

The colorful interior of families of convex bodies and its tropical analog Marianne Akian, Xavier Allamigeon, Marin Boyet, Stéphane Gaubert INRIA Saclay and CMAP, École Polytechnique, IP Paris, CNRS, France

Tropical posynomial systems

A tropical posynomial is a supremum of finitely many affine functions

 $P_{trop}(x) = \max_{a \in A} \left(\langle a, x \rangle + r_a \right)$

where $x \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$ is a finite set (the tropical exponents).

Terminology comes from the tropical semifield $\mathbb{R}_{max} = (\mathbb{R} \cup \{-\infty\}, max, +)$ in which P_{trop} can be thought of as the analog of a posynomial.

For tropical posynomials Q_1, \ldots, Q_n , let $S_{\mathbb{R}_{max}}$ be the tropical posynomial system:

$$\forall i \in [n] \quad Q_i(x) = 0. \tag{S}_{\mathbb{R}_{\max}}$$

The corresponding feasability problem is NP-complete. These system are the analog of real posynomial systems:

$$\forall i \in [n] \quad \sum_{a \in A_i} r_a \, x^a = 1 \,, \tag{S_{\mathbb{R}}}$$

where $(A_i)_{1 \le i \le n} \subset \mathbb{R}^n$ are finite and the r_a are positive real numbers.

2 From performance evaluation to tropical posynomials

Since 2014, we collaborate with the Parisian Fire Brigade and Préfecture de Police to analyze the performance of their joint emergency call center, implementing a bi-level filtering mechanism to prioritize urgent calls.

We have modeled the call center using a generalization of Petri nets [1] in order to take into account synchronization and concurrence phenomena.

Figure 1: Paris' 17-18-112 emergency call center

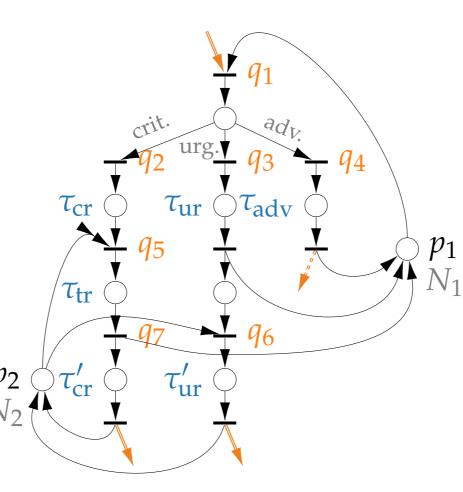


Figure 2: A Petri net model

of the call center from [1]

Petri nets provide dynamic equations satisfied by counter variables (*e.g.* counting the number of calls):

$z_1(t) = N_1 + z_5(t - \tau_{tr}) + \pi_u z_1(t - \tau_{ur}) + \pi_{adv} z_1(t - \tau_{adv})$

3 The colorful interior of a family of convex bodies

Let $\mathcal{V} = (V_1, V_2, \dots, V_n)$ be a family of subsets of \mathbb{R}^n , each one being assigned a color.

Definition. We say a vector y is rainbow with respect to V if $y \in \text{cone}(\bigcup_i V_i)$ and all linear *decompositions of y use all the colors:*

$$\forall \mu \in (\mathbb{R}^+)^{\biguplus_i V_i} \quad y = \sum_{i=1}^n \sum_{v \in V_i} \mu_v v \Longrightarrow \forall i \in [n] \quad \exists v \in V_i \quad \mu_v > 0$$

The set of rainbow vectors is denoted by $\cap \mathcal{V}$ and called the colorful interior of \mathcal{V} .

