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Abstract Radiation therapy is one of the most common types of cancer
treatments. It consists in irradiating the patient with beams of energetic par-
ticles (typically photons). Such particles are transported through the medium
and interact with it. Especially, during such interactions, a part of the en-
ergy of the transported is deposited in the medium, this is the so-called dose,
responsible for the biological effect of the radiation.

The aim of the present thesis is to develop numerical method for dose
computation that are competitive in terms of computational cost and accuracy
compared to reference method such as the statistical Monte Carlo methods or
the empirical superposition-convolution methods.

The motion of such particles is studied through a system of linear transport
equations at the kinetic level with a special consideration on the conservation
of mass, momentum and energy.

Computational costs required to solve directly such systems is typically
higher than available in medical center. In order to reduce those costs, the
moment method is used. This consists in averaging the transport equation
over one of the variables. However, such a method leads to a system of equa-
tions with more unknowns than equation. An entropy minimization procedure
is used to close this system, leading to the so-called MN models. The mo-
ments extraction preserves the major properties of the kinetic system such as
hyperbolicity, entropy decay and realizability (existence of a positive solution).
However, computing numerically the MN closure may also be computationally
costly for the application in medical physics, and furthermore it is valid only
under condition, called realizability condition, on the unknowns. The realiz-
ability domain, i.e. the domain of validity of the MN model, is studied. Based
on these results, approximations of the first order entropy-based closures, i.e.
the M1 and the M2 closures, are developped for 3D problems which require
lower computational costs to compute.

The resulting moment equation are non-linear and valid under realizability
condition. Standard numerical schemes for moment equations are constrained
by stability conditions which happen to be very restrictive when the medium
contains low density regions. Numerical approaches adapted to moment equa-
tions are developped. The non-linearity is treated by using a relaxation method
originally developped for hyperbolic systems of equations. Then incondition-
ally stable schemes are proposed to treat the problem of restrictive stability
conditions. A first explicit scheme based on the method of characteristics is
proposed for hyperbolic equations. A second numerical scheme with implicit
non-linear flux terms is proposed. Those schemes preserve the realizability
property and they are competitive in terms of computational costs compared
to reference approaches.
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Résumé La radiothérapie est l’une des familles de traitements de cancer
les plus utilisés. Ces traitements consistent en l’irradiation du patient par
des faisceaux de particules énergétiques (le plus couramment des photons).
Ces particules sont transportées à travers le milieu et interagissent avec. En
particulier, à travers ces interactions, une partie de l’énergie de ces particules
est déposée dans le milieu, cette énergie déposée est appelée la dose, et les effets
biologiques des radiations sont souvent considérés comme une conséquence
directe de l’énergie déposée.

L’objectif de la présente thèse est de développer des méthodes numériques
pour le calcul de dose qui sont compétitives en terme de coûts numériques et
précision comparé à des méthodes de référence comme les méthodes statistiques
Monte-Carlo ou les méthodes empiriques de superposition-convolution.

Le transport de photons et d’électrons est étudié à travers un système
d’équations transport linéaire au niveau cinétique en prenant en considéra-
tion des propriétés de conservations de masse, de quantité de mouvement et
d’énergie.

Le coût numérique pour résoudre directement ces équations cinétiques est
généralement trop élevé pour être utilisé dans les centres médicaux. Afin de
réduire ces coûts numériques, la méthode aux moments est utilisée. Cette
méthode consiste à moyenner les équations de transport par rapport à l’une
des variables. Cependant cette méthode mène à un système d’équations avec
plus d’inconnues que d’équations. Une procédure de minimisation d’entropie
est utilisée pour fermer ce système, menant aux modèles MN . L’extraction de
moments préserve les principales propriétés du système cinétique sous-jacent,
notamment l’hyperbolicité, la dissipation d’entropie et la réalisabilité (exis-
tence d’une solution positive). Cependant, calculer numériquement la ferme-
ture MN peut également être coûteuse au niveau numérique. De plus, cette
fermeture n’est valide que si l’inconnue satisfait la condition dite de réalisabil-
ité. Dans un premier temps, le domaine de validité des modèles MN est étudié,
puis, à partir de ces résultats, des approximations des fermetures entropiques
d’ordre un et deux, à savoir la fermeture M1 et M2, sont développées pour des
problèmes 3D et dont le calcul nécessite un faible coût numérique.

Les équations aux moments obtenues sont non-linéaires et valide sous con-
dition de réalisabilité. Les méthodes numériques standards pour ces équa-
tions sont conxtraintes par des conditions de stabilité qui, en pratique, sont
très restrictives lorsque le milieu contient des zones sous denses. Des ap-
proches numériques adaptées aux équations aux moments sont développées.
La non-linéarité est traitée en utilisant une méthode de relaxation, à l’origine
développée pour les systèmes d’équations hyperboliques. Ensuite des schémas
numériques inconditionnellement stables sont proposés pour pallier le prob-
lème des conditions de stabilité restrictives. Un premier schéma explicite basé
sur la méthode des caractéristiques est proposé. Un second schéma avec des
termes de flux non linéaires implicites est proposé. Ces schémas préservent

iv T. Pichard



la propriété de réalisabilité et sont compétitifs en terme de coûts de calcul
comparé à des méthodes de référence.
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Inhaltsangabe Strahlentherapie ist eine der häufigsten Arten von Krebs-
behandlungen. Das Verfahren besteht darin, den Patienten mit Strahlen en-
ergetischer Pertikel (typischerweise Photonen) zu bestrahlen. Solche Partikel
propagieren durch das Medium und interagieren damit. Insbesondere wird bei
solchen Interaktion ein Teil der Energie der Partikel im Medium hinterlegt,
dies ist die sogenannte Dosis, die für die biologische Wirkung der Strahlung
verantwortlich ist.

Ziel der vorliegenden Arbeit ist es, eine numerische Methode zur Dosis-
berechnung zu entwickeln, die im Vergleich zu Referenzmethoden wie die statis-
tischen Monte-Carlo-Methoden oder die empirischen Superposition-Convolution-
Methoden, hinsichtlich Rechenkosten und Genauigkeit konkurrenzfähig ist.

Diese Partikelbewegung wird durch ein lineares Transportgleichungensys-
tem auf kinetischer Ebene untersucht, mit besondere Aufmerksamkeit auf die
Bewahrung von Masse, Impuls und Energie.

Die erforderliche Rechenleistung, um ein solches System direkt zu lösen,
ist in der Regel höher als die Rechenleistung, die in medizinischen Zentren
verfügbar sind. Um diese Kosten zu senken, wird die Momentmethode be-
nutzt. Diese besteht darin, die Transportgleichung über eine der Variablen
zu mitteln. Ein solches Verfahren führt jedoch zu einem Gleichungssystem
mit mehr Unbekannten als Gleichungen. Ein Entropie-Minimierungsverfahren
wird verwendet, um dieses System zu schließen, was zu den sogenannten MN -
Modellen führt. Die Momentextraktion bewahrt die Haupteigenschaften des
kinetische System wie Hyperbolizität, Entropiezerfall und Realisierbarkeit (Ex-
istenz einer positiven Lösung). Allerdings kann die numerische Berechnung
der MN Schließung auch zu kostspielig für die Anwendung in der medizinis-
chen Physik sein. Außerdem ist es gültig nur unter Bedingung auf die Un-
bekannten, genannt Realisierbarkeitbedingung. Die Realisierbarkeitsdomäne,
d.h. die Gültigkeitsdomäne der MN -Modellen, wird untersucht. Basierend auf
diesen Ergebnissen werden Approximationen der Entropie-basierten Schließun-
gen für den ersten Ordnungen, d.h. die M1 und die M2 Schließungen für 3D-
Probleme entwickelt, die niedrieger Berechnungskosten erfordern im Vergleich
zu Minimierungverfaren Algorithmus.

Die resultierende Momentengleichungen sind nichtlinear und gültig unter
Realisierbarkeitsbedingunge. Standard numerische Schemata für Momentgle-
ichungen sind durch Stabilitätsbedingungen eingeschränkt, die sehr restrik-
tiv sind, wenn das Medium Bereiche mit geringe Dichte enthält. Numerische
Methoden angepasst für Momentgleichungen werden entwickelt. Die Nicht-
linearität ist durch ein Relaxationsverfahren behandelt, das ursprünglich für
hyperbolische Gleichungssysteme entwickelt war. Darüber hinaus werden be-
dingungslose Schemata entwickelt, um das Problem der restriktiven Stabilitäts-
bedingungen zu behandeln. Für hyperbolische Gleichungen wird ein erstes
explizites Schema entwickelt, das auf der Charakteristikmethode basiert ist.
Ein zweites numerisches Schemata mit impliziten nichtlinearen Flusstermen
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wird entwickelt. Diese Methoden bewahren die Realisierbarkeitseigenschaft
und sind hinsichtlich der Rechenkosten gegenüber Referenzmethode wettbe-
werbsfähig.
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General introduction

Together with surgery and chemotherapy, radiation therapy is one of the most
common types of cancer treatment.

Definition 0.1 [10] Radiation therapy: The use of high-energy radi-
ation from X-rays, gamma rays, neutrons, protons, and other sources to
kill cancer cells and shrink tumors. Radiations may come from a machine
outside the body (external-beam radiation therapy), or it may come from
radioactive material placed in the body near cancer cells (internal radiation
therapy or brachytherapy). Also called irradiation and radiotherapy.

Radiations can be seen as beams of energetic particles travelling through
a medium and interacting with it. Therefore particle transport models are
the basis of the numerical methods applied in this field. As a first approach,
one often considers that the biological impact of the radiations on the cells
is a function of the energy deposited by the radiations (or equivalently the
particles) in the medium. This deposited energy is called the dose.

In the last decades, the recent advances and the developement of new tech-
niques in the field of radiation therapy lead to an enhanced need for new
algorithms and numerical methods for dose computation. These treatment
improvements consist either in better adapting the treatments to each patient
or in better controling the dose delivered. For instance, the image guided ra-
diotherapy (IGRT, see e.g. [17]) is an online adapted radiation therapy (ART,
see e.g. [15]) technique in development which purpose is to take into account
potential movements of the patient in the dose computations; or the intensity
modulated radiation therapy (IMRT, see e.g. [5, 3]) which consists in adapting
the radiations by modulating the intensity of the source.

Such sophisticated techniques require adapted numerical methods and clas-
sical numerical techniques may be inappropriate for those emerging problems.
Especially such techniques typically require fast and accurate methods of dose
computation in order to adapt and optimize previously computed treatment
plannings. Most of the numerical approaches available present drawbacks, the
majors of which being:

• The high computational costs. As described below, certain methods
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typically require more computational power than available in medical
centers.

• The inaccuracy for particular applications. The results obtained with
those method can be trusted only for some applications for which they
are known to be accurate.

Existing numerical methods

Common numerical techniques for the computations of dose deposition and/or
used in the field of transport theory are listed below.

Superposition-convolution method

The superposition method (see e.g. [18]) is an empirical method based on the
Fermi-Eyges theory ([7]). The primary (never scattered) and the secondary
particles are considered seperately.

The dose is defined as a convolution of a primary particles energy fluence,
i.e. the quantity of energy travelling in the medium from a source, and a
kernel modeling the quantity of energy deposited per unit energy fluence (see
e.g. [9]).

Such algorithms are very fast and are accurate in homogeneous weakly col-
lisional media, e.g. when modelling photon beams in water. However they are
unadapted for dose computations in media containing strong heterogeneities,
when the deflection of the particles have an non-negligible impact on the dose
distribution.

Discrete ordinate methods

The discrete ordinate methods (see e.g. [14]) are deterministic methods based
on a kinetic model (as the one presented in the next chapter). They consist
in discretizing directly such an equation in all the variables. However the
dimension of those variables is relatively high, e.g. the variables in the models
presented in Chapter 1 evolve in a six dimensional space (three of space, one
of energy and two of direction). Discretizing directly such high dimensional
equations requires a consequent amount of data storage, and are also generally
time consuming.

Monte Carlo algorithms

The Monte Carlo solvers are probabilistic algorithms. The radiations are seen
as particles transported through a medium. The result is averaged over a large
number of samples. In practice, a particle is injected on the boundary of the
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medium and its motion is computed (or approximated) based on the physics
of the modeled interactions. This operation is repeated a large number of
times and the final result is averaged over all these samples. The length of the
free flight and the effect of the interactions are governed by random processes.
Such random processes introduce noise in the results. They are used in this
manuscript to obtain reference results as they present a good accuracy for
the present applications. However, similarily to discrete ordinate methods,
they typically require a computational time too long for medical applications.
Furthermore, they are not adapted to numerical optimization and can therefore
not be used for some of the applications presented in this manuscript. The
reader is referred to [11, 19, 1, 2, 20] for applications of Monte Carlo methods
in medical physics and to [12, 4] for further applications.

Recent advances lead to constructing more time-efficient probabilistic meth-
ods referred to as fast Monte Carlo algorithms (see e.g. [22] and references
therein) and/or to reduce the noise in the Monte Carlo results, although those
methods are not as accurate as the original Monte Carlo methods.

An alternative deterministic approach

A recent alternative uses similar techniques as the approach developed in this
manuscript. The Acurosr ([21]) code is a deterministic method based on the
decomposition in order of scattering (see e.g [13, 6, 8]). It uses the method of
moments to solve the transport equations of multiply-scattered particles.

This method was originally developed for applications in neutrons transport
([16]) and was afterward adapted for medical applications. This code is already
used in medical center and is shown to be time-efficient and accurate.

The present approach

The present approach is based on the physics of the transport and the collisions
of the considered particles. As for the discrete ordinate methods, it is based on a
kinetic description of this physics and it uses deterministic numerical methods.

However, in order to reduce the computational costs due to the high-dimensionality
of the kinetic equations, the method of moments, i.e. a model reduction technique,
is used. Solving moment equations requires considerably less computational power
than solving a kinetic equation, although several difficulties emerge when using this
method. The moment equations have more unknowns than equations, so they require
a closure, i.e. an additional equation such that the number of equations equals the
number of unknowns. For this problem, a closure based on a entropy minimization
procedure is chosen, i.e. the MN closure. This choice presents desirable properties
both on the mathematical and physical level. However, the MN closure is defined
under condition afterward called realizability, which needs to be carefully taken into
account when developing numerical schemes for moment equations.

Mathematical modelling for dose deposition in photontherapy 3



This manuscript is organized as follow: in the Part I, i.e. Chapter 1, the physics
of the transport and collisions of photons and electrons in the field of radiotherapy
is presented. In Part II, the method of moments is presented: First in Chapter 2
the moment equations are computed. Then in Chapter 3, the realizability condition
linking the kinetic model to the angular moment models is studied. Finally, the
constructions of some closures are described in Chapter 4. In Part III, numerical
methods based on the moment equations are presented. Numerical schemes adapted
to MN models are developed in Chapter 5. Chapter 6 deals with a numerical ap-
proach for dose optimization.
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Chapter 1

Models

1.1 Introduction

This first chapter is devoted to the mathematical and physical description of the
transport of particles in the field of external radiotherapy.

Radiotherapy is a type of cancer treatment based on radiations which can be
seen as beams of energetic particles. Most commonly beams of photons are used.
But electrons can potentially be used for near-skin cancers. Heavier particles, such
as protons or other hadrons, can also be prescribed in particular cases requiring
highly accurate treatements, e.g. for eye cancers. Those particles are transported
through a medium and collide with other particles. The particles involved in such
collisions may exchange energy. In particular, a part of the energy of the trans-
ported particles may be transfered to particles constituting the medium (atoms or
molecules). Modelling this transfer of energy is important as the biological effects
of radiations are assumed to be a function of this energy transfered to the medium,
so-called dose.

