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Tropical posynomial systems From performance evaluation to tropical posynomials

A tropical posynomial is a supremum of finitely many affine functions Since 2014, we collaborate with the Parisian = 6
Pirop () = ((a,%) + ra) Fire Brigade and Préfecture de Police to an- _.\|| ===
trop(X) = Igleax a,x) T Ta alyze the performance of their joint emer- _

gency call center, implementing a bi-level fil-

where x € R” and A C R" is a finite set (the tropical exponents).
tering mechanism to prioritize urgent calls.

Terminology comes from the tropical semifield Ryax = (RU {—o0}, max, +) in which

Ptrop can be thought of as the analog of a posynomial. We have modeled the call center using a |
For tropical posynomials Qy,...,Qy, let Sk be the tropical posynomial system: generalization of Petri nets [1] in order to e 2 L4
take into account synchronization and con- ' o N |

Vie n] Qi(x)=0. (SRmay) ~ currence phenomena. Figure 1: Paris’ 17-18-112 emergency call center

The corresponding feasability problem is NP-complete. These system are the analog of

, Petri nets provide dynamic equations satistied by
real posynomial systems:

viel Y rmxi—1, (Sp) counter variables (e.g. counting the number of calls):
z1(t) = Ny +z5(t — Tee) + Tu 21 (t — Tur) + Tagv 21 (t — Tadv)

z5(t) = (N2 + z5(F — Ter — To) + 26(F — Te) — 26(1)) A Ter 21 (F — Ter)
z6(t) = (No 4+ z5(t — T — T) + 26(t — Tp) — 25(£)) A T 21 (t — Tur)

where (A;)1<i<n C R™ are finite and the 7, are positive real numbers.

The colorful interior of a family of convex bodies

LetV = (V1,Vy,...,V,) be a family of subsets of R", each one being assigned a color. Computing stationary regimes (i.e. z(t) = p;t + u;) re-
duces to a tropical posynomial system over a semifield

of germs of affine functions. This builds on a series of

Definition. We say a vector y is rainbow with respect to V if y € cone(J; V;) and all linear
decompositions of y use all the colors:

Figure 2: A Petri net model work representing several classes of Petri nets by trop-
n . .
Vi € (IR‘l—)t"Ji V; Y = Z Z o =>Vi€n] FJEV, puy>0. of the call center from [1] ical dynamical systems [2, 3, 1].
i=1veV;
The set of rainbow vectors is denoted by MV and called the colorful interior of V. B Using rainbow vectors to solve tropical and real posynomial systems

Recall the tropical posynomial system we want to solve:

Proposition. For all i € [n], let us denote by P; = cone(V;), P; = cone(U;; V;) and

7) — COH@(U]' V]) Then R \V/Z < [n] I;é?qx (<6l, x> T Ta) = 0. (S]Rmax)

We fix a vector y € IR” and introduce the following linear program:

7)1 \ \
- min (y,x) st Vi€ [n] max (a,x) +1, <0, (LP)
- ACA;
P - i :
2 \\\ | with dual: i
sup (u,r) st —y=) ) paa. (LD)
Nt >0 i=1a€A;
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Theorem. If (LP) is feasible and —y is rainbow with respect to the configuration (A, ..., An),
then the optimal solutions of (LP) are precisely the solutions of the tropical posynomial system.

Figure 2: Three subsets V1, V, and V3 of R® and their conic hulls (left) together
with a cross-section (right). Here M) is the white triangle. Remark that (Ay,...,A;) being a pointed configuration ensures (LP) is feasible. This

theorem carries over to the real case:
Definition. We say the configuration V is pointed if | J; V; is contained in an open halfspace.

Theorem. Let Sy be the following posynomial system:
Properties of the colorful interior

Vi € [n] Y rxt=1, (SR)
We assume in this part that V is a pointed configuration. €A,
o o o where (A;); are finite subsets of R and (r,), are positive.
Theorem. MV i5 exther empty or the interior of a stmplicial cone. If (Ay,...,Ay) is a pointed configuration and has a non-empty colorful interior, then Sg has at

least one positive solution (i.e. in RY ;).

This simplicial cone is the intersection of . . : (a,X)
’ <
1 open halfspaces, each one Proof uses the entropic program m)%n(y, X) st Vie|n| log ( Y rae 0.

e being tangent to n — 1 bodies of V,
e containing the last one.

I3 From the tropical colorful interior to tropical SVM

In [6], Cappell et al. have stated when such The definitions of the colorful interior of n convex bodies of IR"” can be transposed to
hyperplanes exist: n tropical convex bodies of (IRpax)™ i

Theorem [6]. Let A = (Ay,...,A,) be a fam- § o , 1 1

ily of n separated compact convex bodies of R, In [4], Gédrtner and Jaggi introduced the notion

of tropical support vector machines, i.e. tropi-
cal hyperplane H separating n data point clouds,
each class lying in one unique sector of H.

Recall that if A = (Ay,...,A,) is a Theorem. The tropical colorful interior of 4
family of convex bodies of R”, A is Q Q n tropical convex bodies of (IRmax)” is the locus P>

. T N _-_®--- ------- . . .
said to be separated if forall k < n o of all apices of tropical SVM separating these Figure 6 Three tropical simplices of

and forall (x;,...,x;) € Aj X -+ X A; bodies. If non empty, it is a polytrope (i.e. it is (Rya)?, their colorful interior (in

: : : K’ Figure 4: The three bodies are separated : :
span (x ipr e s X ik) is k-dimensional. on the left figure, but not on the right one convex tropically and classically). white), and a tropical SVM

then there are exactly two oriented affine hy-
we have MV = H7YNH;Y N Hy° perplanes that are tangent and outer to A.

Theorem. Deciding wether the tropical colorful interior M} is empty or not (and finding

For all i € [n], we define P; = ;4; P;. a point inside) can be achieved in strongly polynomial time.

(\\ i qu(:tIilz]);lie xlje' The following assertions are This answers one of the questions raised in [4]. A key element of the proof is the

following theorem inspired by a result from Lawrence and Soltan (see [5]) :

» _ (i) MY # @
Figure 5: Left: The (P;); bodies visualised. .. e : : : . : : : : :
Right: @) — @ despite (P;); are separated (ii) The family ('P;); is separated Theorem. The tI'OplC?l Col(.)rful.mter.lor mﬂ/‘commdes Wlth.the intersection of the interior
of all multicolor tropical simplices, i.e. having one vertex in each color set:
We proved (i) = (ii) and since for all i € [n], P; C P;, the separation of (P;); is my = f int(tconv(vy, ..., v,)) .
necessary to have M) # @ (but not sufficient). We proved (ii) = (i) for n = 3. (010 0n) EV X - X Vi
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