part II of the
thesis where we conduct the extensive case-study of this Parisian emergency call center. We
dedicate the Section 3 to the analysis of the non-monotonic Petri net model (EMS-B), which is
a complexified version of the medical emergency call center model (EMS-A) broadly studied in
the Chapter 4. The aim of (EMS-B) is in particular to alleviate the global slowdown undergone
by (EMS-A) during too important peaks of calls. We show that when the system (EMS-B) is
understaffed, some counter-intuitive behaviours can arise owing to the priority rules. Finally,
the Section 4 discusses several variations of the model (EMS-B) that can be implemented to extend
the congestion-free regime.

1 Stationary regimes of Petri nets with priority rules

Let us recall in the opposite table the dynamical equations followed by the transitions counter
functions (I@)@∈Q of a continuous-relaxed Petri net, as they were presented in the Table 2.3. The
notation of Chapters 1 and 2 are reused, in particular recall that the priority routing governing
the downstream transitions of a place ? in P is described by a total order (≺?) on ?out. We readily
remark that the generic equation for transitions in Qprio do not correspond anymore to a dynamic
programming equation of semi-Markov models. This is due to the fact that counter equations
for priority rules involve differences, therefore somehow “negative probabilities” in the world of
SMDPs…

Recall from Theorem 2.5 that these dynamical equations, alongwith the knowledge of the
input profiles (I@)@∈Qinput , determine a unique trajectory of the fluid Petri net in the monotonic
setting. It also holds with priority rules provided that the input profiles are regular enough. We
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Type Counter equation in the continuous-relaxed model

@ ∈ Qinput I@ (C) is prescribed externally

@ ∈ Qsync I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g?)
)

@ ∈ Qpsel I@ (C) = U−1@?

(
c0
@?<? + c@?

∑
@′∈? in

U?@′ I@′ (C − g?)
)

@ ∈ Qprio I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g?) −
∑
@′≺?@

U@′?I@′ (C) −
∑
@′�?@

U@′?I@′ (C−)
)

Table 2.3 reminded: dynamical equations followed by the counter functions
of the transitions in continuous-relaxed Petri nets

have seen in Chapter 4 that whenever Pprio = ∅ and the input profiles are affine, this trajectory is
satisfactorily described by an affine function up to a bounded error term (see Corollary 4.2). This
result for monotonic Petri nets motivates us to also look for solutions of the dynamics of Table 2.3
(where in general Pprio ≠ ∅) that are ultimately affine, i.e., of the form I@ (C) =

C→∞
d@C + D@ + > (1)

for all @ in Q, with nonnegative throughputs (d@)@∈Q and real intercepts (D@)@∈Q .
In the Section 3.2 of Chapter 4 (hence for monotonic Petri nets), we showed building on the

correspondence results with SMDPs that the tuples (d@, D@)@∈Q verified min-plus equations with
no more recursive aspect but involving minimums relatively to a lexicographic ordering. Recall
for example the generic optimality equation (L) for transitions in Qsync

∀@ ∈ Qsync, (d@, D@) = min
?∈@ in

lex
{(
U−1@?

∑
@′∈Q

U?@′d@′ , U
−1
@?<? + U−1@?

∑
@′∈Q

U?@′ (D@′ − d@′g?)
)}
, (L)

where in contrast with the optimality equation featured in Chapter 4 we transformed the term d@

in the second term of the right-hand side by U−1@?
∑
@′∈? in U@′?d@′ , as permitted by the rules of the

lexicographic ordering.
It is of course no accident that our detour via semi-Markov decision processes provided an

equation (L) on the tuples (d@, D@)@∈Q that bears much resemblance with the original counter
equations of Table 2.3, and this can be algebraically justified by working with germs of affine
functions. In general, a germ at infinity of a function (later simply referred to as a germ for
brevity) is an equivalence class for the relation which identifies two functions that coincide for
sufficiently large values of their argument. In what follows, we shall choose a positive scalar X
and work with the equivalence relation ∼ such that for two functions 5 and 6, we have 5 ∼ 6 if
and only if 5 (=X) = 6(=X) for all = in N large enough.

The tuple (d,D) in R2 will represent the germ of the affine function C ↦→ dC + D. For instance
if X = 1, the two usual functions C ↦→ C and C ↦→ bCc are described by the same germ (1, 0), even
though the second one is not properly affine. The pointwise order on functions induces a total
order on germs of affine functions, which coincides with the already introduced lexicographic order
on the coordinates (d,D), the d coordinate being considered first. As before, the lexicographic
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minimum of two germs will indifferently be denoted by minlex or the symbol ∧. Since ∧ is an
associative operation on germs of affine functions, (R2,∧) is a semigroup. In fact, we can complete
it in a monoid (i.e., a semigroup with a neutral element) by introducing a greatest element > with
respect to the lexicographic minimum, so that (d,D) ∧ > B (d,D). Observe further that the usual
sum of functions induces a sum over the set of germs, with (d,D) + (d ′, D ′) B (d + d ′, D +D ′), and
by definition (d,D) + > B >. Since this addition is also associative and distributive with respect
to ∧, this makes G B (R2 ∪ {>},∧, +) a min-plus semifield (every germ (d,D) indeed admits the
inverse (−d,−D) relatively to +). Finally, a notion of exponentiation can also be considered in G
since the multiplicative group R>0 acts on G by setting 0(d,D) B (0d, 0D), for all 0 > 0 and (d,D)
in R2, and 0> B >.

The technique developed in [ABG15] is to look for ultimately affine solutions of the equations
of Table 2.3 by considering the associated germs. If (d,D) is the germ of the function 5 , it is
immediate to see that (d,D − dg) is the germ of C ↦→ 5 (C − g), and as a result one can see that the
equation (L) of Chapter 4 is a “germ” version of the equations for transitions in Qsync and Qpsel

of Table 2.3. The remaining challenge is to derive a germ equation for transitions in Qprio. The
problem may seem ill-posed due to the presence of terms of the form I@ (C−) in the corresponding
counter equation, since if I is affine, I (C−) coincides with I (C). Allamigeon et al. tackled this issue
by showing that it is well-posed to look for ultimately affine solutions on the X-discretization
of the dynamics instead. It means that the holding times of the places are all multiples of X > 0
and thus trajectories that are constant on the intervals ( [:X, (: + 1)X)):∈N are computed. In this
discretized model, the term I (C−) is replaced by I (C − X). The detour via the discretized dynamics
enables one to prove that, regardless of the choice of X small enough, some terms cannot achieve
the minimum in some dynamical equations associated with transitions ruled by priority, and thus
can be removed.

Applying the above method, we arrive at the equations of Table 5.1 giving the min-plus system
of equations verified by the germs of affine solutions of the dynamics of Table 2.3, the correctness
being stated in Theorem 5.1. Compared with the result stated in [ABG15], our framework covers
the case of multiple levels of priorities and not the mere two-level priority rules. We also take
into account the arc multipliers of the net although this aspect is pretty straightforward.

Type Germs equation in stationary regime

@ ∈ Qsync (d@, D@) = min lex

?∈@ in
U−1@?

(
(0,<?) +

∑
@′∈? in

U?@′ (d@′, D@′ − d@′g?)
)

@ ∈ Qpsel (d@, D@) = c@? · U−1@?
(
(0,<?) +

∑
@′∈? in

U?@′ (d@′, D@′ − d@′g?)
)

@ ∈ Qprio
(d@, D@) = min lex

?∈@ in
U−1@?

(
(0,<?) +

∑
@′∈? in

U?@′ (d@′, D@′ − d@′g?) −
∑

@′∈?out\{@ }
U@′? (d@′, D@′)

)
∑

@′�?@
d@′ = 0

Table 5.1: System of equations followed by germs of transitions counter functions

Observe that for a transition @ in Qprio, the equation featured in Table 5.1 claims that the germ
(d@, D@) is only determined by places ? of @ in such that

∑
@′�?@ d@′ = 0. Although this condition

first looks involved, it actually encodes the fact that @ can be constrained only by an upstream
place ? that does not provide fluid-tokens to another transition @′ with lesser priority level than
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@, and therefore it is a natural requirement. We retrieve that the behaviour of the transitions in
Qprio does not depend only on their “parent” transitions but also on their siblings.

) Theorem 5.1. The germs of ultimately affine solutions of the dynamics of Table 2.3 are solutions of
the system of equations of Table 5.1, with the condition that d@ > 0 for all @ in Q.

Proof. We prove the result for transitions ruled by priority, the proof being direct for other patterns. Let us
first write the generic counter equation followed by a transition @ ∈ Qprio:

I@ (C) = min
?∈@ in

U−1@?

(
<? +

∑
@′∈? in

U?@′ I@′ (C − g? ) −
∑
@′≺?@

U@′?I@′ (C) −
∑
@′�?@

U@′?I@′ (C−)
)
.

Our claim is that due to the prioritymechanism, some terms in the aboveminimum cannot realizeminimality
and thus can be removed.

Let @1 ∈ Qprio, ? ∈ @ in and @2 ∈ ? out, with @2 ≠ @1. Let us suppose that @1 ≺? @2. Substituting counters
by their corresponding germs and replacing C− by C − X with X > 0, we have

(d@1 , D@1 ) 6 U−1@1?
(
(d?Σ, D

?

Σ) −
∑

@′≺? @1
U@′? (d@′, D@′) −

∑
@′�? @1

U@′? (d@′, D@′ − d@′X)
)

(5.1)

6 U−1@1?

(
(d?Σ, D

?

Σ) −
∑
@′≠@1

U@′? (d@′, D@′) +
∑

@′�? @1
U@′? (0, d@′X)

)
(5.2)

where (d?Σ, D
?

Σ) stands for the germ (0,<? ) +
∑
@′∈? in

U?@′ (d@′, D@′ − d@′g? ). Similarly, we have

(d@2 , D@2 ) 6 U−1@2?
(
(d?Σ, D

?

Σ) −
∑
@′≠@2

U@′? (d@′, D@′) +
∑

@′�? @2
U@′? (0, d@′X)

)
(5.3)

Let us apply the nondecreasing mapping of G → G : 6 ↦→ U@2?U
−1
@1?

(
6 − (d@2 , D@2 )

)
+ (d@1 , D@1 ) in both

sides of the latter equation. We obtain:

(d@1 , D@1 ) 6 U−1@1?
(
(d?Σ, D

?

Σ) −
∑
@′≠@1

U@′? (d@′, D@′) +
∑

@′�? @2
U@′? (0, d@′X)

)
(5.4)

Comparing (5.4) to (5.2), one can observe that if d@′ > 0 for some @1 ≺? @′ 4? @2, then the right-hand
side of (5.4) strictly bounds below the one of (5.2), thus the equality in (5.2) cannot be achieved, and the
corresponding germ can be removed from the original minimum. This reasoning can be applied when
@2 is the transition of ? out with the least priority, so that the inequality (5.2) is strict whenever the sum∑
@′�?@1 d@′ is positive (the (d@)@∈Q variables are nonnegative). Conversely, only the contributions of

upstream places ? ∈ @ in1 such that
∑
@′�?@1 d@′ = 0 remain in the minimum. s

The Theorem 5.1 is one of the few theoretical results on non-monotonic Petri nets. In general, we
do not know if a system of equations over G determined by the Table 5.1 admits solutions, nor
can we conclude if we have found a solution that the trajectory of the Petri net indeed admits the
d-part of this solution as a throughput vector! This negative result was highlighted by numerical
simulations in [ABG15, Figure 4–(d)]. However, such pathological behaviours appear to be related
to the existence of arithmetical relationships between the holding times of places.

Establishing under which conditions the germ equations associated with non-monotonic Petri
nets admit solutions that satisfactorily provide the throughput of the trajectories is an important
question that remains open and is left for future work.
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2 A bilevel emergency call center with a priority mechanism

We now start studying the properties of several non-monotonic emergency call center organiza-
tions. To begin with, and following our presentation of the different French emergency services
in the Introduction, we discuss the case of the Emergency Calls Platform of Paris (in French
“Plateforme d’appels d’urgence”, abbreviated PFAU), which shows many specificities. We shall
discuss them very thoroughly in the Part II of the thesis with additional elements of context. For
now, we mainly focus on the organizational aspects. First, this platform receives several millions
of calls each year, since it covers the whole city of Paris but also its inner suburbs (roughly seven
million inhabitants in total). Second, it receives emergency calls from three different emergency
numbers (17–18–112) and is operated by both firefighters and police officers, hence gathering calls
about thefts, aggressions, fires, gas leaks, rescue needs, etc. For medical needs, the population
most often dials the number 15 to reach the SAMU (and its system (EMS-A)) but can also call the
firefighters in some situations (traffic accidents, first-aid support…). Last but not least, it handles
the calls in a two-level process, contrarily to the majority of other police or rescue call centers in
France that operate with the single-tier logic introduced in the Example 2.6.

2.1 DESCRIPTION OF THE MODEL. — In this section, we study an idealized model of the Parisian
17–18–12 PFAU, in particular we only consider a one-job system answering a single inbound flow
of emergency calls. The general case of three different numbers handled by a two-job organization
will be tackled in Part II. The call center functions as follows. Emergency calls arrive via the
uppermost transition I0 and have to be picked up by a first-level operator, that we also refer to
as a Lvl 1 operator. These agents have the mission to quickly filter out and qualify the demand
of the caller by asking basic questions (this takes a characteristic time g1) with three different
possible outcomes:

(i) the call is very urgent (VU), (for instance a fire, a heart attack, an ongoing robbery, etc.) and
should be handled with priority by a qualified policeman of firefighter to dispatch response
teams as soon as possible;

(ii) the call is urgent (U) and should also be transferred to a skilled police officer/firefighter in
order to answer the caller demand;

(iii) the call is non urgent (NU) (car impoundment, caller locked himself out, or simply a dial
error) and there is no need to transfer the call to another agent, the Lvl 1 operator may
give an advice to the caller or tell him/her to call a more suitable and non urgent service.

We depict in Figure 5.2 a timed Petri net representing our bilevel call center. As done in Section 1
of Chapter 4, the transitions are referred to directly by their counters. We denote by cVU, cU and
cNU the proportions of very urgent, urgent and non urgent calls in the inbound flow (naturally
with cVU + cU + cNU = 1), so that the conversation place with holding time g1 is ruled by
proportional preselection routing. If the call is non urgent, the Lvl 1 agent can terminate the
call and come back to his/her availability pool by firing the transition I ′′2 . Otherwise, the caller
is transferred to a second-level operator (also referred to as a Lvl 2 operator), whose mission is
to handle the request, ask the caller for more information on his/her location and the situation,
potentially dispatch vehicles, or demand support from other services.

In case the call is very urgent, the situation is considered too serious for the caller to be left
on hold. Consequently, after the call is qualified, the transition I2 is fired but the Lvl 1 agent
stays on line with the caller, waiting for a Lvl 2 operator to pick up the call at transition I3, with
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#1

#2

cNU cU cVU

g1

gS

g2

I0(C) = _C

I1

I ′′2 I ′2 I2

I3I ′3

I4

I5

Figure 5.2: A Petri net model of a bilevel call center with priority

priority over urgent calls. This triggers the beginning of a synchronization step (also referred to
as accompaniement or escort step), in which the Lvl 1 operator hands over the case for a duration
gS. At the end of this synchronization, I4 is fired and releases the first level agent to the Lvl 1 pool
while the proper Lvl 2 instruction of the VU call by the second-level operator begins. Once it is
finished (after a characteristic time g2), the Lvl 2 agent comes back to his/her pool.

In case the call is qualified as urgent by the Lvl 1 operator, the transition I ′2 is fired and the
level-one agent comes back directly to the Lvl 1 pool, because it is considered acceptable in this
case that the caller is placed in a waiting room. Once a Lvl 2 agent is available and no very urgent
call is pending, the transition I ′2 can be fired and the real instruction begins.

We denote by #1 (resp. #2) the total number of first-level (resp. second-level) operators, all
idle at the start of the execution of the net and therefore giving the initial marking of the Lvl 1 and
Lvl 2 agent pools. To keep the model simple, we assume that it takes a Lvl 1 operator the
same (constant) time g1 to qualify and treat an inbound call whether it is very urgent, urgent
or non-urgent. Similarly, we suppose that the instruction of a call by a Lvl 2 operator always
takes a time g2, regardless of the urgent or very urgent character. The strongest assumption
is once again that the callers have an infinite patience, and that they will not hang up the call
themselves even though they wait for a long time. In Part II, we will consider non-deterministic
and gravity-dependent conversation times with very realistic distributions, and we will also use
realistic non-infinite patience functions.



196 Chapter 5: Non-monotonic Petri nets models of emergency call centers

According to this model description and the Table 2.3, we are able to write the dynamical recursive
equations satisfied by the counter functions (I@)@∈Q :



I1(C) = I0(C) ∧
(
#1 + I ′2(C) + I ′′2 (C) + I4(C)

)
I2(C) = cVUI1(C − g1)
I ′2(C) = cUI1(C − g1)
I ′′2 (C) = cNUI1(C − g1)
I3(C) = I2(C) ∧

(
#2 + I5(C) − I ′3(C−)

)
I ′3(C) = I ′2(C) ∧

(
#2 + I5(C) − I3(C)

)
I4(C) = I3(C − g2)
I5(C) = I ′3(C − g2) + I4(C − gS)

.

(Bi Lvl)

Observe that the “non-trivial” equations are those on I1, I3 and I ′3 with synchronizations phenom-
ena, respectively giving the (cumulated) number of picked up calls by the Lvl 1 operators, the
number of very urgent calls picked up by Lvl 2 operators and the number of urgent calls picked
up by Lvl 2 operators. The other equations can be easily derived from these three fundamental
counters, which by substitution satisfy the reduced dynamics


I1(C) = I0(C) ∧

(
#1 + (1 − cVU)I1(C − g1) + I3(C − g2)

)
I3(C) = cVUI1(C − g1) ∧

(
#2 + I ′3(C − g2) + I3(C − g2 − gS) − I ′3(C−)

)
I ′3(C) = cUI1(C − g1) ∧

(
#2 + I ′3(C − g2) + I3(C − g2 − gS) − I3(C)

)
.

(Bi Lvl)

2.2 CONGESTION DIAGRAM. — In order to find the affine regimes of the net, we use the germs
equations presented in the Table 5.1. We can either write the germs of the reduced dynamics
above, or write the complete system on germs and then combine the resulting equations together
to keep only the germs (d1, D1), (d3, D3) and (d ′3, D ′3). We also suppose that the input I0 admits an
affine profile with throughput _, and we replace the term I0 in (Bi Lvl) by the germ (_, 0) (the
value 0 here is arbitrary but does not change the results to come). We obtain the following system



(d1, D1) = (_, 0) ∧
(
(1 − cVU)d1 + d3, #1 + (1 − cVU) (D1 − d1g1) + D3 − d3g2

)
(d3, D3) =

{ (
cVUd1, c

VU(D1 − d1g1)
)
∧
(
d3, #2 + D3 − d3(g2 + gS)

)
if d ′3 = 0(

cVUd1, c
VU(D1 − d1g1)

)
otherwise

(d ′3, D ′3) =
(
cUd1, c

U(D1 − d1g1)
)
∧
(
d ′3, #2 + D ′3 − d3(g2 + gS) − d ′3g2

)
.

(5.5)

The major difference with the generic optimality system (L) that we obtained in the monotonic
case is that due to the priority rules, some equations are now conditional on the values of other
transitions’ throughputs. This is the case here for the transition I3, that cannot be constrained
by the second-level agents if the concurrent transition I ′3 with inferior priority is fired with a
positive throughput. Nevertheless, we can still look for solutions of these equations by adopting
an enumerative scheme similar to the one we used in Section 3.2 of Chapter 4. This amounts to
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making a choice of minimizing terms in each synchronization equation (or equivalently choosing a
bottleneck policy). This determines a value of the throughputs (d@)@∈Q , while the non-minimizing
terms provide inequalities that are necessary conditions for the chosen policy to be effectively
minimizing.

The Proposition 5.2 gives the solutions of the d-part of the system (5.5). It makes use of the
two nonnegative ratios

A ′ B
cVU(g2 + gS)
g1 + cVUgS

and A B
(cU + cVU)g2 + cVUgS

g1 + cVUgS
(5.6)

that are such that A ′ 6 A , and A = A ′ if it happens that cU = 0.

) Proposition 5.2. The solutions (d1, d3, d ′3) in R3>0 of the system (5.5) are given by

d1 = _ ∧
(

#1

g1 + cVUgS

)
∧

(
#2

cVU(g2 + gS)

)
, d3 = c

VUd1, and

d ′3 =



cUd1 if #2 > A min
(
#1, #

∗
1

)
#2 − cVUd1(gS + g2)

g2
if A ′min

(
#1, #

∗
1

)
6 #2 6 A min

(
#1, #

∗
1

)
0 if #2 6 A

′min
(
#1, #

∗
1

)
where # ∗1 B _(g1 + cVUgS).

Proof. We distinguish two main cases, whether d ′3 > 0 or not.

If d ′3 > 0, the system (5.5) provides the following inequalities:

(d1, D1) 6 (_, 0) (E1._)

(d1, D1) 6
(
(1 − cVU)d1 + d3, #1 + (1 − cVU) (D1 − d1g1) + D3 − d3g2

)
(E1.1)

(d3, D3) =
(
cVUd1, c

VU (D1 − d1g1)
)

(E3.0)

(d ′3, D
′
3) 6

(
cUd1, c

U (D1 − d1g1)
)

(E3’.0)

(d ′3, D
′
3) 6

(
d ′3, #2 + D ′3 − d3 (g2 + gS) − d

′
3g2

)
(E3’.2)

Minimum reached by (E1._) and (E3’.0). — We derive from the d-parts of (E1._) and (E3’.0) that d1 = _
and d ′3 = cU_, and in addition d3 = cVU_ according to the d-part of (E3.0). The D-part of (E3.0) gives
the equality D3 = cVU (D1 − d1g1) = cVU (D1 − _g1), that we can re-inject in the inequality D1 6 #1 +
(1 − cU) (D1 − _g1) + D3 − cVU_g2 brought by the D-part of (E1.1) to conclude that #1 > _(g1 + cUg2).
Finally, the D-part of (E3’.2) gives the inequality D ′3 6 #2 + D ′3 − c

VU_(gS + g2) − cU_g2 or equivalently
#2 > c

VU_(gS + g2) + cU_g2.
Minimum reached by (E1.1) and (E3’.0). — Using the d-part of (E3’.0), we know that d ′3 = cUd1,
while d3 = cVUd1 still by (E3.0). We can use the D-part of (E1.1) to obtain the equality D1 = #1 + (1 −
cVU)D1 − (1 − cVU)d1g1 + D3 − cVUd1g2. On the other hand, we have D3 = cVUD1 − cVUd1g1 according
to the D-part of (E3.0), thus we obtain d1 = #1/(g1 + cVUg2), we deduce d3 = cVU#1/(g1 + cVUg2) and
d ′3 = c

U#1/(g1 + cVUg2).

The d-part of (E1._) gives the inequality d1 6 _, that we can write in the form #1 6 _(g1 + cVUg2).
The D-part of (E3’.2) leads to #2 > d3 (gS + g2) + d ′3g2, and using the values of d3 and d ′3 we find #2 >

(cVU (gS + g2) + cUg2)#1/(g1 + cVUg2), or equivalently #2 > A#1.

Minimum reached by (E1._) and (E3’.2). — The d-part of (E1._) ensures that d1 = _, the d-part of (E3.0)
gives d3 = cVU_ and theD-part of (E3’.2) providesD3 = #2+D3−d3 (gS+g2) −d ′3g2 so d ′3 = (#2−cVU_(gS+
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g2))/g2. The d-part of (E3’.0) tells us d ′3 6 c
Ud1, and in addition we are in a case where by assumption

d ′3 > 0, so we have the double inequality cVU_(gS + g2) 6 #2 6 c
VU_(gS + g2) + cU_g2. Finally, the D-part

of (E1.1) leads by combination with the D-part of (E3.0) to the inequality #1 > _(g1 + cVUg2) once again.

Minimum reached by (E1.1) and (E3’.2). — The d-part of (E3.0) gives d3 = cVUd1, the D-part of the same
equation givesD3 = cVU (D1−d1g1), which combinedwith theD-part of (E1.1) provides d1 = #1/(g1+cVUg2).
The D-part of (E3’.2) yields D3 = #2 + D3 − d3 (gS + g2) − d ′3g2 so d ′3 = (#2 − cVUd1 (gS + g2))/g2 =

(#2 − cVU#1 (gS + g2)/(g1 + cVUg2))/g2.
From the d-inequality of (E1._), we have d1 6 _ hence #1 6 _(g1 + cVUgS). The d-inequality of (E3’.0)
gives d ′3 6 cUd1 and using the assumption d ′3 > 0, we can write the double inequality cVU#1 (gS +
g2)/(g1 +cVUg2) 6 #2 6 c

VU#1 (gS +g2)/(g1 +cVUg2) +g2cU#1/(g1 +cVUg2), which in compact notation
is equivalent to A ′#1 6 #2 6 A#1.

In the other case d ′3 = 0, we have the inequalities

(d1, D1) 6 (_, 0) (E1._)

(d1, D1) 6
(
(1 − cVU)d1 + d3, #1 + (1 − cVU) (D1 − d1g1) + D3 − d3g2

)
(E1.1)

(d3, D3) 6
(
cVUd1, c

VU (D1 − d1g1)
)

(E3.0)

(d3, D3) 6
(
d3, #2 + D3 − d3 (g2 + gS)

)
(E3.2)

(0, D ′3) 6
(
cUd1, c

U (D1 − d1g1)
)

(E3’.0)

(0, D ′3) 6
(
0, #2 + D ′3 − d3 (g2 + gS)

)
(E3’.2)

Minimum reached by (E1._) and (E3.0). — We derive from the d-parts of (E1._) and (E3.0) that d1 = _ and
d3 = c

VU_. The fact that d1 > 0 and by assumption d ′3 = 0 implies that (E3’.2) attains the minimum, and as
a result D ′3 = #2 + D ′3 − d3 (g2 + gS), and we obtain that #2 = c

VU_(g2 + gS). We can stop the computation
here since our initial assumptions has led to a phase that is not full-dimensional.

Minimum reached by (E1.1) and (E3.0). — Using the d-part of (E3.0), we know that d3 = cVUd1.
Therefore, the d-part of (E1.1) just amounts to the trivial relation d1 = d1. However, we can use the D-part
of the same (E1.1) to obtain the equalityD1 = #1+ (1−cVU)D1− (1−cVU)d1g1+D3−cVUd1g2. On the other
hand, we have D3 = cVUD1 − cVUd1g1 according to the D-part of (E3.0), thus by combination we obtain
d1 = #1/(g1 +cVUg2), and d3 = cVU#1/(g1 +cVUg2). But the D-part of (E3’.2) still gives d3 = #2/(gS +g2),
hence we have #2 = A

′#1 and the phase is not full-dimensional.

Minimum reached by (E1._) and (E3.2). — The d-part of (E1._) ensures that d1 = _, while the D-part
of (E3.2) provides D3 = #2 + D3 − d3 (gS + g2) so d3 = #2/(gS + g2). On one hand, remark that we have the
inequality d3 6 cVUd1 6 cVU_ by the d-part of (E3.0), but on the other hand we know from the d-part
of (E1.1) that _ 6 (1 − cVU)_ + d3, so d3 > cVU_. This is again not a full-dimensional case.

Minimum reached by (E1.1) and (E3.2). — The D-part of (E3.2) still gives d3 = #2/(gS + g2), and because
the d-part of (E1.1) gives d3 = cVUd1, we obtain d1 = #2/(cVU (gS + g2)). The d-inequality of (E1._)
gives d1 6 _ hence #2 6 c

VU (gS + g2). In addition, the D-part of (E1.1) provides #1 − d1 (g1 + cVUg2) =
cVU (D1 − d1g1) − D3, but we know that the latter quantity is nonnegative by the D-inequality of (E3.0),
hence #1 > #2 (g1 + cVUg2)/(cVU (gS + g2)), or equivalently #2 6 A

′#1. s

The Proposition 5.2 shows that for the system (Bi Lvl), we can still compute a throughput complex,
that is to say a polyhedral complex covering RP>0 such that the throughputs are linear functions
of the resources over each cells of the complex. We represent this diagram and its five full-
dimensional phases in the Figure 5.3.

The Figure 5.4 further gives the profile of the three throughputs d1, d3 and d ′3 characterized
by Proposition 5.2, as functions of #1 and #2. We verify that the linearity regions of these maps
induce the polyhedral complex of Figure 5.3.

We interpret the Figures 5.3 and 5.4 as follows. If #1 > #
∗
1 and #2 > #

∗
2 B A# ∗1 (the green

phase), we have d1 = _, d3 = cVU_ and d ′3 = c
U_, so that all the calls are handled with no delay,

and the system is congestion-free. If #1 > #
∗
1 but A ′# ∗1 6 #2 6 A#

∗
1 (the yellow phase), we still
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#1

#2

_(g1 + cVUgS)

_ cVU(gS + g2)

_
(
cVUgS + (cU + cVU)g2)

)
No congestion,
at both levels

Level 1 fluid,
level 2 handles
all VU calls

Level 1 and 2
congested

Level 1 congested,
level 2 handles
all passed calls

Level 1 congested,
level 2 handles

all VU passed calls

# 2
= A
′ # 1

# 2
=
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1

Figure 5.3: Phase diagram of the throughput of the system (Bi Lvl)

#1

#2

d1

_

#1

#2

d3

cVU_

#1

#2

d ′3

cU_

Figure 5.4: Contrary to d1 and d3, the throughput d ′3 is not concave,
and can decrease as #1 increases

have d1 = _ and d3 = cVU_, hence the Lvl 1 operators pick up all the inbound calls and the
Lvl 2 operators handle all the VU calls handed over by the Lvl 1 without delay, however there
are not enough second-level agents to handle all the U calls. In this case, the urgent calls pile up
indefinitely because Lvl 2 operators pick them up with more and more delay.

If #1 6 #
∗
1 , there are not enough Lvl 1 operators to pick up all the inbound calls as soon as

they arrive. Nevertheless, the picked up calls are still qualified in the three categories NU, U and
VU. If in addition #2 > A#1 (light orange phase), it means that the Lvl 2 is sufficiently staffed to
handle all the U and VU calls qualified as such by the Lvl 1, but there remains pending U and
VU calls not yet picked up by the first level. If A ′#1 6 #2 6 A#1 (dark orange phase), not only is
the Lvl 1 slowed down due to an insufficient first-level staffing, but so is the Lvl 2 with not all
urgent calls handled. All the VU calls detected and handed over by the Lvl 1 are however still
handled with no delay by the Lvl 2.
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Finally, whenever #2 6 A
′#1 and #2 6 #

∗
1 (red phase) there are so few Lvl 2 agents that not

all VU calls picked up by the first level can be treated without delay, in particular no U calls
at all are handled. Due to the synchronization step between Lvl 1 and Lvl 2 agents in the VU
calls procedure and the fact that these VU calls are picked up with more and more delay by
second-level operators, the Lvl 1 agents end up being slowed down by the Lvl 2 regardless of
their own staffing. Indeed, they are all ultimately kept on line in the synchronization steps waiting
for available Lvl 2 agents to release them. In a more realistic model where the caller’s patience is
not infinite, this phenomenon would not arise, although the behaviour of the call center would
still be very hampered in this phase.

In spite of the bad behaviour of the organization in this most congested phase, let us observe
that the priority mechanism fully fulfills its purpose, as notably showed by the two intermediary
phases (or buffer phases). In these, even though there are not Lvl 2 agents to cope with the
whole demand, all the very urgent calls are still protected and none of them suffers a wait. In the
real PFAU call center implementing this bilevel layout, many procedure are in practice adapted
to this specific feature, in particular the Lvl 1 operators have the mission to maintain a short
conversation time g1 (between 20 s and 30 s) and not to delve too much into details with the caller.
This enables the first level to pick up quickly all the arriving calls and detect the minority of
calls that are very urgent. These calls can then receive an in-depth treatment by second-level
operators. Compared with a usual single-tier call center, the bilevel system requires a little more
agents but very urgent calls are much better handled, as we will also see in Part II.

The Figure 5.5 gives an alternative illustration of the throughputs d3 and d ′3 in the congestion-
free, semi-congested (at Lvl 2) and congested phases as a function of #2 only, when the Lvl 1 is
sufficiently staffed (this is therefore a vertical cross-section of the Figure 5.4 for #1 > #

∗
1 ).

Compared with the result of Corollary 4.5 in the monotonic setting, observe in the presence
of priority rules that the throughputs of the transitions of the net are not necessarily concave
functions of the resources anylonger, as it appears for d ′3 in Figures 5.4 and 5.5. Moreover, although
all the throughputs in this example are nondecreasing functions of the headcount at Lvl 1, this
is not the case relatively to the number of agents at Lvl 2. Indeed, as stated by Proposition 5.2
and illustrated by Figure 5.4, the throughput d ′3 decreases if #2 increases when (#1, #2) stays in

#2

13, d
′
3

A# ∗1A ′# ∗1

cVU_

cU_

Figure 5.5: A cross-section of the throughputs d3 (bold) and d ′3 from Figure 5.4
for a constant value of #1 > #

∗
1
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{#1 6 #
∗
1 , A

′#1 6 #2 6 A#1} (our dark orange phase). This is not counter-intuitive, because in
this phase not all inbound calls are handled by the Lvl 1 (not enough first-level agents) and the
Lvl 2 agents handle all the handed over VU calls, in addition with some U calls. A small increase
of #1 shall increase the number of VU calls transferred to the Lvl 2 agents, who have to treat less
U calls in order to handle these new VU calls first, as prescribed by the priority mechanism.

Observe nevertheless that the transition I3 with the highest priority level still admits a
throughput d3 that is a concave and nondecreasing piecewise-affine function of the resources #1

and #2. We invite the reader to keep this fact in mind for comparison with the next case-study.

3 An emergency call center formedical needs with amonitored reservoir

We now come back to the case of emergency call centers for medical needs, still drawn from the
French SAMU organizations and specifically discussed in the Section 1 of Chapter 4 with the
system (EMS-A). If needed, we encourage the reader to go over this previous section again, since
we are now about to introduce the alternative model (EMS-B).

3.1 DESCRIPTION OF THE MODEL. — Recall from the Section 3.3 of Chapter 4 in which the
throughput of the system (EMS-A) is computed that the handling speed of medical regulation
assistants (abb. MRAs, the first-answering agents) and the handling speed of the emergency
physicians are always entangled. In particular for this organization, a slowdown arising either
in the MRAs circuit or in the physicians circuit causes a slowdown of the whole system. This
phenomenon is due to the synchronization step at transition I3, that can as a consequence be
identified as the “weakest link” of the treatment chain.

To alleviate this issue and still maintain the presence of an interlocutor with the patient and
the brief oral summary told to physician, emergency doctors we were in touch with1 as part of
our collaboration proposed to consider another model. One may create a new type of MRA, the
reservoir assistant, who after a brief discussion with the MRA having picked up the call, places the
patient in a monitored reservoir. The first-answering MRA is released to pick up other inbound
calls. When an emergency physician becomes available, the reservoir assistant passes on the
short briefing to the doctor and transfers the patient. While the queue of patients in the reservoir
is non empty, the reservoir assistant checks on the patients in the reservoir, and can call patients
back in case they hang up. This replaces the synchronizations between physicians and answering
MRAs, enabling the latter to pick up new calls more quickly.

Another advantage of the reservoir mechanism is that if a single reservoir assistant is sufficient
to handle all the calls, this agent can have a consolidated vision of all the patients waiting for
emergency physicians and revise in real time their priority level if more severe cases arrive. In the
system with no reservoir, the emergency physicians may have to ask each of the waiting MRAs
which call he/she should take first. In what follows, we are going to explicitly consider that the
reservoir assitant distinguishes high priority calls and low priority calls, and transfers them to
the doctors accordingly.

1 We would like to especially thank Dr Éric Lecarpentier from Hôpital Henri Mondor in Créteil for his leading role on
this topic
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Figure 5.6: Medical emergency call center with a monitored reservoir (EMS-B)

The model (EMS-B) depicted in Figure 5.6 implements these modifications, to be compared with
the model (EMS-A) depicted in Figure 4.3. The reservoir assistant pool is a new place with initial
marking #' (not necessarily equal to 1). Reservoir assistants receive patients from the answering
MRAs at transition I3 and transfer them to physicians at transitions I5 and I ′5, depending on
the severity of the case. We still denote by g2 the characteristic time of the short briefing steps
between several agents. We denote by U the proportion of very urgent calls among patients who
need to talk to an emergency physician. In case of conflict, that is to say if a same reservoir
assistant can either welcome a new patient in the reservoir or transfer a patient already in the
reservoir to an emergency doctor, we decide that this reservoir assistant must first empty the
reservoir before filling it, and should first escort out the very urgent calls. Note that this induces
a three-level priority rule for reservoir assistant tokens. The three possible release transitions of
the reservoir assistants are I4, I6 and I ′6 (respectively after taking a new patient in the reservoir,
transferring a very urgent call from the reservoir to the emergency doctor, and transferring a less
urgent call from the reservoir to the doctor). Consultations with a physician still take a time g3
after which transitions I7 and I ′7 can be fired. The circuits involving the reservoir assistant are
depicted with color orange. It can be verified that the places standing for the pool of reservoir
assistants and physicians have compatible priority rules.

Using Table 2.3, we can write the dynamics of the counter variables of the net. As before, we
present below a reduced system of equations where I2, I4, I6, I ′6, I7 and I ′7 have been substituted
by expressions depending on I1, I3, I5 and I ′5 only. For the sake of readability, we denote
I |C2C1 B I (C2) − I (C1), and I |C B I (C).

I1(C) = I0
��C ∧

(
#� + (1 − c) I1

��C−g1 + I3��C−g2 ) (EMS-B)

I3(C) = c I1
��C−g1 ∧

(
#' + I3

��C−g2 + I5��C−g2C
+ I ′5

��C−g2
C

)
I5(C) = UI3

��C−g2 ∧ (
#% + I5

��C−g2−g3 + I ′5��C−g2−g3C−

)
∧

(
#' + I3

��C−g2
C− + I5

��C−g2 + I ′5��C−g2C−

)
I ′5(C) = (1 − U)I3

��C−g2 ∧ (
#% + I5

��C−g2−g3
C

+ I ′5
��C−g2−g3 ) ∧

(
#' + I3

��C−g2
C− + I5

��C−g2
C
+ I ′5

��C−g2 )
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3.2 CONGESTION DIAGRAM. — We suppose that the input I0 admits an affine profile with rate _.
Applying Theorem 5.1 and the equations of Table 5.1 to the model (EMS-B) provides the following
system on the affine germs of counter variables (again after substitutions of some germs easily
expressed in terms of those associated with counters I1, I3, I5 and I ′5):

(d1, D1) = (_, 0) ∧ ((1 − c)d1 + d3, #� + (1 − c) (D1 − d1g1) + D3 − d3g2)

(d3, D3) = (cd1, c (D1 − d1g1)) ∧ (d3, D3 + #' − d3g2 − (d5 + d ′5)g2)

(d5, D5) =


U (d3, D3 − d3g2) ∧ (d5, D5 + #% − d5(g2 + g3)) ∧ (d3, D3 + #' − (d3 + d5)g2) if d ′5 = 0 and d3 = 0

U (d3, D3 − d3g2) ∧ (d5, D5 + #% − d5(g2 + g3)) if d ′5 = 0 and d3 > 0

U (d3, D3 − d3g2) if d ′5 > 0

(d ′5, D ′5) =
{
(1 − U) (d3, D3 − d3g2) ∧ (d ′5, D ′5 + #% − (d5 + d ′5) (g2 + g3)) ∧ (d ′5, #' + D ′5 − (d5 + d ′5)g2) if d3 = 0

(1 − U) (d3, D3 − d3g2) ∧ (d ′5, D ′5 + #% − (d5 + d ′5) (g2 + g3)) if d3 > 0

Similarly to our study of the (Bi Lvl) model, we now have to distinguish cases on the possible
bottleneck upstream places in Pprio depending on the throughputs of the other transitions they
rule, which brings a much more complex system of equations on germs than (4.9), the one derived
for (EMS-A) in Chapter 4.

We point out that the cases where d3 = 0 in germs equations on (d5, D5) and (d ′5, D ′5) can
reasonably be neglected for further analysis. Indeed, the first two equations above always ensure
d3 = cd1, and supposing d3 = 0 and _ > 0 leads to min(#�, #') = 0 by combination of the germs
that achieve the minimum. Therefore, the throughput d3 is positive as soon as we suppose _ > 0,
#� > 0 and #' > 0, i.e., positive inflow of calls and positive number of agents to pick them
up. As a result, when this condition is met, the priority routing that rules tokens from the pool
of reservoir assistants does not appear on the affine germs of I5 and I ′5 anylonger. This is an
expected outcome since transitions I5 and I ′5 (very high and high level of priority for the reservoir
pool) can only receive tokens that have passed through transition I3 (low level of priority for
the reservoir pool) before, thus I5 and I ′5 cannot ultimately inhibit themselves. Such a layout of
priorities does remain appropriate to perform arbitration of tokens orientation in case of conflicts
and we show below that it still produces effects in the scope of long-run analysis of the system.

As in Section 3.2 of Chapter 4 and as in Section 2 of this current chapter, a choice of policy
(minimizing terms in the lexicographic system) provides affine equalities determining the through-
put as an affine function of the resources of the model, the validity region of this expression
being obtained by inequalities derived from the remaining (non-minimizing) terms of the system.
This leads to nine full-dimensional congestion phases (maximal cells of the throughput complex)
covering (R>0)3, that we depict and number on Figure 5.7 and whose complete polyhedral form
is given in Table 5.11 later, with expressions of the throughputs.

We now describe this congestion diagram. As expected, the introduction of a new type of
resource agent (the reservoir assistant) introduces more slowdown phases if its initial marking #'
is too small. Therefore, to ensure the good behaviour of the (EMS-B) model whose design relies
substantially on the reservoir, one needs to take#' > # ∗' B 2c_g2. Note that the minimal number
of MRAs (resp. emergency physicians) to answer all the calls is not affected by the presence of
the reservoir by comparison with (EMS-A) model, and is still equal to # ∗

�
B _(g1 + cg2) (resp.

# ∗
%
B c_(g2 + g3)). These three lower bounds on #�, #' and #% define the phase 1 , that we can

still refer to as the congestion-free phase.
Compared with (EMS-A), the duplication of the physician’s lane and the fact that very urgent

calls (in proportion U among all calls transferred to doctors) are handled in priority has the effect
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Figure 5.7: Congestion phases of the model (EMS-B)

of splitting each congestion phase associated with a lack of emergency physicians in two parts,
exactly like in the model (Bi Lvl). Given an MRA throughput d1, we can define the two functions
#
%
and # % by

#
%
(d1) B cU (g2 + g3)d1 and # % (d1) B c (g2 + g3)d1 ,

so that a minimum number of # % physicians is needed to handle all the calls passed by the MRAs
via the reservoir assistant. However, in case of a lack of physicians, the priority mechanism
ensures that the very urgent calls remain handled as long as #% > # %

(phases 4U , 5U and 6U ).
Below the latter threshold, there are too few physicians to handle these very urgent calls (phases
4 , 5 and 6 ), and a fortiori the less urgent ones as well.

A major qualitative advantage of the system (EMS-B) is that contrary to the model (EMS-A),
we observe that a slowdown in the emergency physician circuit does not affect the throughput of
the MRAs, as an effect of their desynchronization by the reservoir buffer. It may still happen that
we encounter both a lack of MRAs and physicians, but the latter do not prevent the former to pick
up inbound calls at their maximal possible throughput (phases 5U and 5 where the throughputs
d1 and d5 + d ′5 are disentangled).

This improvement compared to (EMS-A) can be visualized in terms of phase diagrams, by
letting U = 1 in the Figure 5.7 so that as in this original model, all the calls requiring the
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intervention of the emergency physician have the same degree of priority. This makes the phases
4U , 5U and 6U collapse. The Figure 5.8 represents the four remaining phases 1 , 2 , 4 and
5 where there are enough reservoir assistants; a two-dimensional phase diagram in the space
(#�, #% ) can thus be recovered by taking a cross-section of these polyhedra, with #' > # ∗' .

#�

#'

#%

(a)

#�

#'

#%

#' = �

(b)

Figure 5.8: Phases of (EMS-B) whenever U = 1 and the reservoir is not congested (left);
and a cross-section for a constant value of #' > # ∗' (right)

In the resulting congestion diagram depicted in Figure 5.9b, we can verify that the throughput d1
is now indeed independent of the emergency physicians’ staffing #% . Compare with the phase
diagram of (EMS-A) first presented in Figure 4.7 and reproduced in Figure 5.9a. In view of these
two throughput maps, we can confirm that the reservoir mechanism satisfactorily serves its initial
purpose.
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Figure 5.9: The (#�, #% ) congestion diagrams of (EMS-A) (left)
and (EMS-B) (right) compared

It is also instructive to study the situations in which the reservoir assistants are understaffed
(phases 3 , 6U and 6 ), although they are not desirable in practice. We read in particular from
the Table 5.11 that the throughputs d3 and d5 are proportional to #'/g2−#%/(g2+g3) in phase 6U
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(it remains true for d3 in phase 6 as well), which means that increasing the number of emergency
physicians slows down the handling of top priority calls! Compare with the model (Bi Lvl)
in Section 2.2, where only the throughput with low priority was subject to this effect. This
establishes the following seemingly paradoxical property that must be highlighted to insist on
the difference with respect to monotonic models:

In presence of priority routings, an increase of the resources
may result in a decrease of the asymptotic throughputs of
some transitions, even with the highest degree of priority.