Mathematical models for particle transport are organized in a hierarchy, where
each representation models the particles motion at a different scale and retains some
properties of the previous scale. The first of those is the molecular description. The
movements and the interactions of every particle are modeled. However, such models
become difficult to use when considering a very large number of particles. Therefore
molecular models are often unadapted to observe mean behaviour, e.g. to compute
the density or the mean velocity. The second scale in the hierarchy are the kinetic
models. For some problems, this type of model can be obtained from a molecular
one in a mean field regime, i.e. by considering a large number of particles, by using
a Bogolioubov-Born-Green-Kirkwood-Yvon (BBGKY, see e.g. [6, 8]) hierarchy from
the Liouville equation. A third scale consists of angular moment models. They are
obtained from a moment extraction, i.e. an integration over a direction variable
Ω ∈ S2, of the kinetic equation and will be studied in the next chapter. One last
scale is the hydrodynamic or fluid models. Typically, hydrodynamic models are
obtained from a moment extraction, i.e. here an integration over a velocity variable
v ∈ R

3, of a kinetic model in a certain regime.
This part is devoted to presenting a state-of-the-art kinetic model (also described

e.g. in [17, 13, 12, 26]). Under hypothesis, it models the physics of the transport
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of photons and electrons when considering that the movements of the particles are
modified by Compton (see Subsection 1.3.1 or [11, 14, 18]), Mott (see Subsection
1.3.2 or [24]) and Møller effects (see Subsection 1.3.3 or [18, 14]) which are the pre-
dominant effects in the range of energy spectra studied in this manuscript. This
model can easily be extended by taking into account more types of physical interac-
tions, such as Bremsstrahlung effect (see e.g. [21]) or pair production (see e.g. [25]),
but, as a first approach, only Compton, Mott and Møller effects were considered in
order to simplify the notations and computations. This model retains some of the
basic properties (conservation of particles, momentum and energy) of an underlying
molecular model.

The chapter is organized as follow. First, assumptions arising from physics, and
required for the mathematical modeling are presented. Then, some basic properties
of the molecular model are recalled, with a special focus on conservation of particles,
momentum and energy. In a third part, a kinetic model is presented. This model
is based on linear Boltzmann collision terms and some approximations of such a
collision term are recalled.

In this chapter, and in the rest of the manuscript, the formulae and equations
presented are always non dimensionalized. Especially the energies ǫ are always
normalized by the energy mec

2 of electrons at rest, the momenta p by mec and the
velocities v by c the celerity of light.

1.2 Assumptions

Before describing the model, some assumptions are made. They arise from the
physics of the studied phenomena and are necessary to derive the kinetic model in
Section 1.4.

1.2.1 Non-alteration of the medium

The quantity of particles that are transported (photons and electrons) is very low
compared to the quantity of atoms composing the medium. This leads to the fol-
lowing two assumptions.

The first assumption is related to the motion of the transported particles.

Assumption 1.1 The collisions involving two transported particles are assumed
to be so rare that they have a negligible impact on the macroscopic motion.
Consequence: The collisions involving two or more transported particles are
neglected. Only the collisions involving a transported particles and a particle
from the background medium are considered.

The second assumption is related to the medium itself.

Assumption 1.2 The effect of those collisions on the medium is assumed to
be negligible. It is not alterate.
Consequence: The transported particles have no effect on the background
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medium.

Those hypothesis will lead to consider linear models at the kinetic level, in Section
1.4.

1.2.2 Time independency

The transported particles (photons γ and electrons e) are relativistic in the sense
that they have a non-negligible velocity compared to the speed of light in vacuum
c. We assume the following.

Assumption 1.3 The velocity of the medium is assumed to be negligible com-
pared to the speed of light in vacuum c.
Consequence: The particles of the medium are assumed to be fixed, and the
medium can be represented by a distribution of particles that is assumed to be a
given data.

At this point, one does not need to study the motion of the medium, but only the
motion of electrons and photons through the medium.

Assumption 1.4 The flux of injected particles in the domain is assumed to be
constant. Furthermore, the time required for the flow of transported particles to
reach a steady state is assumed to be negligible compared to the time of irradia-
tion. Therefore this flow is alway assumed to be at steady state.
Consequence: In this description, the time appears only as a parameter. The
transport model of electrons and photons can be assumed to be steady and the
time is therefore removed from the model described below.

1.2.3 Medium composition

In practice the collisions studied always involve one transported particle and the
background medium. The composition of this medium impacts on the nature and
the effects of the collisions. In order to simplify the kinetic model, the following
assumption is made.

Assumption 1.5 The effect of a collision involving a transported particle and
any atom or molecule of the medium, i.e. the deflection angle and the energy
loss, is assumed to be identical to the effect of a collision with a water molecule.
Consequence: The characteristics of the collisions, i.e. the deflection angle
and the energy loss (modeled in the next sections by the so-called cross sections
σ), do not depend on the composition of the medium. However, the quantity of
those collisions is assumed to depend linearily of the relative density ρ(x) of the
medium at point x compared to the density of water.

In the model describe below, the composition of the medium only affects physical pa-
rameters (the cross sections σ) that are assumed to be given data in this manuscript
and it does not affect the model itself. Therefore this assumption is not required, it
only simplifies the problem and the notations.

Mathematical modelling for dose deposition in photontherapy 11



1.3. Molecular description

1.3 Molecular description

Before describing the considered kinetic model, the physics of the interactions are
described at the molecular level. Especially, the variations of density, of momentum
and of energy due to the collisions are computed for each collision. Those basic
features of the collisions are focused on in order to translate them and exhibit them
at the kinetic level in the next section.

The particles travel in straight line until colliding with a molecule of the medium.
The transported particles are characterized by their type, i.e. an electron e or
a photon γ, their position x ∈ R

3, their energy ǫR+ and their direction of flight
Ω ∈ S2. The momentum p of a particle is given by

p(ǫ,Ω) = p(ǫ)Ω, (1.1)

and the norm of the relativistic momentum of photons and electrons are funtions of
their energy ǫ given by

pγ(ǫ) = ǫ, pe(ǫ) =
√

ǫ(ǫ+ 2). (1.2)

The following subsections describe the interactions considered in this
manuscript, i.e. Compton, Mott and Møller effect which are predominant in the
energy range studied in this manuscript. The physics presented here can be ex-
tended by considering more types of collision that are non-negligible in certain en-
ergy ranges, such as Bremmstrahlung effect (see e.g. [21]) or pair production (see
e.g. [25]).

1.3.1 Compton effect

Compton effect is an ionizing collision involving an incoming photon. The incoming
photon transfers part of its energy to an electron bound to a molecule of the medium.
The photon also transfers some energy to the molecule in order to break the link
between the electron and the molecule, which results in a detachment of the electron
from the molecule. In practice, this energy is the binding energy or ionization energy
ǫB. Therefore, the electron is considered as a transported particle after collision. Fig.
1.1 represents schematically this interaction.

Before collision, the bound electron is assumed to have a negligible energy ǫ ≈ 0
and has therefore a negligible momentum

pe(0) = 0. (1.3)

Compton effect satisfies the following conservation properties.

Property 1.1 (a) Quantity of particles:
The quantity of transported photons γ before collision equals the one after
collision, and equals the quantity of transported electron e after collision.

(b) Energy:
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e(0,Ω′
e)

γ(ǫ′
γ,Ω

′
γ) γ(ǫγ,Ωγ)

e(ǫe,Ωe)

Figure 1.1: Schematic representation of Compton’s collision. The black ball
represents an atom, the red arrows are the photon before and after scattering,
the blue point and the blue arrow are the electron before (bound electron) and
after scattering.

The total energy is preserved during collision. This means

ǫ′γ + 0 = ǫγ + ǫe + ǫB. (1.4)

Here the superscript ′ refers to the precollisional state and ǫB is the binding
or ionization energy.

(c) Momentum:
The total momentum is preserved during collision. This means

pγ(ǫ′γ ,Ω
′
γ) + pe(0,Ω′

e) = pγ(ǫ′γ ,Ω
′
γ) + 0R3

= pe(ǫe,Ωe) + pγ(ǫγ ,Ωγ). (1.5)

1.3.2 Mott effect

Mott effect is a Coulombian elastic scattering. This effect is an elastic deflection of
an electron, i.e. an electron passes near an atom core and is deflected without losing
any energy. Fig. 1.2 represents schematically this interaction. Mott effect satisfies

e(ǫe,Ω
′
e)

e(ǫe,Ωe)

Figure 1.2: Schematic representation of Mott’s collision. The black ball repre-
sents an atom and blue arrows represent an electron before and after interac-
tion.

the following conservation properties.

Property 1.2 (a) Quantity of particles:
The quantity of transported electrons e before and after collision are equal.
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(b) Energy:
The energy of the electron before and after collision are equal

ǫ′e = ǫe. (1.6)

(c) Momentum:
The momentum is not preserved.

1.3.3 Møller effect

Møller effect is an ionizing interaction involving an incoming electron. This electron
transfers a part of its energy to an electron bound to a molecule and to the molecule
itself so that the bound electron escapes from the atomic shell. Fig. 1.3 represents
schematically this effect.

e
e(ǫ′

e,Ω
′
e)

e(ǫe,1,Ωe,1)

e(ǫe,2,Ωe,2)

Figure 1.3: Schematic representation of Møller’s collision. The black ball rep-
resents an atom, the blue point is the bound electron before scattering and the
blue arrows are the transported electrons before and after scattering.

The indifferentiation principle states that the two outgoing electrons are indis-
tinguishable. After collision one can not determine which one was bound and which
one was transported before collision. It is although convenient to differentiate them
by their energy.

Definition 1.1 The higher energetic outgoing electron is called "primary elec-
tron", the lower energetic one is called "secondary electron".

Møller effect satisfy the following conservation properties.

Property 1.3 (a) Quantity of particles:
The quantity of transported electron e before collision equals the quantity
of primary and of secondary electron after collision.

(b) Energy:
The total energy is preserved during collision. This means

ǫ′e + 0 = ǫe,1 + ǫe,2 + ǫB. (1.7)
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(c) Momentum:
The total momentum is preserved during collision. This means

pe(ǫ′e,Ω
′
e) + 0R3 = pe(ǫe,1,Ωe,1) + pe(ǫe,2,Ωe,2). (1.8)

Here the indices e, 1 and e, 2 refer respectively to the primary and secondary electrons
after collision.

1.4 Kinetic model

The following kinetic description is a state-of-the-art model in the field of radiother-
apy used for the computation of deposited doses. It offers an accurate description
of the physical phenomena and is usable for applications.

1.4.1 Kinetic equation

The motion of the particles composing the medium (atoms and bound electrons)
and of transported particles is differently modeled.

Assumption 1.6 In this manuscript, the transported particles and the particles
of the medium are considered as two seperated families of particles.

Especially, the transported electrons and the bound electrons are two different fam-
ilies of particles, although electrons may switch from one family to the other.

One may evoke Assumption 1.2 to neglect the motion of the particles composing
the medium and therefore study only the motion of the transported particles.

The motion of transported photons and electrons are modeled by their fluence
ψγ and ψe depending on position x in a compact set Z ⊂ R

3, on energy ǫ assumed
to be bounded in the interval [ǫmin, ǫmax] ⊂ R

+ (with ǫmin > ǫB) and on direction of
flight Ω on the unit sphere S2. The quantity dNα of particles of type α in a spatial
neighboordhood dx around x having an energy in a neighbourhood dǫ around ǫ and
travelling in a solid angle dΩ around Ω is given by

dNα = ψα(ǫ, x,Ω)dǫdxdΩ. (1.9)

The direction of flight is often written in spherical coordinates

Ω = (µ,
√

1 − µ2 cosφ,
√

1 − µ2 sinφ)T ,

where µ ∈ [−1, 1] and φ ∈ [0, 2π[. Under this notation dΩ = dµd cosφ.
The density nα, the macroscopic momentum qα and the macroscopic energy Eα

of particles α at point x ∈ Z can be defined from the fluence ψα





nα(x)
qα(x)
Eα(x)




 =

∫ ǫmax

ǫmin

∫

S2






1
pα(ǫ,Ω)

ǫ




ψα(ǫ, x,Ω)dΩdǫ. (1.10)
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The fluences of the transported photons and electrons in radiotherapy satisfy
the following system of equations (see e.g. [5, 7, 17])

Ω.∇xψγ(ǫ, x,Ω) = ρ(x) (Qγ→γ(ψγ) +Qe→γ(ψe)) (ǫ, x,Ω), (1.11a)

Ω.∇xψe(ǫ, x,Ω) = ρ(x) (Qe→e(ψe) +Qγ→e(ψγ)) (ǫ, x,Ω). (1.11b)

This system is composed of one equation for the photons and one for the electrons.
The left-hand side of those equations is a free transport term. It is time-independent
according to Assumption 1.4. The right-hand side is composed of collision operators.

Since only collision involving one transported particle and one particle of the
medium are considered, the quantity of collisions can be assumed to be proportional
to the quantity of particles of the medium. As only collisions with atoms and
bound electrons are considered, one can assume that this quantity of particles of
the medium is proportional to the relative density ρ of the medium compared to the
density of water (water is chosen as it is the main component of a human body).
In this study, the density ρ is chosen to be in the interval [10−3, 2]. This interval
includes the densities of liquid water (ρ = 1), main component of a human body, of
air (ρ = 10−3), and of bones (ρ ≈ 1.8), corresponding to the highest density in a
human body.

The collision operator Qα→β(ψα) represents the variations of the fluence ψβ
due to collisions involving incoming particles α. Similarily the quantity of those
collisions can be assumed to be proportional to ψα. This implies that Qα→β is a
linear operator. Those collision operators are defined in the following subsections.

Remark 1.1 The system (1.11) represents only the motion of the transported
particles. For Compton and Møller collisions, the bound electron before scat-
tering is not transported. It receives sufficient energy to be transported after
collision. Therefore the kinetic model proposed in this section is not conserva-
tive because particles (i.e. density nα and also momentum qα and energy Eα)
are created in the system.

The next subsection describes a collision operator representing interactions with
a fixed background medium. A special focus is made to translate the conservation
properties 1.1-1.3 from the molecular level (Section 1.3) to the kinetic level. Those
properties needs to be considered when constructing numerical method for dose
computaions.

1.4.2 Linear Boltzmann (LB) collision operator

As a first approach, the collisions can be modeled by linear Boltzmann gainGα→β(ψα)
and loss terms Pα(ψα) (see e.g. the derivation of linear Boltzmann equations in [5]).

Loss term

A loss term Pα(ψα) represents the loss of particles of type α due to collisions involving
incoming particle α. This loss corresponds to the particles that are removed from
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the system during collision, i.e. the particles at precollisional state. It is given by

Pα(ψα)(ǫ, x,Ω) = σT,α(ǫ)ψα(ǫ, x,Ω), (1.12)

where the total cross section σT,α is a positive function which quantifies the inter-
actions of a particle α, i.e. the quantity

ρ(x)σT,α(ǫ)ψα(ǫ, x,Ω)dǫdxdΩ

is the quantity of particles α in a neighborhood (dǫ, dx, dΩ) around (ǫ, x,Ω) colliding
with the medium.