Proposition. For all $i \in [n]$, let us denote by $\mathcal{P}_i = \operatorname{cone}(V_i)$, $\widehat{\mathcal{P}}_i = \operatorname{cone}(\bigcup_{j \neq i} V_j)$ and $\mathcal{P} = \operatorname{cone}(\bigcup_i V_i)$. Then

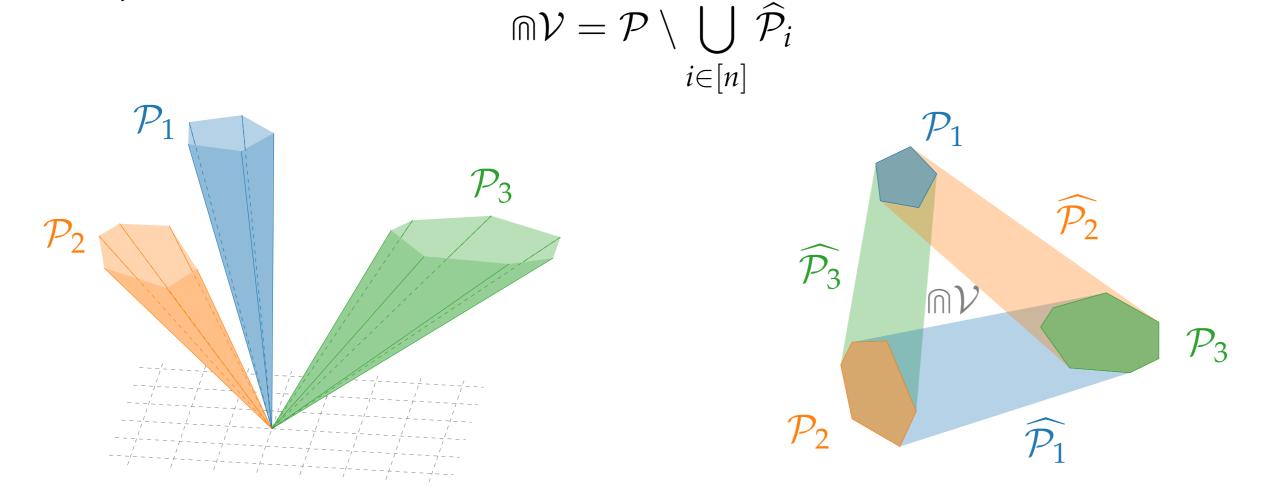


Figure 2: Three subsets V_1 , V_2 and V_3 of \mathbb{R}^3 and their conic hulls (left) together with a cross-section (right). Here $\cap \mathcal{V}$ is the white triangle.

 $z_{5}(t) = (N_{2} + z_{5}(t - \tau_{tr} - \tau_{cr}') + z_{6}(t - \tau_{ur}') - z_{6}(t^{-})) \wedge \pi_{cr} z_{1}(t - \tau_{cr})$ $z_{6}(t) = (N_{2} + z_{5}(t - \tau_{tr} - \tau_{cr}') + z_{6}(t - \tau_{ur}') - z_{5}(t)) \wedge \pi_{u} z_{1}(t - \tau_{ur})$

Computing stationary regimes (*i.e.* $z_i(t) = \rho_i t + u_i$) reduces to a tropical posynomial system over a semifield of germs of affine functions. This builds on a series of work representing several classes of Petri nets by tropical dynamical systems [2, 3, 1].

4 Using rainbow vectors to solve tropical and real posynomial systems

Recall the tropical posynomial system we want to solve:

 $\forall i \in [n] \quad \max_{a \in A_i} (\langle a, x \rangle + r_a) = 0.$

$$(S_{\mathbb{R}_{max}})$$

We fix a vector $y \in \mathbb{R}^n$ and introduce the following linear program:

$$\min_{x} \langle y, x \rangle \quad \text{s.t.} \quad \forall i \in [n] \quad \max_{a \in A_i} \langle a, x \rangle + r_a \le 0 \,, \tag{LP}$$

with dual:

$$\sup_{\mu \ge 0} \langle \mu, r \rangle \quad \text{s.t.} \quad -y = \sum_{i=1}^{n} \sum_{a \in A_i} \mu_a a \,. \tag{LD}$$

Theorem. If (LP) is feasible and -y is rainbow with respect to the configuration (A_1, \ldots, A_n) , then the optimal solutions of (LP) are precisely the solutions of the tropical posynomial system.