We depict this phenomenon on Figure 5.10 (supposing that first-answering MRAs are non-limiting
so #� > # ∗�). The red curve shows that d5 is nonmonotic as #% grows and as we go through
phases 6 , then 6U and finally 3 . This counter-intuitive situation can be explained as follows.
Suppose for the sake of simplicity that #' < c_g2, so that there are not enough reservoir assistants
to even fill the reservoir room (while twice this amount of agents would be needed to fill it and
empty it). At #% = 0, because there are no physicians, both very urgent and urgent calls queues
build up in the reservoir at throughput #'/cg2 (maximum filling speed of reservoir agents). As
#% increases (phase 6 ), some very urgent cases can now be handled by emergency physicians
at rate #%/(g2 + g3), however this task requires a second accompaniement step with reservoir
assistants and is prioritized for them. Hence, they spend less time filling the reservoir and d3
decreases. As #% increases again (phase 6U ), there are enough emergency physicians to also pick
up calls from the second-priority room, requiring again the intervention of reservoir assistants
(before admitting new patients), as a result d3 decreases again and so does d5 = Ud3. The reservoir
assistants have “less time” to admit and detect very urgent calls as they must escort already
admitted very urgent and urgent calls to doctors before, and eventually less very urgent calls are
handled.

We insist on the fact that this unusual phenomenon arises because top-priority transitions are
served downstream of some inferior-priority ones. Recall that the same type of “diamond” pattern
involving priorities already led to difficulties in the Chapter 1, see in particular the discussion about
the Figure 1.14. We also note that the above paradoxical principle echoes a similar pathological
behaviour observed in [Ye07].

#%

#'

d5

Figure 5.10: The throughput d5 does not increase with respect to #%
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Table 5.11: Bounding inequalities of the nine full-dimensional phases of the throughput
complex of the model (EMS-B); alongwith the expression of the throughputs d1, d5 and

d ′5. The throughput d3 always satisfies d3 = cd1.
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4 Variations of the model EMS-B

In this section, we study how slight modifications of the model (EMS-B) can improve its perfor-
mance and make it more robust. The three alternative models presented here are first and foremost
tools for reflection, and illustrations of our systematic method of analysis for the throughput of
non-monotonic Petri nets. From the operational point of a view of managing a medical emergency
call center, these new models can come with “qualitative” drawbacks, that we also discuss.

4.1 SUPPORT OF THE RESERVOIR ASSISTANT TO PICK UP INBOUND CALLS. — A first idea to
bring more fluidity to the system is to also allow the reservoir assistants to pick up inbound calls
in case they are idle. If both a standard MRA and a reservoir assistant are available and an inbound
call arrives to the platform, we decide that the MRA should pick it up, and keep the occupancy
of the reservoir assistants as low as possible – for them to be ready for their other tasks with
higher priority degrees. This transforms the transition I1 served by MRAs in the model (EMS-B)
of Figure 5.6 into two transitions I+1 and I−1 , respectively served by MRAs and reservoir assistants.
We illustrate the organization implementing this modification in the Figure 5.12, and for the sake
of the simplicity we have not depicted the duplication of the physicians’ lane here.

If a reservoir assistant picks up an inbound call, he/she will handle it with the same character-
istic time g1 than the MRAs, and a fraction c of these calls shall still require a consultation with
the emergency physician. However, no synchronization step here is needed.

We do not write the counter dynamics nor the associated system on germs of affine functions,
as they become cumbersome, but we present in the Table 5.13 the twelve full-dimensional phases
that the resolution of the throughput problem yields (with the two different levels of priority to
speak to the emergency physician).

It can then be seen that the model of Figure 5.12 has the effect of dividing in two each one of
the phases 2 , 5U and 5 of the Figure 5.7 that were valid for the model (EMS-B). Within the
newly created phases 2′ , 5′U and 5′ , there are not enough MRAs to absorb all the inbound flow
of calls and reservoir assistants come in support to fill the breach, without altering their other
tasks. In the phases 2 , 5U and 5 however, there are already not enough reservoir assistants to
handle the monitored reservoir and as a consequence no idle resource to lend a hand to MRAs.

#�
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g2 g1

g2g1

g3

1−c c

I0 = _C

I+1

I2 I3 I−1

I4 I ′4
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Figure 5.12: (EMS-B) model in which reservoir agents can pick up inbound calls
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Table 5.13: Congestion phases of the model (EMS-B) where the reservoir assistants can
also pick up inbound calls

Granting reservoir assistants the right to pick up inbound calls therefore introduces a second
congestion-free phase, since the system is fluid in both phases 1 and 2′ . Another way to see it
is to consider that the congestion-free regime has been extended. We can still take a cross-section
of the complete throughput diagram to recover a two-dimensional (#�, #% ) diagram, as done
in Section 3.2. However, unlike the original (EMS-B) model, the shape of some phases change
depending on #' > # ∗' = 2c_g2.

We depict in the Figure 5.14a only the “back” phases 1 , 2′ , 4 and 5′ in the simplified case
where U = 1. These four phases are those for which the “operator level” is fluid (with or without
the support of reservoir assistants) and no inbound call is handled with delay. The complete
equation of the front surface in Figure 5.14a, that separates the four depicted phases from the
other phases 2 , 3 , 5 and 6 , writes

#' − c (d� ∧ _)g2 − (d% ∧ (c_))g2 > (_ − (d� ∧ _))g1 . (5.7)

This inequality describes the fact that there are enough remaining reservoir agents, after wel-
coming in the reservoir the calls handed over by the MRAs (this consumes c (d� ∧ _)g2 reservoir
resource) and escorting these calls out of the reservoir to the doctors (this consumes another
(d% ∧ (c_))g2 reservoir assistants) to treat the inbound calls not picked up by the MRAs, with
rate _ − (d� ∧ _) and average handling time g1.
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Figure 5.14: Left: The phases of Table 5.13 for which the operator level is fluid whenever
U = 1. Right: The same phases seen from above with a cross-section for #' fixed

The Figure 5.14b shows the same phases than Figure 5.14a but seen from above. Since in practice
cg2 is a short duration (less than 10 s) and g1 is relatively high (around two minutes), we shall
have c_g2 6 2c_g2 � _g1 6 #

∗
�
= _(g1 + cg2), and it is reasonable to take a cross-section of

the throughput diagram with a value of #' in [# ∗
'
, _g1]. We obtain using the equation (5.7) the

(non-trivial) values of #� delineating the phases created by our slicing operation. This 2D map is
shown in Figure 5.15.

Remark how there are now two congestion-free phases in Figure 5.15. Although it happens
in a very degraded mode, note also that the point (#� = 0, #% = 0) is no longer in the frontier
of the phases 2 and 5 , which was bound to be the case for the original model (EMS-B). By
comparison with the latter, allowing the reservoir assistants to pick up inbound calls indeed
enable the emergency physicians to treat some requests even if #� = 0!

An interesting computation to make is to check if with the same total number of MRAs, the
model of Figure 5.12 does better than the model (EMS-A) or not. It is rather intuitive that a staffing
(#�, #', #% ) in a model with the monitored reservoir will do better than the organization (EMS-A)
with a staffing (#�, #% ), because the former uses stricly more regulation assistants than the latter
– #� +#' versus #�. Since a natural choice for the model with reservoir is #' = 1, we can rather
compare the extended (EMS-B) model with (#� − 1, 1, #% ) agents – where #� > 1 – with the
original (EMS-A) model with (#�, #% ) agents. Both systems are equivalent in the intersection of
the fluid phases, which happens if #� > # ∗� + (2cg2/(g1 − cg2)) (# ∗� − 1) and #% > # ∗% . Outside
this fluide regime, we can show that it is more interesting to adopt the model with extended
reservoir (staffed with one agent) if and only if

#%

c (g2 + g3)
6 min

(
1

g1 + cg2
+
(
g1 − cg2
g1 + cg2

)
#� − 1
g1 + cg2

, _

)
. (5.8)

We verify that due to the small value of cg2 in practice, the above condition is very close from
the boundary d% 6 min(cd�, c_) of (EMS-A). As a result, when the model (EMS-A) is slowed
down by its MRAs, taking off one of them to adopt the reservoir model decreases the overall
performance (however, with real-life parameters, the performance loss is no more than 3 %).
Conversely, if the model (EMS-A) is slowed down due to a lack of physicians, implementing the
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Figure 5.15: Phases diagram (#�, #% ) of the modified system (EMS-B), where the

reservoir assistants can support the MRAs

(extended) reservoir strategy by asking one classical MRA to handle the reservoir and possibly
extra inbound calls does improve the throughput of the system (up to 10 % with our realistic
parameters). This is consistent with the initial raison d’être of the reservoir mechanism. Note
that although we did not write it explicitly to simplify the discussion, numerical evaluations in
practice of minimum staffings – or equations of type (5.8) – need to also feature the occupancy
rates of the agents, as introduced in the Section 6 of Chapter 4. This can be done by replacing
each term #- by a ratio #- /[- , where [- is the target occupancy rate of the pool of agents - .

4.2 ASSIGNING ANOTHER EXTRA FLOW TO THE RESERVOIR ASSISTANTS. — In practice, the
previous system was not considered to be a desirable design by the emergency doctors we work
with. Indeed, even though it extends the congestion-free regime, it puts more weight on the
reservoir assistant. As the centrepiece of the organization, this agent should on the contrary
remain as much available as possible to manage the reservoir. In fact, because they work hand in
hand with the emergency physicians (to indicate them which pending calls ought to be treated
first), it is also the mission of reservoir assistants to realize other tasks on behalf of the doctors,
like handling urgent calls transferred by partner services, or dispatching a mobile intensive care
unit, etc.

To represent these extra tasks, that are different from the management of the reservoir, we
introduce a new exogenous flow with rate `, accounting either for partner services’ inbound calls
to pick up or outbound calls to make. In order to protect the usual calls of the population, among
which there can be very urgent needs that are not yet acknowledged by an emergency physician,
the extra flow of tasks has to be handled by the reservoir assistant only if no entrance or exit task
is pending in the reservoir. The Figure 5.16 depicts a Petri net implementing this modification (to
keep things simple, we let aside here the distinction of calls prioritized to physicians). Note that
some of these extra tasks performed by the reservoir assistants may further need the intervention
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Figure 5.16: Medical emergency call center with a monitored reservoir (EMS-B) and
where reservoir assistants can treat an extra flow of calls

of the emergency doctor (for instance, medical calls transferred by firefighters). We denote by b
the fraction of the new flow which adds to the doctors’ jobs.
The Table 5.17 depicts the ten full-dimensional phases of this new system. The six phases 1 – 6

initially present in the Figure 5.7 for the model (EMS-B) in which U = 1 are still there. The phases
1 , 2 , 4 and 5 correspond to a sufficient amount of reservoir assistants to achieve all their tasks.
The phases 3 and 6 stand for an insufficient amount of them to manage the mere reservoir itself.
In addition, the four intermediary (or buffer) phases 1` , 2` , 4` and 5` have appeared along
the dimension #' , indicating when the extra flow is only partially handled. This phenomenon
of buffer phases is similar to the one encountered along the dimension #% when the emergency
physicians could handle two types of flows with different priority degrees.

It is important to note that the phase 1 in this new model is congestion-free in the sense that
not only the usual calls from the general public are handled without delay at all steps, but also
the new extra flow picked up by reservoir assistants. In particular, because a fraction b of this
flow has to go through the physicians as well (with no distinguished priority), the greater the
new flow ` is, the more physicians are needed. Computing the equation of the frontier between
phases 1 and 2 on one hand, and phases 4 and 5 on the other hand provides

d% > c (d� ∧ _) + b` , (5.9)

where as introduced in the Section 3.2 of Chapter 4, d� (resp. d% ) stands for the MRA intrinsic
throughput #�/(g1 + cg2) (resp. the physician intrinsic throughput #%/(g2 + g3)). We recognize
with the first term that there must be enough emergency doctors to handle the usual calls of
the population first picked up by the MRAs and transferred by the reservoir assistants (whose
constraints does not appear here because it is not active within these specific phases). The second
term corresponds to the number of extra tasks per unit of time requiring a discussion with the
emergency doctor. Note again that even if #� = 0, so that no usual call is picked up, the physicians
can still treat the demands brought by the reservoir assistants.

In order to evaluate the maximum number of tasks that the reservoir assistants can handle, we
must first fix a staffing #' of reservoir agents that is such that #' > 2c_g2, as found in Section 3.2,
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Table 5.17: Congestion phases of the model (EMS-B) where the reservoir assistants can
also treat an extra flow of calls

and start with a null extra flow ` = 0. This ensures that we are located in one of the four phases 1 ,
2 , 4 or 5 of the Table 5.17 (because ` = 0, the phases 1` , 2` , 4` and 5` are flat). Theses are
also the phases 1 , 2 , 4 and 5 of the model (EMS-B) in which no extra flow was considered,
as depicted in Figure 5.7. Now, for any staffing choice (#�, #% ), we can start increasing the
parameter `, which make the phases 1` , 2` , 4` and 5` grow thicker and thicker. For some
value `max of `, the point (#�, #', #% ) becomes overwhelmed by one of the blue phases, which
is therefore the maximum extra flow intensity that the reservoir assistants can handle before
putting the system in a regime where these extra tasks are only partially handled. We illustrate
this idea on the Figure 5.18, for two different values of `. Think of the blue phases as a tidal wave
that is going to submerge the fixed points " and " ′ as ` increases, and as the distance to the
wavefront as the remaining margin of calls that it is possible to take. We let the reader verify that
to be within the congestion-free phase 1 , more and more emergency physicians are needed as `
increases, consistenly with (5.9).

Computing the equation of the “wavefront” of Figure 5.18 enables us to determine that for
any fixed value of #' > 2c_g2 and any (#�, #% ) in R2>0, we have

`max = max

(
#' − 2c (d� ∧ _)g2

g1 + bg2
,
#' −

(
c (d� ∧ _)g2 + d%g2

)
g1

)
. (5.10)

Note how the two main terms of the right-hand side in (5.10) do not have the same denominator.
Indeed, the first one corresponds to a frontier of phases 1 and 2 , where there are sufficient
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Figure 5.18: Visualization of the evolution of the throughput complex of Table 5.17 when
` increases, going from a small value (left) to a higher value (right). The distance from
the blue phases to two arbitrary points" and" ′ is shown, accounting for a remaining
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emergency physicians to take the extra tasks handed over by the reservoir assistants, therefore the
latter handle each extra task with a mean time of g1 + bg2 (the initial time g1 is mandatory, and the
transfer time g2 occurs for a fraction b of the calls). However, if there are not enough emergency
doctors (which corresponds to the second term of (5.10) and a frontier of phases 4 and 5 ), then
everything happens as if there were c (d� ∧ _)g2 + d%g2 reservoir agents managing entries and
exits in the reservoir (with an average time g2 to treat each task). This already overwhelms the
doctors, so a remaining number #' − c (d� ∧ _)g2 + d%g2 can effectively pick up calls from the
extra flow but the synchronization with physicians does not happen, hence the mean treatment
time of g1.

The Figure 5.19 provides the level sets of the map `max satisfying (5.10) in the space (#�, #% ),
for the cross-section #' = 1. We have superimposed the four congestion phases of (EMS-B)
already depicted in Figure 5.9b (that are also those of the current system with ` = 0). Indeed, the
reasonable question to ask, starting from the model (EMS-B), is the following. Given our staffing
(#�, #% ), if we were to ask our reservoir assistants to pick up and handle extra tasks, how many
of them could they take? Interestingly enough, since the evolution of the wavefront in Figure 5.18
is not a mere translation along the #' axis due to the dependence of the #% frontier (5.9) upon `,
the break of slopes in `max and hence those of its level sets are not “lined up” with the original
phases of (EMS-B). Instead, we must depict the frontier associated with the inequality

d% > c (d� ∧ _) +
b (#' − 2c (d� ∧ _)g2)

g1 + bg2
, with #' = 1 , (5.11)

that is the inequality (5.9) in which ` has been replaced by (#' − 2c (d� ∧ _)g2)/(g1 + bg2) (with
#' = 1), that is to say the maximum number of extra tasks that a single reservoir agent can
handle after first ensuring fluidity of the reservoir. Had we taken b = 0, the #% minimal staffing
would have been independent of `, and the level sets of `max would have completed the phases
of (EMS-B) into a neat spider web (as the one arising in Figure 5.19 once the blue frontier is added).

The Figure 5.19 actually uses realistic values of the parameters for a medical emergency call
center of the Paris area, and it also takes into account the occupancy rates of the agents. It
numerically reads as follows. Taking 5 MRAs, 1 reservoir assistant and 3 emergency physicians
guarantee that the system is congestion-free for the chosen value of _ (here 57 calls per hour).
In addition, the single reservoir assistant can also handle about 12 extra tasks per hour (given
g1 = 98.3 s, g2 = 16.8 s and b = 23 %). As #� or #% decrease, the reservoir assistant can actually
treat more and more extra tasks, because he/she is less busy with managing the reservoir…which
is not desirable in practice! This figure illustrates the practical interest of visualizations based on
the congestion diagram, to compare it with certain notions of security margins (for instance the
extra flow we have studied here).

4.3 MUTUAL SUPPORT OF TWO FIRST-ANSWERING AGENT POOLS. — We finish this section
by discussing a last alternative feature for the model (EMS-B), that could actually also be applied
for (EMS-A) because it does not revolve around the reservoir. Instead, it is a different mechanism
to welcome inbound calls to the platform, where several flows are at stake. Indeed, medical
emergency call centers also receive calls that do not come from the primary flow dialed by the
general public. Most of time, this secondary flow is made of calls transferred by partners (traffic
agents, underground or rail services), other emergency units (like the firefighers in France) but
also phone reports passed by teams dispatched on the ground. In some French departments, the
SAMU call centers also centralize non-urgent out-of-hours services phone calls.
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Figure 5.20: The model (EMS-B) where two inbound flows are picked up by two pools of
MRAs and who can support each other

Customarily, the primary and the secondary flows are treated by two different pools of agents, in
order to keep more homogeneous tasks for each. Somehow in Section 4.2, we have assigned the
secondary flow to the reservoir assistants (after having given them the possibility to pick up the
primary flow in Section 4.1), but we have already mentioned that the emergency doctors prefer to
spare these agents from facing too much tasks.

As a consequence, we now take into account too different pools of first-responding MRAs, one
pool with #�1 agents for the primary flow, and one pool with #�2 agents for the secondary flow.
However, in case one of the two pools is understaffed, we want to allow the other one to come in
support. Contrary to the help given by the reservoir assistants to the usual MRAs in Section 4.1,
we here consider a symmetrical (or mutual) support. This means that MRAs of the primary pool
have to pick up calls from the primary flow, but can also pick up calls from the secondary flow
with a lower priority whenever there are not enough secondary-flow MRAs – and vice versa. We
represent this new system with the Petri net of Figure 5.20.

The mechanism we obtain to manage the arrivals implements four (compatible) priority rules,
two of them to direct each flow, and the other two to direct each pool of MRAs. We assume that
treating a call from the primary (resp. secondary) flow takes a time g1 (resp. g ′1) and that a fraction
c of them (resp. c ′) require to have the emergency doctor on the phone (by going through the
reservoir assistant which takes briefing times g2 and g ′2). We also suppose that these parameters
are flow-dependent, and not agent-dependent.
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Figure 5.21: The MRA phase diagram of a call center without mutual support (left)
and with mutual support (right)

Using the Table 5.1 and the Theorem 5.1 causes no particular difficulty but still yields a pretty
cumbersome system that we do not write here. We represent directly on the Figure 5.21b the
effect of the mutual support mechanism in the space (#�1, #�2), which is a two-dimensional
cross-section (taking #' and #% large enough) of a global four-dimensional throughput complex.
We compare this design with a simpler system where no mutual support is allowed (agents of
each pool can pick up only their main flow), and thus no priority rules are used; its phase diagram
is depicted in Figure 5.21a.

When nomutual support of the two pools of first-answering agents is possible, the Figure 5.21a
shows that the arrivals circuit of the organization is congestion-free if and only if headcounts are
such that #�1 > # ∗�1 B _(g1 + cg2) and #�2 > # ∗�2 B _′(g ′1 + c ′g ′2). Outside this area, either one
of the two flows is handled with no congestion while the other one is slowed down, or both of
them are congested with maximal handling speeds d1 = #�1/(g1 + cg2) and d2 = #�2/(g ′1 + c ′g ′2).

However, as shown by the Figure 5.21b, resorting to the mutual support mechanism allows
to greatly extend the domain of the congestion-free phase, as soon as #�1 + #�2 > # ∗�1 + # ∗�2.
In fact, it suffices to have #�1 > # ∗

�1 or #�2 > # ∗
�2 for the support of one pool to the other

one to switch on. In these phases the global performance is strictly improved compared to the
organization in silos. This is consistent with the intuition that merging the resources brings more
fluidity. We also observe that such priority schemes can in effect transform “and” conditions into
“or” conditions.
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This chapter takes a more abstract and algebraical look on the objects studied in the rest of Part I.
We focus here on posynomials, that is to say multivariate polynomials on positive variables but
with arbitrary exponents. These generalized polynomials can be considered on any semiring,
and we shall in fact study both classical and tropical posynomials – in order words whether
the ground semiring (R, +,×) or (R ∪ {−∞},max, +) is involved. Posynomials arise in convex
optimization, especially in geometric and entropic programming [CS16] and in polynomial
optimization [DIdW17]. They also arise in the theory of nonnegative tensors [Lim05, FG18], in
risk sensitive control [AB17] and game theory [AGGCG19].

Our main motivation to study posynomials comes from the fact that several piecewise affine
mappings featured in the previous chapters, whose fixed-points are estimates of interest of
Petri net models (like the throughput or the catch-up delays), have in fact tropical posynomial
components. Understanding posynomial systems and figuring out resolution methods is therefore
a way to gain insight on the underlying structure of piecewise affine dynamical systems, even
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though we shall only work here on “static” problems derived from these time-delay dynamics.
To our knowledge, maxima or minima of finitely many affine functions were not studied before
under the tropical posynomial perspective.

In Section 1.2, we first show that solving (square) posynomial systems is in general NP-hard, for
the classical instances but for the tropical ones as well. Then, we identify a tractable subclass. We
show in Section 1.3 that the tropical version can be solved exactly in polynomial time by reduction
to a linear program, whereas the classical version can be solved approximately by reduction to a
geometric program (Section 1.5). Our approach is based on a notion of colorful vector relatively to
the Newton polytopes of the posynomial exponents. We show that the class of Markov decision
processes is a special case of tropical posynomial systems, and we recover the linear programming
formulation of the associated value problem – and the geometric programming formulation of
risk sensitive problems as well. In Section 2, we focus on the subproblem of characterizing the set
of colorful vectors relatively to a collection of convex bodies, that is somehow of independent
interest. We explain how this question hinges on notions of tangent hyperplanes to several convex
sets, and we provide a necessary nonvacuity condition for the set of colorful vectors, that we also
show to be sufficient up to dimension 3.

1 Real and tropical posynomial systems

In this section, we study systems of equations that abstract and generalize some of the problems
met in Chapters 3 and 4.

1.1 DEFINITION AND ILLUSTRATIONS. — We first introduce the main objects of this section. A
posynomial is a function % of the form

% (G) =
∑
0∈�

20G
01
1 G

02
2 · · · G

0=
= (6.1)

where the variable G B (G1, . . . , G=) is a vector with real positive entries, � is a finite subset of
vectors of R= , and the (20)0∈� are positive real numbers. The set � is called the support of % ,
also denoted by (% , its elements are called the exponents of the posynomial and the (20)0∈� its
coefficients. Posynomials generalize polynomials given that the exponents are not necessarily
nonnegative integers, but as a result one needs to consider only positive variables. Note that one
talks about signomials if in addition the (20)0∈� can take arbitrary real values.

We are interested in solving (square) posynomial systems, that is, given= classical posynomials
%1, …, %= , finding G in R=>0 such that

%8 (G) = 1 for all 8 in {1, . . . , =} . (6.2)

The form of the equation (6.2) can be thought of as the normalization of a two-sided system that
writes %8 (G) = &8 (G) and where &8 is a monomial (i.e., a posynomial for which |�| = 1). Indeed,
dividing both sides of the 8-th equation still gives a posynomial on the left-hand side, and the
“unit” posynomial 1 on the right-hand side.

Example 6.1. Many usual curves that are beloved by mathematicians can be represented
by posynomial equations. For instance, the lemniscate of Bernoulli with polar equation
d2 = 02 cos(2\ ) also admits the Cartesian form (G2 +~2)2 = 02(G2−~2), that we can rewrite as
the equality of two posynomials G4 + 2G2~2 + ~4 + 02~2 = 02G2, or equivalently in normalized
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form 0−2G2 + 20−2~2 + 0−2G−2~4 + G−2~2 = 1. We recognize in the left-hand side a posynomial
with exponents (2, 0), (0, 2), (−2, 4) and (−2, 2), and respective coefficients 0−2, 20−2, 0−2

and 1. Similarly, the usual astroid has the Cartesian equation 3
√
G2 + 3

√
~2 = 1, which after

normalization gives a posynomial with exponents (2/3, 0) and (0, 2/3), with same coefficients
1−1.

Figure 6.1: Two notorious curves that can be represented by posynomial

The Figure 6.1 shows the level-sets associated with the value 1 for our two posynomials (that
are only defined over R=>0 so we have here mirrored the positive orthant). The intersections
of the lemniscate and the astroid can thus be thought of as solutions of a posynomial system
on two variables.

Placing ourselves in the max-plus (or tropical) semifield Rmax B (R ∪ {−∞},max, +) where the
maximum (resp. the usual sum) plays the role of the additive law (resp. the multiplicative law), we
can bring up a similar notion. We define a tropical posynomial to be a function % trop of the form

% trop(G) = max
0∈�
(20 + 〈0, G〉) (6.3)

where 〈·, ·〉 is the usual dot product ofR= , the (20)0∈� are now real coefficients, and G = (G1, . . . , G=)
is a vector of R= . Compared with (6.1), the usual sum has been replaced in (6.3) by the maximum,
the usual product by the sum, and the usual exponentiation by the multiplication by a scalar –
consistently with the max-plus structure. The fact that the (20)0∈� are here arbitrary real numbers
is the correct counterpart of the positivity constraint on the coefficients of real posynomials, since
the additive neutral of Rmax is −∞. Hence, the inequalities 20 > −∞ for all 0 in � play the role of
positivity constraints (in other words, there are no negative numbers in Rmax).

We shall also study tropical posynomial systems, which means that given the = tropical
posynomials (% trop

8
)1686= , we will look for G in R= such that

%
trop
8
(G) = 0 for all 8 in {1, . . . , =} . (6.4)

This is also a normalized form of the two-sided system %
trop
8
(G) = &

trop
8
(G) in case & trop

8
is a

monomial. Our interest in posynomial systems is in fact motivated by the latter form. Indeed, the
counter equations of Table 2.3 featured in Chapter 2 for Petri nets or the dynamic programming
equations (DP) that we have met for semi-Markov decision processes in Chapter 3 reveal that
the trajectories of monotonic Petri nets or SMDPs arise as fixed-points of min-plus systems
with delays. Focusing on the average-cost or the throughput yield optimality systems of the
form (L), that are square systems involving tropical posynomials in the right-hand side and simple
monomials in the left-hand side (however these systems are obtained over a field of real tuples).
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As a result, studying tropical posynomial systems is a manner to gain insight on the problem of
computing the throughput of Petri nets (or the average-cost vector of SMDPs).

The definition (6.3) shows that tropical posynomials are nothing more than maximum of
finitely many affine functions, and thus are convex piecewise-linear functions. Yet, thinking in
terms of posynomials is fruitful from the algebraic point of view, and is indicative of the difficulty
of the problem we deal with. Typically, the fact that our optimality systems of the form (L) involve
posynomial functions and not mere linear maps (in the tropical sense) is a direct consequence of
the use of proportional routings in the context of Petri nets, or the use of stochastic moves in the
context of SMDPs. In this sense, it translates the increased complexity of these models compared
to deterministic cases (see our discussion on event graphs in the introduction of Chapter 4).

Example 6.2. We illustrate in the Figure 6.2 a graphical resolution of a tropical posynomial
system on two variables G1 and G2. We consider a first posynomial %1 defined by %1(G1, G2) B
max(−2G1+G2+1,−3G1+4G2+1), with exponents (−2, 1) and (−3, 4), and a second polynomial
%2(G1, G2) B max(2G1 + 4G2 − 5, 3G1 + 2G2 − 6) with exponents (2, 4) and (3, 2).

G1

G2

G1

G2

G1

G2

(a) (b) (c)

Figure 6.2: Visualizing two tropical posynomials on two variables
and the associated square system

The Figure 6.2a (resp. Figure 6.2b) shows the surface with equation I = %1(G1, G2) (resp.
I = %2(G1, G2)), in addition with their intersection with the plane I = 0 (giving the 0-level set
of both posynomials). We verify that both %1 and %2 are piecewise-affine convex functions.
The Figure 6.2c combines the two surfaces, and it can be seen that the tropical posynomial
system %1(G) = 0 and %2(G) = 0 admits a unique solution represented by the black dot.

In what follows and as done in this example, we shall no longer write % trop to denote a generic
tropical posynomial, but write % instead for brevity.

1.2 SOLVING POSYNOMIAL SYSTEMS IS NP-HARD. — Following up on the discussion about the
increased difficulty to deal with posynomial systems compared to fixed-points of piecewise linear
maps, we state two formal results showing that the feasibility problems for classical or tropical
posynomial systems are NP-hard, even with integer exponents. We refer to the book of Arora
and Barak for in-depth presentation of complexity questions [AB09].
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) Proposition 6.3. Solving a square tropical posynomial system is NP-hard.

Proof. We reduce 3-SAT to the problem (6.4). Let us consider a Boolean formula in conjunctive normal form
�1 ∧ · · · ∧�? made of ? clauses, each one of them using three out of = real variables G1, . . . , G= (?, = ∈ N).
We consider =+2? additional unknown (~8 )1686= , (I: )16:6? and (B: )16:6? and we introduce the following
(square) tropical posynomial system in the 2= + 2? variables (G1, . . . , G=, ~1, . . . , ~=, I1 . . . , I? , B1, . . . , B? ):

∀8 ∈ {1, . . . , =} max(G8 − 1, ~8 − 1) = 0 , G8 + ~8 − 1 = 0 ,

∀9 ∈ {1, . . . , ?} max
(
max
G8 ∈� 9

(G8 − I 9 ), max
¬G8 ∈� 9

(~8 − I 9 )
)
= 0 , max( 12 − I 9 , B 9 − I 9 ) = 0 .

This system can be constructed in polynomial time from the Boolean formula. The first 2= equations ensure
that for all 8 ∈ {1, . . . , =}, G8 ∈ {0, 1} and that G8 and ~8 have opposite logical values. The next ? equations
express that for all 9 ∈ {1, . . . , ?}, the variable I 9 has the same Boolean value as the clause � 9 , with the
notation G8 ∈ � 9 (resp. ¬G8 ∈ � 9 ) if the variable G8 occurs positively (resp. negatively) in the clause� 9 . The
last (dummy) equations ensure that I 9 = 1 for all 9 ∈ {1, . . . , ?}. The instance �1 ∧ · · · ∧�? is satisfiable if
and only if this system admits a solution. s

) Theorem 6.4. Solving a square classical posynomial system is NP-hard.

Proof. We modify the previous construction to obtain a square posynomial system over R2=+2?
>0 , along the

lines of Maslov’s dequantization principle [Lit07] or Viro’s method [Vir01]:

G∀8 ∈ {1, . . . , =} 2
5G8 +

2
5~8 = 1 , G8~8 = 1 ,

∀9 ∈ {1, . . . , ?}
∑
G8 ∈� 9

1
6G8I

−1
9 +

∑
¬G8 ∈� 9

1
6~8I

−1
9 = 1 , 1

3I
−1
9 + B 9I

−1
9 = 1 .

From the first 2= equations, the variables G8 and ~8 range over {2, 1/2}, the values 2 and 1/2 respectively
encoding the true and false Boolean values. The variable ~8 = 1/G8 corresponds to the Boolean negation of
G8 . Since each clause has precisely three literals, using the ? next equations, we deduce that the variable I 9
takes one of the values {1/2, 3/4, 1} if the clause � 9 is satisfied, and that it takes the value 1/4 otherwise.
The last ? equations impose that I 9 can take any value in (1/3,∞). We deduce that the formula�1∧· · ·∧�?
is satisfied if and only if the posynomial system that we have obtained in this way admits a solution in
R
2=+2?
>0 , hence the reduction to 3-SAT. s

1.3 ALINEARPROGRAMMINGAPPROACHFORTROPICALPOSYNOMIAL SYSTEMS.— Given
tropical posynomials %1, . . . , %= , we write the system (6.4) as % (G) = 0, where % B (%1, . . . , %=).
The support of this system, denoted by S, is defined as the disjoint union

⊎
1686= (%8 of the supports

of the posynomials (%8)1686= (by disjoint union, we mean the coproduct in the category of sets,
since these supports may have non-empty intersections or they may even coincide).

Our objective is to study if some tropical posynomial systems can be solved using linear
programming (according to Proposition 6.3, we cannot hope such an approach to work in general).
This is motivated by the fact that the zero-sublevel set (or feasibility set) P associated with a
tropical posynomial system is a closed polyhedron. Formally, we have

P B {G ∈ R= | % (G) 6 0} =
{
G ∈ R= | max

0∈S

(
20 + 〈0, G〉

)
6 0

}
.

Given a vector ~ in R= , we will denote by (LP(~)) the following linear program:

Maximize 〈~, G〉 subject to G ∈ P . (LP(~))

If the posynomial system % (G) = 0 admits a solution G∗ that is a vertex of P, then we can always
construct a suitable vector ~ such that G∗ arises as the solution of (LP(~)), however this vector
will depend upon the coefficients of the posynomials. In comparison, the following definition
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introduces candidates of interest for the cost vector of (LP(~)) only in terms of the posynomials’
exponents.

) Definition 6.5.We say that a vector ~ in the (convex) conic hull cone(S) is colorful if for all `
in (R>0)S,

~ =
∑
0∈S

`0 0 =⇒ ∀8 ∈ {1, . . . , =} , ∃0 ∈ (%8 , `0 > 0 .

In other words, a vector ~ in R= is colorful if it arises as a nonnegative combination of the
exponents of % , but also if all such combinations make use of at least one exponent of each one
of the tropical posynomials %1, …, %= . Our terminology is justified by the fact that if we think
of (%1 , (%2 , …, (%= as colored sets, then we need all the colors to decompose a colorful vector ~
over these. Recall that by Carathéodory’s theorem, every vector in the conic hull cone(S) can be
written as a positive linear combination of an independent family of vectors of S. Hence, when
~ is a colorful vector, it is obtained as a positive linear combination of precisely one vector 08
in each color class (%8 , and the family 01, …, 0= must be a basis (if not, Carathéodory’s theorem
would imply that ~ is a positive linear combination of a proper subset of {01, . . . , 0=}, so that ~
could not be a colorful vector.)

Example 6.6. We illustrate the Definition 6.5 in the Figure 6.3a, reusing the exponents of
the two tropical posynomials of Example 6.2, i.e., (%1 B {01, 02} and (%2 B {0′1, 0′2}, with
01 B (−2, 1), 02 B (−3, 4), 0′1 B (2, 4) and 0′2 B (3, 2). We represent a first vector ~0 that is
indeed colorful, because writing it as a linear combination of vectors in (%1 and (%2 necessarily
makes use of at least one vector in each support. This is not the case for the vector ~1, because
it lies in the blue span (that is, cone((%1)). The vector ~2 cannot be colorful because it is not
in the conic hull cone((%1 ∪ (%2). It can be seen on this figure that the set of colorful vectors
is precisely int(cone(02, 0′1)), the dark-shaded region of the plane.

01

02 0′1

0′2

~1

~2

~0

2G1 + 4G2 6 5

−3G
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G 2
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2
6
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G∗0
G∗1

~1 ~2

~0
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Figure 6.3: One colorful and two non-colorful vectors relatively to
the exponents of posynomials from Example 6.2

We represent in the Figure 6.3b the feasibility set P of our posynomial system %1(G1, G2) 6 0
and %2(G1, G2) 6 0, the one that we could already see in Figure 6.2c. We also reproduce the
three vectors ~0, ~1 and ~2. It appears here that maximizing the cost ~0 over the polyhedron P
yields a point G∗0 that is a solution of the posynomial system, since it lies in the zero-level-sets
of both %1 and %2. The cost ~1 also determines an optimal vertex G∗1 of P but that does not
achieve %2(G∗1) = 0, and therefore is not a solution of the system. Finally, the cost ~2 yields an
infinite solution of the linear program (LP(~)) since P is unbounded in this direction.
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The following theorem guarantees that the phenomenon observed in the Example 6.6 is gen-
eral, meaning that the existence of colorful vectors is a sufficient condition for feasible tropical
posynomial systems to have a solution.

) Theorem 6.7. Assume that ~ is a colorful vector, and that the linear program (LP(~)) is feasible.
Then, the linear program (LP(~)) has an optimal solution, and any optimal solution G satisfies
% (G) = 0.

Proof. Since the feasibility set P of (LP(~)) is nonempty, we can consider its recession cone, which is given
by C = {G ∈ R= | ∀0 ∈ S, 〈0, G〉 6 0}. As a colorful vector, ~ belongs to the polyhedral cone generated by
the vectors 0 ∈ S, so 〈~, G〉 6 0 for all G ∈ C. By the Minkowski–Weyl theorem, P is a Minkowski sum of
the form T +C where T is a polytope, i.e., every feasible point G can be written as G = G ′ +G ′′ with G ′ ∈ T
and G ′′ ∈ C. Since 〈~, G ′′〉 6 0, the maximum of the objective function G ↦→ 〈~, G〉 over the polyhedron P
is attained (by an element of T ).

Let G∗ ∈ R= be an optimal solution of (LP(~)). From the strong duality theorem, the dual linear program
admits an optimal solution (`∗0)0∈S ∈ (R>0)S which satisfies ~ =

∑
0∈S `

∗
0 0 and `∗0 (20 + 〈0, G∗〉) = 0 for all

0 ∈ S. Since ~ is a colorful vector, for all 8 ∈ {1, . . . , =}, there is some 08 ∈ (%8 such that `∗08 > 0. We then
get that, for all 8 ∈ {1, . . . , =}, %8 (G∗) > 208 + 〈08 , G∗〉 = 0. As a result, % (G∗) = 0. s

We nowwant to provide a geometric condition ensuring that the linear program (LP(~)) is feasible,
still regardless of the coefficients (20)0∈S. We say that the tropical posynomial map % associated
with our system has pointed exponents if its support is contained in an open halfspace, i.e., there
exists I in R= such that for all 0 in S, we have 〈0, I〉 < 0.

The interest of pointed systems comes from the following property:

) Proposition 6.8. The inequality problem % (G) 6 0 has a solution G in R= regardless of the
coefficients of % if and only if % has pointed exponents.

Proof. Suppose that for all values of (20)0∈S, there exists G ∈ R= such that % (G) 6 0. By choosing 20 ≡ 1,
there exists G0 ∈ R= that satisfies ∀0 ∈ S, 1 + 〈0, G0〉 6 0. Hence, for all 8 ∈ {1, . . . , =}, the exponents of %8
lie in the open halfspace {0 ∈ R= | 〈0, G0〉 < 0}.
Suppose now that % has pointed exponents. Then there is some I ∈ R= such that for all 0 ∈ S, we have
〈0, I〉 < 0. We define _ B max0∈S (−20)/〈0, I〉 so that ∀0 ∈ S, 20 + 〈0, _I〉 6 0 and therefore for all
8 ∈ {1, . . . , =}, %8 (_I) 6 0. s

Example 6.9. Let us illustrate the Proposition 6.8, by reusing again the exponents of the
tropical posynomial system in Example 6.2, and visualized in Figure 6.3a.
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Figure 6.4: When the exponents are pointed, the polyhedron P is nonempty
regardless of the coefficients (20)0∈S
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These exponents are pointed since they all have a positive G2 coordinate. The Figure 6.4b and
the Figure 6.4c show that we may modify the coefficients of % as we want, thus translating
the defining inequalities of P, the polyhedron P remains nonempty.

This is not the case for a feasibility set associated with a tropical posynomial with non-
pointed exponents. For instance, taking (%1 B {(−2,−1), (−3, 4)} and (%2 B {(2, 4), (3,−2)},
we can see on the Figure 6.5a that (%1 and (%2 (positively) span the whole two-dimensional
space, thus the configuration of exponents is not pointed. The Figures 6.5b and 6.5c show
that the corresponding polyhedron P can be either empty or nonempty depending on the
choice of coefficients.
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Figure 6.5: When the exponents are not pointed, the polyhedron P may be
empty for some coefficients (20)0∈S

As a consequence of Theorem 6.7 and Proposition 6.8, if a tropical posynomial system % (G) = 0
has pointed exponents and there exists a colorful vector, then the system admits a solution which
can be found by linear programming (and whatever the coefficients of the posynomials!).

1.4 THE RELATIONSHIP BETWEEN TROPICAL POSYNOMIAL SYSTEMS AND MARKOV DECI-
SION PROCESSES. — Let us discuss the remarkable special case of tropical posynomial systems
made of Markov decision processes (MDPs). We refer the reader to our Chapter 3 for a detailed
presentation of Markov and semi-Markov decision processes. The results presented there allow
us to establish that the discounted value function E of MDPs (when we want to maximize a reward
instead of minimizing a cost) satisfy a Bellman fixed-point equation of the form

for all 8 in {1, . . . , =}, E8 = max
0∈�8

(
20 + W0 〈?0, E〉) , (6.5)

where {1, . . . , =} is the state space of the MDP,�8 is the set of playable actions from 8 , the scalar 20

(resp. W0) is the reward (resp. discount factor) collected by the player as a result of choosing action
0, and ?0 B (?09 )16 96= is the (stochastic) transition probability vector determining in which state
the player goes after playing 0.

The equation (6.5) reduces to the form (6.4) with (%8 B {W0?0 − 48 | 0 ∈ �8}, where 48 denotes
the 8-th element of the canonical basis of R= . In what follows, when we say that an MDP is
discounted, we mean that all the discount factors are such that 0 6 W0 < 1 (in the usual sense,
and not the generalized framework of Chapter 3). The following holds:
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) Proposition 6.10. Any negative vector is colorful with respect to the tropical posynomial system
associated with a discounted Markov decision process.

Proof. Let G be a vector with negative entries. We first claim that G is in the cone spanned by the
vectors (W08?08 − 48 )1686= , for all choice of (01, 02, . . . , 0=) in �1 × �2 × · · · × �= . Indeed, the system
G =

∑=
9=1 _8 (W08?08 − 48 ) can be rewritten as _ = −G + Γ%_, where % is the stochastic matrix with columns

(?08 )1686= , Γ the diagonal matrix diag
(
(W08 )1686=

)
and _ the vector (_8 )1686= . Since the spectral radius

d (Γ%) is strictly less than 1, we have _ = (�−Γ%)−1 (−G), and (�−Γ%)−1 = ∑∞
:=0 (Γ%)

: has only nonnegative
entries. Thus, we have _ > 0 and G lies in the conic hull of (W08?08 − 48 )1686= . This is true for any choice
of actions, hence G is in cone(S).
Suppose by contradiction that G is not a colorful vector. Then, according to the Definition 6.5, there exists
a vector ` with nonnegative entries such that G =

∑=
9=1

∑
0∈� 9

`0
(
W0?0 − 4 9

)
and ∃8 ∈ {1, . . . , =} such that

for all 0 ∈ �8 , `0 = 0, meaning that the 8-th color is not used in the decomposition. It follows that

G8 = 〈G, 48 〉 =
=∑
9=1

∑
0∈�8

`0
〈
W0?0 − 4 9 , 48

〉
=

=∑
9=1

∑
0∈�8

`0W
0?09 −

∑
?∈�8

`0 =

=∑
9=1

∑
0∈�8

`0W
0?09 ,

By nonnegativity of the multipliers (`0)0∈S, of the discount factors and of the entries of the probability
vectors, we end up with G8 > 0, hence the contradiction. s

Example 6.11. In order to illustrate what precedes, let us depict in Figure 6.6a a 2-state
MDP (with the same graphical conventions than Chapter 3) with |�1 | = 3 and |�2 | = 2. The
rewards are not depicted because not relevant here, however, the transition probabilities are
given along the arcs and the discount factors written in bold next to their parent actions.
In the Figure 6.6b, we show the five vectors (W0?0)0∈S, that all lie in the half-open simplex
{G > 0} ∩ {~ > 0} ∩ {G + ~ < 1}. Remark that one of these vectors (associated with state 1)
is on the ~-axis because it corresponds to a deterministic action making the player go from
state 1 to state 2. All the other actions are properly stochastic, hence not on the axes.