Gain term

A gain term Gα→β(ψα)(ǫ, x,Ω) represents the gain of particles of type β at state
(ǫ, x,Ω) due to collisions involving a incoming particle β. This gain term corresponds
to the particles that are created in the system during collision, i.e. the particles at
postcollisional state. It has the form

Gα→β(ψα)(ǫ, x,Ω) =
∫ ǫmax

ǫ

∫

S2
σα→β(ǫ′, ǫ,Ω′.Ω)ψα(ǫ′, x,Ω′)dΩ′dǫ′. (1.13)

This gain term is an integral over all possible precollisional state (ǫ′,Ω′) of the fluence
ψα of the incident particles α multiplied by a differential cross section σα→β . The
differential cross section σα→β(ǫ′, ǫ,Ω′.Ω) is a non-negative function such that the
following quantity

ρ(x)σα→β(ǫ′, ǫ,Ω′.Ω)ψα(ǫ′, x,Ω′)dǫ′dΩ′dΩdx

is the quantity of particles β created in a neighborhood (dǫ, dx, dΩ) around (ǫ, x,Ω)
by a collision involving a particles α in a precollisional state in the neighborhood
(dǫ′, dx, dΩ′) around (ǫ′, x,Ω′).

Remark 1.2 The density, the macroscopic momentum and the macroscopic
energy created, repsectively removed, in the system for each effect is defined by
replacing ψα by Gα→β(ψα), respectively Pα(ψα), in (1.10), i.e. the quantity of
particles, the momentum and the energy of the particles α removed from the
system is

∫ ǫmax

ǫmin

∫

S2






1
pα(ǫ,Ω)

ǫ




Pα(ψα)(ǫ, x,Ω)dΩdǫ,

and the quantities of particles, momentum and energy of the particles β created
by collisions involving incoming particles of type α is

∫ ǫmax

ǫmin

∫

S2






1
pβ(ǫ,Ω)

ǫ




Gα→β(ψα)(ǫ, x,Ω)dΩdǫ.
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For Compton, Mott and Møller interactions, the collision operators read

Qγ→γ(ψγ) = Gγ→γ(ψγ) − Pγ(ψγ) = GC,γ(ψγ) −PC(ψγ), (1.14a)

Qγ→e(ψγ) = Gγ→e(ψγ) = GC,e(ψγ), (1.14b)

Qe→γ(ψe) = Ge→γ(ψe) = 0, (1.14c)

Qe→e(ψe) = Ge→e(ψe) − Pe(ψe) = GM,1(ψe)+GM,2(ψe) +GMott(ψe)

−PM (ψe) − PMott(ψe),
(1.14d)

where the subscript C refers to Compton scattering, M to Møller and Mott to Mott.
Therefore the indices C, γ and C, e refer respectively to the outgoing photon and
electron of Compton effect. Similarily, the indices M, 1 and M, 2 refer respectively
to the primary (more energetic) and secondary electron of Møller effect. Using these
notations, the cross sections can be rewritten

σγ→γ = σC,γ , σT,γ = σT,C , σγ→e = σC,e,

σe→e = σM,1 + σM,2 + σMott, σT,e = σT,M + σT,Mott.

The conservation properties 1.1-1.3 from the molecular description leads to im-
pose conditions on the cross sections at the kinetic level. Those conditions needs
to be fulfilled for the physics of the collision to be correctly modeled at the kinetic
level.

Compton scattering

Compton differential cross section for photons reads (see [11, 14, 18] and references
therein)

σC,γ(ǫ′, ǫ, µ) =
r2
e

2

(
ǫ

ǫ′

)2 ( ǫ

ǫ′
+
ǫ′

ǫ
− (1 − µ2)

)

∗ δ

(

ǫ− ǫ′

1 + ǫ′(1 − µ)

)

, (1.16)

where re is the radius of the electron. The Dirac distribution δ in this formula
represents the fact that the energy ǫ of the photon after collision is a given function
of its energy ǫ′ before collision and of the deflection cosangle µ.

The conservation of particles (Property 1.1(a) at the molecular) is described at
the kinetic level by

Proposition 1.1 The quantity of photons removed, created, and the quantity
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1. Models

of electrons created by Compton effect are equal at the kinetic level iff

σT,C(ǫ) = 2π
∫ ǫ

ǫB

∫ +1

−1
σC,γ(ǫ, ǫ′, µ)dµdǫ′

= 2π
∫ ǫ

ǫB

∫ +1

−1
σC,e(ǫ, ǫ′, µ)dµdǫ′. (1.17)

Proof According to Property 1.1, the total quantity of photons created, lost
and the total quantity of electrons created by Compton effect at point x simply
are equal. According to Remark 1.2, this reads

∫ ǫmax

ǫB

∫

S2
GC,γ(ψγ)(ǫ, x,Ω)dǫdΩ =

∫ ǫmax

ǫB

∫

S2
GC,e(ψγ)(ǫ, x,Ω)dǫdΩ

=
∫ ǫmax

ǫB

∫

S2
PC(ψγ)(ǫ, x,Ω)dǫdΩ.

Using Fubini theorem leads to
∫ ǫmax

ǫB

∫

S2
GC,γ(ψγ)(ǫ, x,Ω)dǫdΩ

=
∫ ǫmax

ǫB

∫

S2

∫ ǫmax

ǫ

∫

S2
σC,γ(ǫ′, ǫ,Ω′.Ω)ψγ(ǫ′, x,Ω′)dǫ′dΩ′dǫdΩ

=
∫ ǫmax

ǫB

∫

S2

∫ ǫ

ǫB

∫

S2
σC,γ(ǫ, ǫ′,Ω.Ω′)dǫ′dΩ′ψγ(ǫ, x,Ω)dǫdΩ,

Similar computations with GC,e leads to

∫ ǫmax

ǫB

∫

S2

(∫ ǫ

ǫB

∫

S2
σC,γ(ǫ, ǫ′,Ω.Ω′)dǫ′dΩ′

)

ψγ(ǫ, x,Ω)dǫdΩ

=
∫ ǫmax

ǫB

∫

S2

(∫ ǫ

ǫB

∫

S2
σC,e(ǫ, ǫ′,Ω.Ω′)dǫ′dΩ′

)

ψγ(ǫ, x,Ω)dǫdΩ

=
∫ ǫmax

ǫB

∫

S2
σT,C(ǫ)ψγ(ǫ, x,Ω)dǫdΩ,

which is satisfied for all possible ψγ . Therefore one obtains the result in a weak
sense. Computations show that the functions defined in (1.17) are C∞([ǫB, ǫmax]).
Therefore this equality also holds in a strong sense. �

The conservation of momentum (Property 1.1(c) at the molecular level) is de-
scribed at the kinetic level by

Proposition 1.2 The macroscopic momentum in the system is preserved by
Compton effect at the kinetic level iff

pγ(ǫ,Ω)σT,C(ǫ) −
∫ ǫ

ǫB

∫

S2
[pγ(ǫ′,Ω′)σC,γ(ǫ, ǫ′,Ω.Ω′) (1.18)

+ pγ(ǫ′,Ω′)σC,e(ǫ, ǫ′,Ω.Ω′)] dΩ′dǫ′ = 0R3 .

The proof is identical to the one of Proposition 1.1.
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1.4. Kinetic model

The differential cross sections for photons and electrons are related to each oth-
ers. Indeed according to Property 1.1, there is as many photons γ created at state
(ǫγ , x,Ωγ) as electrons at state (ǫe, x,Ωe) from photons at state (ǫ′, x,Ω′), i.e.

σC,γ(ǫ′, ǫγ ,Ω′.Ωγ) dǫ′ dǫγ dΩ′ dΩγ dx

= σC,e(ǫ′, ǫe,Ω′.Ωe) dǫ′ dǫe dΩ′ dΩe dx. (1.19)

Therefore, the differential cross sections are related to each others. Using (1.4) and
(1.5), one finds that

ǫe = ǫ′γ − ǫγ − ǫB, Ωe =
pγ(ǫ′γ ,Ω

′
γ) − pγ(ǫγ ,Ωγ)

pe(ǫe)
, (1.20a)

ǫγ = ǫ′γ − ǫe − ǫB, Ωγ =
pγ(ǫ′γ ,Ω

′
γ) − pe(ǫe,Ωe)

pγ(ǫγ)
. (1.20b)

Using (1.19) and (1.20) together leads to the following property.

Property 1.4 The differential cross section for electrons and photons satisfy

σC,e(ǫ′γ , ǫe, µe) = σC,γ

(

ǫ′, ǫ′ − ǫ− ǫB,
pγ(ǫ′) − pe(ǫ)µ
pγ(ǫ′ − ǫ− ǫB)

)

∗ pe(ǫ)
pγ(ǫ′ − ǫ− ǫB)

. (1.21)

In this study, ǫ′ > ǫ > ǫB and one may verify that the deflection cosangle

pγ(ǫ′) − pγ(ǫ)µ
pe(ǫ′ − ǫ− ǫB)

in this formula is always in [−1,+1].

Remark 1.3 In practice, the differential and total cross sections are defined
such that the conservation properties (1.17) and (1.18) are satisfied (see e.g.
[11]). One may also verify that those propositions are always satisfied when the
differential cross section for electron is defined from (1.21).

In the litterature, it is often preferred to work with analytical formula of the
differential and total cross sections (see e.g. [17]). However, those properties
need to be kept in mind when constructing numerical schemes for (1.11).

Mott scattering

Since Mott effect is an elastic scattering effect, the energy of the electron before and
after scattering is the same. Therefore the differential cross section can be written

σMott(ǫ′, ǫ, µ) = σ̃Mott(ǫ, µ)δ(ǫ′ − ǫ), (1.22a)
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1. Models

where σ̃Mott reads (see [17, 24] and references therein)

σ̃Mott(ǫ, µ) =
[

Zre(1 + ǫ)
4 (ǫ(ǫ+ 2)) (1 + 2η(ǫ) − µ)

]2

(1.22b)

∗
[

1 − ǫ(ǫ+ 2)
(1 + ǫ)2

1 − µ

2

]

,

η(ǫ) =
πα2Z

2
3

ǫ(ǫ+ 2)
, (1.22c)

Z is the equivalent atomic number of water, and α ≈ 1
137 .

Similarily as for Compton scattering, the conservation Properties 1.2 can be
translated at the kinetic level by

Proposition 1.3 The quantity of particles and the energy in the system is
preserved by Mott effect at the kinetic level iff

σT,Mott(ǫ) = 2π
∫ +1

−1
σ̃Mott(ǫ, µ)dµ. (1.23)

The proof is identical to the one of Proposition 1.1.

Møller scattering

Møller differential cross section for primary electrons reads (see [18, 14] and refer-
ences therein)

σM,1(ǫ′, ǫ, µ) = σM (ǫ′, ǫ, µ)1
[

ǫ′−ǫB
2

,ǫ′−ǫB ]
(ǫ), (1.24a)

σM (ǫ′, ǫ, µ) =
(
re(ǫ′ + 1)
ǫ′(ǫ′ + 2)

)2
[

1
W (ǫ′, ǫ)2

+
1

(ǫ′ −W (ǫ′, ǫ))2 (1.24b)

− 2ǫ′ + 1
(ǫ′ + 1)2

1
W (ǫ′, ǫ) (ǫ′ −W (ǫ′, ǫ))

+
1

(ǫ′ + 1)2

]

∗ δ
(
W (ǫ′, ǫ) −Q(ǫ′, ǫ, µ)

)
.

with W the energy transfered to the bound electron and Q is the recoil energy

W (ǫ′, ǫ) = ǫ′ − ǫ, Q(ǫ′, ǫ, µ) =
√

pe(ǫ′)2 + pe(ǫ)2 − 2pe(ǫ′)pe(ǫ)µ+ 1 − 1.

The conservation of particles (Property 1.3(a) at the molecular) is described at
the kinetic level by

Proposition 1.4 The quantity of electrons removed, and of primary and sec-
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ondary electrons created by Møller effect are equal at the kinetic level iff

σT,M (ǫ) = 2π
∫ ǫ

ǫB

∫ +1

−1
σM,1(ǫ, ǫ′, µ)dµdǫ′ (1.25)

= 2π
∫ ǫ

ǫB

∫ +1

−1
σM,2(ǫ, ǫ′, µ)dµdǫ′.

The proof is identical to the one of Proposition 1.1.
The conservation of momentum (Property 1.3(c) at the molecular level) is de-

scribed at the kinetic level by

Proposition 1.5 The macroscopic momentum in the system is preserved by
Møller effect at the kinetic level iff

0R3 = pe(ǫ,Ω)σT,M (ǫ) (1.26)

−
∫ ǫ

ǫB

∫

S2
pe(ǫ′,Ω′)(σM,1 + σM,2)(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′.

The proof is identical to the one of Proposition 1.1.
Similarily as for Compton effect, the differential cross section for primary and

secondary electrons are related to each others. Indeed according to Property 1.3,
there is as many primary electrons at state (ǫe,1, x,Ωe,1) as secondary electrons at
state (ǫe,2, x,Ωe,2) from electrons at state (ǫ′, x,Ω′), i.e.

σM,1(ǫ′, ǫe,1,Ω′.Ωe,1) dǫ′ dǫe,1 dΩ′ dΩe,1 dx

= σM,2(ǫ′, ǫe,2,Ω′.Ωe,2) dǫ′ dǫe,2 dΩ′ dΩe,2 dx. (1.27)

Therefore, the differential cross section are related to each others. Using (1.7) and
(1.8), one finds that

ǫe,2 = ǫ′e − ǫe,1 − ǫB, Ωe,2 =
pe(ǫ′e,Ω

′
e) − pe(ǫe,1,Ωe,1)
pe(ǫe,2)

. (1.28)

Using (1.27) and (1.28) together leads to the following property.

Property 1.5 The differential cross sections for Møller effect satisfy

σM,2(ǫ′, ǫ, µ) = σM,1

(

ǫ′, ǫ′ − ǫ− ǫB,
pe(ǫ′) − pe(ǫ)µ
pe(ǫ′ − ǫ− ǫB)

)

∗ pe(ǫ)
pe(ǫ′ − ǫ− ǫB)

. (1.29)

In this study, ǫ′ > ǫ > ǫB, one may verify that the deflection cosangle

pe(ǫ′) − pe(ǫ)µ
pe(ǫ′ − ǫ− ǫB)

in this formula is always in [−1,+1].
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Remark 1.4 One may verify that

σM,2(ǫ′, ǫ, µ) = σM (ǫ′, ǫ, µ)1
[ǫB ,

ǫ′−ǫB
2

]
(ǫ).

According to the indifferentiation principle, one can not determine which of the
outgoing electrons was the incoming one. Originally a single differential cross
section was written for both primary and secondary electrons. Those differential
cross sections were afterward differentiated by defining the bounds of integration
[
ǫ′−ǫB

2 , ǫ′
]

for primary electrons and
[

ǫB,
ǫ′−ǫB

2

]

for secondary electrons.

Some of the differential cross sections (Møller and Mott collisions) present high
gradients. When constructing numerical schemes, such high gradients commonly
leads to stiff terms at the numerical level. The following two sections present meth-
ods to remove this stiffness directly at the continuous level.

1.4.3 Continuous slowing-down approximation (CSDA)

On the theoretical level, the linear Boltzmann collision operator described in the
previous subsection is appropriate. Although, for numerical applications, discretiz-
ing directly the linear Boltzmann gain terms can be difficult. In particular, Møller
cross section σM is known to be very peaked along the line ǫ′ = ǫ (see Fig. 1.4).
Typically, discretizations of the gain term require the energy grid to be fine enough
to capture this peak, which leads to requiring a significant numer of energy cells.