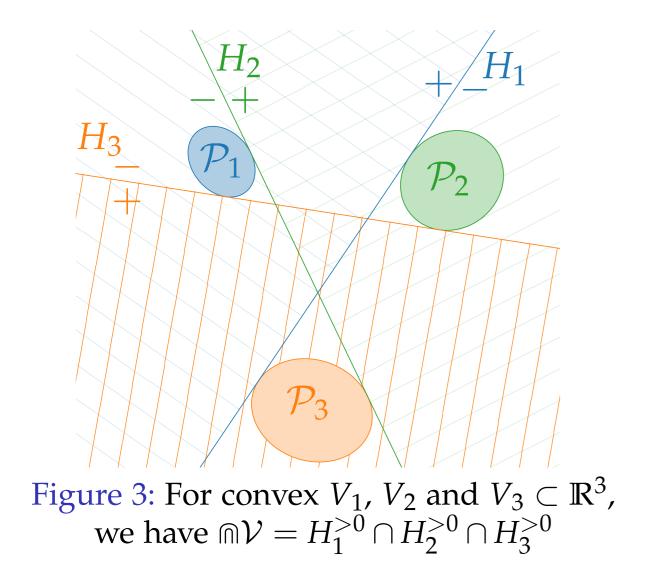
Remark that (A_1, \ldots, A_n) being a pointed configuration ensures (LP) is feasible. This

Definition. We say the configuration \mathcal{V} is pointed if $\bigcup_i V_i$ is contained in an open halfspace.

5 Properties of the colorful interior

We assume in this part that \mathcal{V} is a pointed configuration.

Theorem. $\square \mathcal{V}$ is either empty or the interior of a simplicial cone.



Recall that if $\mathcal{A} = (A_1, \ldots, A_p)$ is a family of convex bodies of \mathbb{R}^n , \mathcal{A} is said to be separated if for all $k \leq n$ and forall $(x_{i_1}, \ldots, x_{i_k}) \in A_{i_1} \times \cdots \times A_{i_k}$ span $(x_{i_1}, \ldots, x_{i_k})$ is *k*-dimensional.

This simplicial cone is the intersection of *n* open halfspaces, each one

- being tangent to n 1 bodies of \mathcal{V} ,
- containing the last one.

In [6], Cappell *et al.* have stated when such hyperplanes exist:

Theorem [6]. Let $\mathcal{A} = (A_1, \ldots, A_n)$ be a fam*ily of n separated compact convex bodies of* \mathbb{R}^n *,* then there are exactly two oriented affine hyperplanes that are tangent and outer to \mathcal{A} .

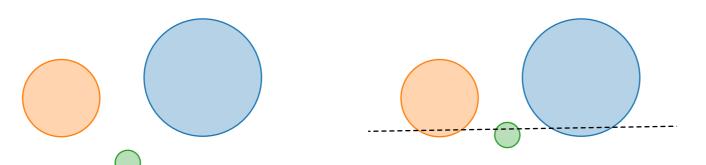


Figure 4: The three bodies are separated

theorem carries over to the real case:

Theorem. Let $S_{\mathbb{R}}$ be the following posynomial system:

$$\forall i \in [n] \qquad \sum_{a \in A_i} r_a x^a = 1, \qquad (S_{\mathbb{R}})$$

where $(A_i)_i$ are finite subsets of \mathbb{R}^n and $(r_a)_a$ are positive.

If (A_1, \ldots, A_n) is a pointed configuration and has a non-empty colorful interior, then $S_{\mathbb{R}}$ has at *least one positive solution (i.e. in* $\mathbb{R}^n_{>0}$).

Proof uses the entropic program $\min_{X} \langle y, X \rangle$ s.t. $\forall i \in [n] \log \left(\sum_{x \in A} r_a e^{\langle a, X \rangle} \right) \leq 0$.

6 From the tropical colorful interior to tropical SVM

The definitions of the colorful interior of *n* convex bodies of \mathbb{R}^n can be transposed to *n* tropical convex bodies of $(\mathbb{R}_{max})^n$.

In [4], Gärtner and Jaggi introduced the notion of tropical support vector machines, *i.e.* tropical hyperplane *H* separating *n* data point clouds, each class lying in one unique sector of *H*.