1 2
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(a) (b) (c)

Figure 6.6: An MDP with two states and fives actions (a),
its probability vectors (b) and its posynomial exponents (c)

In the Figure 6.6c, we represent the vectors (W0?0 − 48)0∈S. One can then see that all the
vectors of (R<0)2 are colorful and we highlight in particular the vector −1. Remark that the
configuration is pointed as well, because all the exponents lie in the half-space G + ~ < 0.

The Proposition 6.10 together with the Theorem 6.7 allow us to recover the usual linear program-
ming approach to find the value of discounted MDPs, (see [Put14, p. 223]), sometimes called
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Perron’s method, stating that the value can be obtained by minimizing the function E ↦→ ∑=
8=1 E8

subject to the constraints E8 > 20 + W0 〈?0, E〉 for all 8 in {1, . . . , =} and 0 in �8 .
The fact that discounted MDPs yield tropical posynomial systems with pointed configuration

of exponents, as showed by Example 6.11, is true in general. Conversely, the following theorem
tells us that tropical posynomial systems with pointed exponents admitting a colorful vector are
actually not more general than discounted MDPs. Note that the proof makes use of an important
property of the set of colorful vectors that will only be shown in Section 2.

) Theorem 6.12. Tropical posynomial systems with pointed exponents and for which a colorful vector
exists are equivalent to discounted Markov decision processes up to a change of variables.

Proof. Let us consider the general system (6.4) %8 (G) = max0∈(%8 (20 + 〈0, G〉) = 0 for all 8 ∈ {1, . . . , =}.
Following the claim of the theorem, we suppose that (i) the configuration of exponents is pointed, as a
result we have a linear form I ∈ (R=)★ such that I (0) > 0 for all 8 ∈ {1, . . . , =} and for all 0 ∈ �8 ; (ii)
in addition, the configuration admits a colorful vector, hence by Theorem 6.20, we know that the set of
colorful vectors is an =-dimensional simplicial cone. We represent the hyperplanes supporting the maximal
faces of this cone by their normal vectors (ℎ8 )1686= , also identified to vectors of the dual space (R=)★ of
R= , i.e., linear forms. It is shown in Section 2 that the (ℎ8 )1686= are such that for all 1 6 8, 9 6 = with 9 ≠ 8 ,
if 0 ∈ (%8 then ℎ8 (0) > 0 while if 0 ∈ (% 9 then ℎ8 (0) 6 0.

The collection (ℎ8 )1686= is a basis of (R=)★ (for they are the normal vectors to the faces of a full-dimensional
simplicial cone). We denote by (B8 )1686= its dual basis, whose elements belong to R= and generate (by
positive scaling) the edges of the set of colorful vectors. From Lemma 6.18, we deduce that for all 1 6 8 6 =,
we have B8 ∈ cone(S) and therefore I (B8 ) > 0. We also define the positive scalar _ by

_ B min
1686=

min
0∈(%8

[
I (B8 )ℎ8 (0)

]−1
.

We now introduce the automorphism 5 of R= that maps B8 to −_I (B8 )48 for all 1 6 8 6 = (where 48 denotes
the 8-th vector of the standard basis). From the duality of bases (ℎ8 )1686= and (B8 )1686= , for any 0 ∈ R= ,
we have the expression

5 (0) = −_
=∑
9=1

I (B 9 )ℎ 9 (0)4 9 .

For all 8 ∈ {1, . . . , =} and for all 0 ∈ �8 , we define W0 B ‖ 5 (0) + 48 ‖1. We can verify that 0 6 W0 < 1, indeed

0 6 ‖ 5 (0) + 48 ‖1 = _
∑
9≠8

I (B 9 ) (−ℎ 9 (0)) + (1 − _I (B8 )ℎ8 (0)) = 1 − _I (0) < 1,

since I (0) = I (∑9 ∈{1,...,=} ℎ 9 (0)B 9 ) > 0 from the pointed character of the exponents’ configuration. We
can therefore introduce the stochastic vector ?0 B (W0)−1 (5 (0) + 48 ) for all 0 ∈ S (as shown in the above
expression, it has nonnegative coordinates from our choice of _).

Eventually, denoting by 5 ★ the adjoint of the isomorphism 5 and letting ~ B (5 ★)−1 (G), we have for all
8 ∈ {1, . . . , =}:

max
0∈(%8

(20 + 〈0, G〉) = 0 ⇐⇒ max
0∈(%8

(
20 + W0 〈?0, ~〉

)
= ~8

where we recognize Bellman’s optimality equation of a MDP with rewards (20)0∈S, discount factors (W0)0∈S
and transitions probabilities (?0)0∈S. s

In a sense, the Theorem 6.12 is at the same time a negative and a positive result. On one hand,
we learn that the class of interest made of tropical posynomial systems with pointed exponents
and admitting a colorful vector, for which we can easily find solutions, is not more general than
the widely studied class of discounted MDPs. On the other hand, it allows us to use well-known
algorithms for MDPs to solve this class of posynomial systems.

We understand alternatively from the proof of Theorem 6.12 that we can distort tropical
posynomial systems in general onto MDPs by means of a linear transformation, but there are
multiple degrees of freedom in this map. Indeed, we could have taken for 5 the automorphism
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which maps B8 to −`848 , where (`8)1686= are positive coefficients to tune, chosen such that for all
1 6 8 6 = and 0 in �8 , the vector 5 (0) + 48 is nonnegative and sub-stochastic (such coefficients
do exist since the previous result shows that `8 = −_I (B8) satisfies these requirements). Let us
denote by X the polyhedron of admissible choices of `:

X =
{
` ∈ (R>0)= | ∀8 ∈ {1, . . . , =}, ∀0 ∈ �8 , 1 − `8ℎ8 (0) > 0 and

∑=
9=1 ` 9ℎ 9 (0) > 0

}
.

Tweaking the values of the (`8)1686= by remaining in X allows one to have a little control on the
largest discount factor W (`) featured in the resulting MDP, that we can compute by taking the
largest ℓ1 norm of the vectors 5 (0) + 48

W (`) = max
1686=

max
0∈�8

{
1 −

=∑
9=1

` 9ℎ 9 (0)
}
.

For the (�8)1686= are finite, a minimal discount factor W∗ B min`∈X W (`) can be determined by
solving

∑=
8=1 |�8 | linear programs.

Since this approach is applicable to any posynomial tropical system, we can use it on… systems
that already arise from MDPs. This amounts to geometrically distort an MDP by a linear change
of variables into another MDP, to obtain reduced discount factors. Since it is customary to obtain
that the largest discount factor controls the complexity of algorithms used in the framework of
MDPs (see for instance the complexity result from [Ye11] for the simplex algorithm), this “discount
boosting” technique could turn advantageous in some applications. It is also prone to transform
undiscounted configurations into discounted configurations for some instances. Remark that this
approach echoes other reduction techniques involving diagonal scalings [AG13, AGQS19].

We illustrate the above discussion with the following example.

Example 6.13. We come back to the Markov decision process depicted in Figure 6.6a, and
with vectors (W0?0)0∈S depicted in Figure 6.6b. Associating with each action of �8 with
discount factor W and transition vector ? the vector 0 B W? − 48 (8 = 1 or 8 = 2), we have
(referring to the three actions of�1 and the two actions�2 by the indices 11, 12, 13, 21 and 22):

W11 = 0.75 W12 = 0.75 W13 = 0.95 W21 = 0.60 W22 = 0.60
?11 = (0.866..., 0.133...) ?12 = (0.4, 0.6) ?13 = (0, 1) ?21 = (0.25, .75) ?22 = (0.75, 0.25)
011 = (−0.35, 0.10) 012 = (−0.70, 0.45) 013 = (−1, 0.95) 021 = (0.15,−0.55) 022 = (0.45,−0.85)

The Figure 6.7a shows in solid lines the (pointed) configuration of exponents in the half-plane
G + ~ < 0, and the vectors (W0?0)0∈S as well in dashed lines (this figure hence combines the
Figure 6.6b and the Figure 6.6c). We can graphically read that the maximum discount factor of
the problem is 0.95, either by taking the norm of W13?13, or by looking at the (normal) distance
from the tip of the vector 013 to the hyperplane G + ~ = 0. Our objective is to increase this
margin by applying a linear transformation to the vectors 011, …, 022.

As done in the proof of Theorem 6.12, we can map via the function Ψ the set of colorful
vectors cone(011, 021) onto the negative orthant (R60)2, but this still leaves us with too degrees
of freedom `1 and `2 such that Ψ(011) = −`141 and Ψ(021) = −`242. We let the reader check
that the function Ψ admits the expression

Ψ(G,~) =
(
`1
(11G + 3~)
355/100 , `2

(2G + 7~)
355/100

)
.
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Figure 6.7: The exponents of the posynomial system associated with the MDP
of Example 6.11 before (left) and after (right) a change of variables to reduce the

discount factors

The satured constraints of X that determine `1 and `2 in this example are on one hand the
fact that Ψ(013) + 41 needs to have a nonnegative G-coordinate, and on the other hand the
fact that Ψ(013) and Ψ(022) shall yield the same discount factor. We are thus able to compute
`1 = 71/163 and `2 = 14981/31622.

We can now go back to a MDP framework by shifting our new exponents of Ψ(�1) (resp.
Ψ(�2)) by 41 (resp. 42). An initial discount W and transition vector ? determine with our
transformation another “improved” tuple W ′? ′ B Ψ(W? −48) +48 (it suffices to take the ℓ1 norm
to isolate W ′ in this expression). The maximum new discounts are W ′13 = W

′
22 = 19623/31622 '

0.6205, which represents a 65 % shrink compared to the initial value W13 = 0.95.
To sum it up, we started from an MDP system with value function E satisfying

E1 = max

(
211 +

3
4

(13
15
E1 +

2
15
E2

)
, 212 +

3
4

(3
5
E1 +

2
5
E2

)
, 213 +

95
100

E2

)
E2 = max

(
221 +

3
5

(1
4
E1 +

3
4
E2

)
, 222 +

3
5

(3
4
E1 +

1
4
E2

))
and we have built an equivalent MDP system with value functionF = (Ψ★)−1(E), identical
rewards, but different transition probabilities and reduced discount factors verifying

F1 = max
(
211 + 0.5644F1 , 212 + 0.4544

(
0.4860F1 + 0.5140F2

)
, 213 + 0.6205F2

)
F2 = max

(
221 + 0.5262F2 , 222 + 0.6205

(
0.4745F1 + 0.5255F2

))
.

1.5 GEOMETRIC PROGRAMMINGAPPROACHOF POSYNOMIALS SYSTEMS. — In this section,
we come back to the problem of solving “classical” posynomial systems of the form (6.2), i.e., given
a collection % = (%1, . . . , %=) of posynomials, we want to find G in (R>0)= such that % (G) = 1. We
are going to leverage on the results proved for the tropical case to tackle the classical case. Indeed,
remark that the definitions of colorful vectors and pointed exponents introduced in Section 1.3
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still make sense for usual posynomials, since they depend only upon the disjoint union S of (%1 ,
…, (%= , and these remain subsets of R= . We shall need the following lemma:

) Lemma 6.14. If ~ is a colorful vector relatively to the exponents of S, the polyhedron P defined by

P B
{
G ∈ R= | ∀0 ∈ S, log 20 + 〈0, G〉 6 0 and 〈~, G〉 > `

}
is bounded (possibly empty), regardless of our choice of positive (20)0∈S or ` in R.

Proof. If P is nonempty, let C B {G ∈ R= | ∀0 ∈ S, 〈0, G〉 6 0 , 〈~, G〉 > 0} denote its recession cone, and
let G ∈ C. Since ~ is a colorful vector, there exists (_1, . . . , _=) ∈ R=>0 and a basis (01, . . . , 0=) ∈

∏
1686= (%8

such that ~ =
∑=
8=1 _808 . Thus, 〈~, G〉 6 0, and so 〈~, G〉 = ∑=

8=1 _8 〈08 , G〉 = 0. As a consequence, since _8 > 0
for all 8 ∈ {1, . . . , =}, we have 〈08 , G〉 = 0, but since (01, . . . , 0=) is a basis, we get G = 0. Thus, C = {0}, and
according to the Minkowski–Weyl theorem, P is bounded. s

We now exhibit a class of posynomial systems that we can solve using geometric programs (we
refer the reader to [CS16] for background on this topic), still using the notion of colorful vector
introduced by Definition 6.5, and the notion of pointed exponents discussed in Section 1.3 as well.
Given a vector - in R= , we denote exp(- ) B (exp(-8)1686=).

) Theorem 6.15. Let % (G) = 1 be a posynomial system with pointed exponents S, and ~ be a colorful
vector relatively to S. Then, the system has a solution G = exp(- ∗) in (R>0)= , where - ∗ is an
arbitrary solution of the following geometric program:

Maximize 〈~,- 〉 subject to ∀8 ∈ {1, . . . , =} 68 (- ) 6 0 , (G)

where 68 (- ) B log
( ∑

0∈(%8 20 4
〈0,- 〉

)
.

Proof. For G ∈ R=
>0, we define - B log(G) (componentwise) so that % (G) = 1 is equivalent to solving

68 (- ) = 0 for all 8 ∈ {1, . . . , =}. By Hölder’s inequality, the functions (68 )1686= are convex. We define
ℎ8 : - ↦→ max0∈(%8

(
log(20) + 〈0,- 〉

)
for 8 ∈ {1, . . . , =} and we observe that ℎ8 (- ) 6 68 (- ) 6 ℎ8 (- ) +

log( |(%8 |) (see in particular the Example 6.16 to visualize this inequality).

Since the system % (G) = 1 has pointed exponents, by Proposition 6.8, the polyhedron {- ∈ R= | ∀8 ∈
{1, . . . , =} , ℎ8 (- ) + log( |(%8 |) 6 0} is nonempty. A fortiori, the feasible set of (G) is nonempty.

Let us now prove that the maximum of (G) is finite and attained, by proving that the `-superlevel set
S` = {- ∈ R= | 〈~,- 〉 > ` and ∀8 ∈ {1, . . . , =} , 68 (- ) 6 0} of the objective function (included in the
feasible set) is compact for all ` ∈ R. Closedness is direct, and we observe that for ` ∈ R, S` is contained
in {- ∈ R= | 〈~,- 〉 > ` and ∀8 ∈ {1, . . . , =} , ℎ8 (- ) 6 0}, but by Lemma 6.14, this polyhedron is bounded.
Hence, (G) admits an optimal solution - ∗.

Furthermore, again by Proposition 6.8, there exists- such that for all 8 ∈ {1, . . . , =},ℎ8 (- )+log( |(%8 |)+1 6 0.
Therefore, we have68 (- ) < 0 for all 1 6 8 6 =, whichmeans that (G) satisfies Slater’s condition. Problem (G)
being convex, optimality of- ∗ is characterized by the Karush–Kuhn–Tucker conditions (see [BV04]). Hence,
there is a vector of nonnegative multipliers _∗ = (_∗1, . . . , _

∗
=) such that (- ∗, _∗) is a stationary point of

the Lagrangian of (G), and the complementarity slackness conditions hold, i.e. for all 8 ∈ {1, . . . , =},
_∗
8
68 (- ∗) = 0. Defining /8 B

∑
0∈(%8 204

〈0,- ∗ 〉 > 0 for 8 ∈ {1, . . . , =}, the stationarity conditions give

~ =

=∑
8=1

_∗
8

/8

∑
0∈(%8

20 4
〈0,- ∗ 〉 0 .

Since ~ is colorful, _∗
8
is positive for all 1 6 8 6 =. The complementarity slackness conditions yield

68 (- ∗) = 0 for all 1 6 8 6 =. Finally, G∗ B exp(- ∗) satisfies % (G∗) = 1. s
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Example 6.16. The Theorem 6.15 for classical posynomials uses our result Theorem 6.7
dealing with tropical posynomials, thanks to the inequalities ℎ8 (- ) 6 68 (- ) 6 ℎ8 (- ) +
log( |(%8 |) for all 1 6 8 6 = on the constraints. We reckon it is interesting to illustrate
this aspect, that is a customary tool when going from the field (R, +,×) to the semifield
(R ∪ {−∞},max, +).

(a) (b)

Figure 6.8: Seeing classical posynomials through log-glasses
shows max-plus boundaries

The Figure 6.8a depicts the 1-level-sets of the two posynomials %1(G1, G2) = G21G
4
2 + 2G31G22

and %2(G1, G2) = 3G−21 G2 + 4G−31 G42 over (R>0)2, while the Figure 6.8b gives the same plot once
we wear “log-glasses”, i.e., (-1, -2) ↦→ log(%8 (exp(-1), exp(-2))), with 8 = 1 or 8 = 2. We
can then see that each one of these new level-sets (i.e., 61 and 62) is bounded between a pair
of “parallel” tropical posynomials. In this example, these posynomials are those featured
in Examples 6.2, 6.6 and 6.9. In particular the configuration of exponents is pointed and
admits a colorful vector, so that the associated geometric program can be solved via linear
programming.

2 Properties of the colorful interior of convex sets

The Theorems 6.7 and 6.15 rely on the existence of a colorful vector (see Definition 6.5). The
purpose of this section is to study the properties of the set of such vectors. In fact, colorful
vectors can be defined more generally from a family of = closed convex cones, independently of
posynomial systems.

) Definition 6.17. Let C = (�1, . . . ,�=) be a collection of = closed convex cones of R= . We say
that a vector ~ in R= is colorful if it belongs to the set

cone(�1 ∪ · · · ∪�=) \
⋃

1686=
cone

(⋃
9≠8

� 9
)
.

The latter set is referred to as the colorful interior of C.

The name of the set still comes from the idea that if the initial cones �1, …, �= are thought
of as different colored sets, then a colorful vector necessarily makes use of all the colors to be
decomposed over these cones, since it is in the whole conic hull cone(�1 ∪ · · · ∪�=) but not in
the conic hull (= − 1) colors. The earlier Definition 6.5, that is more specific to posynomials, can
be recovered by taking �8 B cone((%8 ) for all 8 in {1, . . . , =}.
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2.1 STRUCTURE OF THE COLORFUL INTERIOR OF POINTED CONES. — In what follows,
we shall restrict to the case where the collection C is pointed, i.e., cone(�1 ∪ · · · ∪�=) \ {0} is
included in an open halfspace – we will explain at the end of the section what properties can be
lost otherwise. Remark that we do not know so far if the colorful interior of C is convex, or even
connected, and using the Definition 6.17 head first does not suffice to answer these questions.

Suppose that {G ∈ R= | 〈I, G〉 > 0} is an open halfspace containing the (�8 \ {0})1686= .
Then, as a cone, the colorful interior of C can be more simply studied from its cross-section with
{G ∈ R= | 〈G, I〉 = 1

}
. The latter can be shown to coincide with the set

conv((1 ∪ · · · ∪ (=) \
⋃

1686=
conv

(⋃
9≠8

( 9
)

(6.6)

where for all 8 in {1, . . . , =}, (8 is the cross-section of the cone �8 by {G ∈ R= | 〈G, I〉 = 1
}
. In the

setting of posynomial systems, (8 is isomorphic to the convex hull of (%8 , hence we recognize
the role played by the Newton polytopes of the different posynomials (see [DLRS10]). Given
a collection S = ((1, . . . , (=) of = closed convex sets of R=−1, we still refer to the set (6.6) as
the colorful interior of S, and denote it by colintS. The Figure 6.9 illustrates this dimensional
reduction with three colored sets, hence going from three conic hulls in R3 to an equivalent
configuration of three convex hulls in R2.

�3

�1

�2

(a)

�3

�1

�2

(b)

(3

(1

(2

(c)

Figure 6.9: Taking three finite subsets of R= (a), their conic hulls that are all included in a
common halfspace (b), and switching to convex hulls in a cross-section parallel with the

ground plane (c)

We start with a lemma justifying why we have chosen the “interior” terminology.

) Lemma 6.18. Let S = ((1, . . . , (=) be a collection of = closed convex sets of R=−1. Then colintS is
an open set included in int conv((1 ∪ · · · ∪ (=).

Proof. Since colintS ⊂ conv(S), it suffices to prove that colintS ∩ mconv(S) = ∅ (where m denotes the
frontier of a set) to show colintS ⊂ int conv(S). Let G ∈ mconv(S), and let � be a supporting hyperplane
of conv(S) at G , so that G ∈ conv(S) ∩� = conv(⋃1686= ((8 ∩� )). By Carathéodory’s theorem, G can be
written using at most = − 1 vectors of ((8 ∩ � )1686= , so it is in conv(⋃9≠8 (8 ) for some 8 ∈ {1, . . . , =} (the
color not used in the decomposition). Therefore G ∉ colintS.
Now we show that colintS is open. Let G ∈ colintS. Let 8 ∈ {1, . . . , =}, G is not in conv(⋃9≠8 (8 ) which
is closed, so 38 B d(G, conv(⋃9≠8 (8 )) > 0. Similarly, mconv(S) is closed and does not contain G by the
above argument, so 3 ′ B d(G, conv(S)) > 0. The open ball centered in G with radius min((38 )1686=, 3 ′) is
clearly included in conv(S). s
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The set colintS has appeared before in a work of Lawrence and Soltan [LS09], in one of the proof
where they characterize the intersection of convex transversals to a collection of sets. In more
details, Lemma 6.18 and [LS09, Lemma 6] imply:

) Proposition 6.19. Let S = ((1, . . . , (=) be a collection of = closed convex sets of R=−1. Define
the set D of colorful simplices by D B

{
conv({G1, . . . , G=}) | G1 ∈ (1, . . . , G= ∈ (=

}
, i.e., with one

vertex in each colored set. Then we have

colintS =
⋂
Δ∈D

intΔ = int
⋂
Δ∈D

Δ .

Remark that the Proposition 6.19 still holds if the colorful simplices Δ in D are replaced by
the convex transversals to the sets (1, . . . , (= . We illustrate in the Figure 6.10 our two ways
so far to delineate the colorful interior colintS, reusing the three convex sets of Figure 6.9c.
The Figure 6.10a uses our definition (6.6), where for all 1 6 8 6 =, the convex hull conv(∪9≠8(8) of
all colors but the 8-th one is denoted for short by (̂8 . The Figure 6.10b shows that colintS arises as
the intersection of colored simplices (three of them suffice here), as claimed by Proposition 6.19.

The Figure 6.10 for this precise example with three polyhedra in R2 shows that the set colintS
of colorful vectors is a triangle, that does not arise as any colored simplex of D though. This
property is in fact general, as showed by the following characterization theorem that is a corollary
of [LS09, Theorem 2]. Given an affine (and oriented) hyperplane � B {G ∈ R=−1 : 〈ℎ, G〉 = 1},
we shall denote by � > (resp. � 6) the open (resp. closed) halfspace {G ∈ R=−1 : 〈ℎ, G〉 > 1} (resp.
{G ∈ R=−1 : 〈ℎ, G〉 6 1}).

) Theorem 6.20. Let S = ((1, . . . , (=) be a collection of = closed convex sets of R=−1, and assume
that colintS is nonempty. Then, colintS is the interior of a (= − 1)-dimensional simplex.

Moreover, if the sets ((8)1686= are bounded, then there are = unique hyperplanes (�8)1686= such
that for all 8 in {1, . . . , =}, (8 ⊂ � >

8 , and for all 9 ≠ 8 , ( 9 ⊂ � 68 and ( 9 ∩ �8 ≠ ∅. In this case, we
have colintS =

⋂
1686= �

>
8 .

Geometrically, every �8 in Theorem 6.20 is a tangent hyperplane to the convex sets (( 9 ) 9≠8
which separates them from the set (8 , and in particular we have (̂8 ⊂ � 6

8
for all 1 6 8 6 =.

The existence (and uniqueness) of the tangent hyperplanes follows from the work of Cappell et
al. [CGP+94], revisited by Lewis, Klee and von Hohenbalken [LvHK96] who gave a simpler and
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(2

(̂3

(̂1

(̂2
colint(S)

(a)

(3

(1

(2

colint(S)

(b)

Figure 6.10: Visualizing the colorful interior of three polyhedral in R2 using the
definition (6.6) (left) or the Proposition 6.19 (right).
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Figure 6.11: The colorful interior of (1, …, (= convex bodies of R=−1 is
a simplex whose faces are supported by (̂1, …, (̂=

constructive proof. We depict in the Figure 6.11 three convex sets (1, (2 and (3 in R2 that this
are time are not polyhedra. Their nonempty colorful interior colint ((1, (2, (3) remains a triangle
(two-dimensional simplex) as claimed by Theorem 6.20. Observe how the maximal faces of this
simplex (edges of the triangle) are supported by tangent hyperplanes to all but one bodies.

2.2 NONVACUITY CONDITIONS. — Given a collection S = ((1, . . . , (=) of = closed convex sets of
R=−1, we now discuss necessary and sufficient conditions for colint(S) to be nonempty. Indeed,
we have so far only represented configurations of convex bodies for which the colorful simplex
exists, but it is likely to be empty in general. We can easily understand that in order to have
colint(S) ≠ ∅, it is necessary that the ((8)1686= are pairwise disjoint. However, as shown by
the Figure 6.12b, this is way not sufficient. Even imposing that (8 ∩ (̂8 ≠ ∅ for all 1 6 8 6 =
does not ensure the nonvacuity of colint ( , so a stronger notion on the relative positions of the
((8)1686= is needed. It looks from the Figure 6.12d that it is worth focusing on the “pointy” convex
bodies delineated by = − 1 convex hulls among the ((̂8)1686= , i.e., the sets ((8)1686= where for all 8
in {1, . . . , =}, (8 B

⋂
9≠8 (̂ 9 . Indeed in Figure 6.12, the “spikes” of the ((8)1686= seem to control

the size of the colorful interior, and if they overlap, colint(S) collapses and becomes empty.
Recall (for instance from [GP88]) that the collection S is separated if for any choice of : 6 =

points G1, . . . , G: in (81 × · · · × (8: (and pairwise distinct 81, . . . , 8: ), the points G1, . . . , G: are in
general position (spanning a (: − 1)-dimensional affine space). We have the following:

) Proposition 6.21. Let (1, . . . , (= be a collection of = compact convex sets of R=−1. The collection
((8)1686= is separated if and only if

⋂
1686= (̂8 = ∅.
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(a) (b) (c) (d)

Figure 6.12: If the convex bodies are too close from each other,
their colorful interior is empty

Proof. Recall that the collectionS is separated if and only if for all :+ℓ 6 =, any two disjoint :-subcollection
and ℓ-subcollection of S can be separated by an affine hyperplane (this result, already stated in [BHJ08] for
example, is easy to show).

We first suppose that
⋂

1686= (̂8 = ∅, then for all partition (� , � ) of {1, . . . , =}, we have
( ⋂

8∈� (̂8
)
∩( ⋂

9 ∈� (̂ 9
)
= ∅. The convex sets separation theorem ensures that there exists an affine hyperplane �

separating the convex sets
⋂
8∈� (̂8 and

⋂
9 ∈� (̂ 9 . However, for all 9 ∈ � , (� B conv

(
((8 )8∈�

)
⊂ (̂ 9 , as a

result (� ⊂
⋂
9 ∈� (̂ 9 . In particular, � separates the two subcollections ((8 )8∈� and (( 9 ) 9 ∈� . If (� ′, � ′) are

two disjoint subcollections of {1, . . . , =} such that � ′ ∪ � ′ ≠ {1, . . . , =}, we can still complete (� ′, � ′) in
a partition of the form (� , � ) to get as above a hyperplane � separating ((8 )8∈� ′ and (( 9 ) 9 ∈� ′ . From the
proposition we have recalled on the separation property, the collection ((8 )1686= is separated.

Conversely, the separation of ((8 )1686= implies that for all 8 ∈ {1, . . . , =}, there exists some affine hyper-
plane separating (8 from the collection ((: ):≠8 . By convexity, this hyperplanes separates as well (8 and
conv

( ⋃
:≠8 (:

)
= (̂8 . As a result (8 ∩ (̂8 = ∅, or equivalently

⋂
1686= (̂8 = ∅. s

Note that the criterion
⋂

1686= (̂8 = ∅ is advantageous in practice because it can be assessed in
(weak) polynomial time via linear programming. The interest of the Proposition 6.21 comes from
the fact that the separation of the ((8)1686= is a strong necessary condition for nonvacuity of the
colorful interior.

) Proposition 6.22. Let (1, . . . , (= be a collection of = compact convex sets of R=−1. Then, if colintS
is nonempty, the collection ((8)1686= is separated.

Proof. We will show by contraposition that colintS ≠ ∅ =⇒ ⋂
1686= (̂8 = ∅. Suppose that we have

G0 such that for all 8 ∈ {1, . . . , =}, G0 ∈ (̂8 . Let G ∈ conv(S). If G = G0, it is clear that G ∉ colintS.
Otherwise, consider the halfline [G0, G), which is not entirely included in conv(S) because all the ((8 )1686=
are bounded. We define G ′ B maxI∈[G0,G) {I ∈ conv(S)}, in the sense of the order induced on [G0, G). Note
that the maximum is indeed attained by closedness of the ((8 )1686= . By definition, we have G ∈ [G0, G ′] and
G ′ ∈ mconv(S). The latter ensures that G ∈ conv(⋃1686= ((8 ∩ � )) where � is a supporting hyperplane
to conv(S). Hence, from Carathéodory’s theorem, there is : ∈ {1, . . . , =} such that G ′ ∈ (̂: (see the proof
of Lemma 6.18 where it is also done). But by assumption, G0 is in (̂: as well and so does G by convexity.
We have thus just proved that for all G ∈ conv(S), G ∈ (̂: for some : ∈ {1, . . . , =}, which implies that
colintS = ∅. Proposition 6.21 terminates the proof. s

We conjecture that the necessary condition of Proposition 6.22 is actually sufficient, so that the
following would hold:

) Conjecture 6.23. Let (1, . . . , (= be a collection of = compact convex sets of R=−1. Then colintS
is nonempty if and only if the family ((8)1686= is separated.

This conjecture is easy to show for = = 2, either in the conic setting by describing the cones
�1 and �2 by means of polar angles, or in the affine setting where convex hulls become mere
segments. We prove the conjecture in the case where = = 3, taking advantage of linear algebra
formulas involving cross products.
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) Proposition 6.24. Let S = ((1, (2, (3) be a collection of three convex compact sets of R2. Then,
colintS is nonempty if and only if ((1, (2, (3) is separated.

Proof. Suppose that ((1, (2, (3) is separated. We know from [LvHK96] that for all 8 ∈ {1, 2, 3} we have
two hyperplanes (in this case affine lines) tangent to sets of the collection (( 9 ) 9≠8 and inducing opposite
orientation on these. Such lines cannot meet (8 by separation property, so one of them, denoted �8 , is
such that (8 ⊂ � >

8
and ( 9 ⊂ � 68 for 9 ≠ 8 . In particular, note that conv((( 9 ) 9≠8 ) ⊂ � 68 . For 8, 9 ∈ {1, 2, 3}

and 9 ≠ 8 , the hyperplane �8 is not only tangent to ( 9 but also to ( 9 . Indeed, take a support ~ 9
8
of �8 in ( 9 ,

it arises as a convex combination ~ 9
8
=
∑
:≠8 _:G: with G8 ∈ (: for ~ 9

8
∈ (̂8 . By (8 ⊂ (8 , we derive for all

: ≠ 8 , G: ∈ �: or _: = 0, the latter being ruled out by separation. Hence, let us denote by G 9
8
a support of

hyperplane �8 in ( 9 . Note that once again from the separation of ((1, (2, (3), two supports of a tangent
line in two different colors cannot be equal.

If G B (0, 1)T and ~ B (0′, 1 ′)T are two distinct vectors, we denote G ∧~ B (01 ′ − 0′1)−1 (1 − 1 ′, 0′ − 0)T
their usual cross-product. As is customary, ℎ1 B G21 ∧G

3
1 (resp. ℎ2 B G32 ∧G

1
2 and ℎ3 B G13 ∧G

2
3 ) is a normal

vector to �1 (resp. �2 and �3), and 〈ℎ8 , G〉 + 1 = 0 is an equation defining �8 . Furthermore, the intersection
of �1 and �2 is given by B3 B ℎ1 ∧ ℎ2, or using the triple product formula, by

B3 = ℎ1 ∧ (G32 ∧ G
1
2 ) =

(〈ℎ1, G12〉 + 1) G
3
2 − (〈ℎ1, G

3
2〉 + 1) G

1
2

(〈ℎ1, G12〉 + 1) − (〈ℎ1, G32〉 + 1)
. (6.7)

Because G12 ∈ (1 ⊂ �
>
1 and G32 ∈ (3 ⊂ �

6
1 , we get 〈ℎ1, G12〉 + 1 ≠ 0 and (〈ℎ1, G12〉 + 1) (〈ℎ1, G

3
2〉 + 1) 6 0. As

a result of (6.7), B3 indeed exists and arises as a convex combination of G32 and G12 , so B3 ∈ conv((1 ∪ (3). By
writing B3 = (G21 ∧ G

3
1 ) ∧ ℎ2 as in (6.7), we show likewise that B3 is a convex combination of G21 and G31 , thus

B3 ∈ conv((2 ∪ (3). This finally entails that B3 ∈ (̂1 ∩ (̂2 = (3 and therefore B3 ∈ � >
3 . It now suffices to

define B1 B ℎ2 ∧ ℎ3 and B2 B ℎ3 ∧ ℎ1 in a similar way and consider ~ = (B1 + B2 + B3)/3. It is clear that
~ ∈ conv((1 ∪ (2 ∪ (3), and for all 8 ∈ {1, 2, 3}, ~ ∈ � >

8
, in particular ~ ∉ conv((( 9 ) 9≠8 ). As a consequence,

~ is a colorful vector for (1, (2 and (3. s

Proving this conjecture for = > 4 remains an open problem. Indeed, even though multiple-cross-
product identities exist in higher dimension, they feature determinants whose sign is not easy
to control. More generally, the sets ((8)1686= are difficult to work with as they do not admit
straightforward description in terms of the initial sets ((8)1686= . We point out that another
interesting problem is the computational complexity of determining whether the colorful interior
is empty or not, in the case where the sets ((8)1686= are polytopes. The problem could be tackled
by studying the complexity of separating a point from the colorful interior. This is tightly linked
with the computation of the tangent hyperplanes of Theorem 6.20, for which the complexity
status is not well understood.

We also mention that when we do not assume that cone(�1 ∪ · · · ∪�=) is pointed, the results
highlighted in this section do not hold anymore, in particular the colorful interior of the cones
(�8)1686= can have several connected components. See for instance our Example 6.9, where the
non-pointed configuration of vectors of Figure 6.5a turns out to yield a colorful interior that is
the union of two open cones.





Part II

A COMPREHENSIVE STUDY OF
A REAL-LIFE AND LARGE-SCALE

EMERGENCY CALL-CENTER





FOREWORD
AND CONTEXT OF THE STUDY

This second part of the thesis is drawn from the report “Optimisation de la performance de centres
de traitement d’appels d’urgence” [ABCG21], a work funded by the French Institut des Hautes
Études du Ministère de l’Intérieur (IHEMI) in 2020. This project relied on the collaboration of our
research team with the Préfecture de Police de Paris (PP). The latter supervises the Direction de la
Sécurité de Proximité de l’Agglomération de Paris (DSPAP) that operates Parisian police stations,
and also the Brigade de Sapeurs Pompiers de Paris (BSPP) who is in charge of fires and rescue
operations. We were asked to carry out a quantitative evaluation of the Plateforme d’Appels
d’Urgence (PFAU). This emergency call platform receives all police and rescue emergency calls
across four French departments (the city of Paris and its inner suburbs) through the emergency
lines 17, 18 and 112. We refer to the Introduction of the thesis for detailed discussion on the
different actors of emergency in France and the Parisian geography.

We recall below the different purposes served by the initial study [ABCG21]. Although we
already presented a bit the design of the PFAU in the Section 2 of Chapter 5, we provide in this
introductory section a much more in-depth description of the handling chain of calls. Being
familiar with this layout (and some acronyms!) is essential before reading Chapters 7 and 8.
Because the study is quite dense, we also propose a summary of our results at the end of this
foreword.

1 Object of the study

The goal of the study [ABCG21] is to develop decision-support and optimization tools for opera-
tions management of emergency call centers. These tools must cover “nominal” (or standard)
situations but may also be applied in response to an atypical event, planned or not.

Our approach builds on (extended) timed Petri net models of call centers, similar to those
studied in the Part I of the thesis – but even more flexible. As already mentioned, Petri nets come
in handy to account for synchronization and concurrency phenomena (wait of a resource, shared
resource between several tasks,…). The models considered here capture additional key features
of emergency systems, such as priority mechanisms (for the most urgent calls), or the limited
patience of people calling.

All of our models first take advantage of an in-depth analysis of the PFAU phone logs data.
This step enables us to get a clear understanding of the organization – the different circuits of
the calls depending on their characteristics, but it also yields precise numerical values of all the
call center parameters: handling times by the operators, patience of callers, intensity of arrivals,
etc. This statistical analysis of emergency calls constitutes our Chapter 7. Beyond its interest
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for modeling purposes, it already shows several strengths of the current PFAU design. These
important results are summarized in the Section 3 below.
Then, we use a numerical simulation approach, running a software developed in our Tropical
research team (Inria and CMAP, École polytechnique), specifically for this application. This
software, whose design is presented in the Section 1 of the Chapter 8, reproduces in silico the
response given by the call center to emergency demands. It takes into account all the characteristics
of the model, and yields a performance analysis whose precision level is directly linked to the one
of the statistical analysis of calls data. This is an independent and complementary approach from
the theoretical formulas derived in the first part of the thesis.

We use these two techniques to evaluate the performance of the current “two-tier” (or bilevel)
PFAU organization, and to compare the latter with alternative designs, in particular to a more
classical “single-tier” layout. We also study the impact on the performance of several modifications
of the organization, such as the unification of previously separated agents pools. We also evaluate
the response of bilevel call centers to unusual peaks of calls. All these results are presented in
the Chapter 8 and summed up in the Section 4 below.

2 Presentation of the PFAU emergency platform

The Plateforme d’Appels d’Urgence (PFAU) is located in the Parisian firebrigade headquarters
(Caserne Champerret, 17th district of Paris). It is operated by both the BSPP and the DSPAP,
under the authority of the PP. It receives emergency calls from three emergency numbers: line
17 for police requests, line 18 for fires and rescue needs, and line 112 (European number for
all emergency needs). All calls emitted from Paris and its inner suburbs (French departments
named Hauts-de-Seine, Seine-Saint-Denis and Val-de-Marne) arrive at this same PFAU site, which
represents more than 8,000 calls per day – or during the day up to 400 calls per hour. Before
this common PFAU call center existed, the calls were dispatched to five physically different call
centers – one for the fire brigade for the whole area, and one in each department for the police.

The PFAU was officially inaugurated in 2016, in a context where there is an increasing demand
on the 17–18–112 lines with very varied call motives – a significant part of them is actually just
about giving advice to the population and does not trigger an intervention. In addition, the Paris
area experienced a series of one-off events (demonstrations, attacks…) where massive peaks of
calls were received. The PFAU was therefore designed to address a triple goal:

– improve the ability to filter out the less urgent calls (but still offering them an appropriate
answer) to handle more efficiently life-threatening emergencies and other prioritized calls

– enhance the robustness and the resilience of the instruction chain, in particular in response
to exceptional bursts in arrivals

– take advantage of the mutualization of sites and services.

To fulfill these objectives, an innovative design in which calls are picked up in a two-step process
has been chosen for the PFAU:

– callers are first welcomed by a voice prompt (which lasts for less than 10 seconds), explaining
that an emergency operator is going to pick up their call

– at the first level (Lvl 1), a first agent picks up the call with the mission to swiftly qualify the
demand of the caller and identify its gravity. To this purpose, these first-level answering
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agents use a comprehensive decision tree. The calls can either be qualified as urgent (U),
very urgent (VU) or non urgent (NU). The urgent and very urgent calls are transferred to
the second level of instruction, with a higher priority degree for VU calls. The non urgent
calls are given advice (or rerouting suggestions) by the first-level operator, and are not
handed over to the second level.

– at the second level (Lvl 2), a service expert (either a police officer, either a firefighter)
handles the call transmitted by the Lvl 1 agent. This Lvl 2 operator can dispatch on-site
response teams and can also reach out to partners (SAMU, rail or road traffic services…).
Second-level agents pick up in priority the very urgent calls, labeled as such by operators
at Lvl 1. These calls are transferred to Lvl 2 with a special protocol, hereafter referred
to as the accompaniement or escorting mechanism. Indeed, when they identify a very
urgent call, the agents at Lvl 1 stay on line with the caller until a second-level operator is
available. The call is then transferred in a short synchronization step, where a “threeway”
conversation can take place. In contrast, the calls tagged U (and not VU) by the first level
are not escorted to the Lvl 2, and instead placed in a virtual waiting room until picked up
by second-level operators.

This architecture is referred to as bilevel, in opposition with a “monolevel” or single-tier system
where all the operators pick up and handle all calls from start to end. In addition of this two-level
organization, the PFAU has the specificity to bring together two different services – police and
rescue missions:

– first-level police operators (agents of the DSPAP service) are instructed to pick up calls
from emergency number 18 and also line 112. Then, second-level police officers handle the
demands handed over by the Lvl 1 that fall within their missions

– first-level firebrigade operators (agents of the BSPP service) are instructed to pick up calls
from emergency number 17 and also line 112. Then, second-level firefighters handle the
demands handed over by the Lvl 1 that here as well fall within their missions.

The two types of first-level agents thus share the pick up of calls from line 112, and work side-
by-side in the same room. We talk about a multi-job organization. The DSPAP and BSPP chains
are actually not symmetrical, because currently, the instruction of police calls at Lvl 2 by the
DSPAP is departmentalized – there is a single first level, but four second levels, one for each
department. On the contrary, BSPP uses a common first level and a common second level for
the four departments it receives calls from. We shall explain in the Section 4.3 of Chapter 8
how this structural difference affects the performance. A last specificity of the BSPP that we
will briefly discuss in the Chapter 7 is to have a “coordination médicale” staffed with physicians.
The second-level firefighters or on-site dispatched teams can request the help on the phone of
these physicians for health-related demands. However, such requests are most of time the area of
expertise of the SAMU organization (emergency number 15) and therefore transferred to them.
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3 Summary of the data analysis step

We recap below the main takeaways from the analysis of phone calls data1 of our Chapter 7.

– We first point out that this analysis beneficiated from a huge amount of very precise data,
which brought a whole development in itself. Having a complete year of emergency calls and
consolidated datasets gives to this study a very high degree of confidence.

– The analysis of the throughputs of call arrivals in the Section 2 confirms the high level of
“pollution” on line 112, well-known by the operators. It also shows that many wrong number
errors are filtered out by the welcoming voice prompt. This protects the first-level agents from
an addition pollution.

– A great attention was brought to the exploration of dependence relations between the charac-
teristics of the PFAU. We summarize them in the dependence matrix depicted in Figure II.1.
Beyond slight territorial variation, this matrix recalls that the different handling times at the
different steps of instruction of a same call are correlated. This is an essential phenomenon to
take into account to ensure the realism of simulations.
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Figure II.1: Paramaters dependences matrix

1 Performed with the pandas [pDT20] and SciPy [WM10] libraries for Python. We mention by the way that like the
rest of the thesis, all the charts were made with Matplotlib [Hun07].
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– While the handling times of the non urgent calls are not identically distributed across the four
departments, they are very similar for urgent or very urgent calls (see Section 4). This shows
that the notion of emergency or serious distress is felt and dealt with evenly in the whole Paris
area.

– The measurement in Section 4.4 of an “extra instruction time” at Lvl 2 after the caller hangs
up (when contacting another partner is needed) is an originality of our study. It allows us
to represent more faithfully the workload of Lvl 2 agents. The strong uniformity of this
additional treatment for very urgent calls is characteristic of a standardized and dedicated
protocol implemented for those calls.

– We show in Section 2.2 that assuming in simulations that call arrivals follow (nonhomogeneous)
Poisson laws is an excellent approximation of the reality.

– The study of “cross-flows” 17 → BSPP and 18 → DSPAP shows the great resilience of the
PFAU relatively to calls for which the initially dialed number was not the most appropriate
one. Indeed, the rerouting of these calls happens very quickly.

– The patience analysis that is presented in Section 5 proves that the patience of callers is greatly
enhanced after the first pick up at Lvl 1; this is an intrinsic advantage of the bilevel layout.

– The analysis of the accompaniement / escorting mechanism for very urgent calls demonstrates
its major interest to prevent inter-level abandonments. We show that there are seven times
less such abandonments thanks to this feature.

– The study of the number of logged agents (see Section 3) illustrates how quick the PFAU can
adapt its staffing to cope with events. It raises a focus point on the transitions between operator
shifts – that managers of the call center know how to handle.