Instead it is often preferred to apply the continuous slowing-down approximation
(see e.g. [20]).

Suppose a linear Boltzmann collision term

Q(ψ) = (G− P )(ψ),

with loss and gain terms of the form (1.12) and (1.13) characterized by a differential
cross section σ peaked along the line ǫ′ = ǫ, and its associated total cross section
σT .

Formally, the continuous slowing-down approximation consists in replacing the
peaked gain term and its associated loss term by an energy derivative and an elastic
linear Boltzmann term, i.e.

Q(ψ) ≈ QCSD(ψ) := ∂ǫ(Sψ) + (Gel − Pel)(ψ). (1.30)

where the stopping power S, the differential σel and total cross section σT,el of the
elastic collision operator (Gel − Pel) are related to the original cross sections σ and
σT through

S(ǫ) =
∫ ǫ

ǫmin

∫

S2
(ǫ− ǫ′)σ(ǫ, ǫ′,Ω′.Ω)dΩ′dǫ′, (1.31)

σel(ǫ′, ǫ,Ω′.Ω) =
∫ ǫ

ǫmin

σ(ǫ, ǫ′,Ω′.Ω)dǫ′ δ(ǫ′ − ǫ), (1.32)

σT,el(ǫ) =
∫ ǫ

ǫmin

∫

S2
σel(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′. (1.33)

Mathematical modelling for dose deposition in photontherapy 23



1.4. Kinetic model

Based on its definition (1.31), the stopping power S is a positive function of the
energy ǫ. The ǫ-derivative represents a continuous loss of energy of the particles.
Therefore, S characterizes the capacity of the system to slow particles down. The
deflection phenomenum is represented by an elastic linear Boltzmann operator.

Møller cross section for primary electrons is peaked along the line ǫ′ = ǫ. This
peak can be observed on Fig. 1.4 through the quantity

σ0
M,1(ǫ′, ǫ) = 2π

∫ +1

−1
σM,1(ǫ′, ǫ, µ)dµ.

Figure 1.4: Representation of σ0
M,1 as a function of ǫ′ and ǫ.

Using the CSDA (1.30) leads to write the following approximation

(GM,1 − PM )(ψe)(ǫ, x,Ω) ≈ [∂ǫ(SMψe) + (GM,1,el − PM,el)(ψe)] (ǫ, x,Ω),

where SM , GM,1,el and PM,el are respectively the stopping power, the elastic gain
term of primary electrons and the loss term after application of the CSDA (1.30) to
Møller collision.

In practice, the angular deflection due to Møller effect is negligible compared to
the one due to Mott effect. This leads to consider the linear Boltzmann continuous
slowing-down (LBCSD) operator

Qe→e(ψe) ≈ QLBCSD(ψe)

QLBCSD(ψe) := ∂ǫ(Sψe) + (G+Gel − Pel)(ψe),

S = SM , G = GM,2, Gel = GMott, Pel = PMott.

(1.34)
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Remark 1.5 This approximation is convenient for numerical purposes. Al-
though, at the theoretical level, this approximation leads to violate the conserva-
tion of quantity of particles, momentum and energy (Property 1.5 and Proposi-
tions 1.4 and 1.5). Indeed, the approximation (1.34) consists in approximating
the distribution

σM,1 ≈ SM (ǫ)δ′(ǫ′ − ǫ),

without modifying the distribution σM,2. Since the term ∂ǫ(Sψ) corresponds now
to both terms of loss and gain of primary electrons, one can now only deduce,
at the kinetic level, the equality of quantity of primary electrons created and of
electrons removed

∫ ǫmax

ǫB

∫

S2
∂ǫ(Sψe)(ǫ, x,Ω)dǫdΩ =

∫

S2
[S(ǫmax) ψe(ǫmax, x,Ω)

− S(ǫB) ψe(ǫB, x,Ω)] dΩ,

where ψe(ǫmax, x,Ω) is assumed to be zero. This corresponds to requiring that
the particles have a energy bounded by ǫmax. The other term in ψe(ǫB, x,Ω)
corresponds to the quantity of particles leaving the system, i.e. particles of
energy below the threshold ǫB are absorbed by the medium and are therefore
not transported anymore.

Remark 1.6 By considering ǫ as a "numerical time", the CSDA (1.30) makes
the following operator appear out of the collision operator (1.34)

−∂ǫ(Sψe) + Ω.∇xψe,

which can be studied similarily as an hyperbolic operator.

1.4.4 Fokker-Planck (FP) approximation

Similarily to Møller cross section, Mott cross section is forward-peaked, i.e. peaked
along the line Ω′.Ω = 1. This peak is represented on Fig. 1.5 through the σ̃Mott(ǫ, µ).

The Fokker-Planck approximation for forward-peaked collisions with small en-
ergy losses was rigourously derivated in [29] through the following theorem.

Theorem 1.1 ([29]) Consider the linear Boltzmann operator

Q(ψ)(ǫ, x,Ω) =
∫ ǫmax

ǫ

∫

S2
σ(ǫ′, ǫ,Ω′.Ω)ψ(ǫ′, x,Ω′)dΩ′dǫ′ − σT (ǫ)ψ(ǫ, x,Ω),

σ(ǫ′, ǫ, µ) =
1
s
σ̂

(

ǫ′,
ǫ′ − ǫ

e
,
1 − µ

m

)

,

σT (ǫ) =
2π
s

∫ ǫ

ǫmin

∫ +1

−1
σ̂

(

ǫ,
ǫ− ǫ′

e
,
1 − µ

m

)

dµdǫ′,
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1.4. Kinetic model

Figure 1.5: Representation of σ̃Mott as a function of ǫ and µ.

where s, e and m are asymptotic parameters characterizing the "peakness" of
the cross section and tending to 0.

If σ̂ = O(1) then

Q(ψ)(ǫ, x,Ω) = QFP (ψ) +O

(

e2

s

)

+O

(

m2

s

)

+O

(
em

s

)

,

where the Fokker-Planck (FP) operator reads

QFP (ψ) = ∂ǫ(S(ǫ)ψ)(ǫ, x,Ω) + T (ǫ)∆Ωψ(ǫ, x,Ω), (1.35a)

S(ǫ) =
∫ ǫ

ǫmin

∫

S2
(ǫ− ǫ′)σ(ǫ, ǫ′,Ω′.Ω)dΩ′dǫ′, (1.35b)

T (ǫ) =
∫ ǫ

ǫmin

∫

S2
(1 − Ω′.Ω)σ(ǫ, ǫ′,Ω′.Ω)dΩ′dǫ′, (1.35c)

∆Ωψ(ǫ, x,Ω) =
[

∂µ
(

(1 − µ2)∂µψ
)

+
1

1 − µ2
∂2
φψ

]

(ǫ, x,Ω), (1.35d)

and the variable µ and φ are such that

Ω = (µ,
√

1 − µ2 cosφ,
√

1 − µ2 sinφ)T .

The function T is called "transport coefficient". Based on the positivity of the
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differential cross sections σ, the transport coefficient T is a positive function of ǫ.
Applying Theorem 1.1 leads to write the following approximation

(GMott +GM,1 − PMott − PM )(ψe)(ǫ, x,Ω) ≈ (∂ǫ(Sψe) + T∆Ωψe)(ǫ, x,Ω),

S ≈ SM , T ≈ TMott.

In practice, SMott = 0. This leads to approximate the LBCSD operator by a Fokker-
Planck with a linear Boltzmann gain term (LBFP) operator

Qe→e(ψe) ≈ QLBFP (ψe)

QLBFP (ψe) := ∂ǫ(Sψe) + T∆Ωψe +G(ψe),

S = SM , T = TMott, G = GM,2.

(1.36)

In the rest of the manuscript, S = SM and T = TMott.

Remark 1.7 By considering ǫ as a "numerical time", the Fokker-Planck op-
erator (1.35a) is backward parabolic in Ω. Therefore a kinetic equation with
such a collision operator can be well-posed only if the ǫ derivative is read in the
"backward" direction, from a maximum energy ǫmax to a minimum one ǫmin. In
this manuscript, the considered kinetic equation are always studied so.

Physically, it is sensefull to study the system in the backward direction in
energy since the particles (and the system) only lose energy in the medium.

If the approximation of LB operator into a LBCSD operator (previous section)
is commonly accepted in the litterature, the accuracy of the LBFP approximation
is more discussable (see e.g. comparison in [27, 26]).

Remark 1.8 For the numerical applications, of the Part III, the stopping power
S and the cross sections σγ→γ, σe→e are obtained from tabulations of the ones
used in the Monte Carlo code PENELOPE ([14, 2, 3]) that were obtained by E.
Olbrant ([26]). The total cross sections sigmaT,γ and σT,e and Compton’s cross
section for electrons are obtained from the formulae (1.17), (1.23), (1.25) and
(1.21).

1.5 Well-posedness of the kinetic equations

Consider the system (1.11) where the spatial domain Z ⊂ R
3 is compact. First,

initial and boundary conditions for (1.11) are defined. Then the well-posedness of
the resulting problem is studied.

1.5.1 Initial-boundary conditions

According to Remark 1.7, the natural initial condition consists in fixing the value
of ψe and ψγ at energy ǫ = ǫmax. The considered particles are assumed to have
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a bounded energy ǫ below ǫmax. Therefore in this manuscript, the following initial
condition is always fixed

ψγ(ǫmax, x,Ω) = ψe(ǫmax, x,Ω) = 0, ∀(x,Ω) ∈ Z × S2. (1.37)

In order to formulate boundary conditions, one needs to define in- and outgoing
boundaries Γ− and Γ+

Γ− =
{

(x,Ω) ∈ ∂Z × S2, s.t. Ω.n(x) < 0
}

, (1.38a)

Γ+ =
{

(x,Ω) ∈ ∂Z × S2, s.t. Ω.n(x) ≥ 0
}

. (1.38b)

A natural boundary condition for (1.11) consists in fixing the flux of particles coming
inside the medium (see e.g. [5, 10]), i.e.

ψγ(ǫ, x,Ω) = ψbγ(ǫ, x,Ω)
ψe(ǫ, x,Ω) = ψbe(ǫ, x,Ω)

}

∀(ǫ, x,Ω) ∈ [ǫmin, ǫmax] × Γ−. (1.39)

1.5.2 Preliminaries

The following notations will be used in this chapter and in Chapter 6.

Notation 1.1 Choose a positive weight function 0 < h ∈ C1([ǫmin, ǫmax]) and
define the following weighted inner product

(ψ, λ)hi =
∫ ǫmax

ǫmin

∫

Z

∫

S2
h(ǫ)ψ(ǫ, x,Ω)λ(ǫ, x,Ω)dΩdxdǫ,

(ψ, λ)hǫ =
∫

Z

∫

S2
h(ǫ)ψ(ǫ, x,Ω)λ(ǫ, x,Ω)dΩdx,

(ψb, η)hb−
=

∫ ǫmax

ǫmin

∫

Γ−
h(ǫ)|Ω.n(x)|ψb(ǫ, x,Ω)η(ǫ, x,Ω)dΩdxdǫ,

(ψb, η)hb+
=

∫ ǫmax

ǫmin

∫

Γ+
h(ǫ)|Ω.n(x)|ψb(ǫ, x,Ω)η(ǫ, x,Ω)dΩdxdǫ,

(ψb, η)hb = (ψb, η)hb−
+ (ψb, η)hb+

,

and, by extension, write the inner product with the weight function h = 1 and
the norms associated to these inner products

for s = i, b−, b+, b,

(ψ, λ)s = (ψ, λ)1
s, ‖ψ‖hs = (ψ,ψ)hs , ‖ψ‖s = (ψ,ψ)s.

The following proofs of well-posedness are widely inspired of those proposed in
[31] (see also [10, 15, 16, 1]). Those proofs are written here as they provide (slightly)
different constraints on the physical parameters compared to [31] and they provide
an understanding of the considered kinetic equations that will be exploited for dose
optimization in Chapter 6.
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1.5.3 Non scattered particles

Non-zero boundary conditions introduce difficulties when proving the existence and
uniqueness of a solution to (1.11). One method to circumvent such difficulties con-
sists in exploiting the linearity of the kinetic equations. First, the equation satisfied
by the fluence of the particles that have never scattered is studied. Secondly, the
equation satisfied by the secondary particles, i.e. those that have scattered at least
one, is studied. Such equations have zero incoming fluxes.

The following two lemmas prove the existence of solutions to kinetic equa-
tions with non-zero boundary conditions corresponding to the non-scattered par-
ticles.

Lemma 1.1 ([31]) Consider the equation







Ω.∇xψ + ρP (ψ) = q in [ǫmin, ǫmax] × Z × S2,
ψ|Γ− = ψb on [ǫmin, ǫmax] × Γ−,

ψ(ǫmax, x,Ω) = 0 in Z × S2,
(1.40)

where P is a generic Boltzmann loss term of the form (1.12) characterized by
a total cross section 0 < σT ∈ L∞([ǫmin, ǫmax]).

Suppose

0 ≤ ψb ∈ L2([ǫmin, ǫmax] × Γ−), 0 ≤ q ∈ L2([ǫmin, ǫmax] × Z × S2)

then (1.40) has a unique solution ψ satisfying

0 ≤ ψ ∈ L2([ǫmin, ǫmax] × Z × S2), Ω.∇xψ ∈ L2([ǫmin, ǫmax] × Z × S2),

0 ≤ ψ|[ǫmin,ǫmax]×Γ+ ∈ L2([ǫmin, ǫmax] × Γ+).

Proof Fix Ω ∈ S2 and choose a point x0 ∈ ∂Z. Along the line x0 directed by Ω,
the problem (1.40) turns into a first order linear ordinary differential equation
(ODE) which is therefore well-posed. The unique solution to Problem (1.40) is

ψ0(ǫ, x,Ω) = exp

(

−
∫ L(x,x0(x,Ω))

0
ρ(x+ Ωs)dsσT (ǫ)

)

ψb(ǫ, x0(x,Ω),Ω)

+
∫ L(x,x0(x,Ω))

0
exp

(

−
∫ L(x,y)

0
ρ(x+ Ωs)dsσT (ǫ)

)

q(ǫ, y,Ω)dy,

L(x, y) = |x− y|,

where x0(x,Ω) is the point of intersection between the boundary ∂Z and the
line passing through x and directed by Ω. See further discussion on (1.40) in
[31]. �

One obtains a similar result with the following equation.
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Lemma 1.2 ([31]) Consider the equation







−ρ∂ǫ(Sψ) + Ω.∇xψ + ρP (ψ) = q in [ǫmin, ǫmax] × Z × S2,
ψ|Γ− = ψb on [ǫmin, ǫmax] × Γ−,

ψ(ǫmax, x,Ω) = 0 in Z × S2,
(1.41)

where P is a generic Boltzmann loss term of the form (1.12) characterized
by a total cross section 0 < σT ∈ L∞([ǫmin, ǫmax]) and the stopping power
0 < S ∈ C1([ǫmin, ǫmax]).

Suppose

0 ≤ ψb ∈ L2([ǫmin, ǫmax] × Γ−), 0 ≤ q ∈ L2([ǫmin, ǫmax] × Z × S2),

then (1.41) has a unique solution ψ satisfying

0 ≤ ψ ∈ L2([ǫmin, ǫmax] × Z × S2),

−ρ∂(Sψ) + Ω.∇xψ ∈ L2([ǫmin, ǫmax] × Z × S2),

0 ≤ ψ|[ǫmin,ǫmax]×Γ+ ∈ L2([ǫmin, ǫmax] × Γ+), 0 ≤ ψ(ǫmin, ., .) ∈ L2(Z × S2).