The tropical colorful interior of Theorem. *n* tropical convex bodies of $(\mathbb{R}_{max})^n$ is the locus of all apices of tropical SVM separating these bodies. If non empty, it is a polytrope (*i.e.* it is convex tropically *and* classically).

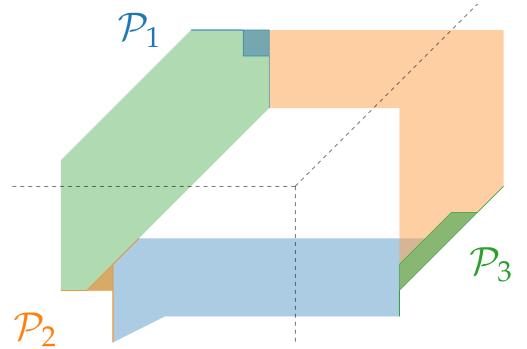


Figure 6: Three tropical simplices of $(\mathbb{R}_{\max})^3$, their colorful interior (in white), and a tropical SVM

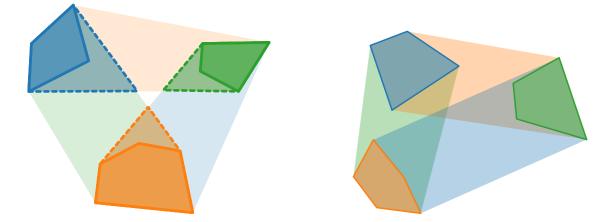


Figure 5: Left: The $(\overline{\mathcal{P}_i})_i$ bodies visualised. Right: $\square \mathcal{V} = \emptyset$ despite $(\mathcal{P}_i)_i$ are separated on the left figure, but not on the right one

For all $i \in [n]$, we define $\overline{\mathcal{P}_i} = \bigcap_{j \neq i} \widehat{\mathcal{P}}_j$.

Conjecture. *The following assertions are equivalent*:

(i) $\mathbb{A}\mathcal{V} \neq \emptyset$ (ii) The family $(\overline{\mathcal{P}_i})_i$ is separated

We proved $(i) \implies (ii)$ and since for all $i \in [n]$, $\mathcal{P}_i \subset \overline{\mathcal{P}_i}$, the separation of $(\mathcal{P}_i)_i$ is necessary to have $\square \mathcal{V} \neq \emptyset$ (but not sufficient). We proved $(ii) \Longrightarrow (i)$ for n = 3.

Theorem. Deciding wether the tropical colorful interior $\mathbb{N}\mathcal{V}$ is empty or not (and finding) a point inside) can be achieved in strongly polynomial time.

This answers one of the questions raised in [4]. A key element of the proof is the following theorem inspired by a result from Lawrence and Soltan (see [5]) :

Theorem. The tropical colorful interior $\mathbb{N}\mathcal{V}$ coincides with the intersection of the interior of all multicolor tropical simplices, *i.e.* having one vertex in each color set:

$$\mathbb{A}\mathcal{V} = \bigcap_{(v_1,\ldots,v_n)\in V_1\times\cdots\times V_n} \operatorname{int}(\operatorname{tconv}(v_1,\ldots,v_n)).$$

7 References

- [1] X. Allamigeon, V. Bœuf, and S. Gaubert. Performance evaluation of an emergency call center: tropical polynomial systems applied to timed petri nets. In FORMATS'15, volume 9268 of Lecture Notes in Computer Science. Springer, 2015.
- [2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. *Synchronization and Linearity*. Wiley, 1992.
- [3] G. Cohen, S. Gaubert, and J.P. Quadrat. Asymptotic throughput of continuous timed Petri nets. In *Proceedings of the 34th* Conference on Decision and Control, New Orleans, Dec 1995.
- [4] Bernd Gärtner and Martin Jaggi. Tropical support vector machines. Technical report, ACSTR-362502-01, 2008.
- [5] V. Lawrence, J. Soltan. The intersection of convex transversals is a convex polytope. *Contributions to Algebra and Geometry*, 50(1):283–294, 2009.
- [6] Cappell S.E. Goodman J.E. Pach J. Pollack R. & Sharir M. Common tangents and common transversals. Advances in Mathematics, 106(2):198 – 215, 1994.