4 Summary of the comparative study of organizations

Our Chapter 8 aims at providing quantitative performance evaluation for emergency call centers
such as the PFAU. To this end, we resort to two complementary approaches:

• numerical simulation, which mimics the behaviour of the real system and makes as
few assumptions as possible. It allows us to empirically compute a minimal staffing or
performance levels (average waiting time, percentage of picked up calls…) for a given
architecture. This is done by running simulations of scenarios that are very close and
faithful to call arrivals of the PFAU – that we can accurately determine thanks to the data
analysis step presented in the Chapter 7.

• analytical computations, that were extensively presented in the first part of the thesis.
This approach yields mathematical formulas that also determine minimal staffing levels of
a call center in terms of its parameters. It can also evaluate several performance estimates,
but sometimes requires simplifications to effectively do the computation.

These two methods inherit the modularity of the Petri net formalism on which they hinge. They
enable us to benchmark varied and concrete design of emergency call centers, in order to compare
their respective performance.

Note that the qualitative performance of the organization are not in the scope of this work.
This for instance includes the improvement of work practices made possible by bringing two
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different services under the same roof, the working comfort of agents brought by the organization
design, or even the perception of the two-tier handling chain by the callers. All these aspect are
indeed not measurable by mathematical or statistical tools. In the case of the PFAU, the analysis
of such questions is let to their own teams and to the Préfecture de Police. In particular, a couple
of quantitative conclusions should not be reproduced without the complementary enlightenment
of qualitative comments.

SINGLE-TIER / BILEVEL COMPARISON (SINGLE-JOB ORGANIZATIONS). — We first com-
pare the performance of single-tier and bilevel systems in a fictitious but interesting configuration,
where the call center receives only the calls corresponding to one type of job (either police or
rescue matters). This single-job comparison is represented in the Figure II.2 in the case of rescue
calls (emergency number 18 and most calls from 112). The Section 2 of Chapter 8 is entirely
devoted to this simplified case, and plays the role of “scientific demonstrator” of our methodology.

Single-tier layout
(and single-job)

112 18

Bilevel layout
(and single-job)

112 18

Moving to a bilevel
system

Figure II.2: Comparison between single-tier and bilevel systems

We point out that this first comparison is also of academic interest. For instance, the EUROCALL
study [NCM+17] also focuses on this aspect, by comparing the total time needed to access a
dispatcher agent in 21 medical emergency call center across 11 countries. The authors conclude
that from this perspective, single-tier architecture are more advantageous. To the contrary, we
show that well-tuned bilevel layouts yield lower abandonment rates than single-tier systems,
without increasing too much the access time. We show in fact that several necessary conditions
need to be met for the bilevel design to outperform its single-tier counterpart, and we reckon that
they may explain why our global results diverge from those of [NCM+17].

For each service (police or rescue), we first carry out iso-staffing comparisons. This means that
the bilevel system is compared to a single-tier organization with the same total number of agents
(see Sections 2.3 and 2.4). However, this gives an artificial advantage to the single-tier system,
because only the Lvl 2 agents of the bilevel have the sufficient level of expertise to also be staffed
in the single-tier system. For this reason, we also draw another “iso-skills” comparison, in which
the two organizations have the same number of expert agents – note that a fairer comparison
would be a mix of these two approaches. Our conclusions are the following:

– in the case of rescue calls (firefighters from BSPP picking up calls from lines 18 and 112),
we show in the Section 2.3 that regardless of the number of staffed operators, the bilevel
organization is always more efficient than the single-tier (even for the iso-staffing comparison)
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when looking at the global abandonment rate of calls, or at the abandonment rate of very urgent
calls. However, this better performance on abandonments is at the expense of an increased
total waiting time for callers and a small increase of occupancy for agents. With the current
headcounts (14 or 15 firefighters in total), we note that both single-tier and bilevel modes are
equivalent and ensure almost no abandonment and no wait.

– in the case of police calls (police officers from DSPAP picking up calls from line 17), we show
in the Section 2.4 that the single-tier system yields better performance than the bilevel when
studied under the iso-staffing perspective and in particular if there are not enough agents. With
current staffings, both architectures still give very good overall perfomance. This important
difference with the rescue lane is explained by a different loads ratio. To sum it up, the Lvl 1 of
the police is relatively long with respect to the Lvl 1 of the firebrigade, while the Lvl 2 of the
police is relatively short compared to the Lvl 2 of the firebrigade. This is due to the fact that
there are many non urgent calls in the police lane and these are given long instructions. The
bilevel organization would be much more advantageous to the police treatment chain if those
calls were handed over to another platform after identification – a non-emergency call center.
Remark however that in an iso-skill comparison, the bilevel police call center systematically
outperforms the single-tier.

We will also keep in mind the following conclusions, that apply indifferently to the two services
of the PFAU and would also apply to other models adopting such layouts:

– most performance criteria of the single-tier system are highly correlated with each other, and
the same goes for the metrics relative to each level of the bilevel system. Yet, the Lvl 1 criteria
and the Lvl 2 criteria are in first approximation independent, all the more so when the system
is fluid.

– the study of mixed performance criteria for the bilevel system in the Section 2 shows the major
protection offered to very urgent calls, even when the Lvl 2 is a bit understaffed. This is an
essential robustness element of the bilevel layout, also valid when facing rises in the demand.

– the same section shows the importance to correctly size both levels and reveals for a given
total headcount that there exists an optimal allocation of agents across the two levels, in order
to guarantee the best behaviour of the system. This compromise may however depend upon
the evaluation criterion that we choose.

PERFORMANCE OF THE PFAU AND OF ITS POSSIBLE EVOLUTIONS. — Contrary to the
“proofs of concept” covered in the Section 2 – using in particular single-job simplifications,
the Section 4 of Chapter 8 only simulates the real PFAU organization or some possible alternative
designs for it. In particular, the interactions between the two jobs (police and firefighters) are
always considered. We study the four organizations depicted in the Figure II.3, which differ from
one another by the fact that some agent pools that used to be separated can be merged. Our main
results are the following:

– the Section 4.2 establishes an important interest of having a collaboration between two services
at the PFAU. It shows that there is an indirect support of the first level of each service brought
to the whole treatment chain of the other job, by adjusting the way that the pick ups of calls
from line 112 are shared. This simple mechanism diminishes the number of people needed at
Lvl 1 as shown by the Table 8.30.
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Single-tier and multi-job systems (line 112 picked up
by firefighters, departmentalized 17)

17 112 18

Bilevel and multi-job system (shared 112, Lvl 2 of
police departementalized)

17 112 18

Bilevel and multi-job system (shared 112, Lvl 2 of
police aggregated)

17 112 18

Bilevel and multi-job system (universal Lvl 1,
Lvl 2 of police departementalized)

17 112 18

Moving to a bilevel system, sharing line
112 at Lvl 1 and unifying the pick up of
line 17 at Lvl 1

Aggregating the Lvl 2 of police
(similarly to the Lvl 2 of fire
brigade)

All lines picked up by universal operators
at Lvl 1

Figure II.3: Comparison of multi-job organizations
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– the Section 4.3 demonstrates that aggregating the four Lvl 2 of DSPAP that currently exist
into a single Lvl 2 (on the model of the BSPP organization) would yield a very significant
gain of performance by keeping the same headcount, or alternatively would require much less
operators to offer the same performance. We also show that merging several pools of first-level
agents in the bilevel layout improves the robustness of the system. This would also apply to
the case of several single-job and small-scale call centers willing to share first-level resource.

– we show in addition in the Section 4.4 that for the current PFAU, merging the two Lvl 1 (which
only share the number 112) into a single one would also require less agents (about two first-level
operators) while maintaining the same performance.

We also study two situations representative of atypical arrivals of calls, to see how single-tier and
bilevel layouts react to crisis situations:

– in the Section 5.1, we simulate the breaking out of a fire causing a massive burst of calls (peaking
at 350 calls per hour) tagged as “event” by the rescue operators, but that in majority are not
urgent (calls from witnesses seeing the fire from a distance). We show that in response to this
event that the bilevel system gives a better protection to the very urgent calls compared to the
single-tier layout, even though there are more (less urgent) abandonments with the bilevel
mode. We also show that the bilevel architecture is more robust to worst-case scenarios.

– in the Section 5.2, we study how the organization behaves in case of a huge but predictible
demand such as the one arising the night after Bastille Day on rescue lines (this event causes
up to 650 calls per hour at the peak). We show that the bilevel system remains the best to
protect the very urgent calls, but is less performant than the single-tier under the iso-staffing
comparison for the global abandonment criterion. This is due to a lower loads ratio (less
adapted to the bilevel) and to an increased proportion of calls needing to access the Lvl 2.

We finally review how the theoretical methods agree with our simulations results. Confronting
the numerical simulation approach with the analytical formulas indeed enables us to appreciate in
which extent results predicted by the theory turned out to be accurate. Recall that these analytical
estimates are often obtained by doing strong assumptions and approximations. Still, we can
observe that:

– the theoretical throughputs of Petri nets are good estimates of the real handling speeds of the
simulated organizations. This is all the more true if the number of agents are far away from
the frontiers of the fluid phase of our theoretical congestion diagrams.

– the intuitive law that suggests to divide the minimum theoretical staffing levels (to reach the
fluid phase) by the target occupancy of each agent type in order to derive a realistic staffing
policy is well verified in practice.

– even though several ground assumptions used to establish Erlang formulas are not verified
for real call centers, these analytical estimates that we recall in the Section 3.3 of Chapter 8
have a good predictive power for single-tier systems if we want to evaluate the probability that
a caller waits or hangs up. They can also be cascaded to correctly predict the behaviour of a
bilevel system, but this only works if one of the two level is fluid.
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The objective of this chapter is to derive the main parameters that shall be used for the mathe-
matical modeling and the numerical simulation. In particular, we will endeavour in simulations
to generate scenarios that mimic the real PFAU organization as realistically as possible. This
requires a fine statistical study of the call center features, notably their dependence with respect
to exogenous parameters or even their inter-dependence.
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Several studies already focused on the data analysis of call centers phone logs, as recalled in the
review [AL05]. This includes the study of the arrival processes of calls (see for instance [JK01,
KW14, VVR+17]), the modeling of service times by usual laws (with a good fit being found for the
lognormal law [Chl97]), or the modeling of people calling back the platform [AAKD08]. We shall
often refer to the in-depth study of Brown et al. [BGM+05b], which covers the previous aspects
and also deals with the modeling of callers patience.

We give in Section 1 global counts and figures characterizing the volumes of calls handled
by the PFAU. The Section 2 is devoted to the study of arrival processes of calls, distinguished
per emergency number, department of origin and gravity. Staffing levels and their variations are
reviewed in Section 3, while we focus on the distribution of conversation times (as well as their
correlations) in Section 4. We study in Section 5 the patience of callers. Using realistic patience
estimates in simulation will be a significant contribution of our work in the next chapter. Finally,
we present in Section 6 a few profiles of arrival throughputs and service times for some days of
interest in the year 2019, when unusual or unexpected events occurred.

1 Description of used databases and global counts

In everything that follows, we build on the calls emitted and received at the PFAU during the
year 2019 (more precisely from the 26 December 2018 to the 5 January 2020, in order to cover the
New Year celebrations). The data come from a first aggregate made by the BSPP, using the ticket
files of phone calls in the Alcatel system recorded by the Ticket Extractor software. They contain
many information on the origin and the duration of the calls at the first level of instruction of
the PFAU and at the second level for BSPP calls. The second level of the DSPAP uses a different
information system, and we had to get the corresponding data using the Pegase databases (one for
each department). We went through a preliminary phase of data processing and “cleaning”, and
we merged these different databases. This operation was based on the (hashed) phone number
of the callers to link the calls arrived at Lvl 1 and handed over to the Lvl 2 of DSPAP. We also
tagged the accompanied transfers (the threeway conversation for Very Urgent calls generates an
additional call in the databases, and we need to reattach this one to the initial call). Currently, the
Pegase data give less information than the Ticket Extractor software, hence there are a couple of
analyses that we can carry out for the Lvl 2 of BSPP but not for the Lvl 2 of DSPAP.

The Table 7.1 indicates how the 8,5 millions of calls in these databases are distributed, de-
pending on their incoming or outgoing character but also depending on their entry point. Out of
6 millions of outbound calls, more than 5 millions (that is 85.8 %) arrive at the Lvl 1 with the label
“Emergency phone number” and the explicit mention of the dialed number (17, 18 or 112). The
calls arriving at the Lvl 2 from partners of the PFAU account for 6.6 % of the incoming calls, and
among these about one third comes from the four SAMU of Paris area. We have reported in the
table the activity of BSPP’s “coordination médicale” (7.4 % of incoming calls) but its study is not
in the perimeter of our work. As far as the inbound calls are concerned, there remain 11,332 calls
(0.2 % of the total) that we could not fit in any of the previous categories.

The outbound activity (2,5 millions of calls in 2019) is mainly initiated by the Lvl 1 (in 70.2 %
of the cases), but the vast majority of these calls are actually just data artifacts associated with
inter-level transfers or interconnections between Pegase and Lvl 1’s layer – and they bring
no additional information. We shall discuss the other calls emitted by the Lvl 1 in the end
of Section 3. Other outgoing calls are passed from the Lvl 2 (16.4 % of the total, mainly to partners,
see the Section 4.2), from the “coordination médicale” of BSPP (13.3 %) or do not fit in the previous
categories (0.1 % of the total).
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The Table 7.2 gives a more detailed vision of the repartition of incoming calls at Lvl 1 – the main
material of our study. Out of the 5,1 millions of emergency calls, we have chosen to rule out up
to 280,000 of them for certain analyses. Indeed, we have distinguished five categories of “non
standard” calls that could alter some computations (see the description)

The first three lines of the Table 7.2 illustrate the main trends for the operated emergency
lines. The number 17 is the most solicited, but features a significant fraction of abandonment
(36.3 %), however three out of four of these are done during the voice prompt. We note that 27.2 %
of the given up calls occurred after 30 seconds of wait. Among the line-17 calls picked up at Lvl 1,
about a half (46.6 %) is filtered out by the first level, and 19.8 % of the calls transferred to the
second level is tagged as Very Urgent (we shall come back on the different gravity proportions
in the Section 2). There are less abandonments for the calls received on line 18 (and 85.9 % of
them arise on the voice prompt), and above all, more than three quarters of them (77.1 %) are
handed over to the Lvl 2, with 12.1 % of Very Urgent calls among the transfers. In total, there
are more calls on line 112 than on line 18, but the great majority of these (91.0 %) do not go at
the Lvl 2. This phenomenon is well-known by the operators, who talk about a high level of
“pollution” on line 112. This is due to the fact that cell phones automatically dial the number 112
if the emergency function is activated, which can often happen unintentionally (pocket calls).

Total number of calls : 8,553,592

Inbound calls Outbound calls

All levels 5,977,939 2,575,653

At level 1 5,130,011 1,806,795

At level 2 393,200 423,861

(At level 2 and to SAMU) 126,378 105,510

At the “coordination
médicale”

443,396 342,489

Table 7.1: Global counts of calls
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Table 7.2: Detailed global counts for inbound calls. Percentages are always taken with
respect to the parent total. Columns labeled “N/R” indicate unspecified gravity levels.
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Figure 7.3: Number of 17–18–112 inbound calls per days in 2019

2 Throughputs and proportions of calls

2.1 DEPENDENCES OF THE THROUGHPUTS. — We want to identify the parameters upon which
the arrival throughputs depend. It is first natural to distinguish calls based on categorical variables
associated with the different treatment lanes: initial emergency line, gravity level determined at
Lvl 1, orientation at Lvl 2. Nevertheless, the throughput of arrivals – such as other variables
studied later – are prone to also depend on other factors, such as the time. This parameter is
conveniently denoted by datetime. It includes a first component date which varies from the 1st

of January to the 31st of December and takes into account an “inter-days” effect. On the other
hand, the component time varies from midnight (12 am) to 11:59:59 pm and models the “intra-day”
aspects. We shall also study the influence of other categorical fields like the department of origin
or the telephone area code (from which we can also extract the landline/cell character).

We depict in the Figure 7.3 the daily number of 17–18–112 inbound calls received at the
Lvl 1 of the PFAU (whether they are picked up or not) during the year 2019. The dashed curves
correspond to weekly moving averages. The total number of received calls per day typically varies
between 12,000 and 15,000. The peak in 2019 was reached on 26 June, with 19,364 received calls
(during a heatwave). The “inter-days” effect is well visible and we can see a weekly periodicity
(each vertical line marks a Sunday, often associated with fewer calls). We can also clearly identify
the school holiday periods during which much less calls are received (even more visible during
August).

This figures shows that the data can suffer some acquisition anomalies, that may be caused
by planned technical updates or temporary equipment failures. Five days of 2019 were impacted
by such phenomena (2 February, 30 June, and 11, 12, 13 November). These five days shall be
systematically ruled out in our future analyses.
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Figure 7.4: Throughputs of inbound calls per gravity, in week days, year 2019
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In order to study the “intra-day” dependence of the throughputs, we compute moving averages
of the number of arrivals over fixed time-windows (this gives more consistent results that mere
hourly histograms). The result is always expressed in “calls per hour equivalents” (abb. calls/h),
meaning that if 7 calls are received between 12:00 am and 12:10 am, we obtain a throughput of
42 calls/h at 12:05 am (as if the load received over ten minutes was kept the same over an hour).
Second, it is desirable to exhibit “typical day” profiles of arrivals, to later generate simulation
scenarios. Even ruling out some known “atypical” days (like New Year’s Eve, Bastille Day etc.),
we know that such a day does not exist and that micro-peaks arise each and every day due to
the natural variability of arrivals. This prompts us to take an average of the daily profiles for all
days of the year, in order to even out the peaks and gaps, and also alleviate the effect of atypical
days – which do not contribute much in the average. On the contrary, we will give in Section 6
unaveraged profiles of arrivals corresponding to particular days, that can be scenarios of interest
in simulation to model atypical events.

The Figure 7.4 gives for each emergency line (17, 18 and 112) the average throughput of
received calls during week days (i.e., excluding Saturdays and Sundays) per gravity of calls, and
using moving averages over ten consecutive minutes. These curves can be thought of as dynamical
counterparts of the Table 7.2.

We represent nine categories of gravity. The most standard are the NU calls (for Non Urgent,
filtered out by the first level) and LU/U/VU (for Less Urgent, Urgent and Very Urgent, all transferred
to the second level). The category NQ corresponds to calls with No Qualification, only used by
police forces. The EVU calls (Urgent Event) only arise when specific protocols to handle unusual
events are activated. The class N/R gathers all the other calls whose gravity is unknown. We also
distinguish the calls abandoned by the caller, that is to say when the call is ended before pick up
at Lvl 1. We make a distinction between the abandonments during the voice prompt (8 to 10
seconds before giving up) or after the prompt.

The curves of Figure 7.4 call for several remarks. We first observe that there are many
abandoned calls over the voice prompt during the day on line 17, and that these occur in salient
peaks every exact hour (9:00 am, 10:00 am…) or exact half hours (9:30 am, 10:30 am…). These
peaks mostly arise from 9:00 am to 11:30 am and from 2:00 pm to 5:00 pm and are less important at
noon. The same phenomenon is visible for line 18 (to a lesser extent) but not for line 112, and is
totally absent during the week-end (curves not depicted here). A plausible explanation is that
these calls are error made from corporate landlines when external numbers or audio meeting
services are trying to be reached (since this happens during work hours and every half hour). In
these companies, employees often have to press the “0” key before dialing external numbers. If
they do not and try to dial a number of the form 01.7x.xx.xx.xx (very common in Paris area),
the call will automatically be routed towards the emergency number 17. The same phenomenon
also happens for the calls to SAMU who often receive dial errors of people wanting to dial a
number of the form 01.5x.xx.xx.xx. Fortunately, the voice prompt enables to get rid of these
calls, because the callers will quickly figure out that they reached emergency services. All these
abandonments are invisible to the PFAU agents. Note however that a small fraction of these make
it through the voice prompt, hence the tiny periodic peaks in the curves of abandonments after
prompt or non urgent calls.

As far as the non-abandoned calls are concerned, we observe that all the throughput profiles
tend to be minimum around 4 am and start to rise from 5 or 6 am. On line 17, there is a majority
of NU calls (with a little decrease during lunch hours) until 6:00 pm. The throughput of U calls
continuously increases during the day and become predominant in the evening and during the
night. The trend of VU calls is similar, in a lesser extent. The NQ calls (i.e., with no qualification)
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also only arise during the night, after 10:30 pm. They probably correspond to a specific police
procedure that we were not told about, and we will often neglect them later on.

On line 18, the average throughput of urgent calls is very stable from 9 am to 10 pm, roughly
equivalent to 80 calls/h. The VU arrivals are still approximately proportional to U arrivals, and
NU calls also feature a drop between 12 pm and 2 pm. The categories LU (Less Urgent) and EVU
are almost exclusively used by the BSPP, which is why the LU curve is not very visible for lines
17 and 112. The EVU curve is also negligible, since events for which this category is enabled are
by essence restricted to limited time windows and are sporadic. For calls arrived by line 112, the
predominant throughputs are by far those associated with abandonments after the voice prompt
and non urgent calls, with no diminution during lunch hours. This bears out the idea that most of
these demands are pocket calls; the callers that realize it contribute to abandonments and those
who do not contribute to non urgent calls.

We can compute similar profiles during the week-ends (Saturdays and Sundays only). Doing
so, we find out that the throughputs are lower during the day and higher during the night (this
is particularly true for police calls, with a total of 340 calls/h on line 17 at midnight during the
week-end, versus 220 calls/h on another week day). We have also checked that the proportions of
different gravity categories stays identical for all days of the year 2019.

On the other hand, there are non negligible differences from one department to another, as
shown in Figure 7.5. On line 17, the proportion of non urgent calls is lower in Paris (39.5 %) than
in the inner suburbs (around 50 %). Likewise, there are more VU calls in Paris on line 18. The
calls arrived from line 112 tend to be more transferred to Lvl 2 in Paris and Val-de-Marne (8.5 %
and 7.4 % of U or VU calls) than in Hauts-de-Seine or Seine-Saint-Denis (6.5 % and 5.3 %).

For the calls that are transferred to Lvl 2 (regardless of the emergency line of arrival), we
can compute the breakdown to the DSPAP or BSPP services. The calls from line 17 (resp. 18) are
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Figure 7.5: Repartition of inbound calls per gravity and department (week days, year 2019,
urgent event calls and abandonments ruled out)
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a priori about police (resp. rescue) matters and are expected to be handed over to the Lvl 2 of
DSPAP (resp. BSPP), but the PFAU organization allows to have “cross-flows”, if the caller did not
contact the most appropriate number in the first place. In addition, the calls from line 112 have to
be distributed to one of the two specialized second levels. For the line 17, 5.77 % of transferred
calls are actually rerouted to the Lvl 2 of BSPP, while 1.10 % of calls arrived by line 18 and that
are transmitted for further instruction are sent to the Lvl 2 of DSPAP. These proportions are
stable all along the year. The calls from number 112 that are urgent or very urgent are in average
sent to the Lvl 2 of BSPP in 69.8 % of cases and to the Lvl 2 of DSPAP in 30.2 % of cases. These
proportions are subject to higher daily variations (mainly due to the low amount of transmitted
calls at Lvl 2 from the line 112).

We now summarize the explicit form that we retain for the throughputs. The formalism
that we have used in the first part of the thesis (see in particular Chapters 4 and 5) uses a global
(constant) throughput _ and proportions c1, c2, … etc. to indicate how this throughput breaks
down into the different possible lanes of instruction. However, the previous observations (and
in particular the variations with respect to the parameter time) prompt us to distinguish the
throughputs of arrivals for each emergency line, each gravity level, each department of origin and
each possible destination at Lvl 2. We can always use these primitives to retrieve the different
proportions of orientation in the system. We shall thus adopt the throughputs (_ℓ,6,3,> ), where:
ℓ is the dialed emergency line and varies in ! = {17, 18, 112}, 6 is the gravity of the call in
� = {NU, U, VU, LU, EVU}, 3 is the department of origin of the call in the set � = {75, 92, 93, 94}
and if the call is transferred to a second level, > is the Lvl 2 orientation in $ = {DSPAP,BSPP}.
In order to better account for the total load, we also need to consider the throughputs _ℓ,3ab. of
abandonments after the voice prompt (per line and department) since those should have been
picked up. We can for instance recover the global throughput per line _ℓ via the relation

_ℓ (time) =
∑
3∈�

(
_
ℓ,3

ab. (time) + _
6=NU,ℓ,3 (time) +

∑
6∈�
6≠NU

∑
>∈$

_ℓ,6,3,> (time)
)
.

Since this throughput actually also depends on the parameter date, we convene to compute two
types of scenarios. The first one will be an average profile of week day (ruling out holidays and
anomalies), where the quantities _ℓ,6,3,> are the moving averages of Figure 7.4 (taking in addition
the Lvl 2 orientation into account). The other type of scenarios will be unaveraged and based on
specific days of interest. Five such examples are given in Section 6.

2.2 ARRIVALS PROCESS. — The sole knowledge of the (deterministic) instantaneous throughput _
does not suffice to describe the arrivals of calls, since stochastic aspects are also at stake. It is quite
often assumed for call centers that call arrivals follow Poisson processes, i.e., the inter-arrival
times are exponentially distributed with a parameter equal to the throughput. Recall that we
have briefly discussed such processes and given some theoretical elements in the Section 3.3
of Chapter 1. Poisson processes enable to have in average _ΔC calls arriving in the time window
[C, C + ΔC) while having “excursions”, that is to say phases where the number of received calls can
differ from the average value due to the alea.

We wish to check for the PFAU that calls indeed arrive according to Poisson laws. Actually,
since the throughput _ is not constant but varies according to the hour of the day (parameter time),
we are going to use nonhomogeneous Poisson processes (see again our discussion in Chapter 1).
To do so, comparing the whole histogram of inter-arrivals duration to an exponential law is
insufficient, since it in fact arises from a mixture of several exponential distributions.
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Figure 7.6: Fit of arrivals with nonhomogeneous Poisson laws

In [BGM+05b], Brown et al. have proposed the following statistical test to evaluate the fit of a
sample to a nonhomogeneous Poisson process. We “split” a long period into short time windows
of length ! (here set to 10 minutes), and we rank the arrival dates of calls so that )8, 9 is the arrival
time of the 9-th call in the 8-th interval, which contains a total of #8 calls. Under the hypothesis
that the arrivals follow Poisson processes over each short time window (which is much more
realistic than over the global period), then the realizations of the statistics '8 9 defined by

'8 9 B −(#8 − 9 + 1) log
(
! −)8, 9
! −)8, 9−1

)
follow an exponential law with shape parameter 1.

The Figure 7.6 gives the quantile-quantile diagrams (or Q–Q plots) between the variables
('8 9 ) and the standard law Exp(1) for the three emergency lines 17, 18 and 112. It appears in a
very good approximation that both variables are identically distributed (even though the usual

Callbacks from the caller

Line Gravity
Number of
callbacks

(% of on-prompt
abandonments)

(% of after-prompt
abandonments)

Median time
between 1st and

2nd call (s)

NU 43,515 52.62 % 47.38 % 68

U 44,903 60.34 % 39.66 % 4117

VU 11,759 54.47 % 45.53 % 45

NU 19,764 77.01 % 22.99 % 31

U 23,522 78.45 % 21.55 % 2518

VU 5,230 83.38 % 16.62 % 18

NU 41,005 74.69 % 25.31 % 177

U 3,176 61.21 % 38.79 % 35112

VU 525 55.05 % 44.95 % 29

Table 7.7: Callbacks from the callers
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statistical comparison tests fail, disadvantaged by the huge size of the samples). In the rest of
our study, we will then stick to the assumption that the calls arrivals follow nonhomogeneous
Poisson processes with time-varying parameters given by the curves of Section 2.

2.3 CALLBACKS FROM THE CALLERS. — It is relevant to note that a non-negligible proportion of
callers who abandon before pick up do call back themselves. Among the abandonments at Lvl 1,
there are 14.0 % of callbacks within the next hour on line 17, 12.5 % on line 18 and 4.9 % on line
112, accounting for about 6 % of the total picked up volume. Actually, these callbacks mostly
happen within the next minute, and feature some calls that are subsequently qualified as U or
VU. We observe in addition that the calls to be qualified U or VU tend to call back more quickly
than those to be qualified as NU. The figures of Table 7.7 are computed on the basis of 744,508
abandonments on line 17 (among which there are 104,309 callbacks), 402,392 abandonments on
line 18 (for 50,473 callbacks) and 912,207 abandonments on line 112 (for 44,969 callbacks).

For the simulation runs, it is important not to count twice these calls in our throughput
profiles, otherwise we would overestimate the real demand. Hence, the throughput of after-
prompt abandonments (which were “candidates” to pick up) never counts these callbacks.

3 Identification of logged agents

Since our dataset features agent tags that are unique for each operator, we can recover the staffing
levels of the PFAU in real time. We can actually only figure out if an agent is on the phone or not,
so over a short time window what we observe is a lot of “on/off” signals.

We convene to introduce a notion of work shift by considering that an agent is inactive if
he/she spends more than fifteen consecutive minutes without picking up or emitting any call at
Lvl 1, and thirty consecutive minutes at Lvl 2. This convention avoids to mark an agent as absent
if no call is presented to him/her, and discards the effect of short breaks. It is however possible
that an agent is present at the PFAU but not active on the phone (handling of back-office tasks). In
this case, he/she will not be detected by our method. We can therefore count at any instant how
many agents are active in a shift. At the first level, the data we have do not give any information
on the principal job of agents (recall that police agents are asked to pick up calls from line 17
and firefighters are asked to pick up demands from line 18, while calls from line 112 are picked
up by both types of operators). We convene that an agent who picks up less than 5 % of his/her
calls from line 17 (resp. line 18) is a firefighter (resp. a police officer). Finally, due to the fact that
the second level of police calls is managed by a different information system, we unfortunately
cannot precisely recover the staffing of police agents logged at Lvl 2. The level supervisors are
also not counted in the following figures (even though we can detect their activity) because they
do not pick up emergency calls in the same manner as standard agents.

Throughout a usual day, the number of logged agents can fluctuate quite quickly. To make up
for this aspect and obtain a smoother profile, we choose to compute the average of such daily
curves for multiple days. To avoid including too many heterogeneous profiles in the mean, we
rule out the week-end days and the days corresponding to school holidays – this leaves us with 36
weeks of the year 2019, or equivalently 180 days. We show the result of this averaging operation
in the Figure 7.8 for the Lvl 1 and in the Figure 7.9 for the Lvl 2 of BSPP. Since the mean is only a
partial indicator (and it gives a non-integer result), we also represent the inter-quartiles interval
by light-shaded areas (recall that the mean can sometimes lie outside this 50 % presence interval).

The first eye-catching phenomenon on Figure 7.8 is the periodic drop of the number of logged
agents that happens at fixed hours. We guess here that this is due to the shift rotation, with
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Figure 7.8: Average number of logged operators in work days (180 days) at Lvl 1

agents logging out at the end of their shift before the next ones log in. Still, this is a somehow
“structural” practice, since it is not skimmed by the averaging operation.

We also naturally observe a difference between night and day hours, with a typical staffing
that varies from 2 to 3 firefighters during the night at the Lvl 1, versus 3 to 5 during the day.
Similarly, there are typically 3 to 4 police agents active in the night at Lvl 1, and 4 to 5 at business
hours. As far as the second level of the BSPP part of the PFAU is concerned (shown in Figure 7.9),
we detect in average 4 second-level operators active in the night, and from 9 to 11 operators
between 9 am and midnight. We have also distinguished another type of agent in Figure 7.9, the
so-called “field report firefighters”, who only coordinate the interventions of teams dispatched
on-site, and do not pick up inbound calls from the population. We have also computed the same
mean staffings during the week-end (Saturdays and Sundays), which led us to observe at the
Lvl 1 that there are the same number of logged firefighters but that there is typically an extra
police officer present at night. Similarly, at the Lvl 2 of BSPP during the week-end, there is one
extra agent during the night and one less agent during the day, relatively to weekdays.

We also represent in Figure 7.10 the number of logged agents at the Lvl 2 of BSPP correspond-
ing to the night after Bastille Day (between the 14th and the 15th of July, customarily associated
with more accidents or acts of urban violence). In particular, there is no averaging operation
and we recover on this figure integer number of active agents. We observe that at the peak of
the night, there are on this specific date up to 18 logged firefighters at Lvl 2, that is to say four
to five times the “standard” night staffing. This follows the increase of the demand for urgent
calls (see the Figure 7.24 to come). The quickness with which the BSPP can double its staffing is
here quite noteworthy. Besides the previous figures, we have also computed the histograms of
agents’ shifts duration. It turns out that the typical shift of a Lvl 1 police officer lasts one hour,
with other characteristic duration of 45, 90, 105 or 120 minutes. This regularity is less striking for
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Figure 7.9: Average number of logged operators in work days (180 days) at Lvl 2 of BSPP
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Figure 7.10: Average number of logged operators at BSPP’s Lvl 2, during the night from
the 14th to the 15th of July 2019
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firefighters, with peaks at 55 minutes and 2, 3 or 4 hours. Part of these variation can probably be
explained by the fact that there are different types of work status for the agents of the PFAU.

We finish this section by precising that it is also possible to quantify the fact that Lvl 1 operators
are sometimes emitting calls. Indeed, 2.8 % of calls involving Lvl 1 firefighters are dialed by them,
and this goes to 5.4 % for first-level police agents. This can correspond to immediate callbacks
of callers if for some reason the conversation is interrupted (the DSPAP agents have the explicit
instruction to call back the people who hang up between Lvl 1 and Lvl 2). It is relevant to weight
these volumes by their actual treatment time, which enables to obtain an “outbound workload” to
be compared to the “inbound workload”. With this new look, emitted calls represent 3.8 % of the
total time spent on the phone by Lvl 1 DSPAP agents, and 2.9 % for the Lvl 1 BSPP agents.

4 Service times of calls

Measuring the characteristic times of the various steps spent on the phone in the call center is
essential for simulation. These conversation duration are dimensioning elements of the system
and impact the performance of the platform – contrary to the waiting times before pick up that
in turn are consequences of the performance levels. All the instruction times studied here shall
be reused in the models of Chapter 8. We analyze in this section four different duration: the time
g1 of conversation at Lvl 1 between a first-level agent and the caller, the time g2 of conversation
between the Lvl 2 operator and the caller, the time gS of transfer (or escort time) between the
Lvl 1 and Lvl 2 operators for Very Urgent calls (this time does not include the possible wait of the
Lvl 1 agent before the Lvl 2 operator is available) and finally the time g3 of additional instruction
at Lvl 2 after the second-level operator hung up with the caller.

4.1 CONVERSATION TIME AT LEVEL ONE. — We depict in Figure 7.11 the histograms of the
conversation time at Lvl 1, split by layers corresponding to the different gravity levels. We have
discarded the week-end days and naturally the days with acquisition anomalies. In addition,
we have distinguished the new “NU-hangup’ category, the calls labeled as non urgent by the
Lvl 1 operator but hung up by the caller himself/herself (which might indicate that this was
an error). The calls actually marked as NU on the Figure 7.11 were hung up by the answering
operator. The legend gives the mean time ḡ and the median time g1/2 of each layer.

The first histogram in the Figure 7.11 shows a “two-humped” profile for the conversation
times at Lvl 1 of calls received on the emergency line 17. The layered structure shows that the
first peak, around 7 seconds, corresponds to very short calls, namely NU and NU-hangup. There
are in fact plenty of the latter for short duration. The second mode, between 25 and 30 seconds of
conversation, is explained in majority by U and VU calls. Those two categories have very close
instruction times. Note how the distribution’s tail for NU calls is heavy – some conversations go
over one and a half minute or sometimes two minutes, owing to some “advice calls”. This very
spread profile tends to increase the mean and the median treatment times upward.

For the calls arrived on the emergency line 18, we retrieve very short NU-hangup calls. NU
calls are treated in a quick and homogeneous manner, with a median time of 11 seconds. All the
calls that are transferred to the second level (LU, U, VU and EVU) are handled with very similar
characteristic times. It is interesting to remark that the average conversation time for a NU call
is also similar to the one of transferred calls, although with a much lesser median. This shows
that on line 18 as well there are quite long “advice calls”. On the contrary for the calls from line
112, we see that the NU layer has both a low mean and a low median time, advocating again for a
large majority of “pollution calls” (with no proper conversation), versus very few advice calls.
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Figure 7.11: Conversation time at Lvl 1, per gravity and line (all week days of 2019)



266 Chapter 7: Data analysis of phone logs

We have already mentioned in the Section 2 the existence of “cross-flow”, i.e., some calls arrived
by line 18 and transferred to the Lvl 2 of DSPAP, or line 17’s calls handed over Lvl 2 of BSPP.
By comparing the mean conversation times at the first level with the previous distributions, it
turns out that dialing the “wrong number” in the first place increases the instruction by five to ten
seconds in both cases (a Lvl 1-firefighter will need more time to handle a call to be transferred
to Lvl 2 of DSPAP, and vice versa for Lvl 1-police agents having to route calls to the Lvl 2 of
BSPP). This longer time could be interpreted by the fact that the request is more complex (since
the initial contacted number was not the most appropriate) or by the fact that first-level agents
are less accustomed to picking up calls involving the other job. Nevertheless, it is important to
note that being able to reroute a caller who did not reach the best emergency line to begin with in
less than ten extra seconds is a great strength of the two-job layout at the PFAU. It is an advantage
with respect to separated organizations that handle such transfers in less swift ways. Having
universal Lvl 1 operators (i.e., picking up calls from line 17, 18 and 112 indifferently) as studied in
the Section 4.4 of Chapter 8 could also help lowering further these differences.

To the purpose of finding upon which parameters the conversation times may depend, we now
study if the previous distributions vary from one department to another. To do so, we represent
for each area and for each gravity level the cumulated distribution function �g1 of the time g1.
The Figure 7.12 illustrates this experiment for calls arrived on line 17. We observe that the four
cumulated distribution functions are significantly different for Non Urgent calls. The curve for
calls received in department 75 (city of Paris) is the one which grows the faster in the beginning,
which tells us that these calls are handled more quickly than in the other areas. Then come
departments 92, 93 and 94. For U calls, the four curves are much nearer to each other, and this
is all the more true for VU calls. As far as calls from line 18 are concerned, we have the same
findings (NU calls are more quickly treated for area 92, then 93, 75 and finally 94, while curves
are the same for U or VU calls). These curves demonstrate that even though the profiles of non
urgent calls vary from one zone to another, the instruction gets more and more homogeneous as
the gravity increases (recall that the four areas are picked up by the same PFAU Lvl 1 agents).

0 20 40 60 80 100 120

Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0
NU

0 20 40 60 80 100 120

Duration (s)

U

0 20 40 60 80 100 120

Duration (s)

VU

City of Paris (Department 75)

Hauts-de-Seine (Department 92)

Seine-Saint-Denis (Department 93)

Val-de-Marne (Department 94)

Figure 7.12: Cumulated distribution functions of the Lvl 1 conversation time,
on line 17 in week days and per departments



Section 4: Service times of calls 267
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Figure 7.13: Conversation time at Lvl 2 for calls handed over to BSPP’s Lvl 2,
per gravity and line
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NQ–18 (15 ; ḡ = 65.3 s, g1/2 = 55 s)
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Figure 7.14: Conversation time at Lvl 2 for calls handed over to DSPAP’s Lvl 2,
per gravity and line
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4.2 CONVERSATION TIME AT LEVEL TWO. — The Figures 7.13 and 7.14 give the histograms of
conversation times at the Lvl 2 of BSPP (for LU/U/VU gravities) and at the Lvl 2 of DSPAP (for
NQ/U/TU gravities), distinguished by initial contacted emergency number.

At the second level of BSPP, we remark thanks to the Figure 7.13 that the handling time of
calls LU and U are quite equivalent. The calls arrived by line 17 are significantly quicker to treat
at Lvl 2 than those from line 18. On the contrary, calls from line 112 require a bit more time to be
instructed (for such 112 calls, we will mostly pay attention to the U distribution and not to the LU,
much less significant). The VU calls need in average 25 extra seconds of conversation compared
to U calls, and feature a heavier distribution tail. It is however important to mention that in spite
of these longer times, for instance to help or give instructions to the caller, this figure does not
say anything on the conversation time before dispatching emergency response teams. The latter
is in fact the only time of interest from the caller point of view. We also note that the treatment
of VU calls is pretty uniform regardless of the initial emergency line used.

The conversations at the second level of DSPAP are much shorter than those at the Lvl 2 of
BSPP. An Urgent call arrived by the line 17 will be handled in average in 106 seconds, versus
116 or 121 seconds if the call comes from the line 112 or 18. The handling of VU calls is here
also less prone to variations with respect to the initial dialed line, and is longer than U calls by
approximately 15 seconds in average. Similarly to the Lvl 1 of the police organization, NQ calls
are treated in a rather short way at Lvl 2.

We have previously computed the histograms of conversation times at Lvl 1 and Lvl 2,
but these marginals do not carry information about the possible interdependence of both times.
Indeed, we could imagine that a call that has been long to handle at Lvl 1 would also be likely
to cause longer instruction at Lvl 2 as well. To sort this out, we represent in the Figure 7.15
the density of the (g1, g2)-copula. Recall that when the random variable ĝ admits the cumulated
distribution function �g , then the random variable *̂ B �g (ĝ ) follows a uniform law over [0, 1].
In other words, the tuple (D1, D2) B (�g1 (g1), �g2 (g2)) indicates the normalized location of the
tuple (g1, g2) relatively to the marginal laws. Under the hypothesis that the conversation times g1
and g2 are independent, this tuple should admit a uniform density over [0, 1]2 (see the control
map on the right). On the contrary, a positive correlation should entail a bivariate density that
is more concentrated along the diagonal; short (resp. high) values of g1 being more frequently
associated with short (resp. high) values of g2.
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Figure 7.15: Density of (g1, g2)–copulas
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The Figure 7.15 distinctly confirms that Lvl 1 and Lvl 2 instruction times are correlated for
the calls arrived on line 17 and handed over to DSPAP’s second level (the diagonal is lit up and
the antidiagonal is darker). This phenomenon is less striking for calls arrived by line 18 and
transferred to BSPP’s Lvl 2, but is still observable. This outcome tells us that for simulation
purposes, it would not be realistic to generate independent values of g1 and g2 for a same call.
Indeed, this would give an over-representation of tuples (g1, g2) for which g1 is high and g2 is short
relatively to their respective distributions, which does not occur very often. We shall assume next
that the previous copulas are bivariate Gaussians copulas with a correlation factor d . Fitting such
a model to our data yields a value d = 0.25 for police calls and d = 0.07 for rescue calls (we shall
apply the latter value for 112 calls as well).

4.3 ESCORTED TRANSFER. — The calls qualified as Very Urgent (VU) at the first level of the PFAU
are treated differently from others, since they are escorted to the second level. The Lvl 1 operator
does not put the caller on hold in a waiting room, but stays with him/her on the phone until
a Lvl 2 agent is available to pick up. At this point, a short synchronization step takes place
between the two agents (that may also involve the caller), before the Lvl 1 agent is freed and the
Lvl 2 agent handles the call alone. The Figure 7.16 shows the synchronization times gS for VU
calls transferred to the second levels of DSPAP and BSPP. It is given only for the second half of
the year 2019 because the VU calls were not accompanied before.
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Figure 7.16: Synchronization time gS between Lvl 1 and Lvl 2 for VU calls per line
(second half of 2019, week days, non standard calls ruled out)
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Because the transfer calls initiated by the Lvl 1 operators are internal calls, they appear in our
datasets as if they were picked up from the beginning. As a result, the time lengths given in
the Figure 7.16 are – unlike the other times shown before – the sum of the waiting time before
the Lvl 2 agent picks up and the conversation time between the two agents.

We remark that the synchronization time with a Lvl 2 firefighter of BSPP is very similar
regardless of the emergency number of origin, with a mean at 20 seconds and a median at 14
seconds. The calls shorter than 3 seconds probably correspond to residual transfers with no
escorting or to unusual situations where this mechanism is switched off to cope with more
demand. For the Lvl 2 of DSPAP, the conversation time gS is higher, with a 35-second mean. This
phenomenon and the heavy tail of the distribution may be a consequence of more congestion
periods on line 17.

4.4 ADDITIONAL INSTRUCTION TIME AT LEVEL TWO. — Once a call is hung up at the second
level, it is frequent that the Lvl 2 agent has to finish handling the demand of the caller, and thus
remains unavailable.

In particular, the operator can make outbound calls to dispatch on-site response teams, reach
the SAMU for medical support, ask a piece of advice to the BSPP’s “coordination médicale”, etc.
This traceable activity in our data enable us to measure how much extra time of instruction is
needed for BSPP’s requests at Lvl 2 (while we do not have similar data for Lvl 2 of DSPAP). In
order to link (possibly multiple) outbound calls to an initial inbound call, we convene to aggregate
these into “cases”. A case shall be made of an inbound call (17–18–112 caller) transferred at
Lvl 2 and of all the subsequent outbound calls passed by the Lvl 2 operator having picked up
the inbound request – until the next inbound call. In fact, second-level agents can also make
outbound calls that are unrelated to any inbound demand. Thus, we convene that if an outbound
call is passed after more than 90 seconds of telephonic inactivity, it is part of a new case. This
choice is arbitrary and modifiable.