Proof This result can be obtained by adapting the proof of the Lemma 1.1 and
using the method of characteristics. The reader is referred to [31] for further
discussion on the problems (1.40) and (1.41) with non-zero boundary conditions.

�

1.5.4 Well-posedness of scalar kinetic equations

In the following, the well-posedness of the kinetic system (1.11) with a zero inital
condition (1.37) and a given boundary condition of the form (1.39) is proven when
considering a LB collision term (1.14d), a LBCSD collision term (1.34) or a LBFP
collision term (1.36) for the electron collisions. For this purpose, the following three
lemmas are given. Each provides the well-posed of a kinetic equation with one of
those collision operators.

Those propositions are proven using variational approaches. For this purpose,
the following generalization of Lax-Milgram theorem is recalled.

Theorem 1.2 (Lions-Lax-Milgram)
Let H1 be two Hilbert spaces and H2 a normed space. Consider a bilinear

form B on H1 ×H2 and a linear form l on H2.
Suppose the operator l is bounded, B is bounded and coercive in the sense

Boundedness of l |l(λ)| ≤ C1 ‖λ‖H2 , (1.42)

Boundedness of B |B(ψ, λ)| ≤ C2 ‖ψ‖H1 ‖λ‖H2 , (1.43)

Coercivity of B ∀λ ∈ H2, sup
‖ψ‖H1

≤1
|B(ψ, λ)| ≥ C3 ‖λ‖H2 , (1.44)
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for some scalars C1 < ∞, C2 < ∞ and C3 > 0.
Then there exists a (potentially non-unique) solution ψ ∈ H1 to the problem

∀λ ∈ H2, B(ψ, λ) = l(λ). (1.45)

The first equation considered is a linear Boltzmann equation.

Proposition 1.6 (Well-posedness of a linear Boltzmann equation)
Consider the problem







Ω.∇xψ + ρ(P −G)(ψ) = q in [ǫmin, ǫmax] × Z × S2,
ψ|Γ− = ψb on [ǫmin, ǫmax] × Γ−,

ψ(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2.
(1.46)

where G and P are linear Boltzmann gain and loss terms of the form (1.13)
and (1.12).

Suppose that there exists a positive weight function

0 < hmin ≤ h ∈ C0([ǫmin, ǫmax]),

such that, together with density ρ and the cross sections σ and σT , it satisfies

0 ≤ ρσ < +∞, 0 < α ≤ ρσT < +∞ (1.47a)

0 < α ≤ ρ(x)
(

σT (ǫ) −
∫ ǫmax

ǫ

∫

S2
σ(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′

)

(1.47b)

0 < α ≤ ρ(x)
(

h(ǫ)σT (ǫ) −
∫ ǫ

ǫmin

∫

S2
h(ǫ′)σ(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′

)

(1.47c)

for some positive scalar α > 0. Suppose furthermore that

ψb ∈ L2([ǫmin, ǫmax] × Γ−), q ∈ L2([ǫmin, ǫmax] × Z × S2),

then the problem (1.46) has a unique solution ψ satsifying

ψ ∈ L2([ǫmin, ǫmax] × Z × S2), Ω.∇xψ ∈ L2([ǫmin, ǫmax] × Z × S2),

ψ|[ǫmin,ǫmax]×Γ+ ∈ L2([ǫmin, ǫmax] × Γ+).

Proof First, we exploit the linearity of the kinetic equation (1.46).
Consider the two problems







Ω.∇xψ0 + ρP (ψ0) = q in [ǫmin, ǫmax] × Z × S2,
ψ0|Γ− = ψb on [ǫmin, ǫmax] × Γ−,

ψ(ǫmax, x,Ω) = 0 in Z × S2.
(1.48)
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and






Ω.∇xψs + ρ(P −G)(ψs) = G(ψ0) in [ǫmin, ǫmax] × Z × S2,
ψs|Γ− = 0 on [ǫmin, ǫmax] × Γ−,

ψs(ǫmax, x,Ω) = 0 in Z × S2.
(1.49)

As Problem (1.46) is linear, proving the existence of a unique solution to (1.48)
and to (1.49) provides the existence of a unique solution to (1.46) which has the
form

ψ = ψ0 + ψs

where ψ0 solves (1.48) and ψs solves (1.49). This decomposition corresponds to
the first order expansion in order of scattering ([19, 9, 17]), ψ0 is the fluence of
the particles that have never scattered and ψs the fluence of the other particles.

The well-posedness of (1.48) follows from Lemma 1.1. Due to hypoth-
esis (1.47), G sends L2([ǫmin, ǫmax] × Z × S2) into itself, therefore G(ψ0) ∈
L2([ǫmin, ǫmax] × Z × S2).

Well-posedness of (1.49): Choose a regular positive weight function 0 <
h ∈ C0([ǫmin, ǫmax]). In the spirit of [31], define the following inner products

(ψ, λ)H1
= (ψ, λ)i + (Ω.∇xψ,Ω.∇xλ)i + (ψ, λ)b+

, (1.50a)

(ψ, λ)H2
= (ψ, λ)i + (ψ, λ)b+

, (1.50b)

and the spaces

H1 :=
{

ψ ∈ L2([ǫmin, ǫmax] × Z × S2), s.t. ‖ψ‖H1 < ∞ and ‖ψ‖b−
= 0

}

,

H2 :=
{

ψ ∈ L2([ǫmin, ǫmax] × Z × S2), s.t. ‖ψ‖H2 < ∞ and ‖ψ‖b−
= 0

}

.

The set H1 with the inner product (, )H1 is a Hilbert space, see [31] for a proof
of completeness of H1.

Define the bilinear form B and the linear form l as

B(ψ, λ) = (Ω.∇xψ, λ)hi + (ψ, λ)hb+
+ (ρ(P −G)(ψ), λ)hi ,

l(λ) = (q, λ)hi .

Firstly, the operator l is bounded using Cauchy-Schwartz inequalities

|l(λ)| ≤ ‖q‖i‖λ‖i ≤ C1‖λ‖H2 ,

and is therefore continuous in the sense (1.42).
Secondly, the operator B is proven to be bounded in the sense (1.43). Using

Cauchy-Schwartz inequality leads to

| (Ω.∇xψ, λ)hi | ≤ ‖Ω.∇xψ‖hi ‖λ‖hi ≤ ‖h‖∞‖ψ‖H1‖λ‖H2 ,

|(ρ(P −G)(ψ), λ)hi | ≤ α‖ψ‖i‖λ‖i ≤ α‖ψ‖H1‖λ‖H2 ,
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for some positive scalar

α ≥ max
x∈Z

ρ(x)
(

max
ǫ∈[ǫmin,ǫmax]

h(ǫ)σT (ǫ)

+ max
ǫ∈[ǫmin,ǫmax]

max
(

h(ǫ)
∫ ǫmax

ǫ

∫

S2
σ(ǫ′, ǫ,Ω′.Ω)dΩ′dǫ′,

∫ ǫ

ǫmin

∫

S2
h(ǫ′)σ(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′

)
)
.

Therefore one obtains

|B(ψ, λ)| ≤ C2‖ψ‖H1‖λ‖H2 ,

with 0 < C2 < ∞.
Thirdly, B is proven to be coercive in the sense (1.44). One remarks that

H2 ⊂ H1, and therefore one may use ψ ∈ H1 as a test function. Using an
integration by parts and Green theorem, one obtains

(Ω.∇xψ,ψ)hi =
∫

Z

∫

S2

∫ ǫmax

ǫmin

h(ǫ)Ω.∇x

(

ψ2

2

)

dǫdΩdx =
(‖ψ‖hb+

)2

2
.

Using Fubini theorem leads to

(G(ψ), ψ) =
∫

Z

∫

S2

∫ ǫmax

ǫmin

∫

S2

∫ ǫmax

ǫ
h(ǫ)σ(ǫ′, ǫ,Ω′.Ω)ψ(ǫ′, x,Ω′)

ψ(ǫ, x,Ω)dǫ′dΩ′dǫdΩdx,

then a Cauchy-Schwartz inequality provides

(G(ψ), ψ) ≤
(∫

Z

∫ ǫmax

ǫmin

∫

S2
f1(ǫ)ψ(ǫ, x,Ω)2dǫdΩdx

) 1
2

(1.51)

∗
(∫

Z

∫ ǫmax

ǫmin

∫

S2
f2(ǫ)ψ(ǫ, x,Ω)2dǫdΩdx

) 1
2

,

f1(ǫ) = h(ǫ)
∫

S2

∫ ǫmax

ǫ
σ(ǫ′, ǫ,Ω′.Ω)dǫ′dΩ′, (1.52)

f2(ǫ) =
∫

S2

∫ ǫ

ǫmin

h(ǫ′)σ(ǫ, ǫ′,Ω.Ω′)dǫ′dΩ′. (1.53)

Together with hypothesis (1.47), this leads to

B(ψ,ψ) ≥ C3‖ψ‖2
H2
, (1.54)

for some constant C3 satisfying

0 < C3 ≤ min

(

1
2
, min
ǫ∈[ǫmin,ǫmax]

σT (ǫ) − f1(ǫ), min
ǫ∈[ǫmin,ǫmax]

σT (ǫ) − f2(ǫ)

)

.
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Therefore (1.44) holds. Thus Lions-Lax-Milgram theorem 1.2 provides the ex-
istence of a solution ψ ∈ H1.

Suppose ψ ∈ H1 and ψ′ ∈ H1 are two solutions to (1.46), then

B(ψ, λ) = l(λ) = B(ψ′, λ),

and therefore, by bilinearity of B, one has

B(ψ − ψ′, λ) = 0. (1.55)

According to the definition of H1 and H2, and Sobolev embedding theorem, one
has H1 ⊂ H2, and therefore ψ − ψ′ ∈ H2. Replacing λ = ψ − ψ′ in (1.55) reads
to

B(ψ − ψ′, ψ − ψ′) = 0.

According to (1.54), this leads to ‖ψ − ψ′‖H2 = 0 which is enough to provide
the uniqueness of the solution in H1. �

Remark 1.9 • An alternative proof was written using the theory of evolu-
tion equation (semi-groups theory, see e.g. [32, 4]) in [10, 31, 15] under
the condition (1.47) with h = 1. Such a condition is too constraining for
the present application. However, this method provides the non-negativity
of the solution 0 ≤ ψ under the additional non-negativity conditions on
the sources

0 ≤ ψb, 0 ≤ q.

• The physical meaning of condition (1.47c) is that the medium absorbes the
quantity h, i.e. if (1.47c) is satisfied with h(ǫ) = 1 the medium absorbes
particles. In practice, due to Compton and Møller effects, there is creation
of particles and therefore those conditions are not satisfied. However,
some quantities are absorbed by the medium. Indeed, according to the
physics described by the model (1.11), a part of the energy of the particles
is absorbed by the medium, and none is created. This idea will be used in
the following and it corresponds to choosing h(ǫ) = ǫ in (1.47c).

• The condition (1.47) can be sharpened by the studying the equation satis-
fied by the quantity h2(ǫ)ψ for some positive weight function 0 < h2 ∈
C0([ǫmin, ǫmax]). This idea was used in [31] with the choice h2(ǫ) =
exp(Cǫ) with some constant C. Remark that, when chosing h2(ǫ) = ǫ,
the quantity ǫψ corresponds to the specific intensity in the field of radia-
tive transfer (see e.g. [28, 23]), and one may rewrite (1.11) with this
quantity for unknown.

Similarily, the following lemma provides the well-posedness of the kinetic equa-
tion for the electons when using the CSDA.
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Proposition 1.7 (Well-posedness of a LBCSD equation)
Consider the problem







−ρ∂ǫ(Sψ) + Ω.∇xψ +ρ(Pel −Gel −G)(ψ) = q
in [ǫmin, ǫmax] × Z × S2,

ψ|Γ− = ψb on [ǫmin, ǫmax] × Γ−,
ψ(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2,

(1.56)

where Pel and Gel are linear Boltzmann loss and gain terms of the form (1.12)
and (1.13) with cross sections of the form (1.32) and (1.33) and G is a linear
Boltzmann gain term of the form (1.13).

Suppose that there exists a positive function 0 < h ∈ C1([ǫmin, ǫmax]) such
that together with the density ρ, the cross sections σel, σT,el, σ and the stopping
power S, it satisfies

0 ≤ ρσel < +∞, 0 < α ≤ ρσT,el < +∞, 0 ≤ ρσ < +∞, (1.57a)

0 < α ≤ S ∈ C1([ǫmin, ǫmax]), (1.57b)

0 < α ≤ ρ
S(ǫ)h′(ǫ) − h(ǫ)S′(ǫ)

2
− h(ǫ)

∫ ǫmax

ǫ

∫

S2
σ(ǫ′, ǫ,Ω′.Ω)dΩ′dǫ′, (1.57c)

0 < α ≤ ρ
S(ǫ)h′(ǫ) − h(ǫ)S′(ǫ)

2
−
∫ ǫmax

ǫ

∫

S2
h(ǫ′)σ(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ′, (1.57d)

for some positive scalar 0 < α. Suppose furthermore that

ψb ∈ L2([ǫmin, ǫmax] × Γ−), q ∈ L2([ǫmin, ǫmax] × Z × S2),

then the problem (1.56) has a unique solution ψ satisfying

ψ ∈ L2([ǫmin, ǫmax] × Z × S2),

−ρ∂ǫ(Sψ) + Ω.∇xψ ∈ L2([ǫmin, ǫmax] × Z × S2),

ψ|[ǫmin,ǫmax]×Γ+ ∈ L2([ǫmin, ǫmax] × Γ+), ψ(ǫmin, ., .) ∈ L2(Z × S2).

Proof One obtains this results by adapting the proof of Proposition 1.6 to the
present equation.

Using the expansion
ψ = ψ0 + ψs
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where ψ0 and ψs solve the following problems






−ρ∂ǫ(Sψ0) + Ω.∇xψ0 + ρPel(ψ) = q, in [ǫmin, ǫmax] × Z × S2

ψ0 = ψb on [ǫmin, ǫmax] × Γ−,
ψ0(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2,

(1.58a)







−ρ∂ǫ(Sψs) + Ω.∇xψs
+ ρ(Pel −Gel −G)(ψs) = q + ρ (Gel(ψ0) +G(ψ0)) ,

in [ǫmin, ǫmax] × Z × S2

ψs = 0 on [ǫmin, ǫmax] × Γ−,
ψs(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2.

(1.58b)

Using Lemma 1.2, there exists a unique solution ψ0 to the problem (1.58a) in
L2([ǫmin, ǫmax] × Z × S2).

As in the previous proof, one rewrites the inner products

(ψ, λ)H1 = (ψ, λ)i + (ψ, λ)b+ + (ψ, λ)ǫmin

+(Ω.∇xψ,Ω.∇xλ)i + (∂ǫψ, ∂ǫλ)i,

(ψ, λ)H2 = (ψ, λ)i + (ψ, λ)b+ + (ψ, λ)ǫmin ,

and the Hilbert spaces

H1 :=
{

ψ ∈ L2([ǫmin, ǫmax] × Z × S2), s.t. ‖ψ‖H1 < ∞, ‖ψ‖b−
= 0

and ‖ψ‖ǫmax = 0} ,
H2 :=

{

ψ ∈ L2([ǫmin, ǫmax] × Z × S2), s.t. ‖ψ‖H2 < ∞, ‖ψ‖b−
= 0

and ‖ψ‖ǫmax = 0} .

