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1 Tropical posynomial systems

A tropical posynomial is a supremum of finitely many affine functions

Ptrop(x) = max
a∈A

(
〈a, x〉+ ra

)
where x ∈ Rn and A ⊂ Rn is a finite set (the tropical exponents).

Terminology comes from the tropical semifield Rmax = (R∪ {−∞}, max,+) in which
Ptrop can be thought of as the analog of a posynomial.

For tropical posynomials Q1, . . . , Qn, let SRmax be the tropical posynomial system:

∀i ∈ [n] Qi(x) = 0 . (SRmax)

The corresponding feasability problem is NP-complete. These system are the analog of
real posynomial systems:

∀i ∈ [n] ∑
a∈Ai

ra x a = 1 , (SR)

where (Ai)1≤i≤n ⊂ Rn are finite and the ra are positive real numbers.

3 The colorful interior of a family of convex bodies

Let V = (V1, V2, . . . , Vn) be a family of subsets of Rn, each one being assigned a color.

Definition. We say a vector y is rainbow with respect to V if y ∈ cone(
⋃

i Vi) and all linear
decompositions of y use all the colors:

∀µ ∈ (R+)
⊎

i Vi y =
n

∑
i=1

∑
v∈Vi

µv v =⇒ ∀i ∈ [n] ∃v ∈ Vi µv > 0 .

The set of rainbow vectors is denoted by eV and called the colorful interior of V .

Proposition. For all i ∈ [n], let us denote by Pi = cone(Vi), P̂i = cone(
⋃

j 6=i Vj) and
P = cone(

⋃
j Vj). Then

eV = P \
⋃

i∈[n]
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Figure 2: Three subsets V1, V2 and V3 of R3 and their conic hulls (left) together
with a cross-section (right). Here eV is the white triangle.

Definition. We say the configuration V is pointed if
⋃

i Vi is contained in an open halfspace.

5 Properties of the colorful interior

We assume in this part that V is a pointed configuration.

Theorem. eV is either empty or the interior of a simplicial cone.
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Figure 3: For convex V1, V2 and V3 ⊂ R3,
we have eV = H>0
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This simplicial cone is the intersection of
n open halfspaces, each one
• being tangent to n− 1 bodies of V ,
• containing the last one.

In [6], Cappell et al. have stated when such
hyperplanes exist:

Theorem [6]. LetA = (A1, . . . , An) be a fam-
ily of n separated compact convex bodies of Rn,
then there are exactly two oriented affine hy-
perplanes that are tangent and outer to A.

Recall that if A = (A1, . . . , Ap) is a
family of convex bodies of Rn, A is
said to be separated if forall k ≤ n
and forall (xi1, . . . , xik) ∈ Ai1× · · · ×Aik,
span(xi1, . . . , xik) is k-dimensional. Figure 4: The three bodies are separated

on the left figure, but not on the right one

Figure 5: Left: The (Pi)i bodies visualised.
Right: eV = ∅ despite (Pi)i are separated

For all i ∈ [n], we define Pi =
⋂

j 6=i P̂j.

Conjecture. The following assertions are
equivalent:

(i) eV 6= ∅
(ii) The family (Pi)i is separated

We proved (i) =⇒ (ii) and since for all i ∈ [n], Pi ⊂ Pi, the separation of (Pi)i is
necessary to have eV 6= ∅ (but not sufficient). We proved (ii) =⇒ (i) for n = 3.

2 From performance evaluation to tropical posynomials

Figure 1: Paris’ 17-18-112 emergency call center

Since 2014, we collaborate with the Parisian
Fire Brigade and Préfecture de Police to an-
alyze the performance of their joint emer-
gency call center, implementing a bi-level fil-
tering mechanism to prioritize urgent calls.

We have modeled the call center using a
generalization of Petri nets [1] in order to
take into account synchronization and con-
currence phenomena.
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Figure 2: A Petri net model
of the call center from [1]

Petri nets provide dynamic equations satisfied by
counter variables (e.g. counting the number of calls):

z1(t) = N1 + z5(t− τtr) + πu z1(t− τur) + πadv z1(t− τadv)

z5(t) =
(
N2 + z5(t− τtr− τ′cr) + z6(t− τ′ur)− z6(t−)

)
∧ πcr z1(t− τcr)

z6(t) =
(
N2 + z5(t− τtr− τ′cr) + z6(t− τ′ur)− z5(t)

)
∧ πu z1(t− τur)

Computing stationary regimes (i.e. zi(t) = ρi t + ui) re-
duces to a tropical posynomial system over a semifield
of germs of affine functions. This builds on a series of
work representing several classes of Petri nets by trop-
ical dynamical systems [2, 3, 1].

4 Using rainbow vectors to solve tropical and real posynomial systems

Recall the tropical posynomial system we want to solve:

∀i ∈ [n] max
a∈Ai

(
〈a, x〉+ ra

)
= 0 . (SRmax)

We fix a vector y ∈ Rn and introduce the following linear program:

min
x
〈y, x〉 s.t. ∀i ∈ [n] max

a∈Ai
〈a, x〉+ ra ≤ 0 , (LP)

with dual:

sup
µ≥0
〈µ, r〉 s.t. −y =

n

∑
i=1

∑
a∈Ai

µa a . (LD)

Theorem. If (LP) is feasible and −y is rainbow with respect to the configuration (A1, . . . , An),
then the optimal solutions of (LP) are precisely the solutions of the tropical posynomial system.

Remark that (A1, . . . , An) being a pointed configuration ensures (LP) is feasible. This
theorem carries over to the real case:

Theorem. Let SR be the following posynomial system:

∀i ∈ [n] ∑
a∈Ai

ra x a = 1 , (SR)

where (Ai)i are finite subsets of Rn and (ra)a are positive.
If (A1, . . . , An) is a pointed configuration and has a non-empty colorful interior, then SR has at
least one positive solution (i.e. in Rn

>0).
Proof uses the entropic program min

X
〈y, X〉 s.t. ∀i ∈ [n] log

(
∑

a∈Ai

ra e〈a,X〉
)
≤ 0 .

6 From the tropical colorful interior to tropical SVM

The definitions of the colorful interior of n convex bodies of Rn can be transposed to
n tropical convex bodies of (Rmax)n.

In [4], Gärtner and Jaggi introduced the notion
of tropical support vector machines, i.e. tropi-
cal hyperplane H separating n data point clouds,
each class lying in one unique sector of H.

Theorem. The tropical colorful interior of
n tropical convex bodies of (Rmax)n is the locus
of all apices of tropical SVM separating these
bodies. If non empty, it is a polytrope (i.e. it is
convex tropically and classically).
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Figure 6: Three tropical simplices of
(Rmax)3, their colorful interior (in

white), and a tropical SVM

Theorem. Deciding wether the tropical colorful interior eV is empty or not (and finding
a point inside) can be achieved in strongly polynomial time.

This answers one of the questions raised in [4]. A key element of the proof is the
following theorem inspired by a result from Lawrence and Soltan (see [5]) :

Theorem. The tropical colorful interior eV coincides with the intersection of the interior
of all multicolor tropical simplices, i.e. having one vertex in each color set:

eV =
⋂

(v1,...,vn)∈V1×···×Vn

int
(
tconv(v1, . . . , vn)

)
.
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