When a case gives rise to one or multiple outbound calls, we call extra instruction time g3
the duration between the moment the initial inbound call is hung up and the moment the last
outbound call of the case is hung up. By convention, we let g3 = 0 if the inbound call does not
yield any outbound call. It is also possible that the outbound call(s) emitted by the Lvl 2 agent
are hung up before the communication ends with the caller, if the dispatch demand are made
in parallel of the initial call. In this case, we also convene that g3 = 0 since no additional time
is needed on top of g2 to handle the case. In particular, the extra instruction time does not give
indication on the possible instant of response teams dispatch.

Note that it may also happen that Lvl 2 operators dispatch vehicles by digital means or using
radio contact, which is an untraceable activity from a telephone point of view (the only one we
have in our datasets). This is bore out by the distribution of wrap-up time (after last pick up) that
is far from an “expected” exponential profile.

Out of 811,429 analyzed cases for the Lvl 2 of BSPP, 37.9 % of them give rise to one or multiple
outbound calls to make (cases with two or more such calls account for 4.0 % of the total). We also
count 3.1 % of “only outbound” cases (communication not preceded by an inbound call during
the 90-second interval). Those could correspond to a Lvl 2 agent coming in support of another
Lvl 2 operator in case of complex cases or calls involving level supervisors.

We depict in the Figure 7.17 the histogram of extra instruction time g3 only when g3 > 0
(recall that g3 can be zero if the case did not generate any outbound call or if those where ended
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before hanging up with the caller). In order to compare only homogeneous variables, this figure
is restricted only to cases leading to a single outbound call in the case. This rules out many calls
(about 11,000) passed to fire stations. Those services are indeed called in 33.1 % of requests for
which two outbound calls are made (probably explained by the fact that these teams have a very
quick on-site response time and are therefore often called in support of another partner).

Based on a phonebook of partners collected with the BSPP, the histogram of Figure 7.17 is
divided into layers corresponding to calls addressed to: physicians from the BSPP’s “coordination
médicale”, to fire and rescue stations of the BSPP or stations from neighbor departments, to SAMU
centers of the Paris area, to the so-called “SAMU Social” (emergency services for social distress
and homeless people) and finally a last layer of either unidentified partners or who do not fit in
the previous categories (transport and rail companies, electricity, gas or elevator services…).

We can observe that the internal calls made to the physicians of the BSPP are the shortest,
with a mean of 50 seconds. Instructions passed to local fire and rescue stations also represent a
cost of one extra minute after hang up for Lvl 2 operators (if not made in parallel to the inbound
call). Contacting the SAMU is a bit longer, with an average time of 98 seconds, and even longer
for the SAMU Social (113 seconds).
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Other partner (54,917 ; ḡ = 96.2 s, g1/2 = 76 s)

Call to. . . :

Figure 7.17: Extra instruction time of outbound calls subsequent to BSPP’s Lvl 2 cases,
per partner (and for cases leading to a single extra outbound call)
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We now focus on the correlation between the handling times g2 and g3. As studied in Section 4.2,
we can indeed wonder whether the extra instruction time after hanging up with the caller depends
upon the previous discussion time with him/her.

Preliminary experiments showed us that strong correlations were effectively at stake and
we need to take them into account for simulation. However, the reasons of these dependences
and the predominant role played by the value g3 = 0 do not make the use of bivariate copulas
very advantageous as before (in the Section 4.2, having g1 = 0 or g2 = 0 were rare events and
unrepresentative of the distributions, while having g3 here is very frequent). We have therefore
preferred an approach where the correlation between g2 and g3 is studied by discretizing the
values taken by g2 and plotting the corresponding cumulated distribution functions �g3 . For each
level of gravity, we have divided the space of values of g2 into ventiles, that is to say twenty
ordered intervals that realize a partition of values of g2 and that all contain the same number of
observations.

The result of this analysis is depicted for Urgent calls in the Figure 7.18. The first two ventiles
are shown in yellow and the last two ventiles in blue. We remark that the cumulated distribution
function of the first ventile starts at the value 0.88, which means that 88 % of the calls with a short
conversation time g2 (less than 26 seconds) between the caller and the Lvl 2 operator do not yield
an additional instruction time. This same value goes to 82 % for the second ventile (calls with g2
between 26 and 43 seconds). This suggests that short calls at Lvl 2 tend to be errors or need quick
advice, since the short duration g2 does not really enable the Lvl 2 operator to make outbound
calls. The distribution functions of the subsequent ventiles follow this decreasing trend until the
eighteenth ventile. We indeed observe that the curve of the 19th ventile goes back up and this
is even more true for the last ventile (63 % of cases with no extra instruction time, versus 54 %
in the 18th ventile). This phenomenon can probably be explained by the fact that for such long
calls (more than 4 minutes of discussion), the Lvl 2 operator remains on the line with the caller
to guide or reinsure him/her. However, the possible dispatch of response teams are performed in
parallel of this communication, hence not costing any extra instruction time after hanging up.

The same phenomena are visible for Very Urgent calls in the Figure 7.19. Nevertheless, the
curves of each ventiles are here much closer to each other. This demonstrates that VU calls
are treated with more uniformity, and suggests the existence of more standardized protocols to
instruct them.

In our simulations, we shall generate the tuples (g1, g2) by resorting to bivariate Gaussian
copulas as explained in Section 4.2, and then the times g3 from cumulated distribution functions
depending upon g2. This allows us to avoid unrealistic situations where g2 and g3 are both long.



Section 4: Service times of calls 273

0 100 200 300 400

Extra instruction time (s)

0.5

0.6

0.7

0.8

0.9

1.0

549,541 samples

V1 = (0, 26]

V2 = (26, 43]

V3 = (43, 57]

V4 = (57, 68]

V5 = (68, 78]

V6 = (78, 87]

V7 = (87, 95]

V8 = (95, 104]

V9 = (104, 113]

V10 = (113, 122]

V11 = (122, 132]

V12 = (132, 143]

V13 = (143, 155]

V14 = (155, 168]

V15 = (168, 184]

V16 = (184, 204]

V17 = (204, 229]

V18 = (229, 267]

V19 = (267, 335]

V20 = (335, 3000]

Figure 7.18: Dependence of the cumulated distribution functions of gU3 with respect to g2
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4.5 OTHER FACTORS OF DEPENDENCE. — We have already showed how the four instruction
times g1, g2, gS and g3 could differ with respect to the emergency number of entry, level of gravity,
department of origin, orientation at Lvl 2, and even how they were intertwined. We explore in
this subsection a couple of other factors prone to influence these time lengths.

First, we may wonder whether the conversation times depend on the hour of the day. We
have binned those times into 24 classes corresponding to each hour. Some characteristic times are
very stable, such as the treatment time at Lvl 1 of U calls arrived by line 18. On the other hand,
the U calls arrived by line 17 are handled more quickly during the night (4 to 5 seconds less in
average from 10 pm to 5 am). The same is true for NU calls on both lines. The conversation time
at Lvl 2 of DSPAP is very steady during the day, but progressively increases between midnight
and 6 am. This could be due to more complex cases occurring during the night, or to the fact
that operators tend to take more time on the phone when the demand is lower (or again to an
increased level of tiredness at the end of the night).

The previous remark leads us to study whether the number of logged operators impacts the
average conversation time, supposing that agents could “speed up” their instruction if they are a
little understaffed. It is a difficult effect to measure, as the only knowledge of the staffing that we
have is the number of active agents on the phone (see Section 3). The latter is naturally correlated
to the inbound throughput of calls, therefore distinguishing between the two causes is tricky.
Nevertheless, we tend to observe a positive correlation between the number of active operators on
the phone and the conversation time g1 at Lvl 1 on lines 17 and 18, regardless of the gravity level
of the call. This does not overturn the hypothesis that operators indeed adapt their instruction
time to the load or the staffing.

Another manner to split the calls is to use the telephone code area present in the data. French
lines start with the +33 code, and we know that the device is a cell phone if the designator is
followed by the number 6 or 7. Foreign users can be identified by different starting codes (+1
for the US, +44 for the UK, etc). It then turns out that among the NU requests (whether from
line 17 or 18), those emitted by mobile devices have a much higher distribution tail, and a mean
conversation time twice higher than calls emitted from landlines. This phenomenon does not
happen for U and VU calls, which feature similar instruction times between cell phones and house
devices. The calls associated with foreign callers typically have increased instruction times at
Lvl 1 (in average 5 extra seconds) and at Lvl 2 (which is sometimes explained by the fact that
Lvl 2 operators can reach out to a translation platform).

In spite of the last observations, we shall choose in simulation not to take into account the
above dependences. The influence of the time of the day is quite minor, and splitting too much
the sample size would alter the smoothness effect obtained for distributions of large samples. In
addition, it is not desirable that our simulations do integrate the correlation between instruction
times and staffing levels, nor the fact that handling times can vary from one operator to another.
Indeed, we prefer that the number of logged operators do not cause any implicit or feedback
influence on the experiments, in order to better control its direct impact on the performance levels.
Finally, distinguishing conversation times based on the origin of the call is only significant for
NU calls, and this effect is anyway already accounted for in the associated cumulated distribution
function. It does not seem relevant to us to extract finer corresponding throughputs.
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5 Patience of callers

In order to derive realistic results by simulation, it is important to take into account the patience
of the callers. By definition, it is the time that they are willing to wait for before pick up. If the
waiting time exceeds the caller’s patience, the latter will hang up himself/herself, and we talk
about an abandoned call.

Estimating the patience of the population of callers is a difficult problem because most often,
the calls are picked up before callers get impatient (which is desirable of course). Denoting by
% the patience of a caller (in seconds) and by � the pick up time of this call, what we can only
measure is actually the quantity

) B min(%, �) .

In most cases, ) equals the pick up time � – in other words we only measure the real patience of
people who have abandoned. We talk about data censorship (the variable % being masked by the
variable �). In order to simulate the real patience of callers, we wish to recover the distribution
function �% , and it would be very crudely wrong to use in place the distribution function �) that
we can directly measure – since the majority of the data are censored by pick up. Paradoxically, the
days with congestion and for which callers experience longer waiting times are very interesting
to study the patience, because they provide data points closer to the real patience of people.

5.1 KAPLAN–MEIER ESTIMATOR. — A tool that is commonly used in this context is the Kaplan–
Meier estimator, first introduced in survival analysis. In medicine and healthcare studies for
instance, we often want to analyze the effectiveness of an experimental treatment by comparing
several groups (with or without the treatment). Such problems regularly involve censorship of
the data of interest (typically the date of death of a patient), due to the patient leaving the cohort
before the end of the study. The Kaplan–Meier estimator, already applied to the analysis of call
centers in [BGM+05b], gives an estimate of the survival function ( , defined as the complementary
1 − �% of the patience function �% . In our framework, ( (C) will denote the proportion of callers
that are willing to wait at least C seconds before abandonment, and is defined by the expression:

(̂ (C) =
∏
C86C

(
1 − 08

=8

)
, (7.1)

where we denote by

– C1 < C2 < · · · < C8 < · · · < C< the ordered dates (values of waiting times) for which
abandonments of callers arise;

– 08 the number of callers who hang up at instant C8 ;

– =8 the number of callers who have not hung up before the instant C8 (and are still waiting
for pick up).

In large populations, we shall typically observe multiple abandonments every second for short
times, that is to say C1 = 1 s, C2 = 2 s, …, and further a few abandonments (most of time unique)
occurring after long duration, for instance C<−1 = 462 s, C< = 603 s. The time-length C< is the
maximal patience measured in the population.

In the absence of censorship (very theoretical hypothesis under which no call is picked up…),
we have the relation =8 = = − (01 + 02 + · · · + 08−1), where = is the total number of callers. In this
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case, the Kaplan–Meier estimator reduces to

(̂ (C) = 1 − 1
=

∑
C86C

08 ,

which exactly corresponds to the empirical distribution function 1− �% . Under censorship though,
the definition (7.1) weights abandonments by the amount of individuals still prone to abandon.

It is important to note that the Kaplan–Meier estimator is only defined until observations are
available. In theory, the patience function ( tends towards 0 for very large times (no caller at all
is for instance willing to wait for 24 hours on the phone). In practice, ( features decreasing steps
only for times at which abandonments are recorded, and the last drop reaches 0 only if 0< > 0 –
which means that the highest time-value with observations contains abandonments. Otherwise,
the patience function ( remains steady and nonzero until C< and is not defined further. We refer
to the analysis of the Figure 7.20 for a discussion on this aspect.

There is a rich literature on the good behavior of the Kaplan–Meier estimator. The central
question is to know whether the estimator converges, that is, if the computed proportion (̂ (C) is
indeed a good estimation of ( (C) and what is the quality of the approximation as a function of
the sample size. One of the most general results claims that when the patience levels (%8)1686=
of callers and the pick up times (�8)1686= are i.i.d. variables (mutually independent) and ( is
continuous, then (̂ converges in law towards ( “as much as censorship allows it”. Indeed, denoting
by g% the time after which the most patient of all callers gets impatient, g� the maximum possible
pick up time, and as a consequence g) B min(g% , g� ) the maximal possible observation time, then
we have according to [SW93] that

sup
C ∈[0,g) ]

���(̂ (C) − ( (C)��� P−→
=→∞

0 .

This means that with many observations, the probability that (̂ (C) differs from ( (C) tends to 0.

Using the “limit times” g% and g� is here theoretical and it is not clear if such values should
be finite or infinite. Rather, it is reasonable to picture that there are finite values g (Y)

%
and g (Y)

�

such that �% (g (Y)% ) > 1 − Y and �� (g (Y)� ) > 1 − Y, after which almost all calls (up to the error Y)
are respectively abandoned and picked up. We expect in practice that the distribution of pick up
times reaches its asymptotic value before the patience levels do, in other words g (Y)

�
� g

(Y)
%

, and
this prevents us from having a complete convergence of (̂ . However, the fact that we can record
some high pick up times allows us to recover with a great precision most of the patience functions
as shown in Figure 7.20. In addition, for numerical simulations, small errors for high levels of
patience will not be active nor make a difference, unless we purposefully want to study what
happens in understaffed configurations. In those situations only, it shall turn useful to suggest an
empirical “extension model” of the patience functions beyond g) .

The assumption that the random variables at stake are independent is a bit more problematic,
since rigorously inexact. It is acceptable to suppose that the patience levels of all the callers are
independent, but pick up times are not. Indeed, short consecutive pick up times suggest that
many operators are available, which favors higher pick up times for the next callers if the agents
are still busy on the phone. We consider anyway that the Kaplan–Meier estimator brings a very
interesting light on the patience problem and that the very high number of observations that we
have helps mitigating the possible correlations between neighbor variables.
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It is possible to account for the incertitude on (̂ by computing its variance. An estimator of the
latter is given by the Greenwood formula, defined (with same notation as before) by:

V̂ar
(
(̂ (C)

)
B (̂ (C)2

∑
C86C

08

=8 (=8 − 08)
.

This estimator shall be all the higher as the data involved in the computation of (̂ are spread,
but also if the amount of data points is too small and gives less confidence in the estimated
value. Several authors have shown that under the previous assumptions and if g) < ∞, then
the estimator (̂ is asymptotically normal (see for instance [Gil80]), which legitimates the use of
a Gaussian confidence interval. Actually, when the variance is high, it can lead to confidence
bounds out of the [0, 1] interval. Therefore, we will preferably use the Rothman–Wilson interval
(see [ABP82]), whose bounds under a risk U are given by:

CI(U) =  

 + I21−U/2

(̂ (C) +
I21−U/2
2 

± I1−U/2

√
V̂ar((̂ (C)) +

I21−U/2
4 2


where  B (̂ (C) (1 − (̂ (C))/V̂ar((̂ (C)) and I1−U/2 is the (1 − U/2)-quantile of the bilateral normal
law. When the variance is low, we recover the usual result where the confidence interval is
centered around the estimator and whose width is proportional to the standard deviation of the
latter.

5.2 COMPARISONOFPATIENCE FUNCTIONS. — We have computed the Kaplan–Meier estimator
for all the calls at Lvl 1, and for all calls transferred to Lvl 2. Recall that the great majority of
calls received on line 17 (resp. line 18) which are transferred are handed over to Lvl 2 of DSPAP
(resp. BSPP). Consequently, we have compared the patience of calls of line 17 at Lvl 1 with those
of DSPAP’s Lvl 2 calls. Similarly, patience at Lvl 1 of calls from line 18 is compared to patience
at Lvl 2 of BSPP calls. The patience functions at Lvl 1 are recovered “thanks to” the calls that
were not picked up at all, while their Lvl 2 counterparts are built based on the calls lost between
the two levels (caller getting impatient waiting for the Lvl 2 agent). Because we know the gravity
levels of the transferred calls, we are able to distinguish the patience functions at Lvl 2 depending
on this parameter. On the other hand, the gravity of calls that were lost before Lvl 1 pick up is by
essence unknown. As a result, the corresponding patience curve a priori contains abandonments
of all gravity levels. It is sound to think that most of callers who abandon (in particular for short
waiting times) would have been qualified as Non Urgent if picked up at Lvl 1. The analysis of
callbacks from Section 2.3 shows however that even callers to-be-qualified as U or VU do hang up
on their own. We have not extrapolated the (known) gravities of callers having abandoned at
Lvl 1 and then called back, because we considered that these situations were not representative of
most abandonments. We may then only assume that an important part (impossible to quantify) of
abandoned calls would have been NU. Note that it can happen that a group of people witnessing
the same accident simultaneously call emergency services for a U or VU matter but all of them
hang up as soon as one call within the group is handled.

The Figures 7.20 and 7.21 feature the patience functions, and each shaded area stands for
95 %-confidence intervals. We have excluded from our analysis the calls hung up during the voice
prompt, reason why the Lvl 1 curves do not decrease for a few early seconds.

The green curves in the Figures 7.20 and 7.21 stand for the patience functions at Lvl 1. We
can thus read that a little bit less than 80 % of callers dialing the number 18 are willing to wait for
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Figure 7.20: Comparison of patience functions (at Lvl 1 of line 17 and Lvl 2 of DSPAP)
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Figure 7.22: Influence of the mechanism of escorted transfer for VU calls on line 18

at least one minute, and this is about 70 % for people calling line 17. The fact that those curves
remain flat after 190 seconds for line 17 and 220 seconds for line 18 means that these are the
maximal abandonment times recorded at Lvl 1. The representation of the curve for line 17 stops
at 290 seconds because it is the longest observed pick up time in the year 2019.

Since the instruction at Lvl 2 is longer than the one at Lvl 1, we can witness relatively high
waiting times for U calls, and we can represent the patience functions of those calls with a good
level of confidence up to 10 or 15 minutes. As far as VU calls are concerned, the curves stop
earlier because those calls are handled in priority and it is extremely rare to experience more
than three minutes of wait. For these reasons, we chose to clip the figure between zero and five
minutes of wait.

It is very interesting to note that the patience at Lvl 2 is significantly higher than the patience
at Lvl 1. For instance on line 17, 20 % of callers have abandoned after 40 seconds of wait, while
the same level of abandonments arises at 135 seconds at Lvl 2 of DSPAP. We further remark
that VU callers are more patient than U callers. One might argue that the patience improvement
is not due to the bilevel layout but rather to the sample content. Indeed, the patience curve of
Lvl 1 is a mixture of NU, U and VU calls. However, this explanation does not suffice to justify the
gap between the curves. Under the hypothesis that U and VU patience functions are unchanged
between Lvl 1 and Lvl 2, we could recover from the green curves and using the proportions of
gravity a patience function of NU callers at Lvl 1 that turns impossible (total impatience reached
in less than one minute, and then negative values). We can therefore effectively assert that first
being welcomed at the platform by a quick pick up at Lvl 1 enables to significantly increase the
patience in view of a further instruction at the second level. We may also remark that for BSPP’s
Lvl 2 calls that the patience of LU and U calls are very similar.
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We now focus on the influence of the escorting mechanism for VU calls, where Lvl 1 operators
stay on the line with the caller until the arrival of a Lvl 2 specialist. We have already mentioned
in Section 4.3 that before mid-June of 2019, those calls were in fact not escorted. We have been able
to leverage on the existence of both protocols in our datasets to compare the patience functions of
the two situations, with or without accompaniement. This is depicted in the Figure 7.22. It proves
that the escort mechanism of VU calls greatly increases the patience of callers and diminishes
their tendency to hang up. More than 90 % of callers stay on the phone during two minutes when
they are accompanied, versus 70 % when put on hold. The total counts also speak for themselves,
both samples of the study have similar sizes, but there are seven times less abandonments in the
escorted population.

As done in previous sections, we also review the influence of other factors on the patience
levels. When distinguishing the patience functions per departments, we obtain a very high degree
of similarity of Lvl 1 patiences on line 18. On the other hand for line 17, there are small disparities,
the callers from Paris (75) being a bit more patient than those of Val-de-Marne (94), themselves
more patient than people from Seine-Saint-Denis (93) and finally Hauts-de-Seine (92). It is not
easy to find an explanation for these differences, the corresponding calls could be made at different
moments of the day (and the reason home/office or week/week-end may be involved). In addition,
we do not know if the same voice prompts are used.

In order to study the possible dependence of patience functions upon the hour of the day, we
have split the calls in four slots: morning (received from 7 am and 1 pm), afternoon (1 pm to 7 pm),
evening (7 pm to 1 am) and night (1 am to 7 am). On line 17, computing the patience functions
for these four windows at Lvl 1 cleary shows that callers are more patient in the evening and
the night (with similar profiles) than during the morning and the afternoon (close profiles as
well). For instance, 40 % of callers will hang up on their own after 90 seconds during the day,
versus 35 % at night. This phenomenon is much less visible for calls received on line 18, even
though small differences remain (patience increased of roughly 1 % at night relatively to the day).
For simulation purposes, we shall neglect the effect of the night and we will only compute the
patience functions using calls received between 9 am and 8 pm – further used regardless of the
hour of the day. This is appropriate to study an average scenario during the day, and it does not
underestimates abandonments if we apply these patience levels for a night scenario.
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6 Some specific days

As mentioned at the end of the Section 2, we now focus on a couple of specific days in the year
2019. These could be used as scenarios that differ from the average profile, but that are still
characteristic of the PFAU activity. The subsequent figures feature the throughputs of calls per
gravity (NU, LU, U, VU, and EVU, as well as on-prompt and after-prompt abandonments) and the
handling times (VU, U or EVU) in bold lines. The reference (average) curves of NU, U and VU
calls of Figure 7.4 are given in thin lines to ease the comparison.

6.1 NEW YEAR’S EVE OF 2019 ON LINE 17. — The top of the Figure 7.23 features the throughput
curves for the “Nuit de la Saint-Sylvestre” (that is to say between the 31th December and the
1st January) on police number 17. Every year on this night during or after the festivities, law
enforcement has to cope with public unrest or urban violence. The number of Urgent calls
received on line 17 is already higher than usual in the afternoon of December the 31th, but it
skyrockets from 11 pm to the end of the night – there are five times more U calls than usual. The
same goes for VU calls whose average night throughput gets multiplied by six on this specific day.
On the other hand, the arrivals of NU calls follow their usual behaviour. Note that we witness
during the night a huge number of abandonments after the voice prompt, meaning that many
calls are unanswered (and probably some of them try to call back once or several times).

The bottom figures show the cumulated distribution functions of the handling times g1 (still
for calls received on line 17) and g2 (for calls handed over to Lvl 2 of DSPAP). The bold lines
were computed using only the calls received on New Year’s Eve between 10 pm and 8 am. We can
see that both U and VU calls are handled with exactly the same characteristic times than every
other day.

6.2 BASTILLE DAYNIGHT OF 2019 ON LINE 18. — The night before and the night after the French
national day (14th of July) also suffer a rise of civil incidents, putting all the firemen of the country
in the front line. By looking at the Figure 7.24 (top), we see that until 10 pm, the throughput of NU,
U and VU calls follow the usual average trend. However, from 10:30 pm, the urgent calls soar until
minight, with a maximum throughput equivalent to 500 calls per hour. In a much lesser extent,
there is also a great rise of NU calls in the beginning of the night. The huge and exceptional
load of U calls decreases but lasts during the entirety of the night, with a slight upturn between
4 am and 6 am. The normal profile is recovered in the morning of July the 15th. Note here that
the throughput of abandonments remained very low (almost null), which shows that the huge
demand has indeed been coped with and absorbed (recall the firebrigade staffing for this very
night depicted in Figure 7.10).

The bottom part of the Figure 7.24 gives the cumulated distribution functions of the con-
versation times for Bastille Day night between 10 pm and 8 am. It brings an additional key to
understanding how the firefighters managed to resist the peak. Indeed, we see very clearly that
the BSPP agents handled the calls from Bastille Day much quicker than usual. This holds for
Lvl 2 conversations but also at Lvl 1 for U calls. Indeed during this night, 75 % of Urgent calls
were handled in less than 1 min 30 at Lvl 2, versus 3 minutes for a normal day. The VU calls are
also treated 30 seconds quicker at Lvl 2. The first level also goes faster, it transfers urgent calls to
the Lvl 2 with a 5-second gain compared to its usual pace. Although the incoming flow of calls
is atypical, the previous differences illustrate that the firebrigade has a strong adaptability and
dedicated protocols to handle planned events.
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Figure 7.23: Throughputs and conversation times for the night of 31 December 2019
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Figure 7.24: Throughputs and conversation times for the night of 14 July 2019
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6.3 FIRE AT BOBIGNYON 26 JUNE 2019 ON LINE 18. — The day of 26 June 2019 is interesting
because the profiles of LU (Less Urgent) and EVU (Event Urgent) curves are atypical (see the top
part of Figure 7.25). The demand on the Urgent lane is higher than usual, probably due to the
heatwave experienced in France at this time. We can also suppose that this is the reason why the
LU lane was activated during the afternoon. The curve of EVU calls is characteristic of a one-off,
short and intense event. It corresponds to an important fire which broke out in a junkyard in
Bobigny (located at one kilometer from Paris in the North-East suburb, department of Seine-Saint-
Denis). It emitted a thick smoke which was visible from the Parisien ring-road 1 – and we indeed
check in the data that the received EVU calls come from both Paris and Seine-Saint-Denis.

This fire is the biggest one of the year 2019 in terms of calls labeled as EVU. The associated
load peaked at an equivalent of 260 EVU calls per hour. We also remark a great number of
abandonments after the voice prompt that are very probably linked to the same event (recall that
this curve does not count the people who called back and were picked up, hence these calls were
never handled). Hence, we can estimate that the real PFAU load associated with the Bobigny fire
was equivalent to 400 calls per hour at the peak, even though most of these calls were concentrated
in a 30-minute time window. In parallel of the EVU calls, we observe an important rise of VU
calls, most certainly also about the fire but treated differently. The firebrigade protocol often
labels calls of immediate victims needing assistance or very close witnesses as VU, while mere
witness from a distance go in the EVU lane.

The bottom part of the Figure 7.25 once again shows the cumulated distribution functions of
conversation times between 7:30 pm and 10 pm on 26 June. It illustrates well the singularity of
EVU calls. While U and VU calls are transferred from Lvl 1 to Lvl 2 with the same typical times
as a normal day, the EVU calls related to the fire are identified and handed over more quickly
(about 2 to 3 seconds). Above all, at Lvl 2, those EVU calls are handled very quickly – more than
80 % conversations below one minute, versus 15 % for “classical” U calls. We note in addition that
the U calls are not handled in a different way than usual, which shows that the incoming flows
were well separated by the first level. On the other hand, VU calls are handled a bit quicker than
usual at Lvl 2 (30 seconds less in average), since most of the calls are related to the fire.

1 https://www.francebleu.fr/infos/faits-divers-justice/un-incendie-dans-une-casse-automobile-a-
bobigny-1561572815

https://www.francebleu.fr/infos/faits-divers-justice/un-incendie-dans-une-casse-automobile-a-bobigny-1561572815
https://www.francebleu.fr/infos/faits-divers-justice/un-incendie-dans-une-casse-automobile-a-bobigny-1561572815
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Figure 7.25: Throughputs and conversation times for the day of 26 July 2019
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6.4 STORM ON 4 JUNE 2019 ON LINE 18. — The throughput curves of Figure 7.26, computed for
the 4th of Junye, tend to oscillate around their average behavior until 4 pm. At this moment, a
violent thunderstorm hit the Paris area and triggered more than 30 BSPP interventions2 (falling
trees, accidents, floodings…). It is interesting to note here that apart from the peak of Urgent
calls just before 6 pm, the curve of Less Urgent adopted a very atypical profile with respect to its
average trend. It seems that a specific instruction was given to BSPP agents, to use this LU label
(usually not very much used) in order to establish a hierarchy of calls and prioritize the response.
This way, the VU lane could still be reserved for life-threatening situations.
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Figure 7.26: Throughputs for the day of 4 July 2019

2 https://www.leparisien.fr/hauts-de-seine-92/hauts-de-seine-le-violent-orage-fait-tomber-
plusieurs-arbres-04-06-2019-8086407.php

https://www.leparisien.fr/hauts-de-seine-92/hauts-de-seine-le-violent-orage-fait-tomber-plusieurs-arbres-04-06-2019-8086407.php
https://www.leparisien.fr/hauts-de-seine-92/hauts-de-seine-le-violent-orage-fait-tomber-plusieurs-arbres-04-06-2019-8086407.php
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6.5 NOTRE-DAME FIRE ON 15 APRIL 2019 ON LINE 18. — All the eyes of the world were this
day on Paris and its firefighters, after an unprecedented fire devastated the Notre-Dame de Paris
cathedral from 6:20 pm. The EVU protocol was activated and received according to the Figure 7.27
an equivalent of 180 calls per hour short after 7 pm, that is to say when the smoke was visible in
the city. It is interesting to note than the throughput of VU calls plummets at the same time as
the EVU protocol is closed, and the NU calls skyrocket. We can guess that at this moment, the
firefighters had much enough information about the fire and had already dispatched teams, hence
received the instruction to not transfer the corresponding calls at Lvl 2 anymore. We did not find
an explanation about the peak of VU calls at 11 am.
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Figure 7.27: Throughputs for the day of 15 April 2019
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We study in this chapter the performance of the PFAU using simulation tools. This is a common
approach in the world of call centers and for emergency purposes (see for instance [Sav69]). We
refer once more to [AL05] for a review of the simulation literature on call centers. In the more
specific field of emergency call centers, we may mention the recent work of Lewis et al. [LHSC07]
on the resource allocation problem – and which gives additional references. In [vBKvdMB15],
van Buuren et al. use simulation to tune the staffing of an emergency call center. See also the
thesis of Petitdemange [Pet20] (carried out in partnership with three SAMU of Southern France)
in which call centers are simulated using a third-party software.

Our approach differs from the above by several aspects. To begin with, we build on a very
large amount of real data, as a consequence we have a precise knowledge of the distribution of
the call center parameters (see our Chapter 7 for a detailed discussion). Another originality is to
study bilevel call centers, in contrast with single-tier layouts that are most often simulated. Above
all, we use in our study a simulation software that was specifically developed in our research
team for this very application. This tailor-made solution allows us to handily take into account
all the phenomena presented in the previous chapter: the intra-day variation of the call arrivals,
the variability of the conversation times and the correlations between them, the patience of the
callers depending on the gravity of the calls, etc. Having a simulation software of our own also
enabled us to implement realistic routing rules used in the world of call centers (priority rules,
first-in-first-out pick ups, etc).

The Section 1 details our methodology and gives the exhaustive list of all the assumptions
we had to make. Our Section 2 deals with the simulation of a bilevel call center inspired by the
PFAU, although in a single-job layout. In particular, we extensively compare the performance of
the single-tier and the bilevel architectures. In the Section 3, we compare the numerical results
derived by simulation with the analytical formulas computed in the Chapter 5. We study the
performance of the real PFAU in the Section 4, taking into account the multi-job features. Further,
we simulate several alternative layouts for the PFAU. This involves merging currently separated
pools of agents. Eventually, the Section 5 is devoted to the study of the PFAU outside average
scenarios, that is to say in case of unexpected peak of calls.

1 Methodology

1.1 COMPARISON OF THE ANALYTICAL AND SIMULATION APPROACHES. — We come back
in this chapter on the modeling of emergency call centers by timed Petri nets, extensively studied
in the Part I of the thesis, in particular in the Chapters 1, 2, 4 and 5. As discussed there, those
models are governed by dynamical equations from which we can derive closed forms of some
performance estimates of the organizations – in particular the throughput. These analytical
formulas are obtained at the expense of several approximations, mainly the relaxation of integrality
constraints and the hypothesis that tokens have an infinite patience. We have also assumed that
the sojourn times of the tokens were constant – this was justified by the fact that the throughput
only depends on the average parameters of the net (see the Remark 4.6). In addition, we have
always assumed in Chapters 4 and 5 that calls arrived according to a linear profile. This is a
satisfying approximation in average but not necessarily appropriate on long time-windows.

The simulation approach aims at implementing a software that reproduces in silico the
behaviour of an emergency call center (modeled by a timed Petri net) given a scenario of call
arrivals and a choice of operator staffing. The advantage of this method is to grant a much wider
modeling power and to get rid of the approximations we had to make to establish theoretical
results. In particular, we may simulate the actual patience of callers. It suffices to attach to
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each token a patience level ` in every “waiting place” of the net, so that if the sojourn time
exceeds `, then the token leaves the net. Likewise, we can generate instruction times that vary
from one token to another, which recreates the variability of situations taking place in a same
place. The throughput of call arrivals (per line, department, gravity and Lvl 2 orientation) do
not need to be constant anymore and can follow an arbitrary profile. Finally, the simulation
approach allows to consider very general routing rules in case of conflicts between several
transitions. This includes preselection and static (or token-independent) priorities introduced
in the Section 2 of Chapter 1, but also dynamical (or token-dependent) priorities in which we
may fire a transition by consuming an older token rather than a younger token. In particular,
priorities between transitions are determined by first comparing the degree of static priority, and
then using dynamical information in case of equality. The degrees of dynamical priorities are
computed based on the age of the tokens, so that we always fire the oldest possible tokens in case
of conflict between several of them. The Table 8.1 below summarizes the modeling frameworks
offered by the two approaches.

Analytical calculation Numerical simulation

Tokens patience Infinite Arbitrary

Sojourn times Place-dependent Token-dependent

Arrival throughputs Constant Arbitrary

Conflicts resolution Preselection and static priority Arbitrary

Table 8.1: Modeling power of analytical and numerical approaches

An additional advantage of the numerical simulation is that it allows us to appreciate the variability
of the system performance. Indeed, we can repeat multiple times a same simulation involving
stochastic aspects (for instance the arrival dates of calls or their handling times) in order to derive
an average performance and a characteristic deviation around the latter.

It is paramount to ensure that the simulation software accurately simulates the studied call
center, otherwise the subsequent performance analysis would be incorrect. In other words, a
simple bug or error in the implementation of the software could lead to wrong conclusions. As a
consequence, we have chosen a development methodology similar to the one used for critical
software. We have used the OCaml programming language [LDF+20], whose typing system
during compilation allows one to identify many bugs in the development phase. In addition, we
deployed a chain of unit and regression tests to prevent errors due to software evolution. Finally,
we have designed the software so that its architecture allows an easy review of the code. This
layout is a hierarchy of three components. The low-level part is the simulation kernel. It is a
fairly short software (a couple hundred lines of code) whose aim is to compute the evolution of
tokens in Petri nets. The middle layer implements the routing oracle, which performs the routing
rules. This routing oracle is called by the simulation kernel to know which transitions should be
fired at any instant. The high-level component corresponds to the specification of the call center
that is studied. It takes in input the topology and the routing rules of a user-defined Petri net
instance.
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1.2 INTERFACE BETWEEN DATA ANALYSIS AND PERFORMANCE EVALUATION. — The anal-
ysis of call data presented in Chapter 7 is key to provide precise figures to our analytical and
simulation methods. On one hand, our theoretical formulas indeed require the knowledge of
average values of some primitive parameters, like the throughput, the conversation times and the
different proportions of gravity. On the other hand, we need the complete distributions of such
parameters to generate realistic simulation scenarios. In this section, we explain how we go from
the data to the simulation, and finally to the computation of performance estimates.

The first step of the chain is to build simulation scenarios. As explained in Section 2 of Chap-
ter 7, we will generate arrivals for each emergency line, each gravity level, each department
of Paris area and if applicable each possible Lvl 2 orientation. We assume that these arrivals
follow nonhomogeneous Poisson processes (whose intensity is the throughput of received calls),
which we have shown to be a very good approximation. Working with nonhomogeneous Poisson
arrivals is a little trickier than classical Poisson arrivals, and we resort to the Çinlar’s method
(see [Ç13, p. 99]) to get accurate interarrival times. From one simulation to another, the random
numbers used to obtain the input scenarios will produce varying arrival dates, and can give
different global counts of received calls on the same time-window. The throughputs used as
intensity functions of the Poisson processes are user-specified. We can choose to use the average
profiles computed in the Section 2 of Chapter 7 to get performance measures representative of
the typical day-to-day activity of the PFAU. Alternatively, we can plug the throughputs derived
from specific days as studied in the Section 6 of Chapter 7, which allows us to “replay” an event
of interest.

For each call, we draw a random conversation time at Lvl 1 and a patience level according to
the (line-dependent, gravity-dependent, and department-dependent) histograms or cumulated
distribution functions of Chapter 7. For the calls that do not have a NU gravity, we also draw a
conversation time at Lvl 2 (correlated to the handling time at Lvl 1), another patience at Lvl 2,
and an extra instruction time after hang up for the Lvl 2 operator (correlated to the handling time
at the second level and often null). We also draw synchronization times associated with the escort
step for VU calls. We insist on the fact that all these parameters do vary from one simulation run
to another, but are all drawn from a common scenario.

The resulting workload obtained with the above gravity levels is not complete until we take
into account the abandonments. We choose to totally ignore in simulation the calls that were
abandoned on the voice prompt in real life, since they were filtered out by the system and invisible
to the agents. On the contrary, we keep the throughput of after-prompt abandonments and we
add it in the queue of calls to be picked up. Indeed, we consider that these calls should have been
handled. However, we need to decide what are the gravity level of such calls once picked up,
that was by essence unknown in the step of data analysis. We may for instance assume that 97 %
of calls previously abandoned after the prompt were actually Non Urgent, and 3 % would have

ID Arrival Grav. Line Dpt. Tau_1 Mu_1 Orient. Tau_2 Mu_2 Tau_3 Tau_s

78 09:18:33 NU 17 93 7.0 22.0

79 09:18:42 NU 112 75 7.0 54.0

80 09:19:11 VU 18 92 34.0 57.0 BSPP 114.0 171.0 0.0 10.0

81 09:19:12 U 17 75 18.0 47.0 DSPAP 90.0 1726.0 0.0

82 09:19:20 NU 112 92 18.0 110.0

83 09:19:22 NU 112 94 8.0 10.0

84 09:19:45 U 18 93 14.0 74.0 BSPP 207.0 433.0 73.0

Table 8.2: Example of call arrivals and characteristics
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been qualified as Urgent. Naturally, these parameters can be modified and it will be appropriate
to adapt them for some scenarios – for instance during a “crisis event” where the platform is
overwhelmed, most of the abandoned calls in real life were probably U, VU or EVU. We will detail
these choices in the coming Section 1.3.

The Table 8.2 is an example of input data that could be given to the simulation software.
The column labels g1, g2, g3 and gS respectively refer to the conversation time at Lvl 1, the
conversation time at Lvl 2, the extra instruction time for the Lvl 2 operator after hang up, and
the synchronization time for VU calls between the two levels (escorting time). The column labels
`1 and `2 refer to the patience levels of the callers at Lvl 1 and Lvl 2.

At the other end of the simulation chain, we need to convert the simulation results into global
performance measures. Each simulation run (associated with an input scenario) will give us the
waiting time of all the callers at each step, and the fact that they abandon or not. To begin with,
we can compute performance estimates of interest for a single scenario/simulation run. We shall
typically focus on the total percentage of abandoned calls, of calls abandoned at Lvl 1 and Lvl 2,
or per gravity. We may also compute the average waiting times (at Lvl 1 and/or at Lvl 2) of all
callers. Another common indicator is the service level, giving the proportion of calls picked up
before a given threshold (typically 30 seconds, or one minute). The complete knowledge in the
simulation of the activity of individual agents also enables us to compute occupancy rates per
agent, and average occupancy rates per pool of agents (for instance at Lvl 1 and Lvl 2). We will
come back more precisely on performance indicators in the Section 2.

The Table 8.3 illustrates the result we can have after aggregating performance estimates per
simulations. It is derived for three different staffing scenarios, where the tuple (#1, #2) (number
of agents at Lvl 1 and Lvl 2) varies in {(1, 5), (2, 5), (2, 6)}. For each one of these scenarios, three
runs are performed, hence a total of nine simulations. Observe that the total number of received
calls in each run is different due to the random draws involved in the Poisson processes – even
though arrivals are generated using the same deterministic intensity functions. Four performance
indicators are shown in the Table 8.3: the fraction of abandoned calls at Lvl 1, the same at Lvl 2,
the service level at Lvl 1 below 30 seconds, and the average wait experienced by callers at Lvl 1.

In order to get a global performance of a single scenario (fixed parameters and fixed staffing),
we perform a large number of times the simulation process, that is to say on input data generated
from the same primitives. Then, we can take the mean values of the associated performance
indicators. Recall that the variance of this mean value is inversely proportional to the number of
runs. In view of the empirical standard deviations that we measured, we considered that achieving
100 simulation runs per scenario was sufficient to obtain a satisfying confidence interval on the
computed performance. This number could of course be increased if necessary.

Simu_ID Lvl1_op Lvl2_op Calls %_Ab_Lvl1 %_Ab_Lvl2 %_SL30_Lvl1 Avg_wait_Lvl1

1_5_67 1 5 2082 27.71 1.29 43.65 46.74

1_5_68 1 5 2068 28.77 0.87 48.87 47.23

1_5_20 1 5 2065 29.00 1.80 44.54 48.10

2_5_95 2 5 2081 5.76 5.36 90.51 8.37

2_5_3 2 5 1977 4.95 5.07 94.89 5.65

2_5_92 2 5 2064 5.66 6.62 92.44 7.63

2_6_42 2 6 2136 4.11 3.71 93.70 5.99

2_6_33 2 6 2075 4.91 3.46 91.78 7.46

2_6_88 2 6 2076 4.52 1.61 95.20 5.62

Table 8.3: Example of aggregated performance indicators for nine simulations
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1.3 COMPREHENSIVE LIST OF MODELING ASSUMPTIONS. — All the simulation results pre-
sented in this chapter must be interpreted by keeping in mind the many modeling assumptions
that had to be made. Some of them have an influence on all the simulation aspects, while some
others specifically impact the comparison between single-tier and bilevel layouts. The following
lists detail all our assumptions.

Assumptions that impact all the simulations, regardless of the organization.

• We assumed an identical patience function before the first pick up, regardless of the gravity. As
explained in the Section 5 of Chapter 7, we have made this hypothesis by lack of a canonical
method that could confirm that VU and U callers are more patient than NU callers – although it
comes rather intuitive. This assumption then tends to overestimate the abandonments of U and
VU calls before the first pick up, independently of the studied organization.

• The callbacks are never simulated, even though we showed in the Section 2.3 of Chapter 7 that
these calls account for 6 % of the total picked up volume. The reason behind this choice is that it
is more complicated to attach a patience to these calls, and additional assumptions would be in
order to correctly model them. On the other hand, out of consistency, the input throughput of
arrivals that we consider are always net of callbacks. Therefore, they represent the real demand,
not the “inflated” one which contains the people who abandon then call back.

• We have chosen not to take into account in the simulations the abandonments occurring on
the voice prompt (8 to 10 seconds). Indeed, we can consider that they do not correspond to
a real emergency. However, as far as the abandonments recorded after the voice prompt are
concerned, we deem that they should have been picked up – this surely is arguable for calls
abandoned just after the prompt, for instance after 11 or 12 seconds of wait, but a threshold
need to be fixed anyway. The hitch is that by essence, we do not know what the gravity of
these abandoned calls would have been. We have consequently made the following choices.
Between 9 am and 7 pm, calls arrived on line 17 and abandoned in our data are NU in 85 % of the
cases and U in the remaining 15 %; on line 112, abandonments are 98 % NU and 2 % U (breaking
down in equal proportions between U–DSPAP and U–BSPP); and 97 % NU and 3 % U on line
18. From 7 pm to 11 pm, these proportions become 70 % NU and 30 % U on line 17; 96 % NU,
2 % U–DSPAP and 2 % U–BSPP on line 112; and 95 % NU and 5 % U on line 18. Remark that all
these choices assume that there is no VU calls among the calls abandoned on prompt. Once
the gravities of the above calls have been set, we also draw in accordance patience levels and
conversation times from the distributions of the calls with same gravity (and same initial line,
department and Lvl 2 orientation).