Choose the bilinear form

B(ψ, λ) = (−ρ∂ǫ(Sψ) + Ω.∇xψ + ρ(Pel −Gel −G)(ψ), λ)hi .

Adapting the computations of the proof of Proposition 1.6 leads to

(−ρ∂ǫ(Sψ), λ)hi ≤ α‖∂ǫψ‖i‖λ‖i,
(Ω.∇xψ, λ)hi ≤ ‖h‖∞‖Ω.∇xψ‖i‖λ‖i,

((Pel −Gel −G)(ψ), λ)hi ≤ β‖ψ‖i‖λ‖i,
|B(ψ, λ)| ≤ C1‖ψ‖H1‖λ‖H2 ,
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with

C1 = min(1, α, β),

α ≥ max
x∈Z

ρ(x) max
ǫ∈[ǫmin,ǫmax]

|h(ǫ)S(ǫ)|,

β ≥ max
x∈Z

ρ(x) max
ǫ∈[ǫmin,ǫmax]

[
|h(ǫ)S′(ǫ)| + max(f1(ǫ), f2(ǫ))

]
,

f1(ǫ) = h(ǫ)
∫

S2

∫ ǫmax

ǫ
σ(ǫ′, ǫ,Ω′.Ω)dǫ′dΩ′,

f2(ǫ) =
∫

S2

∫ ǫ

ǫmin

h(ǫ′)σ(ǫ, ǫ′,Ω.Ω′)dǫ′dΩ′.

For the coercivity of B, using a product rule and an integration by part
leads to write

(−ρ∂ǫ(Sψ), ψ)hi = (−S′, hψ2)i + (−∂ǫ(ψ), hSψ)i,

(−ρ∂ǫ(Sψ), ψ)hi = (−∂ǫ(Shψ2))i + (Sψ, ∂ǫ(hψ))i
= (−∂ǫ(Shψ2))i + (Sψ2, h′)i + (Shψ, ∂ǫ(ψ))i,

and therefore

(−ρ∂ǫ(Sψ), ψ)hi =
1
2

[

(−ρ(Shψ2))ǫmax − (−ρ(Shψ2))ǫmin

+(ψ2, ρ(Sh′ − hS′))i
]

=
1
2

[

(ρ(Shψ2))ǫmin + (ψ2, ρ(Sh′ − hS′))i
]

. (1.59)

Using a Cauchy-Schwartz inequality as in (1.51) leads to

(ρG(ψ), ψ)hi ≤
∫

Z
ρ(x)

∫

S2

∫ ǫmax

ǫmin

max(f1(ǫ), f2(ǫ))ψ2(ǫ, x,Ω)dǫdΩdx. (1.60)

Writig together (1.59) and (1.60) leads to the coercivity of B under the condition
(1.57). The rest of the proof is identical to the one of Proposition 1.6. �

Finally this can also be proven when using the Fokker-Planck equation with
linear Boltzmann gain term.

Proposition 1.8 (Well-posedness of a LBFP equation)
Consider the problem







−ρ∂ǫ(Sψ) + Ω.∇xψ −ρT∆Ωψ − ρG(ψ) = q
in [ǫmin, ǫmax] × Z × S2,

ψ|Γ− = ψb on [ǫmin, ǫmax] × Γ−,
ψ(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2,

(1.61)

where G is a linear Boltzmann gain term of the form (1.13).
Suppose that the density ρ, the cross section σ, the stopping power S satisfy
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(1.57) and furthermore that the transport coefficient T satisfy

0 < T ∈ C0([ǫmin, ǫmax]), (1.62)

and that

ψb ∈ L2([ǫmin, ǫmax] × Γ−), q ∈ L2([ǫmin, ǫmax] × Z × S2),

then the problem (1.61) has a unique solution ψ satisfying

ψ ∈ L2([ǫmin, ǫmax] × Z × S2),

−ρ∂ǫ(Sψ) + Ω.∇xψ − ρT∆Ωψ ∈ L2([ǫmin, ǫmax] × Z × S2),

ψ|[ǫmin,ǫmax]×Γ+ ∈ L2([ǫmin, ǫmax] × Γ+), ψ(ǫmin, ., .) ∈ L2(Z × S2).

Proof This result can be obtained by adapting the proof of Propositions 1.6
and 1.7 . �

Using the theory of evolution equations, i.e. here the Hille-Yosida theorem (see
e.g. [32, 4]), one may obtain a better regularity of the solution and its non-negativity
under the conditions

0 ≤ ψb, 0 ≤ q.

In the rest of the manuscript, the non-negativity of the solution is always assumed.

1.5.5 Well-posedness of the system of transport equa-
tions

Those three lemma lead to the existence of a solution to the problem (1.11).

Theorem 1.3 Consider the problem (1.11) with the initial-boundary conditions

{

ψγ |Γ− = ψγb ≥ 0, ψe|Γ− = ψeb ≥ 0,
ψγ(ǫmax, x,Ω) = ψe(ǫmax, x,Ω) = 0.

(1.63)

and where the electrons collision operator Qe→e is the LB collision term (1.14d)
or the LBCSD one (1.34) or the LBFP one (1.36).

Then this problem has a unique solution (ψγ , ψe) satisfying

(ψγ , ψe) ∈ (L2([ǫmin, ǫmax] × Z × S2))2,

Ω.∇xψγ − ρQγ→γ(ψγ) ∈ L2([ǫmin, ǫmax] × Z × S2),

Ω.∇xψe − ρ(Qe→e(ψe) +Qγ→e(ψγ)) ∈ L2([ǫmin, ǫmax] × Z × S2),

(ψγ , ψe)|[ǫmin,ǫmax]×Γ+ ∈ (L2([ǫmin, ǫmax] × Γ+))2,

ψe(ǫmax, ., .) ∈ L2(Z × S2).
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Proof One first remarks that the equations for photons and electrons are de-
coupled. One can first solve the equation for the photons to obtain ψγ and
then use it to compute Gγ→e(ψγ) which is simply a source term in the electron
equation.

The equation for the photons has the form (1.46) and under the constraints
(1.47) on the cross sections σγ→γ and σT,γ , one obtains the existence of a unique
solution ψγ ∈ L2([ǫmin, ǫmax] × Z × S2) from Proposition 1.6.

One verifies that Gγ→e(ψγ) ∈ L2([ǫmin, ǫmax] × Z × S2) as long as ψγ ∈
L2([ǫmin, ǫmax] × Z × S2).

When using a LB collision term (1.14d), under the constraints (1.47) on the
cross sections, one may use Proposition 1.6 to obtain the result.

When using a LBCSD collision term (1.34), under the constraints (1.57a)
and (1.57b) on the cross sections and the stopping power satisfy, one may use
Proposition 1.7 to obtain the result.

When using a LBFP collision term (1.36), under the constraints (1.57a),
(1.57b) and (1.62) on the cross sections, the stopping power and the transport
coefficient, one may use proposition 1.8 to obtain the result. �

1.5.6 Deposited dose

The function of interest in medical physics is the quantity of energy deposited per
unit of mass, locally in space, by the system of transported particles, so-called
dose D(x). The biological impact, e.g. for the linear-quadratic model ([30]) the
proportion of cells surviving to the treatement, is assumed to be a known function
of this dose. This quantity of energy transfered to the medium is the quantity of
energy lost by the system of particles. Based on the collision operators, one can
obtain the dose by computing a global balance of energy. It reads

D(x) =
∫ ǫmax

ǫmin

∫

S2
−ǫ [Qγ→γ(ψγ) +Qγ→e(ψγ)

+Qe→γ(ψe) +Qe→e(ψe)] (ǫ, x,Ω)dΩdǫ.

When using a linear Boltzmann collision operator for the collisions e → e, using
(1.17) and (1.25) leads to simplify the dose into

D(x) =
∫ ǫmax

ǫmin

∫

S2

[∫ ǫ

ǫB

∫

S2
(ǫ− ǫ′)σC,γ(ǫ, ǫ′,Ω.Ω′) (1.64)

+ ǫ′σC,e(ǫ, ǫ′,Ω.Ω′) dΩ′dǫ′
]
ψγ(ǫ, x,Ω)

+
[∫ ǫ

ǫB

∫

S2
(ǫ− ǫ′)σM,1(ǫ, ǫ′,Ω.Ω′)

+ ǫ′σM,2(ǫ, ǫ′,Ω.Ω′) dΩ′dǫ′
]
ψe(ǫ, x,Ω)dΩdǫ.

In the formula (1.64), one can identify the stopping power S defined in (1.35b), and,
therefore, when considering a LBCSD operator (1.34) or LBFP operator (1.35a),
the formula for the dose is the same.

Another method to compute the dose consists in computing the energetic balance
in a spatial cell Ch centered in x of radius h. Then having h tends to zero provides

Mathematical modelling for dose deposition in photontherapy 39



1.5. Well-posedness of the kinetic equations

another definition of the quantity of energy deposited at point x. The flux of energy
on the boundary ∂Ch is ǫΩψ, then using the divergence theorem leads to

D(x) = lim
h→0

1
Mass(Ch)

∫ ǫmax

ǫmin

∮

∂Ch

ǫ(Ω.n)ψ(x, ǫ,Ω)dS(x)dΩdǫ

= lim
h→0

1
Mass(Ch)

∫ ǫmax

ǫmin

∫

S2

∫

Ch

ǫΩ.∇xψ(ǫ, x,Ω)dxdΩdǫ

=
∫ ǫmax

ǫmin

∫

S2

ǫ

ρ(x)
Ω.∇xψ(ǫ, x,Ω)dΩdǫ,

where n(x) is the outgoing normal to ∂Ch at point x, dS(x) is the Lebesgue measure
on the boundary of the cell ∂Ch (i.e. on rectangles) and Mass(Ch) is the mass of
particles of the medium contained in Ch, i.e.

Mass(Ch) =
∫

Ch

ρ(x)dx.

Remark that both definitions of the dose are equivalent according to (1.11).
In order to compare the dose obtained with different methods, it is often con-

venient to normalize the dose with the maximum dose, so-called Percentage Depth
Dose (PDD)

PDD(x) =
D(x)

max(D)
.

1.5.7 Reduction to 1D problems

As a first approach, it is often easier and more convenient to start studying one
dimensional problems instead of three dimensional ones. One dimensional problems
correspond here to the transport of particles in slab geometry. In 1D, (1.11) turns
into

µ∂xψγ(ǫ, x, µ) = ρ(x) (Qγ→γ(ψγ) +Qe→γ(ψe)) (ǫ, x, µ), (1.65a)

µ∂xψe(ǫ, x, µ) = ρ(x) (Qe→e(ψe) +Qγ→e(ψγ)) (ǫ, x, µ), (1.65b)

with the collision operator in (1.14) and where the gain terms proposed in (1.13) in
1D are replaced by

Gα→β(ψα)(ǫ, x, µ) =
∫ ǫmax

ǫ

∫ +1

−1
σ1D
α→β(ǫ′, ǫ, µ′, µ)ψα(ǫ′, x, µ′)dµ′dǫ′,

σ1D
α→β(ǫ′, ǫ, µ′, µ) =

∫

φ∈[0,2π]
σα→β(ǫ′, ǫ, µ′µ+

√

1 − µ′2
√

1 − µ2 cosφ)d(cosφ),

the loss term are unchanged (i.e. given by (1.12)). The differential and total cross
sections are defined in Subsections 1.4.2. The approximations of the linear Boltz-
mann operator in 1D leads to write the LBCSD (1.34) and the LBFP (1.35a) oper-
ators

QLBCSD(ψ)(ǫ, x, µ) = [∂ǫ(Sψ) + (Gel − Pel)(ψ)] (ǫ, x, µ), (1.65c)

QLBFP (ψ)(ǫ, x, µ) =
[

∂ǫ(Sψ) + ∂µ
(

(1 − µ2)∂µψ
)]

(ǫ, x, µ). (1.65d)
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1.6 Conclusion

The aim of the present thesis is to propose a numerical approach for computing the
dose (1.64) and eventually to optimize this dose.

The model (1.11) with the different collision operators is the fundation of the
numerical methods for dose computation and optimization in this manuscript.

However, discretizing directly such an equation leads to numerical methods (typ-
ically discrete ordinate methods, see e.g. [22]) that require very large computational
ressources due to the high dimensionality of (1.11).

In order to reduce these computational costs, the method of moments is intro-
duced in the next part. This method provides lower dimensional models. Part III
presents numerical methods adapted to such moment models which are shown to
require less computational power than some reference methods.
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Chapter 2

Moment models

2.1 Introduction

The method of moments is used in a very large of physics. It was first used for
linear transport equations in astrophysics ([10, 11]) and in radiative transfer ([12],
see also e.g. [35, 14, 30, 24, 8, 6] for more recent applications). It has been afterwhile
applied in a large range of fields of physics, such as in fluid dynamics, particularily
for rarefied gas dynamics (see e.g. [20, 31, 28, 34, 21]), in quantum mechanics with
application to the study of the semi-conductors (see e.g. [3, 36, 25]) and in plasma
physics with application for the inertial or magnetic confinement fusion (see e.g.
[32, 33, 22, 23, 16]).

The method of moments is a type of model reduction of kinetic equations. The
purpose of this method is to reduce of the number of degrees of freedom, i.e. the
number of variables. In practice, it consists in studying some integrals, afterward
called moments, of the unknowns ψγ and ψe instead of the fluences themselves.
As those moments depend on less variables than the fluences, their computation
typically requires less numerical efforts. However the method of moments can also
be used as a numerical method to discretize the angular dependencies Ω, i.e. when
studying high order moments (see e.g. [9, 27, 2, 1, 26, 7]).

Moment models are applied in such a diverse range of physical problems because
they preserve the major properties of the underlying kinetic models. In particu-
lar, the derivation of the moment models described in this manuscript focuses on
hyperbolicity, positivity and entropy dissipation.

Although, several issues emerge when deriving those models. In this chapter, the
derivation of the angular moment models is presented and illustrated through the
extraction of the moments of the kinetic equation (1.11). In the next two chapters,
two of the problems emerging from the moment extraction are studied.

In order to simplify some notations and to exhibit properties of the moment
method in this chapter, the following kinetic equations and their moments are also
studied

in 1D: ∂tψ+∂x F (ψ) = C(ψ), F (ψ) =µψ (2.1a)

in 3D: ∂tψ+∇x.F (ψ) = C(ψ), F (ψ) =Ωψ (2.1b)

and C(ψ) is a collision operator which satisfies certain properties that will be spec-
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ified later.

2.2 Angular moment extraction

First, the following notations are defined.

2.2.1 In 1D

In order to simplify the writing and/or the computations, 1D problems are often
studied.

Notation 2.1 The integral of a function ψ over all cosangles µ ∈ [−1,+1] is
denoted

〈ψ〉 =
∫ +1

−1
ψ(µ)dµ.

Moments, in 1D, are defined by

Definition 2.1 (a) Moment of order i:
The angular moment ψi of order i of a function ψ is given by

ψi =
〈

µiψ
〉

.

(b) Vector of moments:
Suppose an independent family of polynomials of the components of µ ∈
[−1,+1] ranged into a vector m(µ). The vector ψ of moments of a func-
tion ψ according to m is

ψ = 〈mψ〉 .

The vectors, and especially the moments vectors are written in bold.

Example 2.1 Consider ψ ∈ L1([−1, 1]), then

ψ0 =
∫ +1

−1
ψ(µ)dµ, ψ1 =

∫ +1

−1
µψ(µ)dµ, ψ2 =

∫ +1

−1
µ2ψ(µ)dµ.