• We have retained in our simulations the outbound activity of Lvl 2 operators, since it is an
important part of their tasks. However, we have neglected the outbound calls emitted by the
Lvl 1 agents. As mentioned at the end of Section 3 du Chapter 7, this activity represents about
3 % of their time spent on the phone – our approximation is then quite acceptable. On the
other hand, we have not taken into account the calls arriving directly at Lvl 2, most of time
coming from PFAU partners. The Table 7.1 tells us that these calls represent about 7 % of the
total inbound calls at Lvl 1 and Lvl 2, but at least a third of these calls come from the SAMU
and are picked up by a different pool of operators of the PFAU, not considered here. In fact, we
can expect that the workload of Lvl 2 agents involved in the response of emergency calls of the
population is underestimated by 3 % of 4 % at most.
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Assumptions that specifically impact the single-tier/bilevel comparison.

• We have chosen on the figures comparing single-tier and bilevel layouts to compare iso-staffing
performance criteria. In this view, we would for instance compare a single-tier system with
10 operators with a bilevel architecture with 3 operators at Lvl 1 and 7 operators at Lvl 2.
It is important to insist on the fact that iso-staffing is very different from iso-skill. Indeed,
the Lvl 2 agents of a bilevel system have to be expert operators, much more trained than
the Lvl 1 agents whose tasks are more straightforward. In a single-tier system however, all
the agents have to be experts (same level of competence than the Lvl 2 agents of the bilevel)
in order to cope with all the possible situations. In order to illustrate the influence of this
methodological choice on the figures, we shall come back to it in details in the Section 2.5.

• An arguable modeling choice is that for single-tier systems, we took as the single conversa-
tion time either the Lvl 1 conversation time of the bilevel system in case of NU call, or the
Lvl 2 conversation time of the bilevel otherwise (U or VU call); up to a random extra time
between 1 and 6 seconds. This boils down to assuming that the filtering step at Lvl 1 and the
calls pre-qualification does not save time for the Lvl 2 instruction – which remains to establish
in practice. It is also an optimistic convention for the single-tier architecture, since we have
reasons to believe that it is precisely thanks to the two-tier layout that the handling times of
the bilevel system are so “short” and appropriate to the calls – owing to the more standardized
protocols made possible by this system. The operators confirmed to us that before adopting
the bilevel system, the conversation times of the single-tier system were significantly longer.

• We have not been able to measure the workload induced by the extra instruction after hanging
up the calls at Lvl 2 for police tasks, since the corresponding information were not in the dataset
we were given. In our simulations, we assumed that the police calls had post-Lvl 2 instructions
identical to those of the rescue/firebrigade lane, in terms of handling times and proportions of
calls indeed entailing an extra instruction time. In reality, it is plausible that this workload is
underestimated and that police protocols are a bit longer than rescue ones. Extending the extra
instruction times after Lvl 2 would make our results more favorable to the bilevel architecture,
by increasing the load ratio (see Section 2.4).

• We have shown in the Section 5 of Chapter 7 that for U and VU calls, the inter-level patience
was greatly increased with respect to the patience before Lvl 1 (see Figure 7.20). However, we
have not computed a proper correlation between those two levels due to the inherent censorship
of the datasets. Hence, we have drawn for simulation purposes independent patience levels `1
before Lvl 1 and `2 before Lvl 2. However, combinations with a high value of `1 and a small
value of `2 would be unrealistic – and unfair for the bilevel system. Thus, we have chosen to
avoid these by slighlty tweaking the generated patiences in our scenarios. For calls such that
`2 6 `1 and `2 6 30 s, we decided to update the Lvl 2 patience to `2 B max( 12 × `1, 30 s). This
adjustment only affects 3 % of the total of U and VU calls, and hardly changes the patience
distributions – while preventing unrealistic patience tuples. More generally, the fact that
inter-level abandonments seen in our datasets come from “relevant demand” is questionable.
This is all the more true for abandonments occurring after a short wait – and these calls are
responsible of the possible low values of `2 drawn in simulations. Indeed, it can happen that
several witnesses of a same event initiate multiple emergency calls in parallel, and that they
hang up once one of them is transferred to the Lvl 2, or as soon as a response team arrives.
There could also be technical failures or errors. Thus, the above corrections seem perfectly
appropriate to improve the realism of simulations.
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2 Performance analysis of a bilevel and single-job system, comparison
with a single-tier layout

As discussed in the Foreword and illustrated with the Figure II.2, the aim of this section and of
the following one is to play the role of a “scientific demonstrator” of our two complementary
approaches to compare different emergency call center layouts. In particular, we focus here on one
of the most important aspects of the transformation brought to the treatment of emergency calls by
the PFAU, that is to say going from a single-tier to a bilevel architecture. To avoid overcomplicating
things, we have chosen to first study an idealized single-job platform, picking up only one type of
calls (either police or rescue). We will derive very rich conclusions from this simplified framework
already, and the study of multi-job systems will be conducted in the Section 4.

We recall that the following simulations are based on a large-scale organization (covering four
densely populated French departments), with high throughputs of calls and significant staffing
levels. Simulating smaller platforms may lead to different results in some extent.

2.1 PETRI NET MODEL AND PERFORMANCE CRITERIA FOR THE BILEVEL SYSTEM. — We
start by representing in Figure 8.4 the timed Petri net associated with a bilevel system, according
to the description given in the Foreword (however for a single-job version). This Petri net needs
to be compared with the simpler net of Figure 5.2 in the Chapter 5.

The blue arcs symbolize the circuit of Lvl 1 operators (there are #1 of them), while the circuit
of Lvl 2 agents (there are #2 of them) is formed by orange arcs. Recall that we have an inbound
flow with intensity _ (possibly non constant) coming from the upmost transition. All the inputs
and exits of the system are represented by the purple double-arrows ( ). A caller can leave the
network before his/her call is picked up by a Lvl 1 operator if not handled before the patience
time `1, by taking the striken-arc ( ). Otherwise, the conversation with the Lvl 1 agent happens
in a (not gravity-dependent) place with duration g1 (caller-dependent).

Once this first conversation is over, the token can be sent to three different lanes depending
on the gravity level, either NU (Non Urgent), U (Urgent) or VU (Very Urgent). For the sake of
simplicity, we have not depicted the LU (Less Urgent) lane, merged here with the U category. If the
call is NU, the caller leaves the system since “filtered out by the first level” and the Lvl 1 operator
comes back in his availability pool – ready to pick up new calls. In case the call is U, then the
caller is put on hold in an inter-level waiting room, and the Lvl 1 operator is still released. The
caller may get impatient and leave the platform on its own if not picked up before the time `U2 .
If the call is VU, then the Lvl 1 operator stays on the line with the caller in a pre-Lvl 2 waiting
place (after the first-level instruction has ended). The caller may still get impatient and hang up
after the time `VU2 , which triggers the release of the Lvl 1 agent.

The Lvl 2 operators must pick up the VU calls in priority (if there are any), which is symbolized
by the double-tip arrow ( ). The firing of the corresponding transition starts the synchronization
step (or escort mechanism, or threeway conversation) involving the caller, the Lvl 1 agent and the
Lvl 2 agent. After a conversation that lasts gS, the Lvl 1 operator is released and the caller enters
a conversation place with duration g2. Once the consultation is over, the caller leaves the platform
and the Lvl 2 agent spends a time g3 (possibly null) in the extra instruction place if necessary (see
the Section 4.4 of Chapter 7). Finally, Lvl 2 operators come back in their availability pool.

The next key step is to select the performance criteria that we will want to compute at
the end of the simulations. It is relevant to focus on a limited number of metrics that are of
practical interest. In this view, we recall the three criteria highlighted by the “mission MARCUS”
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Arrival of a call

Wait for pick up at Lvl 1 (possible abandonment)

Pick up by Lvl 1 operator
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Pick up by Lvl 2 operator
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Figure 8.4: Petri net model of a PFAU-type single-job and bilevel call center
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(see [MP19]), commissioned by the French ministère de l’Intérieur and ministère des Solidarités et
de la Santé (respectively Home Affairs and Health Ministry):

• the admission rate, which is the proportion of picked up calls relatively to the number of
received calls. It is the complementary of the abandonment rate.

• the service level, proportion of calls picked up before a given time threshold (among
the picked up calls). The voice prompt is included in this threshold – this way, it is a
“customer-oriented” criterion. A close metric is the average waiting time of picked up
calls.

• the occupancy factor (Occ) of agents, given by the proportion of their time spent on the
phone.

Owing to its complex topology, the bilevel layout gives us an important amount of performance
criteria to compute, based on the previous list. Indeed, we can evaluate these indicators (abandon-
ment rate, average wait, occupancy, etc) depending on the gravity of calls – since they do not
follow the same path – but also at Lvl 1 and Lvl 2, since these are independent in some extent.

Actually, because we want to end up with a system where both levels are sufficiently staffed,
it will be relevant to focus on “mixed” criteria, that combine the performance of both levels. This
way, we may measure the global abandonment rate of calls in the network, since it is useless to
have a low abandonment rate at some level but a high one at the other level. Similarly, we may
compute the cumulated waiting time throughout the complete instruction chain, including not
only the wait before the first pick up for NU calls but also the inter-level wait for U and VU calls.
As far as the service levels are concerned, we choose contrariwse to only count the proportion of
calls picked up quickly at Lvl 1, which does correspond to an admission rate. We consider that the
swiftness of pick up at Lvl 2 is a bit less critical, because life-threatening situations shall already
be identified at Lvl 1 and transferred to the VU lane – to be handled in priority. In addition, we
have seen in the Section 5 of Chapter 7 that the patience of callers (and thus their proneness not
to hang up) was greatly increased after the first pick up.

Remark that most performance metrics that we can bring up to study the organization
are correlated. In other words, a good performance on one criterion is often associated with
a correct sizing of the agents pool, and subsequently to good performance on other criteria.
This phenomenon is depicted in the Figure 8.5 which gives the correlation matrix of seventeen
indicators. The color intensity indicates the strength of a correlation between two variables; blue
(resp. red) hues being associated with positive (resp. negative) correlations. We directly see a
“block structure” of this matrix, showing that the variables corresponding to Lvl 1 performance
feature high correlations. The same goes for the performance of Lvl 2, but these two groups of
variables are reasonably independent with each other. These results would a priori prompt us to
only keep a very limited number of independent criteria, to recover the other ones based on the
correlation relations – that are not necessarily linear. However, we accept to have a certain degree
of redundancy to work with the performance indicators that are customarily used in operations
management. In addition, some correlations are weaker when distinguished for VU calls, which
justifies to look at those metrics separately from others.

To finish, we recall that the analyzes that follow are only quantitative measures of the
organizations’ performance. They do not say anything about the possible qualitative aspects
(quality of the instruction as perceived by the caller, work conditions of the operators, and so on).
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Figure 8.5: Correlation matrix of the bilevel system

2.2 PERFORMANCE OF THE SINGLE-JOB AND BILEVEL SYSTEM. — We depict in Figure 8.6
performance charts associated with six different criteria. Since there are two parameters to
be tuned (the number #1 of operators at Lvl 1 and the number #2 of operators at Lvl 2), it is
convenient to adopt a representation using heatmaps.

All these experimental results are obtained from simulation campaigns that follow the average
arrivals scenario in a week day for emergency lines 18 and 112 between 9 am and 5 pm. We
naturally use the corresponding patience levels and conversation times.

Let us explain how to read the maps of Figure 8.6. We can for instance see on the first map
that for a bilevel system with three agents at Lvl 1 and a single operator at Lvl 2, we experience
a 33 % abandonment rate among all the received calls. This rate would fall to 5 % with #1 = 4 and
#2 = 5. The cells outlined in black indicate the best performance with a fixed value of #1 +#2. As
a result, if we have a total of seven operators, then we have to choose the combination #1 = 3 and
#2 = 4 to minimize the global abandonment rate (equal to 11 %), as other allocations give higher
values. When the criterion is already optimal (null abandonment rate or zero waiting time), we
frame the whole optimal area. We have also drawn in dashes the line with equation #2 = A#1,
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where A is the critical ratio found by the analytical approach and defined by the equation (5.6) –
recall that beyond this ratio, the bilevel system is fluid. We refer to our Section 3.1 of Chapter 5
for the detailed computation of this ratio.

Focusing on the different abandonment rates, we observe that we reach less than 1 % of global
abandonment rate as soon as we have 11 operators (#1 = 4 and #2 = 7). However, if we are to
only focus on the abandonments of VU calls, this performance is achieved only with 9 agents
(#1 = 4 and #2 = 5). We retrieve here the key interest of the priority routing, offering an increased
protection to VU calls. As for the cumulated wait (before Lvl 1 and between both levels), the
effect of the priority is once again very clear. For a same staffing choice #1 = 3 and #2 = 5, a
U call will in average wait for 100 seconds, versus an average of 30 seconds for a VU call. With
two extra second-level agents, these waiting times respectively fall to 21 seconds and 11 seconds.

At this stage, it is worth mentioning that different criteria can lead to different optimal
allocations of resources between the Lvl 1 and the Lvl 2. For instance with 9 agents, the lowest
(global) abandonment rate is achieved for #1 = 3 and #2 = 6, while the lowest average wait
of urgent calls is reached when #1 = 2 and #2 = 7. This phenomenon is very common in
multi-criteria optimization, and may result in increasing the staffing for all criteria to be satisfied
– even though each individual criterion could be satisfied with less agents but using different
breakdowns. We point out that the optimal repartitions of agents between both levels for the
total average wait are in good approximation close from the critical ratio found by the theory
(see again Section 3.1 of Chapter 5).

It is always relevant to check the values of our indicators in the limit cases. If #1 = 1, then we
always observe at least 37 % of abandonment for all calls, even though #2 is very high. This rate
falls down to 31 % for VU calls, which may seem counter-intuitive since all the abandonments
take place at Lvl 1 and having in mind the assumption that the patience of callers at Lvl 1 do not
depend upon their gravity (discussed in the Section 5 of Chapter 7). The heatmaps of waiting
times also show that the average wait before hanging up is the same for U and VU gravities. The
previous difference is actually explained by the fact that what we observe is a mixture of calls from
lines 18 and 112. However, the latter have a patience lower than the former by approximately 10
seconds, and the weight of U and VU calls are much more important on line 18 than on line 112;
hence fewer VU abandonments than global abandonments. Now, let us take #2 = 1 and a high
value of #1. We observe in average 29 % of global abandonment but 38 % of VU abandonment. The
reason behind this new difference is that Non Urgent calls (accounting for a significant part of the
flow) are all handled, and make the global abandonment rate decrease. This shows the importance
to distinguish several performance measures on U or VU calls, to avoid being “polluted” by the
weight of NU calls.

All the preceding numerical evaluations must be compared with the occupancy rate of each
level, explaining why these values may seem too low for some agents who know the platform well.
This way, even though a configuration with #1 = 4 and #2 = 7 enable us to have less than 1 % of
abandonments in total, this puts the Lvl 2 agents under an effective occupancy of 73 %. Such a
value is too high in practice and is not allowed. The maximum occupancy of each level, contrary
to global abandonment or total waiting time, are not mixed criteria. This explains why in first
approximation, the corresponding heatmaps are invariant along one of the two dimensions. We
can actually observe a slight coupling effect. For instance on the Lvl 2 occupancy map, increasing
the staffing of Lvl 1 from #1 = 1 to #1 = 2 intensifies the occupancy rate… because much more
calls now arrive at Lvl 2 from the Lvl 1. Each occupancy factor is then not totally independent
from the other level (for small values of #2, we similarly observe than changing #2 can alter the
occupancy of the Lvl 1 due to the escorting mechanism).
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Figure 8.6: Performance maps of the single-job bilevel system
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We finish this section by giving in Figure 8.7 a complementary look on the heatmaps of the Fig-
ure 8.6. We depict the values of three performance criteria for a fixed sum#1+#2. This corresponds
to an antidiagonal cross-section of the bidimensional heatmaps. In the Figure 8.7, we chose to fix
the total staffing to 14 agents, which is the typical firefighters headcount of the PFAU to address
calls from lines 18 and 112. Along the G-axis, we make the component #1 vary out of this total of
14. Even though we only have measure points for integer values, we represent an interpolation
based on Hermite cubic splines (such polynomials preserve monotonicity) to make the reading
easier. Because our results come from an averaging operation realized on the performance criteria
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Figure 8.7: Effect of the breakdown of the staffing across the two levels
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of 100 individual simulations, we also represent the inter-quartile range (half of simulations fall
in this interval) to help appreciating the variability of the indicators.

The first two charts of the Figure 8.7 are about the global abandonment rate and the total
mean waiting time, that is to say two mixed criteria. We thus verify that putting all the resource
either at Lvl 1 or at Lvl 2 gives bad performance. Rather, a smart trade-off must be determined.
We can observe here that the configuration #1 = 4 and #2 = 10 (this is the typical day-to-day
staffing) leads to very good performance. We also retrieve in this figure the impact of the priority
mechanism, which much less undermines the wait or abandonment of VU calls compared to the
other ones, and even though the Lvl 2 is a bit understaffed. Finally, we recall for information
purposes the occupancy curves of both levels, which rather arise as mono-level metrics and hence
feature opposite optima. Nevertheless, we remark that the configuration #1 = 4 and #2 = 10
offers acceptable occupancy values for the two levels of the platform.

2.3 COMPARISON OF THE BILEVEL AND SINGLE-TIER LAYOUTS FOR RESCUE CALLS. — On
the model of the previous section, we briefly introduce in the Figure 8.8 a Petri net model of a
single-job and single-tier emergency call center. We invite the reader to compare this model
with the one of Figure 2.4 that we discussed in the Example 2.6 in Chapter 2. Here, we allow
abandonments of callers before pick up but also consider the place of additional instruction after
the caller left the system. The evolution in the net goes as follows. The caller tokens arrive with a
throughput _ via the uppermost transition. The token waits in the first place and can only cross
the pick up transition once an operator token is available in the place symbolizing the pool of
agents. The integer # stands for the total number of such tokens present in this place at the
beginning of the execution. If the wait of the caller token exceeds the patience level `, the caller
hangs up and the token leaves the net. Otherwise, the caller and operator tokens are consumed
by the firing of the pick up transition, to produce a token in the conversation place. This token
fires the next transition after the time g is elapsed, moment at which the caller leaves the net. The
operator may be held during the time g ′ to finish the instruction of the case, before going back in
the agent pool.

For the simulations of this single-tier system, we shall assign to the tokens a conversation
time g related to the conversation times g1 and g2 that the tokens would have had in the bilevel
system. If the call gravity is NU (stopped at Lvl 1 in the bilevel layout), we set g B g1 + b , and

Arrival of a call

Wait for pick up (possible abandonment)

Pick up by the operator

Conversation between the caller and the operator

End of the conversation

Possible additional instruction by the operator

End of instruction by the operator

_

#

g

g′

`

Figure 8.8: Petri net model of a single-tier and single-job call center
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otherwise (the call went through Lvl 1 and Lvl 2) we choose g B g2 + b . The duration b is a
random variable between 0 and 6 seconds to model the fact that operators in the single-tier system
have to cope with an increased need of adaptation from one call to another – on the contrary,
conversations in the bilevel system are more homogeneous. The extra instruction time after hang
up is identical in both systems, with g ′ B g3.

We now compare the two architectures, using the previously introduced metrics. Computing
the criteria of the single-tier organization is less subtle than for the bilevel system due to the
reduced complexity of the system. We still retrieve strong correlations between all the indicators
though (abandonment rate, mean waiting time, service levels, occupancy…).

The Figure 8.9 depicts seven performance criteria that are comparable between both layouts,
as a function of the total number of agents – that is to say the number # for the single-tier system
and the number #1 + #2 in the bilevel system. For the curves of the bilevel system, we have
chosen to represent the values of the indicators according to an allocation of #1 and #2 which
optimizes the following mixed criterion

� (#1, #2) = 20 × max
(
Abandonment_rate_VU(#1, #2) , 1 %

)
+ 15 × max

(
Global_abandonment_rate(#1, #2) , 1 %

)
+ 1 × min

(
Total_wait_U/VU(#1, #2) , 5 s

)
This weighted and conditional criterion aims at first minimizing the total abandonment rate of VU
calls, and then for smaller values of the latter to minimize the global abandonment, and finally the
total wait of U and VU calls when there are not many abandonments. The choice of this criterion
is not universal and other weights and thresholds may lead to slightly different optimums. In
addition we need to ensure that this criterion is decreasing relatively to #1 and #2. This way, a
curve associated with the bilevel system in the Figure 8.9 is not obtained by using the optimal
breakdown of the corresponding criterion (for such representations, see the black paths of the
heatmaps of the Figure 8.6). On the contrary, all the performance measures of the bilevel system
are directly comparable from one chart to another. We will present at this end of the section an
alternative global optimization scheme, once performance thresholds are chosen.

Looking at the two first charts on the abandonment rates (either global or restricted to VU
calls) reveals that the bilevel system outperforms the single-tier system when the call centers
are understaffed (and for the “iso-staffing” comparison). This is due to the increased patience of
callers between the two levels and to the pick up with priority of VU calls in the bilevel layout.
The understaffed area let us foresee the impact on the abandonment rates of a “crisis event” during
which the incoming throughput would suddenly rise. However, under a standard flow of arrivals
and with a number of agents greater than 12 (which is the case in practice), the single-tier and the
bilevel systems are both excellent and guarantee abandonment rates below 1 %. For such staffing
levels and still for the iso-staffing comparison, the single-tier system actually gets in front of the
bilevel by a tiny margin for the global abandonment rate, but not for the VU abandonment rate.

For the total waiting times of U and VU picked up calls, the single-tier architecture performs
systematically better. By design, the U calls (majority of the demand) have to wait longer than
VU calls when there is a lack of agents. However, even for the VU calls, the average total wait is
longer in the bilevel system than in the single-tier one. This is due to the extra rigidity of the
treatment chain that comes with the split of the staff into two separated pools. In particular,
the callers experience before the Lvl 2 a wait equivalent to the one before being picked up by a
single-tier call center ran with #2 agents (instead of # ) and having to handle all the U and VU
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Figure 8.9: Comparison of both systems (single-tier and bilevel) on multiple criteria (for
rescue-type single-job organizations, nominal flows, from 9 am to 5 pm (' 300 calls/h))
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calls. Still, we note that for more than 13 or 14 agents (current staffing of the PFAU), the total wait
in the bilevel system is equivalent to the wait in the single-tier system – that is to say almost zero.

As far as the pick up times (that we can evaluate through the service levels) are concerned,
the bilevel system does much better than the single-tier when the platforms are understaffed.
Note that while the SL–30 (service level in less than 30 seconds) is higher in the bilevel layout
regardless of the staffing, this is not always true for the SL–15. Indeed, between 9 and 12 agents,
the SL–15 of the bilevel center is slightly inferior to the SL–15 of the single-tier center. This is
due to our choice of mixed criterion � and our goal to first attain a low rate of VU abandonment
– so that we consolidate the Lvl 2 as soon as the Lvl 1 is fluid. We can distinctly see plateaus on
the SL–15 curve, they are characteristic of bivariate optimization. Each plateau corresponds to a
constant number of Lvl 1  agents, and each jump corresponds to a new Lvl 1 agents being added
to the pool – this highly impacts the service levels.

Finally, we depict the maximum average occupancy of the bilevel system (that is to say
the largest occupancy factor between the Lvl 1 pool and the Lvl 2 pool) to compare it to the
occupancy rate in the single-tier layout. It turns out for a same staffing (i.e., still under the
iso-staffing comparison) that the bilevel system results in an increased occupancy of agents, by
5 % to 10 %. For instance with 14 agents, we observe a 45 % average occupancy in the single-tier
center, versus 52 % for a well-tuned bilevel center. Note than qualitative studies may show that
the latter situation is preferable for the operators, exposed to more homogeneous tasks to achieve.

We conclude this section about the cross analysis of single-tier and bilevel layouts by providing
minimum staffing levels that need to be chosen in practice, in order to reach performance
thresholds for each criteria. We use again the goals determined by the MARCUS report [MP19]
which recommends: an admission rate of 99.95 % of calls (that is to say less than one abandonment
per 2000 calls, to be compared with the average of 2400 rescue calls received by the PFAU between
9 am and 5 pm in a typical week day), a service level in 15 seconds greater than 90 % (from the
caller point of view, hence a pick up in less than 6 seconds if the voice prompts lasts for 9 seconds),
a service level in 30 seconds greater than 99 %, and finally an occupancy rate not exceeding 60 %
at both levels.

Based on our simulations, we compute for each performance criterion the minimum number
of staff to reach the corresponding threshold. In the case of the single-tier system, it suffices to
minimize# (total number of agents) under the constraint that performance thresholds are attained.

Criterion Target Single-tier minimum staff Bilevel minimum staff

Admission rate > 99.95 % 14 15 (5+10)

Service level – 15 s > 90 % 10 5 (4+1)

Service level – 30 s > 99 % 12 6 (5+1)

Maximum occupancy 6 60 % 11 12 (3+9)

All criteria 14 15 (5+10)

Table 8.10: Single-job staffing table, typical rescue arrivals
from 9 am to 5 pm (' 300 calls/h)
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For the bilevel system, we follow a lexicographic minimization scheme by first minimizing the
total number #1 + #2 of agents. Then, if several combinations (#1, #2) with identical sum satisfy
the thresholds, we choose the one with the minimum #2 component. Indeed, we deem that
Lvl 2 agents are more qualified resource, hence more expensive. To finish, we compute the
minimum staffing level which allows to reach not only each individual performance goal, but to
reach all of them together.

With the above choices of thresholds, these optimization computations give us the Table 8.10.
Recall that this table is associated with simulations dealing only with rescue calls (line 18, and a
fraction of line 112) according to standard and average weekday throughputs from 9 am to 5 pm.

Consistently with the previous remarks, we observe by reading the Table 8.10 that the bilevel
organization requires more agents than its single-tier counterpart to reach the same performance
in terms of admission rate (15 versus 14) and occupancy (12 versus 11). As it was alreadymentioned,
the service levels are rather mono-level criteria (governed by the number of Lvl 1 operators),
hence the optimal staffing in the bilevel layout only offers a partial view of the global performance
of the corresponding call center. We will keep in mind that for these specific choices of thresholds,
the 99.5 % target of admission rate is the most ambitious and agent-consuming goal. In fact, its
importance is so predominant that optimizing all criteria is here equivalent to maximizing this
single one. In order to reach all the objectives under standard and rescue arrival rates, we will
thus recommend that the single-tier call center uses 14 operators, while the bilevel system should
under the same conditions opt for 5 agents at Lvl 1 and 10 agents at Lvl 2.

2.4 THE CASE OF POLICE CALLS AND THE KEY ROLE PLAYED BY THE LOADS RATIO. — We
have just observed that in the (idealized) “rescue single-job” setup – where firefighters have to
pick up calls from lines 18 and 112 – that the bilevel architecture was equivalent or better than
the single-tier one relatively to global and VU abandonments, and for an iso-staffing comparison.
In this new section, we adapt the previous case study on “police single-job” systems. We consider
idealized call centers gathering the four departments of the Paris area, whether they adopt the
single-tier or bilevel layout (contrary to the real-life PFAU call center whose second level is in fact
departmentalized). We are going to see that this new study unveils major differences between the
two jobs, that we can mainly explain by asymmetrical loads.

Let us formally define the last notion. The load (sometimes also referred to as the offered load)
associated with a pool of agents is the product of the throughput of calls that they have to pick
up by the average handling time of these requests. The result of this operation is dimensionless
but is customarily expressed in Erlangs (symbol E). The loads are characteristic and dimensioning
parameters for call centers, reason why these terms are found in analytical computations of Petri
nets and Erlang formulas as well (see the Sections 3.1 and 3.3 to come).

The loads give a (partial) quantitative indication of the number of agents required for each
role. In the case of infinite patiences and in affine stationary regimes, they correspond to the
absolute minimum of operators needed to reach a fluid behaviour. Actually, to cope with the
variability of the arrivals and to guarantee satisfying occupancy levels, it is often appropriate to
take at least twice as much agents than the load. However, this remains a relevant quantity to
compare the size of the different staffs in the network.

In the current bilevel PFAU system, it is natural to compute separately the loads of each level.
At Lvl 1, we will distinguish the loads per emergency line, in order to represent the workloads
respectively induced by line 17, line 18 and line 112. At Lvl 2, we will in contrast distinguish the
BSPP load from the DSPAP load. We may divide further these loads in order to distinguish the
gravity levels or the departments of origin.
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17 112 18

Lvl 1 2.11 (42/15/26/17) 0.50 1.02

DSPAP BSPP

Lvl 2 2.93 (51/12/22/14) 5.60

Table 8.11: Repartition of loads (standard PFAU arrivals from 1 pm to 5 pm)

The Table 8.11 gives the loads per level and dialed line or orientation at Lvl 2, under standard
arrivals (that is to say average throughputs and handling times in weekdays of the year 2019)
between 1 pm and 5 pm. In the cells associated with line 17 or DSPAP lane, the figures in brackets
refer to the breakdown (in percentages) of the load across the four departments, in the order
75/92/93/94.

A very important fact must be noted. The load of calls from line 17 at Lvl 1 is almost
twice the one of calls from line 18 (2.11 E versus 1.02 E), but this goes the other way around
at Lvl 2 when comparing DSPAP and BSPP loads (2.93 E versus 5.60 E). This “morphological
inversion” have several explanations. First, as seen in the Section 2 of Chapter 7, there are a bit
more calls on line 17 than on line 18 (in average 206 calls/h versus 147 calls/h on this particular
time slot). But more importantly, the fraction of calls not transferred to the Lvl 2 is much higher
for police calls (65 % of NU gravity) than rescue calls (32 % of NU gravity). Furthermore, as seen
in the Section 4 of Chapter 7 and more specifically in the Figure 7.11, the calls from line 17 picked
up by police agents at Lvl 1 are handled with an average time longer than for calls from line 18
picked up by firefighters. This is all the more true for NU calls, with a higher median time than
the rest of calls from line 17, contrary to calls from line 18 whose NU part is handled quicker
than the rest of calls. Note that we could not compare the load of the extra instruction times
(see Section 4.4 of Chapter 7) because we could not measure these times for the police. It could be
that such protocols are longer for DSPAP than for BSPP.

We can summarize this asymmetry by taking the load ratio of Lvl 2 over Lvl 1. This yields a
ratio of about 4 for rescue calls and close to 1 for police calls (by allocating 112 loads on rescue
calls, as it was the case before the multi-job PFAU came into service). This strong imbalance is
absolutely key to explain the performance of the bilevel system. Indeed, the architecture in two
different levels behaves all the better as the Lvl 1  is quick and fluid relatively to the Lvl 2 (hence
associated with a high ratio). Remark also that we only benefit from the patience increase of
the bilevel system (see Section 5 of Chapter 7) after having passed the Lvl 1. But above all, the
priority mechanism for Very Urgent calls between the two levels deeply relies on the fact that all
calls are picked up at Lvl 1. Hence, we shall expect much better performance of the bilevel layout
when the loads ratio (Lvl 2)/(Lvl 1) is high.

In fact, we have seen that the throughput of calls tend to significantly increase on line 17
during the evening, and at the same time the demand on line 18 decreases. It is relevant to
recompute the loads on the time-window from 7 pm to 11 pm, presented in the Table 8.12.

In the evening, we verify that the load at Lvl 1 for calls from line 17 increases by 14 % relatively
to the load in the afternoon, but the Lvl 2 load for DSPAP rises even more, by a 65 % factor. This
is a bit explained by the fact that there are more calls, but mainly because the proportion of U and
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17 112 18

Lvl 1 2.40 (43/15/25/17) 0.43 0.93

DSPAP BSPP

Lvl 2 4.83 (50/13/23/14) 5.62

Table 8.12: Repartition of loads (standard PFAU arrivals from 7 pm to 11 pm)

VU calls goes from 35 % to 54 %. However, even with this different load structure, the loads ratio
of the police lane “only” reaches 2, versus approximately 4 for the rescue lane. This shows that
even on this time-slot with more demand, the bilevel system fits more with the morphology of
the rescue job than the police one.

Having introduced the concept and typical values of the loads, we now come back to the
single-tier / bilevel comparison, on the case of police calls. To this purpose, we simulate two
organizations that are fictitious in the sense that we aggregate the four departments of Paris area.
Recall once again that the current police part of the PFAU (contrary to the rescue part) has a
single Lvl 1 for police calls but four separated Lvl 2 for DSPAP (semi-departmentalized system).
To keep things simple in this section, we forget the different lanes per departments and we study
single-tier and bilevel centers which have to pick up all the calls from line 17 of the whole Paris
area, as well as the small part of 112 calls that are in fact police matters. These two systems
that we deal with are topologically equivalent to those introduced for rescue calls, depicted in
the Figures 8.4 and 8.8 and studied in the Section 2.3. The only difference will be that we consider
different volumes and handling times (police parameters between 7 pm and 11 pm, and no longer
rescue parameters between 9 am and 5 pm), which precisely modifies the loads ratio.

The Figure 8.13 gives the global abandonment rate for police calls and the specific abandonment
rate of VU police calls of our two fictitious systems, as a function of the total number of operators
(the allocation of agents between Lvl 1 and Lvl 2 for the bilevel center builds on the same
mixed criterion as before). We can here observe that the aggregated single-tier system always
outperforms the bilevel layout under the iso-staffing view. Yet, we would have expected that VU
calls are more protected by the bilevel system, thanks to the priority mechanism, and knowing
that minimizing VU abandonments is the predominant part of our target (mixed) criterion.

It is very important to note as of now that this superiority of the single-tier system for the
iso-staffing comparison vanishes for a sufficient number of staff – greater than 14 police agents,
which is ensured by the current staff of the PFAU. Beyond this point, both the single-tier and
the bilevel centers yield extremely few abandonments. However, looking at the understaffed
regimes (here between 9 and 13 agents) remains of interest, since it lets us foresee the degraded
phases that could arise if an important peak of calls arrived (see in particular the application in
the Section 5.1 to come). More importantly, the fact that the single-tier system appears to be
better than the bilevel layout regarding global abandonments and VU abandonments seems to
contradict the result we did read in the Figure 8.9. Recall that the latter was about rescue calls
(lines 18 and 112) between 9 am and 5 pm, and that the bilevel architecture for the iso-staffing
comparison systematically gave less abandonments than the single-tier.



310 Chapter 8: Performance analysis using numerical simulation

6 8 10 12 14

Total number of police agents

0

10

20

30

40

50

G
lo
b
al
ab
an
d
o
n
m
en
t
ra
te

Bilevel

Single-tier

6 8 10 12 14

Total number of police agents

0

10

20

30

40

50

A
b
an
d
o
n
m
en
t
ra
te

(V
U
) Bilevel

Single-tier

Figure 8.13: Comparison of both systems (single-tier and bilevel) on abandonment rates
(for single-job and aggregated police organizations, from 7 pm to 11 pm, i.e., ' 230 calls/h)

To explain this seemingly paradox and evaluate the interest of the (single-job) bilevel system, it is
necessary to recall the involved loads. Based on the previous tables, we obtain that the loads of
the rescue part of the PFAU during the day (base scenario of the Figure 8.9) were 1.02 E for the
Lvl 1–18, 0.50 E for the Lvl 1–112 and 5.60 E for Lvl 2–BSPP, hence a ratio of ' ' 4. Conversely
for the police part of the PFAU during the evening (base scenario of the Figure 8.13) the loads
were 2.40 E for Lvl 1–17 versus 4.83 E at Lvl 2–DSPAP, hence a ratio of ' ' 2.

The Figure 8.14 is derived from the two first charts of the Figure 8.9, where we simulate
single-job organizations picking up calls from lines 18 and 112 between 1 pm and 5 pm. For the
sake of readability, we no longer represent two performance curves (one the single-tier and one
for the bilevel), but rather a single one for the difference Bilevel − SingleTier (abb. Bl − St).
This way, a +10 % value (resp. −10 %) means that the bilevel architecture achieves 10 more points
(resp. less points) of abandonment than its single-tier counterpart. We will keep in mind that
a curve on the “positive” side indicates a better performance for the single-tier layout, while a
curve with “negative” values means that the bilevel performs better.

The blue curves in the Figure 8.14 correspond to the real loads ratio (still Lvl 2 over Lvl 1)
of ' ' 4 for rescue calls. They are drawn from simulations that are identical to those used in
the Figure 8.9, hence consistent with the day-to-day reality of this flow. However, the orange
and green curves are fictitious. Indeed, we have purposefully reduced the conversation times at
the Lvl 2 and increased those of Lvl 1, in order to obtain a loads ratio divided by two (' ' 2, in
orange) or three (' ' 1.3, in green) with respect to the reality. The iso-staffing comparison of
the single-tier and bilevel systems then shows that even though the bilevel system was always
better than the single-tier for abandonments when ' ' 4 (the blue curves are negative), we have
the opposite trend when ' diminishes. Indeed, for global abandonments, the orange and green
curves become positive. For abandonments of VU calls, when ' ' 2, the single-tier and the bilevel
centers are approximately equivalent, with a small advantage to the single-tier system for small
numbers of staff (we retrieve here figures similar to the Figure 8.13). When ' ' 1.3, the single-tier
center always outperforms the bilevel.

Although the case of the police is not exactly comparable with the case of rescue (the loads
ratio is not the only parameter that governs the global performance of the system, we may also
consider the patiences, some second-order effects of the proportions of gravities…), the analysis of
the Figure 8.14 very clearly demonstrates the systematic advantage of the bilevel system (with
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Figure 8.14: Influence of the (Lvl 2)/(Lvl 1) loads ratio ', for rescue calls as in Figure 8.9

respect to the single-tier and under the iso-staffing comparison)when the loads ratio Lvl 2 over
Lvl 1 is high (at least 3, or 4). In this configuration, we can indeed afford a “small Lvl 1” and
a “large Lvl 2”, and we benefit from the bilevel characteristics (more uniform tasks, priority of
VU calls, bigger inter-level patience…). Under a lower ratio (close to 2), these advantages do not
compensate the performance loss caused by the division of the staff in two pools of the same size
compared to a single-tier layout with a big pool of agents. This holds even for the VU calls.

It is extremely important to insist on the fact that this analysis and its conclusion follow from
our choice, recalled in Section 1.3, to compare single-tier and bilevel organizations under the
iso-staffing look. A much different perception of the bilevel performance is obtained by comparing
the systems under an “iso-expert” view. We discuss this aspect in the Section 2.5 that follows.

To sum it up, we can conclude that unlike the rescue calls, the bilevel layout is for the current
police organization less interesting than the single-tier one if we compare the total number of
agents. This is due to a quite different morphology: longer handling times at Lvl 1, shorter
at Lvl 2, more NU calls… In particular, the advantages of the bilevel layout are more visible
when the calls are filtered quickly by the Lvl 1, and this condition is not met if too many Non
Urgent calls slow down this first level. On the other hand, in order to benefit from the qualitative
strengths of the bilevel system without degrading the quantitative performance, modifications of
the organizations could be implemented. For instance, a recommendation could be that the NU
calls at Lvl 1 should be eliminated quicker, and shorter advice to callers should be given. To still
meet the demand of the population, these calls should be quickly transferred to another dedicated
platform, no more about emergency calls. This would result in increasing a lot the ratio ', which
as shown before is a key factor contributing to the efficiency of the bilevel system; this would
therefore allow to downsize a bit the Lvl 1 to put more resource at the Lvl 2.

2.5 DISCUSSIONON THE ISO-STAFFING COMPARISON. — As mentioned in the Section 1.3, we
have made the choice in this chapter to make iso-staffing comparisons of single-tier and bilevel
systems. In other words, we have always studied a single-tier with # agents on one hand and
a bilevel system with #1 + #2 = # on the other hand. This appears as a right choice from the
mathematical point of view, in particular if one wants to compare the evolution equations at stake
and the associated dynamics. From an operations point of view however, this is very arguable.
Indeed, iso-staffing does not at all mean iso-skill. In the bilevel system, the Lvl 2 agents (who as a
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reminder only handle U and VU calls) are highly trained experts of emergency calls, they know
how to handle complex situations and can dispatch a whole range of response means. On the
other hand, Lvl 1 operators have the mission to orientate and prioritize the calls, which involves
performing more standardized tasks and requires a less advanced training. A single-tier layout
cannot rely on such operators and must be staffed only with expert agents, equivalent to the
Lvl 2 resources of the bilevel system.

We can thus observe how much the staffing computation of the Table 8.10 is eloquent for
the bilevel system. To cope with the rescue demand , the latter requires 5 agents at Lvl 1 and
10 agents at Lvl 2. This surely is one extra agent with respect to the 14 people needed by the
single-tier layout, but the change of organization actually saves four expert agents! In order to
highlight this phenomenon, we could find reasonable to compare single-tier and bilevel centers
under an “expert iso-staffing” look; that is to say # agents for the single-tier and #2 agents at
Lvl 2 for the bilevel. This representation has the drawback of hiding the number of staff of the
first level and its role. It also raises the question of the choice of the staffing level at Lvl 1 in the
comparison. Indeed, it would seem wrong to compare a single-tier system with # = 6 agents,
with a bilevel system with #1 = 10 first-level agents and #2 = 6 second-level operators.

Still, to illustrate the influence of this methodological choice in our comparisons, we depict
both types of curves in the Figure 8.15. The shown criteria are the global and VU abandonment
rates, and we consider either rescue or police organizations (once again aggregated in the case
of the police). The figures associated with the rescue job (resp. the police job) are exactly those
previously shown in the Figure 8.9 (resp. Figure 8.13), so that all the charts of the “left column”
were already shown before. These charts follow the “iso-staffing” convention, for which the
G–axis corresponds to the total number of agents in the call center. However, the charts of the
“right column” compare the systems under the “iso-skill” convention. Hence, the G–axis gives the
total number # of agents for the single-tier curve but only the number #2 of expert agents for
the bilevel curve. Visually, this operation looks like a shift to the left for the curves associated
with the bilevel system (with a magnitude given by the number of staff at Lvl 1). For instance,
we can check on the two first charts (global abandonment rate for rescue calls) that the measure
point of coordinates (10 agents,3 %) has moved to the position (6 experts,3 %). This is because
this point was obtained for the combination of four Lvl 1 operators and six Lvl 2 operators. From
one column to the other, the performance curves of the single-tier system do not change.

In particular, we can appreciate in the Figure 8.15 howmuch influence the drawing convention
has on the performance comparison of our two systems. When reasoning in terms of identical
number of expert agents (iso-skills), the bilevel layout appears to be very much superior to the
single-tier layout. This holds for the rescue calls but also for the police. In a way, the fact that the
bilevel rescue organization outperformed the single-tier one under the iso-staffing comparison
was almost a surprise due to the split of the agents pool into two smaller groups. Managers of
emergency call centers may on the contrary find very acceptable to increase the total staffing by a
couple of agents (but less expert ones) to benefit from the advantages of the bilevel organization.

To wrap this discussion up, we have to acknowledge that the iso-staffing comparison is rather
unfair to the bilevel system because it does not differentiate Lvl 1 and Lvl 2 operators, but on the
other hand the iso-skill comparison is a bit too generous since it omits the Lvl 1 operators. A fairer
approach would probably be to compare the performance of a single-tier system with # agents
with the one of a bilevel under a “hybrid” number U#1 + #2 of staff, where 0 < U < 1. This puts
the difficulty on determining a relevant value of U , and this requires the expertise of managers
and operators of the call center. On our end, we may only indicate that any “fair comparison” lies
somewhere between the two limit cases illustrated by the two columns of the Figure 8.15.
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Figure 8.15: Influence of taking into account Lvl 1 agents for bilevel/single-tier
comparison (rescue and aggregated police organizations, from Figure 8.9 and 8.13)
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3 Validation of the analytical results by simulations

In this section, we compute using our simulation approach different performance estimates that
can also be predicted by theoretical techniques. In particular, we reuse several formulas introduced
in the Section 2 of the Chapter 5. We shall see that the results of our two complementary methods
(theory and simulation) do agree, which is a way of “cross-validating” them.

We also devote a specific subsection to the so-called Erlang calculus, which designates a
couple of tools and formulas often used in the performance evaluation of call centers (see again
our general Introduction).

3.1 THROUGHPUT ESTIMATES OF PETRI NETS USED FOR THE STAFFING PROBLEM. — In
what follows, we build on the analytical results obtained in the Section 2 of the Chapter 5. For the
single-tier system, whose Petri net is given in Figure 8.8 and assuming that callers have an infinite
patience (` = ∞), we can show that the throughput dSt of picked up calls by the # operators of
the organization is given by

dSt = min

(
_,

#

g + g ′

)
.

This simple equation tells us that if the headcount # is large enough, only the arrivals flow does
limit the pick up rate and hence dSt = _. Otherwise if # is too small, the pick up throughput is
equal to the “handling speed” of agents, that is to say their number divided by their average total
instruction time, as a result dSt = # /(g + g ′). For all calls to be picked up, the previous equation
imposes to choose a number of agents # larger than # ∗St B _(g + g ′).