Chose for instance m(µ) = (1, µ, µ2) then

ψ =
∫ +1

−1
m(µ)ψ(µ)dµ = (ψ0, ψ1, ψ2).

2.2.2 In 3D

For 3D problems, the following notations are used.
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Notation 2.2 For convenience, the integral of a function ψ over all directions
Ω ∈ S2 is denoted

〈ψ〉 =
∫

S2
ψ(Ω)dΩ,

as in 1D. In case of ambiguity, the integral notation is used.

In 3D, moments are commonly ranged into tensors or vectors.

Definition 2.2 (a) Moment of order i (tensorial form):
The angular moment ψi of order i of a function ψ is given by

ψi =
〈

Ω⊗iψ
〉

, Ω⊗i = Ω ⊗ · · · ⊗ Ω
︸ ︷︷ ︸

i times

,

where ⊗ refers to the tensor product, and Ω⊗i is the i-th power of Ω
according to the tensor product. The moments under tensorial form are
always written with a superscript. The components of a moment ψi is
denoted by adding subscripts, e.g.

ψ2
i,j = 〈ΩiΩjψ〉 .

(b) Vector of moments:
Suppose an independent family of polynomials of the components of Ω ∈
S2 ranged into a vector m(Ω). The vector ψ of moments of a function ψ
according to m is

ψ = 〈mψ〉 .

When m is a vector composed of all monomials of degree i, one can pass from
one notation to the other by simply reodering the components of ψ into tensorial
form.

Example 2.2 Consider ψ ∈ L1(S2), then

ψ0 =
∫

S2
ψ(Ω)dΩ, ψ1

i =
∫

S2
Ωiψ(Ω)dΩ, ψ2

i,j =
∫

S2
ΩiΩjψ(Ω)dΩ = ψ2

j,i

ψ1 =
∫

S2
Ωψ(Ω)dΩ =

(

ψ1
1, ψ

1
2, ψ

1
3

)T
,

ψ2 =
∫

S2
Ω ⊗ Ωψ(Ω)dΩ =






ψ2
1,1 ψ2

1,2 ψ2
1,3

ψ2
1,2 ψ2

2,2 ψ2
2,3

ψ2
1,3 ψ2

2,3 ψ2
3,3




 .

Chose for instance

m(Ω) = (Ω1, Ω2, Ω3, Ω2
1, Ω1Ω2, Ω2

2, Ω1Ω3, Ω2Ω3, Ω2
3),
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then

ψ =
∫

S2
m(Ω)ψ(Ω)dΩ = (ψ1

1, ψ
1
2, ψ

1
3, ψ

2
1,1, ψ

2
1,2, ψ

2
2,2, ψ

2
1,3, ψ

2
2,3, ψ

2
3,3).

Both notations have advantages that are exploited in the next chapters.
The tensorial notation typically provides a physical meaning to the moments,

e.g.. by analogy with fluid model, ψ0 corresponds to a density of particles and ψ1 to
a flux. Although this notation is redundant, because the components of a moment
tensor are not independent, e.g. the matrix ψ2 is symmetric ψ2

i,j = ψ2
j,i.

The vectorial notation is typically more compact and does not present redun-
dancy as long as the vector m is composed of independent polynomials.

The purpose of the use of moments in this manuscript is to reduce the compu-
tational costs compared to direct discretization of a kinetic equation. This can be
illustrated by the following simple computation.

Example 2.3 Suppose that a fluence ψ(ǫ, x,Ω) is discretized with Nǫ = 100
cells in energy, Nx = 500 cells in position and NΩ = 128 cells in direction. As
a comparison, consider a system of four moments (corresponding e.g. to M1

model in 3D, see below Chapter 4 Section 4.5) with the same number of cells
in energy and position. Comparing the degrees of freedom for the kinetic and
moment systems reads

Nkinetic = Nǫ ×Nx ×NΩ = 6.4 × 106,

Nmoments = 4 ×Nǫ ×Nx = 2 × 105 =
Nkinetic

32
.

The kinetic system has more degrees of freedom than the moment system when
the number of moments studied is lower than NΩ.

2.3 Moment equations

One obtains equations for the moments ψi by extracting the moments of a kinetic
equation. Those equations are computed here for 3D problems. The 1D moment
equations can easily be computed using the same method. First the moments of the
kinetic equations are computed (in Subsections 2.3.1 and 2.3.2), then the moments
of the different parts of the collision operators are computed in Subsections 2.3.3 to
2.3.5 and gathered in Subsection 2.3.6.

2.3.1 Moments of the toy kinetic equation

Extracting the moments of (2.1) reads
under tensorial form

∂tψ
i + ∇x.ψ

i+1 = Ci, (2.2a)
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or under vectorial form

∂tψ + ∇x.F = C, (2.2b)

F = 〈Ω ⊗ m(Ω)ψ(ǫ, x,Ω)〉 .

Here Ci and C are the moments of the collision operator C(ψ) under tensorial and
vectorial form.

2.3.2 Moments of the electron and photon tranport equa-
tions

Extracting the moments of (1.11) reads
under tensorial form

∇x.ψ
i+1
γ (x, ǫ) = ρ(x)

[

Qiγ→γ(ψiγ) +Qie→γ(ψie)
]

(x, ǫ), (2.3a)

∇x.ψ
i+1
e (x, ǫ) = ρ(x)

[

Qie→e(ψ
i
e) +Qiγ→e(ψ

i
γ)
]

(x, ǫ), (2.3b)

or under vectorial form

∇x.Fγ(x, ǫ) = ρ(x) [Qγ→γ(ψγ) + Qe→γ(ψe)] (x, ǫ), (2.3c)

∇x.Fe(x, ǫ) = ρ(x) [Qe→e(ψe) + Qγ→e(ψγ)] (x, ǫ). (2.3d)

In the next subsections, the moments of each part of the collision operators Qα→β

are exhibited.

2.3.3 Moments of a linear Boltzmann loss term

Generically, the moments of a generic linear Boltzmann loss term P (1.12) based on
a total cross section σT read

P i(ψi)(ǫ, x) = σT (ǫ)ψi(ǫ, x), P(ψ)(ǫ, x) = σT (ǫ)ψ(ǫ, x). (2.4)

2.3.4 Moments of a linear Boltzmann gain term

Here the moments of a generic linear Boltzmann gain term (1.13) for inelastic and
elastic scattering, i.e. based on generic cross sections σ and σel, are computed.
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Inelastic gain term

Similarily, the moments of a generic linear Boltzmann gain term G based on a
differential cross section σ read

G0(ψ0)(ǫ, x) =
∫ ǫmax

ǫ
σ0(ǫ′, ǫ)ψ0(ǫ′, x)dǫ′, (2.5a)

G1(ψ1)(ǫ, x) =
∫ ǫmax

ǫ
σ1(ǫ′, ǫ)ψ1(ǫ′, x)dǫ′, (2.5b)

G2(ψ2)(ǫ, x) =
∫ ǫmax

ǫ

[

σ0 − σ2

2
(ǫ′, ǫ)ψ0(x, ǫ′)Id

+
3σ2 − σ0

2
(ǫ′, ǫ)ψ2(x, ǫ′)

]

dǫ′, (2.5c)

G(ψ)(ǫ, x) =
∫ ǫmax

ǫ
s(ǫ′, ǫ)ψ(x, ǫ′)dǫ′, (2.5d)

where σi are moments of σ according to the last variable

σi(ǫ′, ǫ) = 2π
∫ +1

−1
µiσ(ǫ′, ǫ, µ)dµ, (2.5e)

and s is a matrix the components of which are linear combinations of the moments
σi. See Appendix 2.A.1 for the computation of the matrix s.

Elastic gain term

For elastic effects (e.g. for the present problem, Mott effect (1.22) is elastic), the
moments of an elastic linear Boltzmann gain term based on a generic cross section
σel read

G0
el(ψ

0)(ǫ, x) = σ0
el(ǫ)ψ

0(ǫ, x), (2.6a)

G1
el(ψ

1)(ǫ, x) = σ1
el(ǫ)ψ

1(ǫ, x), (2.6b)

G2
el(ψ

2)(ǫ, x) =
σ0
el − σ2

el

2
(ǫ)ψ0(x, ǫ)Id+

3σ2
el − σ0

el

2
(ǫ)ψ2(x, ǫ), (2.6c)

Gel(ψ)(ǫ, x) = sel(ǫ).ψ(x, ǫ). (2.6d)

2.3.5 Moments of a Fokker-Planck operator

The moments of a Fokker-Planck operator (1.35a) read

Q0
FP (ψ0)(ǫ, x) = ∂ǫ(Sψ0)(ǫ, x), (2.7a)

Q1
FP (ψ1)(ǫ, x) = ∂ǫ(Sψ1)(ǫ, x) − 2T (ǫ)ψ1(ǫ, x), (2.7b)

Q2
FP (ψ2)(ǫ, x) = ∂ǫ(Sψ2)(ǫ, x) + 2T (ǫ)

[

tr(ψ2)Id− 3ψ2
]

(ǫ, x), (2.7c)

QiFP (ψi)(ǫ, x) = ∂ǫ(Sψ2)(ǫ, x) + T (ǫ)(∆Ωψ)i(ǫ, x), (2.7d)

QFP (ψ)(ǫ, x) = ∂ǫ(Sψ)(ǫ, x) + T (ǫ)MFPψ(ǫ, x), (2.7e)

where the matrix MFP is computed in Appendix 2.A.2.
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2.3.6 Moments of the full collision operator

The moments of the collision operators (1.14) for photon and electron transport
described in Chapter 1 can be computed by gathering the moments of the collision
operators defined in the previous subsections.

In tensorial form

The moments of the collision operators (1.14) under tensorial form read

Qiγ→γ(ψiγ) = [GiC,γ − P iC ](ψiγ), (2.8a)

Qiγ→e(ψ
i
γ) = GiC,e(ψ

i
γ), (2.8b)

Qie→γ(ψie) = 0, (2.8c)

Qie→e(ψ
i
e) = [GiM,1 +GiM,2 +GiMott − P iM − P iMott](ψ

i
e), (2.8d)

where GiC,γ , GiC,e, G
i
M,1 and GiM,2 have the form (2.5), GiMott the form (2.6), and

P iC , P iM and P iMott have the form (2.4).
At the moment level, the CSDA leads to

Qie→e(ψ
i
e) ≈ QiLBCSD(ψie) = ∂ǫ(Sψie) + (GiM,2 +GiMott − P iMott)(ψ

i
e). (2.9)

At the moment level, the FP approximation leads to

Qie→e(ψ
i
e) ≈ QiLBFP (ψie) = ∂ǫ(Sψie) +

(

T (∆Ωψe)i +GiM,2

)

(ψie). (2.10)

In vectorial form

The moments of the collision operators (1.14) under vectorial form read

Qγ→γ(ψγ) = [GC,γ − PC](ψγ), (2.11a)

Qγ→e(ψγ) = GC,e(ψγ), (2.11b)

Qe→γ(ψe) = 0, (2.11c)

Qe→e(ψe) = [GM,1 + GM,2 + GMott − PM − PMott](ψe), (2.11d)

where GC,γ , GC,e, GM,1 and GM,2 have the form (2.5), GMott the form (2.6),
and PC, PM and PMott have the form (2.4).
At the moment level, the CSDA leads to

Qe→e(ψe) ≈ QLBCSD(ψe) = ∂ǫ(Sψe) + (GM,2 + GMott − PMott)(ψe). (2.12)

At the moment level, the FP approximation leads to

Qe→e(ψe) ≈ QLBFP(ψe) = ∂ǫ(Sψe) + (QFP + GM,2)(ψe). (2.13)

The moments of a 1D function
〈
µiψ

〉
can be seen as the first component of a moment

of a 3D function
〈
Ωi

1ψ
〉
, and can be easily computed from (2.8) and (2.11).
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Remark 2.1 The moments of the LBCSD and the LBFP operators are iden-
tical up to order 1. Indeed, according to the definition (1.35c) of the transport
coefficient T and the definition (2.5e) of the moments of the differential cross
section σi, one has

0 = σT,Mott(ǫ) − σ0
Mott(ǫ),

2T (ǫ) = σT,Mott(ǫ) − σ1
Mott(ǫ).

Injecting it in (2.10) reads

Q0
LBFP (ψ0

e) = ∂ǫ(Sψ0
e) +G0

M,2(ψ0
e)

= ∂ǫ(Sψ0
e) + (σ0

Mott − σT,Mott)ψ0
e +G0

M,2(ψ0
e) = Q0

LBCSD(ψ0
e),

Q0
LBFP (ψ1

e) = ∂ǫ(Sψ1
e) − 2Tψ1

e +G1
M,2(ψ1

e)

= ∂ǫ(Sψ0
e) + (σ1

Mott − σT,Mott)ψ0
e +G0

M,2(ψ0
e) = Q1

LBCSD(ψ1
e).

The moments of order higher than one of the LBCSD and the LBFP operators
differ. Therefore moment models of order one can not differentiate a CSD
operator from a FP one.

In the field of radiotherapy, the dose (1.64) is the function of interest. This dose
can be obtained from the moments of ψe and ψγ . Indeed, the equation (1.64) can
be rewritten

D(x) =
∫ ǫmax

ǫmin

[∫ ǫ

ǫB

(ǫ− ǫ′)σ0
C,γ(ǫ, ǫ′) + ǫ′σ0

C,e(ǫ, ǫ
′) dǫ′

]
ψ0
γ(ǫ, x) (2.14)

+
[∫ ǫ

ǫB

(ǫ− ǫ′)σ0
M,1(ǫ, ǫ′) + ǫ′σ0

M,2(ǫ, ǫ′) dǫ′
]
ψ0
e(ǫ, x)dǫ.

Therefore, the angular moment models can be used to compute the dose.

2.4 Conservation properties at the moment level

Based on the Properties and Propositions 1.1 to 1.5 of Section 1.4.2 obtained at the
kinetic level from the conservation properties of the underlying molecular model,
one can easily deduce their equivalent after moment extraction.

2.4.1 Compton scattering

After moment extraction, Property 1.1 turns into the following proposition.

Proposition 2.1 The quantity of photons removed, created, and the quantity
of electrons created by Compton effect are equal at the moment level iff

σT,C(ǫ) =
∫ ǫ

ǫB

σ0
C,γ(ǫ, ǫ′)dǫ′ =

∫ ǫ

ǫB

σ0
C,e(ǫ, ǫ

′)dǫ′. (2.15)

56 T. Pichard



2. Moment models

This follows from Proposition 1.1 (by extracting moments from (1.17)) and can also
be obtained by reproducing the proof of Proposition 1.1.

Similarily the conservation of momentum (i.e. Proposition 1.2) at the moment
level leads to:

Proposition 2.2 The macroscopic momentum in the system is preserved by
Compton effect at the moment level iff

pγ(ǫ)σT,C(ǫ) −
∫ ǫ

ǫB

[
pγ(ǫ′)σ1

C,γ(ǫ, ǫ′) + pe(ǫ′)σ1
C,e(ǫ, ǫ

′)
]
dǫ′ = 0R3 . (2.16)

This follows from Proposition 1.2.
After moment extraction, Property 1.4 turns into the following property

Property 2.1 The moments of the differential cross sections for photons and
electrons are related to each other through the following formulae

σ0
C,e(ǫ

′, ǫ) = σ0
C,γ

(
ǫ′, ǫ′ − ǫ− ǫB

)
, (2.17a)

σ1
C,e(ǫ

′, ǫ) =
pγ(ǫ′)
pe(ǫ)

σ0
C,γ

(
ǫ′, ǫ′ − ǫ− ǫB

)

−pγ(ǫ′ − ǫ− ǫB)
pe(ǫ)

σ1
C,γ

(
ǫ′, ǫ′ − ǫ− ǫB

)
, (2.17b)

σiC,e(ǫ
′, ǫ) =

i∑

j=0

(

i
j

)(
pγ(ǫ′)
pe(ǫ)

)j

(2.17c)

∗
(

−pγ(ǫ′ − ǫ− ǫB)
pe(ǫ)

)(i−j)

σi−jC,γ

(
ǫ′, ǫ′ − ǫ− ǫB

)
.