We have depicted in the Figure 8.16 the comparison of the experimental throughput (computed
with our simulations) with the throughput predicted by the theory. The simulated Petri net is the
single-tier system with the real arrivals and conversation times derived from the data analysis
of the PFAU in the Chapter 7 – assuming that only calls from lines 18 and 112 are received to
correspond to a single-job treatment chain. For each value of # between 1 and 15, we have
realized 100 simulations on the 1 pm – 5 pm time window with the average scenarios. A first batch
of simulations is performed assuming that the patience of the callers is infinite (left-hand chart),
and another batch uses the real patience levels from our data analysis (right-hand chart).

The solid line indicates the mean value of pick up throughput as measured over the 100
simulations, while the light-shaded area around gives the 90 % confidence interval (the five best
and five worst simulations being ruled out). The black profile corresponds to the theoretical
throughput dSt; the horizontal asymptote has ~-value _ (the average intensity of arrivals over the
whole time window) and the breakpoint occurs at the G-value # = # ∗St. We do observe that in
the infinite patience case, the simulation results perfectly agree with the analytical predictions,
for all values of # . However, as we may have expected, the theoretical profile overestimates the
actual throughput (measured in simulation) when the real patience is taken into account. The
maximal difference is observed close from the breakpoint, when # = # ∗St. This can be explained
as follows. Recall that our theoretical model establishes that taking # > # ∗St is sufficient to pick
up all the calls in a stationary regime and under the infinite patience assumption. In realistic
scenarios though, the fact that some callers hang up themselves and the variability of the arrivals
are prone to cause more abandonments, and hence a pick up rate far from the limit _. It thus
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Figure 8.16: Throughput in the single-job and single-tier system

comes necessary to choose a value of # significantly greater than # ∗St (a little less than twice this
value) for these phenomena to vanish and retrieve a 100 % pick up rate.

As for the bilevel layout, we build on the Petri net of the Figure 8.4. As shown in the Proposi-
tion 5.2 in the Chapter 5 (under the infinite patience assumption, i.e., `1 = `U2 = `VU2 = ∞), we can
compute the analytical expressions of the two throughputs dBl

1 and dBl
2 . They respectively give

the pick up throughput of calls at Lvl 1 and Lvl 2. Recall that the Lvl 2 throughput dBl
2 is the sum

of pick up throughputs of U and VU calls at the second level. In particular, the priority mechanism
guarantees that even in case of a small lack of Lvl 2 operators, the VU calls shall still be protected
while the treatment pace of U calls will be degraded. Since the Petri net of the Figure 8.4 takes into
account the extra instruction time g3 – contrary to the Petri net of the Figure 5.2 in the Chapter 5,
we present below formulas from the Proposition 5.2 adapted accordingly.

We still use the two critical ratios A and A ′ introduced in the equation (5.6), where cU and cVU

refer to the proportions of calls qualified as U and VU in the total flow with intensity _:

A ′ =
cVU(g2 + g3 + gS)
g1 + cVUgS

and A =
(cU + cVU) (g2 + g3) + cVUgS

g1 + cVUgS
.

Recall that if the quotient #2/#1 (number of operators at Lvl 2 divided by the number of operators
at Lvl 1) is below A ′, then there are not enough second-level agents to handle the mere VU calls
transferred by the Lvl 1. If A ′ 6 #2/#1 6 A , there are enough second-level agents to handle the
VU flow handed over by the Lvl 1 but not the entirety of U calls (inferior priority). If finally
#2/#1 > A , then the whole flow at Lvl 2 transferred by the Lvl 1 can be handled by second-level
operators (even though the first level does not pick up all the incoming flow). The critical ratio A
is the same as the one used in the Section 2.1 and in particular in Figure 8.6.
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We obtain the following formulas for our two throughputs of interest

dBl
1 = min

(
_ ,

#1

g1 + cVUgS
,

#2

cVU(g2 + gS + g3)

)
at the first level, and

dBl
2 =



(cVU + cU)dBl
1 si #2 > A min

(
#1, #

∗
1

)
#2 − cVUdBl

1 gS

g2 + g3
si A ′min

(
#1, #

∗
1

)
6 #2 6 A min

(
#1, #

∗
1

)
#2

g2 + gS + g3
si #2 6 A

′min
(
#1, #

∗
1

)
at the second level, where # ∗1 B _(g1 + cVUgS).

It is interesting to note that contrary to the throughput dSt of the single-tier system, the
throughput dBl

1 is here not only constrained by the intensity _ of call arrivals and the handling
speed of first-level agents, but also by the handling speed of second-level operators. Indeed, if
the number of agents at Lvl 2 becomes too low, not all Very Urgent calls can be handled by the
Lvl 2. Hence, they shall pile up at Lvl 1 and hold the first-level operators who have to wait before
escorting VU calls. The mathematical expression is therefore consistent with the intuition and
covers all possible congestion phases, even the ones not observed in practice. Note once again
the “cascading effect” since the expression of the throughput of picked up calls at Lvl 2 depends
upon its counterpart at Lvl 1.

Similarly to the single-tier architecture, the above equations enable us to determine minimum
staffing levels # ∗Bl−1 and #

∗
Bl−2 at both levels, in order to reach a fluid phase where all calls are

picked up with no delay:

# ∗Bl−1 = _(g1 + cVUgS) and # ∗Bl−2 = _((cU + cVU) (g2 + g3) + cVUgS)

We have depicted in the Figure 8.17 the experimental throughputs dBl
1 and dBl

2 computed in
simulation. The colored dots correspond to the real measurements (still an average over 100
simulations for each value of #1 and #2). The colored surfaces are convenient continuous
extensions given to help visualizing the global behaviour. The black dashed lines outline the
theoretical profile of each throughput, predicted by the analytical formulas. The simulation points
in both charts were obtained by using the real patience levels of callers (see again Section 5
of Chapter 7), while the theoretical polyhedral complexes assume infinite patiences. Similarly to
the single-tier case, we observe that the simulated throughput corresponds very well with the
predictions of the theory when the number of agents puts us far enough from the phases limits.
This is in particular the case when #1 and #2 are high. The errors are bigger close from the
phase transitions. We represent the difference between the analytical and the simulated models
by dotted vertical lines.

From the theoretical point of view, it is interesting to focus on the throughput dBl
1 and observe

that the measurement error is important in the (small) phase where the number of agents at
Lvl 2 is limiting. Typically for #2 = 0, the analytical model predicts a zero pick up throughput at
Lvl 1 in stationary regimes. That is because under the infinite patience assumption, all first-level
agents become “paralyzed” by VU calls to be transferred at Lvl 2 but with no operator to actually
take these transfers. In reality when abandonments can occur, a well-staffed Lvl 1 will still be
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Figure 8.17: Throughput of the (single-job) bilevel system

able to pick up all arriving calls even though there are no second-level agents, because VU callers
(a minority of the total volume) will unfortunately get impatient and hang up. This illustrates
the fact that the analytical evaluation of the throughput under infinite patience is not always an
upper envelope of the throughput under finite patience, in spite of the visual feeling that we get
when looking quickly at the Figure 8.17. Still, we will keep in mind that both modelizations agree
with each other in the other phases.

3.2 INFLUENCE OF THE OCCUPANCY RATE. — The previous analytical computations do not
take into account the occupancy factor (hereafter abb. Occ) of the call center agents, defined as
the proportion of their time spent on the phone. As introduced and explained in Section 6 of
our Chapter 4, the Petri net models behave as if all the agents worked “non-stop”, with no pause
or wrap-up time as long as there are pending calls. This is the reason why in the previous charts
of this section, the computed values of # ∗ could seem very low (typically 7 agents for a single-tier
system, way below the real staffings).

In order to reach a reasonable occupancy in practice, it is in order to divide the minimal
computed number of agents by the target occupancy, hence taking an effective staffing # such
that # > # ∗/Occ. For instance, to reach a 50 % occupancy, we will choose # such that # > 2# ∗.
This is consistent with the intuition that for agents to be twice less busy on the phone, we need
to double the staffing. Occupancy-wise, we expect two regimes depending upon the staffing. If
the number of logged agents is less than # ∗, the workload will be too high for these agents who
will then have to work at full rate, and thus Occ = 1. Otherwise, that is to say if # is bigger than
# ∗, we expect a hyperbolic decrease of the occupancy under the form Occ = # ∗/# , hence the
full expression

Occ =


1 if # 6 # ∗

# ∗

#
if # > # ∗

(8.1)
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The law (8.1) is purely empirical. As a consequence, we have chosen to challenge it with experi-
ments using our simulation software. The Figure 8.18 represents the product # × Occ, easier to
visualize than the occupancy factor itself. Indeed, we expect if (8.1) holds that # × Occ coincides
with # for # 6 # ∗ and with # ∗ for # > # ∗, or equivalenty that

# × Occ = min(#, # ∗) .

The use of the experimental occupancy in these charts is also an excellent manner to compare the
analytical value of # ∗ (using theoretical formulas and the call center average parameters) and the
asymptotic value of # × Occ that is fully obtained through experiments.

The left-hand chart corresponds to simulations performed for a single-tier system (average
throughputs of the year 2019 in week days, rescue calls between 9 am and 5 pm). We see that the
experimental value of # × Occ stays very close from the profile predicted by the theory, apart
from a gap around the breakpoint when # = # ∗St. For higher values of # , we can observe that the
hyperbolic decrease of the occupancy factor as a function of # is an excellent approximation. In
addition, the horizontal asymptote coincides very precisely with the theoretical staffing, hence also
validating this value. The second chart shows equivalent simulations for the bilevel system. We
have depicted a first curve giving the product #1 ×Occ1 and another one giving #2 ×Occ2, since
each level has its own headcount and thus its own occupancy. However, we have representend
the product #1 × Occ1 associated with the Lvl 1 when the Lvl 2 was well-staffed (16 agents).
Similarly, we have shown #2 × Occ2 when the first level is well-staffed (16 agents). This was
done for the curves not to be “polluted” by cross-slowdown effects. Here as well, our theoretical
predictions do well agree with the experimental measurements, all the more so when #1 and #2

become greater than the limit values # ∗Bl−1 and # ∗Bl−2. From now one, we will always admit that
the empirical relation (8.1) is valid.
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Figure 8.18: Product # × Occ, theory vs. simulation
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3.3 PERFORMANCE MEASURES DERIVED FROM ERLANG CALCULUS. — The Erlang calculus
refers to a range of results obtained in the field of queueing theory. As discussed in the Introduction,
queues are a complementary approach to Petri nets and quite popular in the call center domain.
One advantage of Erlang calculus is to provide analytical formulas for several probabilistic
performance criteria: the probability that a caller waits before pick up, the average waiting
time, the abandonment probability, etc. Unfortunately, these results are more often obtained
under strong mathematical assumptions for the computations to be feasible. For instance, the
conversation times are most of times assumed to be exponentially distributed (which is not at all
the case in practice). In addition, Erlang formulas typically assume simple call centers topologies.
Handling more complex centers or cascading several layers is challenging in queueing theory, in
particular under general distributions of call centers parameters – while the modularity of the
Petri net approach comes convenient for such aspects.

Nevertheless, Erlang formulas are frequently used by managers or operators of call centers.
Consequently, it remains interesting to compare their predictions with the real simulated per-
formance. This way we can estimate in which extent Erlang formulas are valid and if we can
extrapolate them for more complex systems, in order to have performance evaluation heuristics.

There are customarily three main models and Erlang formulas found in the literature: Erlang-
B, Erlang-C and Erlang-A (ranked by increasing “complexity”). They all apply to single-tier
architectures with a finite number of operators.

The Erlang-B model assumes call arrivals following a homogeneous Poisson process with
parameter _, conversation times exponentially distributed with mean g , and infinite patience
of callers. There are # operators (or servers) but also # “service lanes”, meaning that a call is
blocked and rejected if all servers are occupied when it arrives. Using Kendall notation, the chain
is of type "/"/# /# . In particular, a caller never waits, because either an operator is available
when the call arrives and it is immediately picked up, or all servers are busy and the call is blocked
and rejected.

The Erlang-B formula, first featured in [Erl17], gives the blockage probability of a call (denoting
by � the random binary variable with value 1 if the call is blocked)

E(�) = P(� = 1) =

(_g)#
# !

#∑
:=0

(_g):
:!

B �� (#, _g) .

We retrieve here the term _g , sometimes referred to as the load (or the “traffic”). It is dimensionless
but often expressed in Erlangs. This load is a key parameter in the sizing of call centers, already
featured in our studies of Petri net models.

In the Erlang-C model, also featured in the article [Erl17], the chain is of type "/"/# .
Compared to the Erlang-B model, there is an infinite amount of lanes and therefore no blockage.
The callers will thus wait for operators to become available but are still equipped with an infinite
patience – note that in real call centers there actually are a finite number of waiting lanes but that
is much higher than the number of operators, so this is a relevant approximation. The Erlang-C
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formula gives the probability that a caller experiments a wait after arriving and before being
picked up (the nonnegative random variable,� corresponds to the waiting time) whenever
# > _g

P(,� > 0) =

(_g)#
(# − 1)!(# − _g)

#−1∑
:=0

(_g):
:!
+ (_g)#
(# − 1)!(# − _g)

B �� (#, _g) =
#

# − _g
�� (#, _g)

+ _g
.

If # 6 _g , there are not enough servers to handle the entirety of the load. As a result, calls (with
infinite patience) will pile up and P(,� > 0) = 1. Actually, when the call center is sufficiently
staffed (with # > _g), Erlang calculus also provides the distribution function of the waiting time
,� before pick up via the relation P(,� > C) = �� (#, _g)4−(#−_g)C/g . We obtain in particular the
average waiting time before pick up

E(,� ) =
�� (#, _g)g
# − _g .

The average number of calls waiting for pick up (in other words the length !� of the queue) can
also be computed, and verifies Little’s law, that is to say E(!� ) = _E(,� ). If # 6 _g though, we
shall have E(,� ) = ∞ and E(!� ) = ∞.

Finally, in the Erlang-A model (that is in fact due to Palm in his article [Pal57]), the chain is of
type"/"/# +" . Compared with Erlang-C, there is this time a patience with finite expectation,
that is exponentially distributed with a mean `. Among the three models, Erlang-A is the most
representative of the reality – although it is also the least famous, maybe due to its advanced
mathematical complexity. The Erlang-A formulas allow one to characterize the waiting time or
the proportion of abandonments by using the following function � (built from the incomplete
gamma function)

�(G,~) B G4~~−G
∫ ~

0
CG−14−C dC .

We obtain the probability that a caller waits (counterpart of the Erlang-C formula but this time
valid for any value of # ) by

P(,� > 0) =
�

(
#`

g
, _`

)
�� (#, _g)

1 +
(
�

(
#`

g
, _`

)
− 1

)
�� (#, _g)

.

Analytical computations based on the Erlang-A assumptions also allow to quantify the proportion
of abandoned calls E(Ab) (the random variable Ab equals 1 if the caller hangs up, i.e., when the
service time exceeds his/her patience, and 0 otherwise). Indeed, the probability of abandonment
conditioned by a nonzero wait is known:
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E(Ab |,� > 0) = 1

_g

#
�

(
#`

g
, _`

) + 1 − #
_g

.

Furthermore, the averages of the waiting time,� or of the queue length !� can also be determined
by the equilibrium equation E(!�) = _`E(Ab) and Little’s law E(!�) = _E(,�).

To finish, even though the probabilities to wait or to give up are quantities of interest for call
center managers, the indicator that is the most looked at probably remains the service level (or
grade of service), giving the proportion of calls picked up below a certain time threshold. For high
performance objectives (low pick up times) and significantly inferior than the average patience, it
is convenient to approximate the service level by the cumulated distribution function of,� –
waiting time of all calls, whether they are picked up or abandoned. The latter is given by

P(,� 6 C) = 1 − P(,� > 0)4−
(
1+#`

g

)
C
` 4
_`

(
1−4−C/`

)� (
#`

g
, _`4−C/`

)
�

(
#`

g
, _`

) .

Let us now study the adequacy of Erlang models with our simulations. We focus on Erlang-C and
Erlang-A models, which both assume arrivals of calls that follow a homogeneous Poisson process,
a virtually infinite waiting queue (no limit on the number of lanes), exponentially distributed
service times and a constant number of servers to pick up the calls. They only differ by the fact
that Erlang-A assumes a finite patience of callers (also exponentially distributed) and enables them
to hang up on their own, while the Erlang-C model is built on the infinite patience hypothesis.

We first deal with a single-job and single-tier system, whose Petri net was depicted in Figure 8.8.
We show in Figure 8.19 three performance criteria of interest predicted by the Erlang calculus and
as functions of the number of operators. We systematically distinguish the case of infinite patience
(it corresponds to the Erlang-C model, on the left charts) and of real patience (Erlang-A model,
represented in the right charts). All the theoretical profiles are obtained from the above formulas,
and we use as numerical values for the parameters the average values of the PFAU. We compare
these theoretical curves to the experimental results obtained as before by simulations under
standard arrivals from 1 pm to 5 pm for rescue calls. The conversation times and the patiences
of callers used in our simulations are the real ones of the PFAU, measured and presented in
the Chapter 7, hence are not exponentially distributed (hypothesis made in Erlang calculus).

The two first charts give the probability that a caller has to wait for a positive duration after
he/she arrives and before pick up. Whether we look at the real or infinite patiences, we observe an
excellent fit between the simulated values and those predicted by the probabilistic computation.
The absolute error is always below 2.6 %, except at the breakpoint in the Erlang-C model where
we find a 4.9 % error between the experiment and the theory. We check for the limit cases (either
many or very few operators) that the Erlang-C and Erlang-A profiles give the same estimates, but
they are very different inbetween. For instance, the Erlang-C model predicts 100 % of positive
wait for 6 operators, versus 65 % in the Erlang-A framework due to the fact that many callers will
abandon.
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The second row is devoted to the abandonment probability, a computation that is not applicable
to the infinite patience case, hence only one chart is shown in the finite patience case. We can
observe that the theoretical and the experimental profiles still quite agree, in spite of a maximal
absolute error of 4 % near the critical staffing # = _g .

Finally, we show in the last row the average waiting time before pick up (or abandonment).
Contrary to appearances (due to the strong slopes), the Erlang-C model does not provide a good
prediction of this value when # is too low. Close from the critical staffing, we have indeed a
relative error of about 50 %. The prediction of the Erlang-A model is also wrong by 15 or 20
seconds in average for small values of # , even though the global look of the curve is acceptable.

This phenomenon actually comes from the fact that Erlang models and their assumptions
tend to overestimate the distribution function of the wait for the real system, and therefore they
predict an average wait lower than the one measured by the experiments. We have depicted in
the Figure 8.20 the cumulated distribution functions C ↦→ P(, 6 C) for different values of #
(on the right-hand chart for the real patience and on the left-hand chart for infinite patience;
recall that for the latter this function is not defined if # < _g). For a given value of # (and a
same color), the solid curves give the profiles unveiled by our simulations, while the dashed lines
give the CDF predicted by the theory. We indeed observe that the real distribution functions are
below those of Erlang models, hence higher average waits in our experiments than in theory.
In the infinite patience case (thus for the Erlang-C model), we may note that the cumulated
distribution functions that we obtain remain roughly exponential functions, but with a different
shape parameter than the one predicted by the theory. We reckon that this difference comes
from the fact that the real distribution of the service times are not exponential, which impacts
the global distribution of the waiting time and changes its shape. A rich literature characterizing
such deviations exists but still involves approximation methods. We may however remark that
for high values of # , the theoretical predicted wait is close from the one measured in practice –
in this case only short waiting times are recorded.
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To finish, we explore with the Figure 8.21 in which extent the Erlang formulas can also be applied
to a bilevel architecture, even though they are fundamentally derived from a single-tier topology.
Our intuition is the following; in a well-staffed bilevel system where both levels are fluid, the
treatment chain of the calls behaves like two independent and cascaded single-tier systems, and
the output flow of the first level is a Poisson process (just like its input flow).

We let aside the case of the infinite patience, that is interesting from the theoretical point of
view but in any case is superseded by the Erlang-A model. We want to see how the latter fits with
our performance measures for the bilevel system at both levels, using the real averaged PFAU
parameters in the analytical formulas.

In the two first charts of the Figure 8.21, we have shown the probability that a caller who has
just arrived (either at Lvl 1 or at Lvl 2 after having passed the first level) has to wait before pick
up. The waiting probability at Lvl 1 is given as a function of the number of first-level agents, and
the probability to wait at Lvl 2 as a function of second-level operators. However, these values
also depend a bit on the staffing number of the other level, all the more so when this other level
is not sufficiently staffed. To illustrate this effect, we therefore always represent the waiting
probability of a level when the other level is either very badly staffed (#1 = 1 or #2 = 1) or very
well staffed (#1 = 8 or #2 = 16). It is interesting to observe that at Lvl 1, the probability to wait
is higher when the Lvl 2 is under-staffed (the agents of Lvl 1 are more busy because they are
held to transfer their VU calls), but this is the opposite at Lvl 2; a caller will wait longer if the
Lvl 1 is well-staffed since there are more tasks transferred to the Lvl 2, thus less availability of
second-level operators. This is consistent with the intuition and also with the remarks made in
the Section 2.1 after the heatmaps. We have also depicted with the solid red line the probability to
wait such as predicted by the Erlang-A model, even though it comes from a single-tier topology
and uses unrealistic distributions of service times and patiences. We observe that this simple
model does very well predict the probability to wait at Lvl 1 when the Lvl 2 is well-staffed, and
the probability to wait at Lvl 2 when the Lvl 1 is also well-staffed (about 4 % of maximal absolute
error, observed for small values of #2). As expected, the theoretical result does not hold when one
of the other level is under-staffed (more than 15 % of absolute error at Lvl 1 and 50 % at Lvl 2).

As far as the abandonment probability before pick up is concerned, we do the same comparison
in the second row of the Figure 8.21 and draw identical conclusions. When the other level is
well-staffed, the Erlang-A model correctly predicts the abandonment fraction at one level as a
function of the corresponding staffing, using only the mean conversation time and the mean
patience at this level. However, for the average waiting time (still taken for all calls, that is to say
either before pick up or before abandonment), the Erlang-A formulas have a decent predictive
power at Lvl 1 but a bad one at Lvl 2 – even when the Lvl 1 is well-staffed. We have for instance
a theoretical result that is about 60 seconds lower than the real wait measured in simulation for 4
second-level agents. Just like the single-tier system, we explain this difference by the distribution
of the conversation time at Lvl 2, whose shape features a high variance (that is much less the
case at Lvl 1). The Erlang-A model comes back in agreement with the simulation measurements
for high values of #2 (and close from those used in practice), but this mostly involves low values
and does not particularly strengthens our faith in this theoretical model.

To summarize, we may therefore conclude that despite its simple assumptions, the Erlang-A
model provides precise tools to quantify the probability to wait and to abandon (the latter being
one of our fundamental performance criteria) in a single-tier system. This also holds in a well-
staffed bilevel system. On the other hand, it does not give a good evaluation of the average waiting
time (that is a criterion related to the service levels). This constitutes an additional argument to
resort to numerical simulation.
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Figure 8.21: Probability to wait and to abandon, average wait, comparison with Erlang
models (bilevel and single-job system)
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4 Study of the PFAU architecture and its possible evolutions

In this section, we focus on models that imitate as much as possible the real behaviour of the
PFAU, contrary to the Section 2 that sometimes considered fictitious organizations (single-job
assumptions) to present proofs of concept. In particular, the results of the current section are
always obtained by simulating multi-job organizations, involving both police and rescue tasks.
Recall however that we still deal with large-scale emergency call centers in terms of demand and
staffing (four highly populated French departments).

4.1 PETRI NET MODELS FOR ORGANIZATIONS WITH TWO DISTINCT JOBS. — We start by
introducing the Petri net models that shall be used to simulate the multi-job layouts, extending
the Petri net of Figure 8.4 of the previous section where detailed evolution rules are recalled. We
depict in Figure 8.22 a Petri net very accurate with respect to the real PFAU, except for the fact
that the second level of DSPAP is here aggregated, and it is departmentalized in practice. The
subcomponents of the net for the two lanes are thus symmetrical. We have also implemented
a Petri net where the Lvl 2 of DSPAP is effectively departmentalized but it is not shown here
for the sake of readability. This modification of the organization (either departementalized or
aggregated) will be at the heart of the Section 4.3.

Just like the single-job case, the calls from line 18 enter a waiting place, where only a first-level
BSPP agent can pick them up. If the wait is too long, the callers can hang up and leave the
system. The same goes for callers who dialed the number 17, involving first-level DSPAP officers.
However, for people having dialed the emergency line 112, they can either be picked up by a
BSPP or DSPAP agent at Lvl 1, depending on the respective availability of both services. From
the operators point of view, there is a fair treatment between calls from 17 or 18 on one hand and
calls from 112 on the other hand. Indeed, the first call that arrives will be the first one picked up
(regardless of the emergency line). In case a firefighter and a police agent are both available and a
call from 112 arrives, it is the operator who has been idle for the longest time that will have to
pick up the call – this mechanism is symbolized by the� icon.

As in the single-job case, and as described in the Section 2 of the Foreword, a call picked up at
Lvl 1 is subject to different routings depending upon its nature and its gravity degree. The Non
Urgent calls have a conversation with the first-level agents before leaving the system and making
the operators available again. The Urgent or Very Urgent calls are transferred to a Lvl 2 agent
from the most appropriate service, with the escorting mechanism for VU calls. In the current
multi-job setting however, we explicitly represent the possibility that a call is “rerouted” between
the two levels. A caller who dialed the number 18 (a priori to reach the firebrigade) can as a result
be put in communication with the second level of DSPAP (a priori for police matters). This is
done by crossing the U–Pol transition after discussing with a first-level firefighter from BSPP –
shown by the arrow marked with a (★) symbol.

The operators of Lvl 2 still serve in priority the VU calls, as indicated by the double-tip
arcs. Between two fireable transitions with equal priority level, an operator token will always
be used to fire the one where a caller token has been waiting for the longest time to access the
second-level. After a possible escorting conversation (after which the Lvl 1 operator is released),
the token enters the final conversation place. When this exchange is over, the caller leaves the
system and the second-level operator can perform additional post-instruction tasks before coming
back available again.
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Figure 8.22: Petri net of a simplified PFAU where the handling of police calls
at Lvl 2 is not departmentalized
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Modeling the departmentalization of the handling of police calls at Lvl 2 requires to reproduce
the whole chain of treatment of the bottom-right corner of the Figure 8.22 four times, into four
independent blocks each using a different pool of operators. This also involves bringing up more
arcs between the Lvl 1 and the four Lvl 2, to correctly send the calls in terms of their department
of origin. The (rare) transfers from line 18 to the second-level of DSPAP also need to be duplicated.

4.2 STUDYOF THE INTERACTIONS BETWEEN THE TWO JOBS OF THE PLATFORM. — One of
the main features of the current PFAU is to bring together two different services under the same
roof. This way, the police and the rescue services (respectively staffed with DSPAP and BSPP
agents) are able to perform “reroutings” very efficiently. In addition, the pick up of the number
112 is shared by the first levels of each service. We present below a couple of analyzes illustrating
the coupling and the interactions of the two jobs.

The Figure 8.23 allows us to appreciate the effect of the shared treatment of the number 112.
It gives the proportion of calls from 112 picked up by the first level of DSPAP, as a function of
both Lvl 1 staffings (we naturally obtain the proportion of calls picked up by BSPP agents as the
complementary to 100). This heatmap is computed when the second levels of the two services are
fluid (that is to say 4 police officers at the police Lvl 2 in department 75, 3 agents in each police
Lvl 2 of departments 92, 93 and 94, and 10 agents at the Lvl 2 of BSPP).

This map is consistent with the intuition, confirming that the first level of one job takes over
when the other one is not enough staffed. For instance, for a choice of # Pol

1 = 4 and # Res
1 = 2,

then 63 % of calls from 112 are picked up by police agents, versus 7 % with the converse repartition.
We observe that the computed values are not symmetrical, and with for instance 4 operators at
each first level, the firefighters pick up about 70 % of calls from 112. This is a somewhat expected
outcome since the load (see Section 2.4) that weighs on the police agents at Lvl 1 is twice the one
received by firebrigade agents (1.84 E versus 0.94 E). Hence the “two thirds / one third” breakdown
for the remaining 112 load (0.44 E).
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Figure 8.23: Proportion of line 112 picked up by the Lvl 1 of DSPAP (current PFAU
organization, standard flows, from 1 pm to 5 pm, # Pol

2 = 13 and # Res
2 = 10)
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Figure 8.24: Abandonment rates at Lvl 1 (current PFAU organization, standard flows,
from 1 pm to 5 pm, # Pol

2 = 13 and # Res
2 = 10)

The Figure 8.24 gives the abandonment rates at Lvl 1 for each line, still as a function of the two
first-level staffings and for a fluid cross-section of the second levels. It provides complementary
information to the Figure 8.23.

On the first chart of the Figure 8.24, giving the abandonments at Lvl 1 from line 17, we can
check as a first approximation that the obtained figures are invariant by addition of Lvl 1 fire-
fighters (vertical stripes). Similarly, the chart for calls arrived by line 18 is nearly invariant by
addition of first-level police agents (horizontal stripes). These phenomena are expected since
only police agents pick up the line 17 and only firefighters pick up calls from line 18. Yet, we
note slight supporting effects, with 3 % less abandonments on line 17 if # Pol

1 = 2 and # Res
1 goes

from 1 to 2. The Figure 8.23 confirms that this drop comes from the fact that this new first-level
firefighter alleviates the load of first-level police agents on the 112 calls – the proportion of 112
calls picked up by the latter going from 61 % to 22 %. In the middle chart (relative to 112 calls), we
see this time a “diagonal” pattern since increasing either one of the two Lvl 1 staffings makes
the corresponding abandonment rate decrease. Once again, the asymmetrical figures observed
between lines 17 and 18 (for instance abandonments rate of 55 % and 29 % when # Pol

1 = # Res
1 = 1)

are a direct consequence of the different loads on both lines (two to one ratio). The same goes
for the decreases of abandonment rates on line 112 when we go from a (1, 1) to a (1, 2) or (2, 1)
configuration.

We now want to get a global view of the effect of the different staffing numbers of the PFAU –
there are currently seven different pools of operators – on its performance. To this end, we depict
in the Figure 8.25 a correlation matrix between several performance criteria and the headcounts.
The retained metrics are: the abandonment rate, the average total wait (Lvl 1 plus Lvl 2) for U
and VU calls, and the occupancy factors of agents; as the ones already introduced to study the
single-job systems in Section 2.

The color intensities indicate the importance of the correlations (in the sense of Spearman),
blue hues (resp. red hues) being associated with positive (resp. negative) correlations.

In the two first rows of the Figure 8.25, we observe (consistently with the intuition) that
the global abandonment rate of Urgent rescue calls and the average wait of U/VU rescue calls
essentially depend on the rescue staffings# Res

1 and# Res
2 . However, they are also weakly correlated
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Figure 8.25: Dependence of performance criteria with respect to staffings
(current PFAU organization)

with # Pol
1 , since the police agents at Lvl 1 can indirectly help the firefighters by taking the 112

calls off their load, as seen before. However, these rescue-related criteria are in very good
approximation independent of the Lvl 2 staffings of police services. We find a symmetrical
phenomenon for the police jobs. Their average wait and abandonment rate strongly depend upon
# Pol
1 and on the staffing numbers at police second levels (the correlations are less strong due

to the departmentalization). There is a weak but not negligible dependence on # Res
1 , but not

on # Res
2 .

We have also indicated the occupancy factors of each pool of agents. We naturally check that
they are all highly correlated and decreasing with respect to the staffing level of the corresponding
pool. We note that the average occupancy of the Lvl 1 of rescue services decreases a bit when
increasing the police staffing at the first level – and vice versa. At the second level, we remark
as in the single-job case that the occupancy of Lvl 2 firefighters increase if the Lvl 1 staffings
(either rescue or police) increase, because more calls are transferred. The occupancies of police
agents at Lvl 2 similarly increase when we raise the staffing of the first police level, but not
much when raising the number of Lvl 1 firefighters. We may explain this asymmetry by the
departmentalization of the police Lvl 2 (which “dilutes” the correlations) but also by the fact that
the rescue Lvl 1 transfers much less calls to the police Lvl 2 from line 18 than police Lvl 1 transfers
calls to the rescue Lvl 2 from line 17 (as seen in Chapter 7).

We finish this subsection on the interactions between the two jobs hosted at the PFAU by
showing how the Lvl 1 staffing of one job impacts the global abandonment rate (that is to say calls
abandoned either at Lvl 1 or Lvl 2) of the other job, or in other words that a mutual support exists.
For instance, the top part of the Figure 8.26 shows two performance maps relative to the global
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Figure 8.26

abandonments rate of Urgent Police calls as functions of the police staffing levels at Lvl 1 and
Lvl 2. These two maps only differ by the # Res

1 quantity, i.e., the staffing of Lvl 1 firefighters. It
is set to a single agent on the left map, and to four agents on the right map, while the staffing
# Res
2 remains set to 10. We can see that this evolution from 1 to 4 first-level firefighters makes

the police global abandonment rate drop from 53 % to 49 % if there are many second-level police
agents and a single first-level police operator; and from 22 % to 18 % if there are two police agents
at Lvl 1. This reinforcement has almost no effect if the police Lvl 1 is already well-staffed. As far
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as the rescue job is concerned, if we look at the abandonment rate of Urgent rescue calls, going
from 1 to 4 police agents at Lvl 1 has a much higher effect, going from 31 % to 17 % (that is to say
the half) when we have only one firefighter agent at Lvl 1 and many at Lvl 2. Even for three
or four rescue agents at Lvl 1, increasing the staffing of the police first level has a noticeable
contribution (abandonment drop of two or three points).

Once again, this very different supporting effect between rescue and police jobs that we
measure on small headcounts (leftmost columns of each map) is explained by their respective
loads. With # Res

1 = 1, the single firefighter at Lvl 1 is almost unable to cope with the load from
line 18 that is of 0.94 E, and can even less handle the total 18 + 112 load of 1.38 E. As a result it
causes many abandonments on line 18 (which contains many U calls). With many police agents
at Lvl 1, the police officers can handle the calls from 112, which leaves 0.94 E to handle for the
unique Lvl 1 firefighter. This agent will have to work with a nearly full occupancy and many
abandonments will still occur, but much less than before. Now if we deal with the police job, the
first-level load from line 17 equals 1.84 E, as a result with or without the support of firefighters,
a single police agent at Lvl 1 will not be capable of handling the entirety of the flow, and we
expect to see as many abandonments on the first column (# Pol

1 = 1) of both maps. When taking
# Pol
1 = 2, we start measuring an abandonment rate that is characteristic of a limit regime, and

finally when # Pol
1 = 3 we can observe a controlled rate.

4.3 EFFECT OF THE SYSTEM DEPARTMENTALIZATION. — In this section, we aim at quantifying
the impact on performance of aggregating several departmentalized organizations into a single one.
Intuitively, unifying small systems by keeping a constant global staffing is always advantageous
because of a smaller risk a saturation due to the scale-up. Indeed under a constant flow, four
organizations with two agents each have more chances to meet saturation than a single one with
eight agents.

Let us first describe the models studied in what follows. We choose to only focus on the police
part of the PFAU, since the DSPAP currently operates with a semi-departmentalized layout. As
a reminder, the pick up and the instruction of calls from line 17 (and a part of calls from 112)
for the whole city of Paris and its inner ring (four French departments in total) are done by an
aggregated first level, common to all departments. However, if a call is qualified as U or VU by
this first level, it is transferred to a departmentalized second level, where the operators only deal
with calls from a single area (department of origin of the call).

A question of interest is to know how the performance of this organization would evolve
if the four current Lvl 2 were merged into one, by keeping the same total staffing. Since the
main focus of our work remains the comparison of single-tier and bilevel layouts, we are going
to simulate on identical scenarios the four models presented in the Table 8.27. The current
organization is referred in this table as “Departmentalized bilevel”, which does not correspond to
one bilevel system by department but indeed to the half-aggregated-half-departmentalized layout
described above. Note that the two aggregated models correspond to the ones already studied in
the Section 2.4.

For the simulations, the study of the single-tier systems amounts to running single-job (police)
Petri nets – four independent nets in parallel in the departmentalized case, a single one for the
aggregated case. We choose for the study of bilevel layouts to launch simulations on Petri nets
derived from the current multi-job PFAU (the real departmentalized one and a fictitious platform
where the police Lvl 2 is aggregated). However we set the firebrigade staffings to 5 agents at
Lvl 1 and 11 agents at Lvl 2 (consistently with the minimal staffing computed in Section 2.3);
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Single-tier departmentalized Four independent one-level systems

Single-tier aggregated A single one-level system

Bilevel departmentalized One common Lvl 1, four independent Lvl 2

Bilevel aggregated One common Lvl 1, one common Lvl 2

Table 8.27: Four models of DSPAP organizations depending on the number of levels and
the departmental structure

in what follows we only let the police headcounts free to study their effect. In the four models,
the inbound flow given as input in our scenarios always contains the entirety of the calls from
line 17, and the calls from line 112 that are Urgent or Very Urgent and are police matters. In the
bilevel scenarios only, the first-level police agents can also pick up the rest of the calls from line
112 (since it is shared with the firefighters of Lvl 1). This constitutes an extra load for them in
bilevel layouts that we will quantify in order to draw a fair comparison between the different
organizations.

We now properly tackle the multi-criteria comparison of the four models gathered in the Ta-
ble 8.27. For each one of them, the Figure 8.28 gives as a function of the total police staffing
the following criteria: the global abandonment rate of all police calls, the abandonment rate
of only VU police calls, the average total wait of U and VU calls (sum of pre-Lvl 1 wait and
inter-level wait) and the maximum occupancy factor of all pools of police agents (whether they
are staffed Lvl 1 or Lvl 2). For departmentalized or bilevel organizations, the computed value of
a criterion for a given total staffing is always obtained by breaking down this total headcount
into the different pools of agents, optimizing a mixed criterion. As in the Section 2.3, this mixed
criterion first aims at minimizing abandonments of VU calls, then the global abandonment rate,
and then the waiting time. Note that this criterion is common to all the charts. In this way, and
even though the optimal repartition of 20 agents across 4 independent single-tier call centers is
maybe not the same to achieve a minimal abandonment or a minimal total wait, all the curves for
a same architecture follow in the Figure 8.28 the same “descent path” in terms of agents allocation.
This is the correct way to compare all the systems, but changing too much the definition of the
mixed criterion also ends up changing the comparison.

The first chart of the Figure 8.28 shows that the two departmentalized systems (whether
they have one or two levels) are equivalent in the iso-staffing comparison and for the global
abandonment rate criterion, beyond 13 or 14 operators in total. For 13 agents for instance, four
“parallel” single-tier call centers (with 5 agents in Paris (75), 2 in Hauts-de-Seine (92) and 3 in
Seine-Saint-Denis (93) and Val-de-Marne (94)) achieve as many abandonments (between 3 % and
4 %) across the four departments than the current bilevel PFAU with 5 police agents at Lvl 1,
4 at the Lvl 2 of DSPAP–75, 1 at the Lvl 2 of DSPAP–92 and DSPAP–94 and 2 at the Lvl 2 of
DSPAP–93. Above all, we note the much better performance of the aggregated systems,
where we have merged the teams of all departments. Still with 13 agents, the aggregated bilevel
system suffers only 0.5 % of global abandonment rate (putting 6 police agents at the Lvl 1 and
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7 at the Lvl 2), and the aggregated single-tier system reaches 0.05 %. Looking at the multi-job
systems, we can verify (not depicted in the figure) that unifying the four Lvl 2 of police services
also has an influence on the rescue chain. Indeed with 13 police agents in total, the Lvl 1 of
DSPAP in the departmentalized bilevel system picks up 24 % of the calls from 112, versus 34 % for
the aggregated bilevel.

This very strong effect of aggregating the departments is confirmed in the second chart,
featuring the abandonment rate of VU calls. We clearly distinguish two groups of curves: those
associated with departmentalized modes, and those associated with aggregated modes. Here, the
aggregated bilevel has a very similar performance than the aggregated single-tier, the difference
with the previous chart being that VU calls are handled in priority at the Lvl 2 of the bilevel
layout. Beyond a total of 15 operators, the abandonment rates for VU calls in both aggregated
systems fall below 0.05 % (one loss every 2,000 calls). For the departmentalized architectures,
we may also point out another strength of the bilevel system (that was already visible for global
abandonment). Indeed, even though the mean performance are almost the same, we observe by
looking at the 90 % confidence intervals that the abandonment rates for the bilevel system have a
much lower standard deviation than for the single-tier. Note how the green envelope is largely
included in the blue envelope for typical staffings between 12 and 19 agents in total. This proves
that thanks to its aggregated first level, the bilevel architecture is more robust, and more resilient
to “worst-case scenarios”. Consequently, aggregating only the first levels of several departments
thanks to the bilevel layout is already very advantageous.

As far as the total wait of U and VU calls is concerned, we may note the significant delay
of the departmentalized bilevel layout compared to other models (at least 15 extra seconds for
less than 14 agents) due to more divided pools and small integer staffing constraints – however
we need to keep in mind that these profiles have been obtained by optimizing a mixed criterion
that favours having fewer abandonments over having short waiting times. Interestingly, the
aggregated bilevel layout is quicker than four independent single-tier systems when we take more
than 14 operators, even though it is 5 or 10 seconds longer below this threshold. For sufficient
staffings, the aggregated bilevel lags behind the aggregated single-tier by less than 2 seconds, so
it is actually very competitive.

Finally, as it was already highlighted for the single-job and rescue layout, we remark that the
bilevel organizations (for the iso-staffing comparison key) make their agents a little busier on the
phone, with occupancies 10 points higher than their single-tier counterparts. Nevertheless, very
satisfying levels of occupancy are reached as soon as we take a total of 15 or 16 agents.

The previous analysis brings us to the computation of minimal staffing for the police pools.
The Table 8.29 summarizes the minimum number of agents that we need to have in order to satisfy
all the criteria selected by the MARCUS report (see again the Section 2.1). These headcounts are
taken relatively to the entirety of police calls between 7 pm and 11 pm (the moment of the day
with most police activity), regardless of the model. When there are several pools of agents, the
total staffing is always given by first specifying the number of first-level agents (if the system is
bilevel) and then the 75/92/93/94 counts (if the system is departmentalized). As in the equivalent
table that was presented for single-job call centers handling only rescue calls (see the Section 2.3),
each individual performance criterion may involve a different optimal breakdown of the staffing.
As a result, we need to read the “All criteria” row to obtain a global dimensioning policy. The
very high target of admission rate (99.95 %) is still the most challenging to reach and drives the
final optimization scheme. For this reason, the last row coincides with the first one.

In order to reach less than 0.05 % of abandonments (which will also guarantee that all the
other criteria are satsified), the numerical simulations recommend that four single-tier systems
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Figure 8.28: Comparison of four organizations on the police flows: single-tier vs. bilevel
and departmentalized vs. aggregated (standard flows 75–92–93–94, from 7 pm to 11 pm)
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Minimal staffing

Departmentalized Aggregated
Criterion Target

Single-tier (×4) Bilevel Single-tier Bilevel

Admission rate > 99.95 % 24 (8+4+6+6) 25 (8+6+3+5+3) 13 17 (7+10)

Service level – 15 s > 90 % 13 (6+2+3+2) 10 (6+1+1+1+1) 10 9 (5+4)

Service level – 30 s > 99 % 19 (7+3+5+4) 11 (6+2+1+1+1) 11 10 (6+4)

Maximum occupancy 6 60 % 12 (5+2+3+2) 13 (4+4+1+2+2) 10 12 (4+8)

All criteria 24 (8+4+6+6) 25 (8+6+3+5+3) 13 17 (7+10)

Table 8.29: Police staffing table (with well-staffed rescue services), typical police arrivals
from 7 pm to 11 pm, (' 230 calls/h)

should be staffed with 8 agents in Dpt. 75, 4 in Dpt. 92, 6 in Dpts. 93 and 94 – making a total
of 24 (expert) agents. For the current PFAU system (aggregated at Lvl 1 but not at Lvl 2), we
recommend having 25 agents in total, with 8 police officers at Lvl 1, 6 of them at Lvl 2 of Dpt. 75,
5 at Lvl 2 of Dpt. 93 and 3 at the second levels of Dpts. 92 and 94. As seen before, the aggregated
systems spare many resource, as a unique single-tier system requires 13 (expert) agents, versus 17
for an aggregated bilevel – 7 first-level operators, 10 expert second-level officers.

We recall that for bilevel systems, the staffings featured in the Table 8.29 to satisfy the Service
Levels are derived by single-criterion optimization schemes. However, these metrics rely almost
only on the number of first-level agents, hence we have a very good Service Level below 15
seconds in a departmentalized bilevel with a total of 10 agents (6 at Lvl 1 and a single officer at
each Lvl 2), but this does not yield good global abandonment rates. We have chosen to let these
service level indicators in particular for their interest in the single-tier systems.

4.4 EFFECTOF THE FIRST LEVEL UNIFICATION. — In a similar view than the one discussed at the
beginning of the Section 4.3 on the aggregation of the departments, we expect that two separate
Lvl 1 (one for the police, one for the firebrigade) and with two distinct agent pools should be
less fluid than a single “universal” Lvl 1 – in which all operators can pick up all the calls. In this
subsection, our goal is to quantify how many operators could be spared by such a unification.

We here deal with a unified Lvl 1 that keeps the current three emergency lines, their through-
puts, their patience levels and conversation times. This is a little bit different than a “generalized
112” with all emergency lines merged and probably slightly modified primitives. This choice
is the most realistic in the short-run and also the most handy to perform based on the data we
have. We are thus going to simulate a bilevel system with a unified Lvl 1 and assume that the
universal first-level operators handle a call from line 17 (resp. from line 18) the same way as a
current first-level police agent (resp. firefighter).

In the light of our previous experiments on the determination of minimum staffings, we
choose to look for the minimum number of agents that allows us to reach a global abandonment
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Minimum staffing (bilevel layout, departmentalized police)

One Lvl 1 per job (shared 112) One universal Lvl 1

Standard arrivals
1 pm – 5 pm

# Pol
1 = 7 # Res

1 = 4

# Pol
2 = (5, 2, 3, 2) # Res

2 = 11

#Univ
1 = 9

# Pol
2 = (5, 2, 3, 2) # Res

2 = 11

Standard arrivals
7 pm – 11 pm

# Pol
1 = 8 # Res

1 = 4

# Pol
2 = (7, 3, 4, 3) # Res

2 = 11

#Univ
1 = 10

# Pol
2 = (6, 3, 4, 3) # Res

2 = 11

Table 8.30: Staffing table of the current PFAU versus a PFAU with unified Lvl 1

rate that is less than 0.05 % (recall that this is the most restrictive criterion of the MARCUS report).
When several allocations put us below this target, we always retain those which also minimize
the number of second-level operators because they are more skilled and costly resource.

The Table 8.30 gives the staffing levels determined by our method, for the current model
(one Lvl 1 per job) and for the fictitious model where the Lvl 1 is unified. In both cases, we
keep the police lane departmentalized at Lvl 2. We also make distinct computations for the
afternoon time-window 1 pm to 5 pm, and for the evening slot 7 pm to 11 pm. In the afternoon,
we observe that the unification of the first level allows us to obtain identical performance (in
terms of global abandonment rate) with two less operators, going from 7 police agents and 4
firefighters at Lvl 1 to 9 universal first-level agents. The headcounts are unchanged at Lvl 2. The
same difference arises in the evening, with 10 universal operators needed at Lvl 1 versus 8 + 4
when splitting this level into two pools. In addition, our optimization scheme shows that it is
also possible to take off an second-level police officer from the DSPAP of department 75 without
exceeding the threshold of 0.05 % abandonment rate. What actually happens is that there are two
configurations letting us reach the performance target: either keeping 7 second-level agents at
DSPAP–75 and taking 9 first-level universal operators, or taking 10 universal agents at Lvl 1 and
6 at the Lvl 2 of DSPAP–75 (in the first case, the very few abandonments recorded will mostly
occur at Lvl 1, and in the second case at Lvl 2). Even though it is eloquent for our analysis to
claim that we can save three agents by unifying the Lvl 1, we still prefer to minimize the number
of “expert” agents at Lvl 2. Naturally, it is also possible to unify the two first levels and keep the
current total staffing. This offers a very significant gain of performance to the unified layout.

It is interesting to note that contrary to the optimization schemes performed before, the Ta-
ble 8.30 is obtained by letting all the headcounts free in the optimum search and under all
17–18–112 arrivals. Recall that the Table 8.10 was obtained for a single-job organization handling
18–112 calls and the Table 8.29 used a multi-job Petri net but with already fixed rescue staffs (5
first-level agents and 10 second-level agents). This difference explains why we find here that only
4 firefighters are sufficient at Lvl 1 in the global PFAU, due to the help of the 7 first-level police
agents who support them picking up the line 112 and alleviate their load.

We can consequently conclude that the first column of the Table 8.30 gives the total staffing
level recommended for the current PFAU under typical arrivals. The second column demon-
strates that unifying the first level always allow to “save” two agents at Lvl 1, and sometimes an
extra police officer at Lvl 2.
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5 Behaviour of the bilevel layout under non-standard arrivals

So far, we have only focused on simulating scenarios where the arrivals of emergency calls
followed average and “typical” throughputs. We now deal with the performance of the single-tier
and bilevel layouts in “crisis” situations, where by definition we move away from the standard
scenario. We consider either planned or unplanned non-standard events. Indeed, keep in mind
that some peaks of calls can be predicted in advance, such as those of New Year’s Eve or Bastille
Day in France. In these cases, the staffing are raised in consequence to cope with the unusual
demand, and the new staffing policy can be thought of as a shift of equilibrium. For unpredicted
events though (fire, explosion, attack…), massive call arrivals will hit the day-to-day staffing of
the platform, which precisely corresponds to an out-of-equilibrium situation.

5.1 RESPONSE OF THE BILEVEL LAYOUT TO AN UNEXPECTED PEAK OF CALLS. — We choose
for this analysis to study the impact of a “rescue-type” event, because the current BSPP chain
of treatment is already well adapted to the bilevel architecture (see our previous discussions
in Section 2.3 or Section 4.3). We place ourselves in the 1 pm to 5 pm time-window that we
simulated before. We consider the usual average throughputs computed from all week days of
the year 2019, but we add an (unusual) extra flow extracted from the fire that broke out in a
junkyard in Bobigny on the 26 June – it is presented in details in the Section 6 of Chapter 7. This
fire triggered many emergency calls that were tagged as EVU (Event Urgent) by the first-level of
the rescue lane, mainly around 8 pm when the smoke was visible from Paris’ outer ring. Many
extra VU calls were also received. We have taken from this particular day of 26 June the EVU
calls and the extra VU calls (net of the usual daily VU throughput) to add them on top of the
average throughputs between 1 pm and 5 pm. This gives us a realistic scenario of an important
fire occurring in the afternoon of a “normal” day.

The Figure 8.31 shows the throughputs of calls per gravity that we use for this crisis simulation,
computed over five rolling minutes. The reader may note that the peak of the EVU curve reaches
a maximum of 350 calls/h, while the one of the Figure 7.25 on which it is based only peaked at
270 calls/h. This comes from the fact that we took into account in our simulation the calls that
were abandoned after the voice prompt during the real fire. Those demands peaked at 120 calls/h
and we chose to break them down into 90 % of calls which would have been labeled as EVU, and
10 % that would have been VU (recall that our throughput curves never count the callbacks). The
virtual event that is depicted in the Figure 8.31 is simulated between 1 pm and 5 pm, but actually
starts at 1:30 pm. From 2:15 pm, we can see that the throughput of VU calls exceeds the one of NU
calls, and reaches almost 75 calls/h just after 3 pm. This is almost four times the usual VU demand.
The VU calls that may experience the longest wait are those arriving after 3:30 pm, because at this
moment the EVU solicitation skyrockets.

To evaluate how these crisis profiles are absorbed by our call center models, we give them as
input scenarios to a single-tier and single-job (rescue) center staffed with 14 agents, and to the
current (bilevel) PFAU organization where there are 5 firefighters at Lvl 1 and 10 firefighters at
Lvl 2. This is consistent with the recommendations of the Table 8.10 (and in this case the police
lane uses 8 first-level agents, and 6+3+5+3 police officers in the four departmentalized Lvl 2,
following the recommendations of the Table 8.29). In particular, these two concurrent models are
staffed so that they achieve less than 0.05 % abandonment rate on the usual demand. In these
two models, the EVU calls are handled quicker than the U and VU calls, using conversation times
of the Figure 7.25. In average, we counted in our simulations 888 calls on line 18 per run (on
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Figure 8.31: Throughputs used to simulate a massive peak of calls on line 18
(based on a fire in Bobigny)
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Average performance Worst-case performance

Criterion
Single-tier Bilevel Single-tier Bilevel

Abandonment rate
(global)

1.64 % 5.40 % 3.24 % 9.55 %

Abandonment rate
(VU calls)

0.95 % 0.28 % 2.42 % 1.35 %

Table 8.32: Performance of the single-tier and bilevel layouts facing an expected peak of
calls such as Bobigny fire

the 4-hour time-window) with an average of 135 VU calls. In standard scenarios – that is to say
without the EVU and extra VU calls, there are in average 592 calls in total, and 61 VU calls.

The Table 8.32 gathers the abandonment rates computed by our simulations on the two
architectures, either for all calls or specified only to Very Urgent demands. We distinguish the
average performance (mean abandonment rate over 100 simulation runs) and a “worst-case”
performance. The latter is computed by taking the 95th centile of the empirical distribution, which
is in practice the minimum abandonment rate recorded across the five worst simulations (recall
indeed that each simulation scenario is a bit different due to random draws). Using these metrics,
we can observe that when facing this unexpected crisis and without increasing the usual staffing,
the single-tier system suffers 1.64 % of global abandonment, versus 5.40 % for the bilevel – this is
three times less. However, the single-tier has a 0.95 % abandonment rate for VU calls, versus 0.28 %
for the bilevel – this is three times more. Digging a bit in the results of these experiments, we find
out that for the bilevel system, these VU abandonments almost exclusively arise at Lvl 1. When
they are picked up by the Lvl 1, the priority mechanism fulfills its role and prevents callers from
hanging up. On the contrary, the 5.40 % of global abandonments in the bilevel case are mainly due
to U or EVU calls waiting for a second-level operator. The first-level filter has therefore played its
role, enabling the rescue agents to handle in priority the very urgent and life-threatening cases.

In the worst-case scenarios, that sure are rare but still exist, we observe the same qualitative
phenomenon. The global abandonment rate is about three times higher in the bilevel system
compared with the single-tier, but the VU calls are still better protected by the bilevel, with twice
less abandonments for this specific gravity degree. This illustrates that the bilevel architecture is
more robust to undesirable events because the confidence interval of the VU abandonment rate is
more narrow.

5.2 RESPONSE TO A PLANNED PEAK, THE CASE OF RESCUE CALLS DURING BASTILLE DAY.
— Contrary to the previous subsection, we here review the case of an event for which the massive
arrival of calls is predictable. Every year, the night of Bastille Day (French National Day) between
the 14 and the 15 July receives much more rescue calls than usual. We have already detailed
in the Section 6.2 of Chapter 7 the throughput of calls on this particular night in the year 2019.
We are going to reuse these profiles in simulation to evaluate the response of our call center
models. We also explained before that the handling times of the calls were significantly shorter
this particular night on the rescue lane; this is the proof that firefighters resorted to much more
standardized procedures, adapted for Bastille Day calls.
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In terms of loads, this is an important element to consider. Even though we noted that the
throughput intensity of Urgent calls was (at the peak of the night) seven or eight times higher
than a usual night, the corresponding instruction times were typically divided by two. As a
result, the total load weighing on agents for rescue calls is “only” multiplied by four (see again
the Section 2.4 for our introduction on loads).

For our simulations of “Bastille night”, we then naturally use the above throughputs and
service times. We have also chosen to modify the breakdown of calls abandoned after the voice
prompt (actually there were very few of them this night), to allocate 80 % of them on the U gravity,
15 % of NU calls and finally 5 % of VU calls. The simulated time-window goes from 10 pm (14 July
evening) to 4 am (15 July morning), which covers almost the entirety of the peak.

The Figure 8.33 gives the performance of single-tier and bilevel systems facing this particular
event in terms of global and VU abandonment rates of calls received on line 18. It uses the same
models than Figures 8.9 and 8.13. For the bilevel system, the optimal repartition of a given total
staffing across the two levels is still obtained by optimizing a mixed criterion (first minimizing
VU abandonments, then all abandonments, then the waiting time). We check in particular that
this mixed criterion allows to achieve much better VU abandonment rates for the bilevel layout
compared to a single-tier layout, and using the iso-staffing comparison. The two architectures
become equivalent beyond 21 or 22 operators in total (at this point, the optimal breakdown in the
bilevel is to take 7 agents at Lvl 1 and 14 or 15 agents at Lvl 2). Yet, we note that the single-tier
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Figure 8.33: Comparison of the single-tier and bilevel systems in the night of Bastille Day
2019 (flows of lines 18 and 112, between 10 pm and 4 am, i.e., 630 calls/h)
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system is always better as far as the global abandonment rate is concerned (for the iso-staffing
comparison). This orange curve could be improved a lot by increasing the proportion of agents at
Lvl 2, but this would alter a bit the abandonment rate of VU calls, and the latter has priority in
our mixed criterion.

In view of the conclusion of the Section 2.4which establishes that the loads ratio (Lvl 2)/(Lvl 1)
is a key indicator characterizing the good behaviour of the bilevel layout, it is relevant here to
recompute this ratio during Bastille night. From 10 pm to 4 am during this exceptional event, we
have a typical load of 3.00 E at Lvl 1 via the number 18, of 0.47 E at Lvl 1 via the number 112,
and of 10.49 E at Lvl 2 of BSPP. This yields a ratio of roughly ' ' 3, significantly lower than the
standard ratio of the rescue lane that is typically equal to 4.

This decrease of the loads ratio partly explains why the global abandonment rate in the
bilevel system is not that good compared to the single-tier. However, the role of the proportion
of calls transferred at Lvl 2 is also at stake. Indeed, in the standard regime (average day-to-day
throughputs), only 34 % of calls from lines 18 and 112 are qualified U or VU and are handed over
to Lvl 2 (this fraction is very much lowered down by the calls from 112, see again the Table 7.2).
During Bastille night though, this proportion goes to 65 % due to the massive arrival of U calls
on line 18. A bilevel organization that is tuned to not lose any VU call (typically giving the
performance of the Figure 8.33) will yet tend to put an important number of agents at Lvl 1 for
all calls to be quickly picked up and then leverage on the priority mechanism at Lvl 2 to prevent
VU abandonments. Now that two thirds of calls require an instruction at Lvl 2 (versus only one
third usually), this allocation of agents do not let enough resource to quickly handle all U calls
at Lvl 2, that are in important amount and do not have priority, hence higher abandonments.
We easily check by digging in the simulation results that the global abandonment rate in the
bilevel system shown in the first chart of the Figure 8.33 is almost exclusively due to U calls being
hung up between the two levels – and not to calls being abandoned before Lvl 1 and their initial
qualification. We retrieve here once again the structural choice to protect Very Urgent calls before
all the others, even if it means loosing more non-prioritized calls.







CONCLUSION
AND PERSPECTIVES

As a conclusion of this work, we summarize the main contributions of the thesis in both the
theoretical and applied fields. Then, we discuss a few problems that arose in this journey and
were left unsolved.

Contributions rundown

It is always valuable in general to build bridges between apparently distinct pieces of mathematics,
as it offers new perspectives, and sometimes new results on the initial fields. In this sense, the
correspondence theorems between continuous-relaxed Petri nets and semi-Markov decision
processes that we presented in Chapter 4 hold a singular position in our work. These results
consolidated a lot the observations first made by Cohen, Gaubert and Quadrat in [CGQ95], by
rigorously covering the general case of Petri nets with inputs and with underlying multichain
structure.

We recall below our main contributions, all related in different ways to the piecewise affine
dynamics of Petri nets or SMDPs.

MONOTONIC PETRI NET DYNAMICS. — We have extensively used the previous correspon-
dences to describe the dynamical properties of monotonic Petri nets. In the continuous-relaxed
setting, we have precisely characterized the throughput vector (Corollaries 4.4 and 4.5) and we
proved the convergence of the trajectories towards the associated constant-rate function up to
a bounded term (Corollary 4.2), regardless of the initial conditions. This was done under quite
weak assumptions on the holding times of the net, following the efforts made in the Chapter 3 to
allow most sojourn times of SMDPs to be null. We obtained a complete characterization of the
congestion phases of the systems in terms of their resources, represented by a polyhedral complex.
We showed that this tool could be used in practice for staffing recommendations (Section 6
of Chapter 4).

We have been able to present advances of interest on the study of transient regimes of Petri
nets and correspondingly on the convergence of the value iteration algorithm for SMDPs in
stochastic shortest path configuration. We have indeed established for the latter the convergence
of the value towards a constant cost vector when the horizon approaches infinity (Theorem 3.41).
Once again, this property was demonstrated regardless of the initial conditions (or terminal costs).
We have characterized the ultimate contraction rate of the dynamics in this case (Theorem 4.12),
which allowed us further to exhibit settings where the convergence occurred in finite time
(Theorem 4.13). This property is key for organizations modeled by Petri nets, and we probably
would not have been able to uncover it without the correspondence results. We have computed
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explicit upper bounds on convergence times for a class of hierarchical Petri nets (Theorem 4.19),
which is another performance estimate of great practical importance. In the emergency call center
application, this was used to bound the absorption time of a peak of calls. We point out once
again that many of these results are also new in the simplified framework of Markov decision
processes, that uses a logical time instead of the physical time.

The above results also have consequences on the study of discrete Petri nets, in which tokens
and firings remain integer quantities. We have quantified the deviation between the trajectories
of these nets and their continuous-relaxed counterpart and showed that it was bounded for
similar inputs and preselection routings (Theorem 2.19). This provided a bound between the
throughput vectors of discrete and continuous-relaxed nets (Remark 4.3). We established that the
approximation of discrete Petri nets by continuous-relaxed nets was asymptotically precise when
scaling the number of tokens navigating in the net, even in the presence of many nondeterministic
phenomena (Theorem 2.23). This result is an important contribution for the comparison of both
types of models, and legitimizes the use of the above tools to study the discrete framework as
well.

SYSTEMATIC ANALYSIS OF CONGESTION PHASES. — Our Chapter 5 was devoted to the
presentation and illustration of a methodology to study the congestion phases of systems described
by piecewise affine dynamics, typically arising from Petri nets. Using the tools of [ABG15], we
have computed such polyhedral complexes even for non-monotonic models. We found that
counter-intuitive and somehow paradoxical behaviours could arise in degraded phases due to
the priority rules. We emphasized in this chapter the systematic and modular characters of
this technique, still leading to the computation of minimum staffing recommendations or layout
comparisons.

We have applied this methodology to several models of emergency call centers. As far as
performance are concerned, we provided in each case the minimum number of agents to reach a
congestion-free regime. Architecture-wise, we detailed many elementary mechanisms that it is
possible to build with priority rules: allocation of different flows with distinct priority, reservoir
system, asymmetrical or symmetrical assistance of resources… we showed that the comparison of
multiple alternatives involved the computation of piecewise affine hypersurfaces.

COMPARISON WITH SIMULATED DISCRETE-EVENT SYSTEMS. — The Part II of the thesis
allowed us to validate our theoretical approach based on continuous-relaxed Petri nets, as we
showed that our throughput estimates were satisfying approximation of the real processing
rates for simulated call centers. We retrieved by these numerical methods the congestion phases
predicted by the theory.

In view of applications to real-life emergency call centers, this case study turned out to be
very fruitful. We have been able to demonstrate multiple advantages of a well-tuned two-tier
layout: better protection given to the very urgent calls, improvement of the patience levels, better
resistance to peak of calls, diminution of the minimum number of skilled resources, etc. We
exhibited the appropriate conditions to respect for a two-tier organization to be more efficient
than a single-tier one, by showing that the instruction at the first level of a two-tier architecture
should remain quick compared to the second one. We also measured the resource savings obtained
by merging different pools of agents, as well as enabling synergies between two separate groups
of operators (for example to pick up the calls from number 112).
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PROPERTIES OF POSYNOMIAL SYSTEMS. — Our focus in Chapter 6 on simplified systems
that arise from fixed-points equations associated with Petri net dynamics allowed us to show new
results on classical posynomial systems and tropical posynomial systems. We established in both
cases that the general associated decision problems were NP-hard, but we identified tractable
classes of instances. These involved purely geometric conditions on the relative positions of the
posynomial exponents: the pointed character of the configuration of exponents and the existence
of a colorful vector. We showed under these conditions that tropical posynomial systems were
equivalent to Markov decision processes and that they could be solved by linear programming. In
comparison, we proved under the same assumptions that classical posynomial systems could be
solved by geometric programming. We gave necessary conditions for the set of colorful vectors
to be nonempty, and conversely, we stated sufficient nonvacuity conditions under the form of a
conjecture, that we proved for three or less bodies.

Open problems and perspectives

Let us now come back on several questions that remain open at this stage, and that could be
addressed in future work.

MOREGENERAL SEMI-MARKOVFRAMEWORKS.— Wediscussed at the end of the Section 3.2
in Chapter 2 and also in the Section 2.8 of Chapter 3 that our techniques developed for Petri nets
and semi-Markov decision processes with constant holding and sojourn times could carry over to
a more general framework with stochastic times. However, this was mainly restricted to cases
where the distributions of these times did not contain zero in their adherence. Although this is a
rather mild requirement in practice, it remains a problem of interest to determine the minimal
assumptions on the distributions of sojourn times that allow one to prove that the value function
of SMDPs is still defined, and verifies well-posed dynamic programming equations. We explained
in the Section 2.8 of Chapter 3 that addressing this issue involves dealing with switched renewal
equations, or Volterra integral equations of the second kind. We reckon that several standard
results and proof techniques from this field could be applied to our setting.

Another related question, and that could sound natural in the SMDP community, would be
to extend our results to SMDP configurations with non finite state and action spaces. It was
indeed an appropriate setting to study the problems arising from Petri net models, but many
other fields of performance evaluation lead to SMDP model on infinitely countable or compact
structures. As recalled in the Chapter 3, the transition probabilities at stake may also depend
upon the time. By analogy with the rest of the literature, we already know what would be the
candidate dynamic programming equations in these more expressive settings. Yet, the challenge
is to adapt the treatment of the non-Zeno behaviours and the convergence results established
for the value iteration algorithm, which made use at some points of the finite structure of the
state-action space.

Following the “strong law of large numbers” for Petri nets established in Theorem 2.23, it
would also be desirable to derive large-deviation results or Chernoff bounds to better understand
the difference between discrete and continuous-relaxed dynamics of Petri nets when stochastic
events are involved. This echoes risk-sensitive or quantile-based criteria in the world of Markov
and semi-Markov decision processes, a field that is still very active nowadays.

TRANSIENCE BOUNDS OF MONOTONIC DYNAMICS. — Our study of the transient regimes
and input catch-up of Petri nets (or equivalently the convergence of the value iteration for SMDPs
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in SSP configuration) in Chapter 4 led us to the computation of explicit transience bounds. We
explained why the obtained expressions featured reasonable terms and ratios, however, they
were obtained after some simplifications. As a consequence, we reckon that there is room for
improvement on the result stated in Theorem 4.19. The subsequent Proposition 4.21 features a
refined bound but only for the example (EMS-A). We illustrated there that a symbolic propagation
scheme on affine stationary regimes (reminiscent of the policy iteration algorithm) may be worth-
studying. We think that the field of network calculus could also bring appropriate techniques to
tackle this question.

More generally, it is of interest to better understand the second-order properties of Petri nets
or SMDP trajectories. Our study of the input catch-up may be thought of as the easiest problem
in this very hard class! Similar results in the field of Markov decision processes teach us that the
periodic character of SMDP classes plays an essential role at this scale, which suggests further
that arithmetic conditions need to be taken into account. Working in the semi-Markov setting
may in some cases bring a regularizing effect (at least when the time distributions are absolutely
continuous) that cannot occur in the usual Markov case, where all the sojourn times are integer.

PROPERTIES OF NON-MONOTONIC DYNAMICS. — Although the core of our theoretical
contributions on Petri net dynamics was brought tomonotonicmodels, we have repeatedly recalled
in Chapters 1 and 5 the difficulties raised by the introduction of priority rules – intrinsically
non-monotonic. We have exhibited with the Petri net of Figure 1.14 a priority layout yielding
ill-posed dynamics, partly due to our wish to allow null holding times for some places of the net.
It would be an interesting problem to find minimal well-posedness conditions, under which we
could guarantee that a unique trajectory arises from the dynamical equations associated with
non-monotonic models.

Yet, the most important problem that remains unsolved for this class of nets is the question
of the convergence of the growth-rate of trajectories towards the throughput computed by
solving min-plus lexicographic systems on germs of affine functions. Indeed, even though these
analytical expressions are very often reasonable and are good throughput candidates, it was
shown in [ABG15] that trajectories could fail to converge towards these expected limits, owing
to some arithmetic phenomena.

There are still open problems about the solutions of the lexicographic systems on germs
themselves. We may indeed have expected that the counter functions associated with transitions
having the highest degrees of priority remained nondecreasing functions of the resources. Yet,
the paradox established in Section 3 of Chapter 5 proves that this is not true. We think that this
negative result can be due to a certain layout of priorities, where high priority transitions are
indirectly served by low priority transitions. It is possible that ruling out such patterns could allow
one to show that some properties of monotonic models actually carry over the non-monotonic
framework.

COMPUTATION OF THE THROUGHPUT COMPLEX. — In the Chapter 5, we have pre-
sented the congestion phases of several models of non-monotonic Petri nets, with up to ten
full-dimensional polyhedral cells in R3. These regions were determined by hand, and it is a
problem of practical interest to determine the computational cost of obtaining all these phases in
general, starting from a min-plus lexicographic system on germs of affine functions. Recall that
such systems can feature conditional equations, some terms being switched on or off depending
on the values of other throughputs. We have shown in addition that multiple policies could
determine phases of the complex that were not full-dimensional. One would want to design an
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algorithm to find the full-dimensional phases of such systems while avoiding the enumeration of
all the policies, since there are exponentially many of them. Of course, one would need to use
symbolic techniques to obtain the analytical expressions of the throughput in each cell and the
formal inequalities that delineate the validity regions. Further, it would be desirable to perform
computations on the resulting polyhedral complexes to compare the congestion phases of dif-
ferent models. More generally, these problems are tied to the computation of so-called tropical
varieties [JSV17] and the computation of mixed subdivisions of polytopes [DLRS10].

MIXINGPOLYHEDRALCOMPLEXESWITHPROBABILISTICESTIMATES.— One disadvantage
of the approach based on continuous-relaxed Petri nets is that it does not provide probabilistic
estimates such as the average waiting time of tokens, probability for a token to wait, etc. This
is inherent to the fact that we focus on the long-run behaviour of fluid models. Indeed, for a
given place of the net in such a stationary regime, either no delay is experienced by the tokens of
the place and this place remains empty, either an infinite amount of tokens pile up inside it and
the delay goes to infinity. In particular this approach is blind to the notion of patience. As we
discussed it in the Section 3 of Chapter 8, these effects typically cause our polyhedral formulas
to be overapproximations of the real throughput. If there are enough resources, the difference
is negligible, but on the contrary, a significant error can be made in the neighborhood of some
frontiers between the different phases.

The throughput functions that are depicted in Figures 8.16 and 8.17 suggest that a corrective
term could be added to our polyhedral formulas to better represent the real throughputs. We
reckon that this error term could be computed by models and heuristics of queueing theory
(that do not relax integrality constraints). This is in fact reminiscent of the concept of queueing
networks, in which different blocks are cascaded and product-form solutions are computed.

PROBLEMS DERIVED FROM POSYNOMIAL SYSTEMS. — We finally point out that several
problems related to our study of posynomial systems in Chapter 6 remain open. To begin with,
we only studied posynomial systems on R= – or (Rmax)= , while those featured in the Chapters 4
and 5 were defined on tuples. It would therefore be interesting to see if some of our techniques
carry over to this more general case. In addition, we did not study the posynomial systems for
which a colorful vector does not exist. In fact, the notion of colorful vector was introduced as a
sufficient condition for the complementarity slackness equations in the proof of Theorem 6.7 to
yield a solution of the initial posynomial system. We do not know if these sufficient conditions
are necessary and there might be milder hypotheses under which we can still resort to linear
programming techniques to solve tropical posynomial systems.

On the colorful interior subproblem, the Conjecture 6.23 remains open for more than four
convex bodies. We believe that it could be proved by induction on the dimension of the ambient
space, although the real challenge remains to go from geometric properties of sets given as
intersection of convex bodies to more analytical notions involving the existence of a Perron
vector for a given nonnegative matrix (actually, one needs to show that a so-called Z-matrix is an
M-matrix, see [FP62]).

From the computational point of view, another question of interest is to determine the
complexity of finding a colorful vector whenever the colorful interior is nonempty. We know
that provided we have a strong separation oracle (see [GLS12]), this problem can be solved in
oracle-polynomial time. However, separating a point from the frontier of the colorful interior is a
nontrivial problem. The complexity status of computing the tangent hyperplanes to = − 1 convex
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bodies in dimension = is itself unknown (the simpler constructive proof of their existence builds
on Brouwer’s fixed-point theorem [LvHK96]).

It is also worth-mentioning that the analysis of the colorful interior is of interest under
different notions of convexity. Indeed, when the = convex bodies at stake are in the tropical
semifield R=max and are tropically convex, we still obtain that there are = tropical hyperplanes (each
one being tangent to = − 1 convex sets) delineating the colorful interior. The latter is in this case
the interior of a tropical simplex. Remarkably, this colorful interior is the locus of apices of tropical
hyperplanes that separate the initial convex bodies, in the sense that each one of these = bodies lies
in exactly one of the = sectors of the hyperplane. As a result, the colorful interior problem solves
the “Tropical Support Vector Machine” question in tropical machine learning [GJ08, ABG20a].







A P P E N D I X

SUMMARY OF
OUR WORK DURING THE
COVID-19 PANDEMIC

The Covid-19 virus began to spread in France in January 2020. Like many other countries, the
number of contaminations soared during the following weeks, until national lockdown came
into effect on 17 March. The diffusion of the disease resulted in a rapid surge of emergency calls
passed to the Service d’Aide Médicale Urgente (SAMU) via the national emergency number 15
(we refer once again to our presentation of French emergency services in the Introduction). On
13 March, 26,000 emergency calls arrived in the four SAMU of the Assistance Publique – Hôpitaux
de Paris (AP-HP), four times the usual demand. This same day, we were contacted by AP-HP
to provide assistance to the SAMU teams of Paris area in forecasting their staffing and logistics
needs. To fulfill these missions, we spent the first month of lockdown at the SAMU de Paris. This
appendix describes the work that we have done during this period and some subsequent projects
that were carried out to predict the evolution of the pandemic.

1 Adaptation of the organizations

The SAMU centers of Paris area began to modify their response procedures around the 15 February,
when the demand started to rise significantly. We refer to the feedback article presented by Télion,
Marx, Dautreppe and Carli [TMDC20] for the case of SAMU 75 (city of Paris), see also [LGV+20]
for the case of SAMU 93. During our time spent with the different teams, we had the opportunity
to witness the huge logistic adaptation of the SAMU and AP-HP, who quickly set up tens of
additional computer and phone workstations. Many reinforcement were also called upon. As
far as call handling procedures are concerned, several modifications were brought to the usual
system (of which a simplified version is described in the Section 1 of Chapter 4), including:

– the duplication of the call handling circuit, in order to keep the regular inbound flow of
urgent calls on one hand and the Covid-19 calls on the other hand. Indeed, the usual flow
of calls arriving at the SAMU is well-known to be polymorphic and to require skilled agents
or physicians to address it. Instead, the Covid-19 calls were of a much more homogeneous
nature, and the less severe requests (accounting for a large volume of calls) could be addressed
by less trained resources, such as medical students who volunteered to help the SAMU.

– the roll-out of an interactive voice response (IVR) in the SAMU 75, SAMU 92 and SAMU
93, consisting in a short message asking the patient to type the number 0 on his/her phone
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if he/she was calling for Covid symptoms without respiratory difficulties. In this case, the
patient was sent to the lane of Covid calls; otherwise he/she remained in the regular lane.
Reorientation in the other lane was possible at all subsequent steps of the instruction in case
the responding agents detected the initial choice was wrong.

– the recourse to a “hang up and call back” procedure, that was used for mild Covid calls in order
to call back the patient either by the same agent or from a different workstation. The rationale
behind this process was to free some inbound lines that are in high but limited amount, and
spread the workload on outbound lines as well. This ensured that more inbound calls could be
handled at the same time.

– the sending of text messages (SMS) on the cell phones of patients who presented very mild
Covid-19 symptoms or no symptoms at all. These text contained instructions and allowed the
patients to reply if they wanted to be called back by the SAMU (which happened in one case
out of three).

We refer to [TMDC20] for the full details of these procedures in the case of SAMU 75. The SAMU
94 did not implement an IVR to perform the triage of the calls between the regular and Covid-19
lanes. Instead, they set up a first level of pick up by a dedicated pool of agents, who then very
quickly dispatched the calls.

2 Contributions to the dimensioning of response systems

2.1 INNOVATIONS MODELING AND STAFFING COMPUTATION. — The core part of our work
with the SAMU has been to estimate the staffing needs of the different call centers, depending
upon each organization topology and parameters. To this purpose, we reused the methodology
detailed in this thesis, namely the representation of a real organization by means of a Petri net
(Chapter 1), the approximation of its behaviour by its continuous-relaxed counterpart (Chapter 2),
and the computation of its congestion-free phase (Chapters 4 and 5).

We actually enriched a bit our approach by implementing interval arithmetic in our estimates,
due to the variability of the exogenous parameters and the need to include the uncertainty
intervals on the epidemic growth rates computed by epidemiologists. We delivered analytical
formulas and numerical applications in different scenarios designed in constant collaboration with
the physicians of the SAMU. We illustrate the Covid-19 response models that we have studied in
the two Petri nets below. The net depicted in Figure A.1 represents the organization of the SAMU
75 (city of Paris). The right part is similar to the Petri net of Figure 4.2, with a first instruction by
a Medical Regulation Assistant (MRA) and a second possible instruction by a General Practitioner
(GP) or an emergency physician. The MRA circuit is still depicted in blue, the GP circuit in purple
and the emergency physician circuit in red. Consistently with the above description, the whole
call handling circuit has been duplicated after the initial IVR. If the patient indicated that his/her
call was about mild Covid-19 symptoms, he/she did not go in the regular lane but in the Covid
lane, depicted in green. The calls of this room were picked up by another pool of MRAs, the
so-called “Covid MRAs”. They could hand over the calls directly to the emergency physicians
if the patient underestimated the severity of his/her symptoms. Otherwise, they could transfer
the call to a dedicated room with different levels of priority. This room, not fully depicted but
represented in orange, was staffed with reinforcement GPs and medical students to address the
non severe Covid cases.
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The net depicted in Figure A.2 represents the organization of the SAMU 94 (department of Val-de-
Marne). As explained in the previous section, no IVR was implemented in this department, which
explains why the design looks quite different from the one of Figure A.1. This model was built
on the ground model (EMS-B) of Figure 5.6, that was studied in the Section 3 of Chapter 5. In
the Figure A.2, we use double arrows to stand for already classified flows of calls, so that we may
treat some of their calls with priority relatively to others.

During the Covid-19 pandemic, the SAMU 94 used a first level of instruction (depicted in
yellow in Figure A.2) to quickly qualify the request of the patient. If it was either a regular call or
a Covid-19 call with severe symptoms, the call went in a regular lane (such as the other SAMU).
Otherwise, it was sent in a different lane dedicated to mild Covid calls. For the latter, a longer
response was given by a level-two MRA and the “hang up call back” scheme was used (represented
with the boxed cross). Afterwards, the patient was called back by a GP.

The calls sent in the regular lane were further handled by usual MRAs, possibly in a priority
order specified by the first-answering MRAs. The patients could then be transferred to usual
GPs, or to two pools of emergency physicians, whether the call was about Covid or not. The two
pools of emergency physicians used the principle of monitored reservoir studied in the Section 3
of Chapter 5. A “shortcut link” was also planned (in dashed yellow) if the first-responding agent
detected a vital threat and an immediate need to reach the emergency physician and bypass the
intermediary layers. Note that even when not explicitly depicted, this procedure always exists.

Note that the Petri nets of Figures A.1 and A.2 were both simplified representations of the real
systems in the sense that the role of agents not directly involved in the instruction of inbound
calls were not depicted. This includes the MRAs who actually coordinate the fleet of ambulances
or Mobile Intensive Care Units.
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Figure A.1: Simplified Petri net of the SAMU 75 organization
in the middle of the Covid-19 crisis
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Figure A.2: Simplified Petri net of the SAMU 94 organization
in the middle of the Covid-19 crisis

2.2 DATA ANALYSIS AND CONGESTION DIAGNOSIS. — Another early part of our work has
been from March 13 to understand the magnitude of the inbound flow of calls and to provide
day-to-day reporting to the AP-HP.We reused the data analysis tools that we developed in 2019 for
our collaboration with the four SAMU of AP-HP (and who led to the reports [ABG20b] delivered
in January 2020). We also performed data fusion with other sources of information on the calls,
in particular those made available by the telephone provider Orange.

It allowed us to identify some congestion links upstream of the SAMU centers or uneven
load balancing between the different technical equipments on 13 March. These elements helped
the logistic teams to strengthen the calls routing facilities and were used to assess that the
consolidation operations were successful.



Contributions to the forecast of the epidemic 357

In the following days, we used our data analysis codes to measure the characteristics of the new
procedures implemented by the SAMU (service times and experienced wait in the Covid lane,
overall proportion of Covid-related calls and degrees of severity…). These parameters were used in
our modified models to compute staffing recommendations, as presented in the previous section.

3 Contributions to the forecast of the epidemic

We summarize in this section a subsequent work that we have realized on the forecast of the
Covid-19 spread in Paris area and the analysis of the different phases of evolution, using the
SAMU data. Indeed, the number of calls passed to the SAMU showed to be among the earliest
indicators of the Covid dynamics [Cov20], with up to ten to fourteen days of advance on critical
care admission. This work led to the publication of the article [GAA+20]. This contribution was
featured in the article [Cov20], which discusses similar aspects on a broader basis and is intended
to a medical audience.

3.1 CLASSIFICATION OF CALLS. — The first step of the work was about data categorization.
Using the information filled by the SAMU agents and decisions taken for each call, we classified
together with the SAMU physicians the Covid-19 calls in three categories: the calls resulting in
the dispatch of a Mobile Intensive Care Unit, those resulting in the dispatch of an ambulance and
those resulting in no dispatch decision. If � (C) denotes the number of contaminations on day
C , that we cannot measure directly, we postulate that each one of the three previous epidemic
observables . is a fraction of the daily number of contaminations shifted by a certain aggravation
delay, i.e., .8 (C) = c8� (C −g8) with 8 in {1, 2, 3}. This form is justified by the mathematical analysis
which follows.

3.2 A MULTI-COMPARTMENT TRANSPORT PDE MODEL. — To analyze the evolution of these
observables and take into account the presence of delays in the contamination process, we use an
SEIR partial differential equation model, inspired by the model of Kermack and McKendric [KM27].
We assume that the epidemic is in an early stage phase, so that the infected population is much
smaller than the susceptible population. This allows us to a linearize the epidemic dynamics,
and to introduce an evolution operator that is order-preserving (such as those considered in
the Section 2 of Chapter 2). Results from Perron–Frobenius theory (see for instance [Per06]) entail
that provided no changement in sanitary measures alter the epidemic evolution, the number of
newly contaminated individuals grows exponentially. More generally, this approach applies to
the quasi stationary regimes.

3.3 PIECEWISE AFFINE APPROXIMATION OF THE LOGARITHM OF OBSERVABLES. — When
the sanitary policies change (beginning or end of lockdown, mandatory masks outdoors, etc.),
this modifies the growth or decay rate of the epidemic. As a result, the epidemic observables
can be modeled by piecewise affine functions (with as many linear pieces as there are phases of
sanitary measures). Determining the evolution rates on the different phases amounts to perform
a best piecewise linear approximation. In order to compute a robust approximation, we minimize
ℓ1-norm criteria, which is made difficult by the fact that the objective function is non-smooth and
non-convex.

We derived from this methodology epidemic alarms based on doubling times, designed to
trigger alarms when the probability of undesirable events (like the resumption of the epidemic)
exceeded a chosen threshold. We refer again to [GAA+20] for the complete methodology.
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4 Study of the Interactive Voice Response of SAMU 92

We had the opportunity to work in collaboration with the SAMU 92 (Hauts-de-Seine) on their IVR
data. This automatic voice server offered the caller to either press the “0” key for Coronavirus
Syndrome with no respiratory difficulties; or stay on line for any other reason. The main question
was to determine if the implementation of such a system was efficient and safe. To this purpose,
we first collected the phone logs of the SAMU 92 from March the 19th to April the 26th, giving
the IVR choice among: “Yes” if the patient chose to press the “0” key after listening to the
introductory message, “No” if the patient did not press any key and listened to the whole message,
or “May be” if the patient did not press any key but the call was picked up quickly (so the patient
may have wanted to press the “0” key). We merged these data with medical regulation files to
attach additional information on the patient such as the age, gender, profile (caller her/himself or
third-party) and also the decision made by the physician.

The Table A.3 below compares the groups IVR Yes (2,846 calls) and IVR No (12,111 calls). We
observe that the IVR allowed almost 15 % of these calls to be directed to a specialized provider
where they waited to be processed by staff trained within a few days to deal exclusively with
COVID cases. This led to decrease the number of calls handled by the conventional dispatchers
and gave them more time to handle more severe emergency calls. Moreover, because only 0.1 %
of “IVR Yes” calls needed an Advanced Life Support ambulance, we can assume that the use of
IVR is safe (very few severe cases within this flow).

The above material is drawn from a joint work with Dr Margot Cassuto, Dr Jeremie Boutet,
Dr Guillaume Douge, Dr Anna Ozguler, Dr Michel Baer and Dr Thomas Loeb from SAMU
92, Assistance Publique – Hôpitaux de Paris. A conference communication on this topic was
accepted to the European Emergency Medicine Congress 2022, another one was submitted to the
Resuscitation Science Symposium 2022, in addition to an article being prepared for a medical
journal.

IVR Yes IVR No P
N = 2,846 N = 12,111

Mean age 41.3 years old (SD 23.1) 44.7 years old (SD 23.5) < 10−3

Gender < 10−3

– Male 971 (34.1 %) 4,970 (41.0 %)
– Female 1,284 (45.1 %) 6,381 (52.7 %)
– Not collected 591 (20.8 %) 760 (6.3 %)

Caller (patient her/himself) 2,340 (82.3 %) 6,937 (57.3 %) < 10−3

Decision < 10−3

– ALS∗ ambulance 2 (0.1 %) 141 (1.1 %)
– BLS∗∗ ambulance 181 (6.3 %) 2,659 (22.0 %)
– No transport 2,655 (93.6 %) 9,309 (76.9 %)

∗ALS: Advanced Life Support, ∗∗BLS: Basic Life Support

Table A.3: Comparison of patients’ age, gender, caller profile and decision taken at
dispatch center among IVR-Yes and IVR-No
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Titre : Systèmes dynamiques affines par morceaux appliqués à l’évaluation de performance de centres d’appels d’urgence
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Résumé : Nous développons des méthodes mathéma-
tiques pour l’évaluation de performance et le dimension-
nement de centres d’appels d’urgence. Nous travaillons
avec le formalisme des réseaux de Petri, et étudions en
particulier leur dynamique décrite par des systèmes affines
par morceaux.

Nous établissons une correspondance entre le com-
portement des réseaux de Petri monotones et l’étude
de la fonction valeur des processus de décision semi-
Markoviens. Cela nous permet de caractériser finement le
débit des réseaux de Petri, et déduire des recommanda-
tions pratiques de dimensionnement pour les centres d’ap-
pels d’urgence. Au moyen d’une correspondance supplé-
mentaire avec les problèmes de plus court chemin stochas-

tique, nous bornons aussi le temps d’absorption d’un pic
d’appels. Nous étudions également des systèmes non-
monotones, lorsque des règles de priorité sont utilisées, et
en décrivons les phases de congestion par des complexes
polyédraux.

Cette approche théorique est validée par des cam-
pagnes de simulation numérique se basant sur une étude
approfondie d’appels d’urgence réels. Nous mettons à
profit ces simulations pour comparer différentes archi-
tectures de centres d’appels et quantifier l’intérêt opéra-
tionnel de systèmes biniveaux par rapport à des systèmes
mononiveau. Nos travaux s’appuient sur des collabo-
rations avec les centres d’appels d’urgence de la région
parisienne : SAMU, pompiers et police.

Title: Piecewise affine dynamical systems applied to the performance evaluation of emergency call centers

Keywords: Performance evaluation, dynamical systems, tropical geometry, stochastic control

Abstract:
We develop mathematical methods for the performance
analysis and dimensioning of emergency call centers. We
work with the formalism of Petri nets and focus in par-
ticular on their dynamics expressed with piecewise affine
systems.

We establish a formal correspondence between the be-
haviour of monotonic Petri nets and the study of the value
function of semi-Markov decision processes. This enables
us to precisely characterize the throughput of Petri nets,
and deduce practical staffing recommendations for emer-
gency call centers. Using an additional correspondence
with stochastic shortest path problems, we bound the

time needed to absorb a peak of calls. We also study non-
monotonic systems where priority rules come into play,
and describe their congestion phases with polyedral com-
plexes.

This theoretical approach is validated with numerical
simulation campaigns based on an in-depth study of ac-
tual emergency calls. We build on these simulations to
compare different layouts of call centers and quantify the
interest of using bilevel (or two-tier) architectures com-
pared to single-tier platforms. Our work has benefited
from collaborations with emergency call centers of Paris
area: SAMU (emergency health services), firefighters and
police.
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