The first equality can also be interpreted as having equal quantity of outgoing pho-
tons of energy ǫ as of outgoing electrons of energy ǫ′ − ǫ− ǫB. The second and last
equations are obtained from (1.21), by doing a change of variable

µ” =
pγ(ǫ′) − µpe(ǫ

′ − ǫ− ǫB)

pγ(ǫ)
,

and then writing µ”i as a function of µ.

2.4.2 Mott scattering

Similarily as for Compton scattering, the conservation Properties 1.2 can be inter-
preted at the moment level by the following proposition.

Proposition 2.3 The quantity of particles and the energy in the system is
preserved by Mott effect at the moment level iff

σT,Mott(ǫ) = σ̃0
Mott(ǫ). (2.18)

This follows from Proposition 1.3 or by rewriting the proof of Proposition 1.3 at the
moment level.
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2.4.3 Møller scattering

As for Compton effect, at the moment level, Property 1.5 turns into the following
property.

Property 2.2 The moments of the differential cross sections for primary and
secondary electrons are related to each other through the following formulae

σ0
M,2(ǫ′, ǫ) = σ0

M,1

(
ǫ′, ǫ′ − ǫ− ǫB

)
(2.19a)

σ1
M,2(ǫ′, ǫ) =

pe(ǫ
′)

pe(ǫ)
σ0
M,1

(
ǫ′, ǫ′ − ǫ− ǫB

)

−pe(ǫ
′ − ǫ− ǫB)

pe(ǫ)
σ1
M,1

(
ǫ′, ǫ′ − ǫ− ǫB

)
, (2.19b)

σiM,2(ǫ′, ǫ) =
i∑

j=0

(

i
j

)(
pe(ǫ

′)

pe(ǫ)

)j

(2.19c)

∗
(

−pe(ǫ
′ − ǫ− ǫB)

pe(ǫ)

)(i−j)

σi−jM,2

(
ǫ′, ǫ′ − ǫ− ǫB

)
,

The conservation Properties 1.3(a) and 1.3(b) can be translated at the moment
level by

Proposition 2.4 The quantity of electrons removed, and of primary and sec-
ondary electrons created by Møller effect are equal at the moment level iff

σT,M (ǫ) =

∫ ǫ

ǫB

σ0
M,1(ǫ, ǫ′)dǫ′ =

∫ ǫ

ǫB

σ0
M,2(ǫ, ǫ′)dǫ′. (2.20)

The proof is identical to the one of Proposition 2.1.

Proposition 2.5 The macroscopic momentum in the system is preserved by
Møller effect at the moment level iff

0R3 = pe(ǫ)σT,M (ǫ) −
∫ ǫ

ǫB

pe(ǫ
′)(σ1

M,1 + σ1
M,2)(ǫ, ǫ′)dǫ′. (2.21)

The proof is identical to the one of Proposition 2.1.

2.5 Issues with moment models

The method of moments reduces the dimension of the space of the variables for the
problem. Although several problems emerge from the moment extraction. Among
the most important ones, the realizability and the closure problem are presented in
the following subsections and are studied in detail in the next chapters.
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2.5.1 Realizability property

In order to relate more closely the moment model to the associated kinetic model,
one may want to reconstruct a fluence ψ(Ω) based on the solution ψ of a moment
equation. At the kinetic level, a fluence ψ is necessarily non-negative because it
corresponds to a density of particles in a certain variable space (see Definition (1.9)).
Then, based on Definitions 2.2(a) and 2.2(b) of the moments, physically relevant
solutions to moment equations such as (2.2) or (2.3) need to be the moments of a
non-negative function ψ according to the Ω variable (or µ in 1D). This imposes a
condition on the vector of moment afterward called realizability condition.

A vector ψ (or a set of tensors (ψ0, ψ1, ..., ψi)) is called realizable if there exists
at least one non-negative distribution ψ(Ω) such that ψ is composed of moments
of ψ. This theoretical definition is complicated to use for practical applications.
Therefore practical characterization of the realizability property are seeked. The
next chapter is devoted to this problem.

2.5.2 Closure problem

The moment system (2.3) does not have a unique solution. This can easily be
observed because it has more unknowns (ψ0, ψ1, ..., ψN ) and ψN+1 (or ψ and F in
vectorial notation) than equations. Especially, the moments of the solution to the
kinetic equation (1.11) are in the set of the solutions of the moment system (2.3).

In order to have a unique solution to the moment problem (2.3), one needs to
close the system. This closure consists in adding relations in order to have as many
unknowns as equations. Commonly, this closure consists in expressing ψN+1 as a
function of the other moments (ψ0, ..., ψN ). This problem is commonly solved by
reconstructing an ansatz ψR having (ψ0, ..., ψN ) as moments of order 0 to N and
then the closure relation is chosen to be

ψN+1 =
〈

Ω⊗N+1ψR
〉

.

In order to relate the moment model to the underlying kinetic model, one may
chose ψR to be non-negative, and therefore the closure problem is related to the
realizability problem through the construction of this representing ansatz. Chapter
4 is devoted to this problem.

2.5.3 Boundary conditions

The moment extraction procedure of Section 2.2 is well-understood in the interior
x ∈ int(Z). However, defining properly boundary conditions for moment models
corresponding to the underlying kinetic ones remains an open problem.

The kinetic boundary conditions impose incoming fluxes (see Section 1.5), i.e.
ψ is fixed to ψb only on Γ−. As moment extraction is an integration over the whole
unit sphere S2, this does not provide enough information to defined the whole flux
F on the boundary for moment equations.

According to the theory of hyperbolic equations (see e.g. [13, 4, 15]), not all
the flux F needs to be imposed on the boundary and one may define boundary
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conditions for moment equations based on this theory. However, it remains unclear
how to relate such boundary conditions to the underlying kinetic ones in the general
case.

Several approaches are based on the study of the half space problem (see e.g.
[19, 5]). This problem was also adressed e.g. [29, 37, 18] in the particular case of
linear closures (see the PN closures in Subsection 4.7.1 below). Other methods, such
as the partial moment method [38, 17], circumvent this issue.

The problem of boundary conditions for moment equations is not dealt with in
this manuscript. In Part III, boundary conditions for the moment equations are
imposed at the discrete level. They are assumed to approximate the underlying
kinetic boundary conditions accurately enough for the present applications.
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Appendix

2.A Moments of the collision operators

Integrating the collision operators over the angular variable Ω is not trivial. Com-
putations are summarized here. Only the 3D computations are shown, the 1D ones
can be deduced from them.

2.A.1 Moments of a linear Boltzmann gain term

Generically, a kinetic linear Boltzmann gain term can be written

G(ψ)(Ω) =

∫

S2
σ(Ω′.Ω)ψ(Ω′)dΩ′,

where the x and ǫ variables are removed because they can be seen as parameters in
this equation.

Moment tensors

By using the change of variable Ω” = RTΩ where the rotation R is such that
Ω′R = e1, the moments of order 0 and 1 of G(ψ) in tensorial notation reads

G0(ψ)(Ω) =

∫

S2

∫

S2
σ(Ω′.Ω)ψ(Ω′)dΩ′dΩ

=

∫

S2

∫

S2
σ(Ω′.Ω)dΩψ(Ω′)dΩ′ = σ0ψ0,

G1(ψ)(Ω) =

∫

S2

∫

S2
Ωσ(Ω′.Ω)ψ(Ω′)dΩ′dΩ

=

∫

S2

∫

S2
Ωσ(Ω′.Ω)dΩψ(Ω′)dΩ′

=

∫

S2
R

∫

S2
Ω”σ(Ω”e1)dΩ”ψ(Ω′)dΩ′

=

∫

S2
Re1σ

1ψ(Ω′)dΩ′ =

∫

S2
Ω′σ1ψ(Ω′)dΩ′ = σ1ψ1,

where

σi = 2π

∫ +1

−1
µiσ(µ)dµ.
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The computation of the moment of order two in tensorial form of this gain term
is presented (corresponding to (2.5c)). Then the computation in vectorial form is
presented, and one can obtains the moment of any order i in tensorial form from it.

Multiplying G(ψ)(Ω) by Ω ⊗ Ω and integrating it over all Ω ∈ S2 yields

G2(ψ)(Ω) =

∫

S2
Ω ⊗ Ω

∫

S2
σ(Ω′.Ω)ψ(Ω′)dΩ′dΩ

=

∫

S2

∫

S2
Ω ⊗ Ωσ(Ω′.Ω)dΩψ(Ω′)dΩ′.

By using the change of variable Ω” = RTΩ where a rotation R is such that Ω′R = e1,
the moments of order 0 and 1 of G(ψ) in tensorial notation reads

∫

S2
Ω ⊗ Ωσ(Ω′.Ω)dΩ =

∫

S2
(RTΩ”) ⊗ (RTΩ”)σ(e1.Ω”)dΩ”

= RT
∫

S2
Ω” ⊗ Ω”σ(e1.Ω”)dΩ”R

= RT
∫

S2






µ”2 µ”
√

1 − µ”2c µ”
√

1 − µ”2s

µ”
√

1 − µ”2c (1 − µ”2)c2 (1 − µ”2)cs

µ”
√

1 − µ”2s (1 − µ”2)cs (1 − µ”2)s2




σ(µ”)dΩ”R,

= 2πRT
∫ +1

−1






µ”2 0 0

0 1−µ”2

2 0

0 0 1−µ”2

2




σ(µ”)dµ”R

= RT (
σ0 − σ2

2
Id+

3σ2 − σ0

2
e1)R

=
σ0 − σ2

2
Id+

3σ2 − σ0

2
Ω ⊗ Ω,

where c = cosφ” and s = sinφ”. This leads to (2.5c).

Moment vector

Multiplying G(ψ)(Ω) by a vector m(Ω) and integrating it over Ω ∈ S2 yields

G(ψ)(Ω) =

∫

S2
m(Ω)

∫

S2
σ(Ω′.Ω)ψ(Ω′)dΩ′dΩ

=

∫

S2

∫

S2
m(Ω)σ(Ω′.Ω)dΩψ(Ω′)dΩ′

Now using the change of variable Ω” = RΩ leads to
∫

S2
m(Ω)σ(Ω′.Ω)dΩ =

∫

S2
m(RTΩ”)σ(e1.Ω”)dΩ”.

Suppose m(Ω) is a linearily independent family generating the set of polynomials of
degree N over the unit sphere S2, then the vector m(RTΩ”) can be written

m(RTΩ”) = A(Ω”)m(Ω′),
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where the components of the matrix A(Ω”) are linear combinations of the compo-
nents of m(Ω”). This matrix can be computed for particular choices of m(Ω), but
there is, a priori, no simple formula general to any degree N .

Therefore one obtains

G(ψ)(Ω) = sψ(Ω),

s =

∫

S2
A(Ω”)σ(e1.Ω”)dΩ”.

The components of the moment of order i (in tensorial form) of a linear Boltz-
mann gain term are the same as the one of a moment vector. One can obtain the
moments of this gain term from those computations.

Example 2.4 For the moments according to m(Ω) = (1,Ω), the matrix s reads

s =

(

σ0 0T
R3

0R3 σ1Id

)

.

For the moments according to

m(Ω) = (Ω1, Ω2, Ω3, Ω2
1, Ω2

2, Ω2
3, Ω1Ω2, Ω1Ω3, Ω2Ω3),

the matrix s reads

s =









σ1Id 0R3×3 0R3×3

0R3×3

σ0 − σ2

2
MR3×3 +

3σ2 − σ0

2
Id 0R3×3

0R3×3 0R3×3

3σ2 − σ0

2
Id









,

where

MR3×3 =






1 1 1
1 1 1
1 1 1




 .

2.A.2 Moments of a Fokker-Planck diffusion operator

Similarily the computation of the moments of the Fokker-Planck agular diffusion
term is shown for moments under vectorial form and in the tensorial form for mo-
ments of order two.

The Fokker-Planck diffusion term reads

∆Ωψ(Ω) = ∂µ
(

(1 − µ2)∂µψ(Ω)
)

+
1

1 − µ2
∂2
φψ(Ω). (2.22)
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Moment vector

Multiplying (2.22) by m(Ω), integrating it over all Ω ∈ S2 and using an integration
by parts leads
∫

S2
m(Ω)∆Ωψ(Ω)dΩ =

∫

S2
m(Ω)

[

∂µ
(

(1 − µ2)∂µψ(Ω)
)

+
1

1 − µ2
∂2
φψ(Ω)

]

dΩ

=

∫

S2

[

∂µ
(

(1 − µ2)∂µm(Ω)
)

+
1

1 − µ2
∂2
φm(Ω)

]

ψ(Ω)dΩ.

Suppose m(Ω) is a linearily independent family generating the set of polynomials of
degree N over the unit sphere S2. By exhibiting the value of

∂µ
(

(1 − µ2)∂µm(Ω)
)

+
1

1 − µ2
∂2
φm(Ω),

one can easily show that this vector is only composed of linear combinations of
m(Ω). This leads to the matrix formulation

[

∂µ
(

(1 − µ2)∂µm(Ω)
)

+
1

1 − µ2
∂2
φm(Ω)

]

= MFPm(Ω),

where the matrix MFP can be computed for any choice of m(Ω), e.g. when m(Ω) =
(1,Ω)

MFPm(Ω) =

(

0 0R3

0R3 −2Id

)

m(Ω),

and when m(Ω) = (Ω1, Ω2, Ω3, Ω2
1, Ω2

2, Ω2
3, Ω1Ω2, Ω1Ω3, Ω2Ω3)

MFPm(Ω) =






−2Id 0R3×3 0R3×3

0R3×3 2MR3×3 − 6Id 0R3×3

0R3×3 0R3×3 −6Id




m(Ω),

MR3×3 =






1 1 1
1 1 1
1 1 1






Again the moments under tensorial form can be deduced from this notation.

Moment tensor

In the special case N = 0 and N = 1, the moment of (2.22) under tensorial notation
reads

∫

S2
∆Ωψ(Ω)dΩ = 0,

∫

S2
Ω∆Ωψ(Ω)dΩ =

∫

S2

[

∂µ
(

(1 − µ2)∂µΩ
)

+
1

1 − µ2
∂2
φΩ

]

ψ(Ω)dΩ,

=

∫

S2
−2Ωψ(Ω)dΩ,

= −2ψ1.
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In the special case N = 2, the moment of (2.22) under tensorial notation reads
∫

S2
Ω ⊗ Ω∆Ωψ(Ω)dΩ =

∫

S2

[

∂µ
(

(1 − µ2)∂µΩ ⊗ Ω
)

+
1

1 − µ2
∂2
φΩ ⊗ Ω

]

ψ(Ω)dΩ,

=

∫

S2
(2Id− 6Ω ⊗ Ω)ψ(Ω)dΩ,

=

∫

S2
(2tr(Ω ⊗ Ω)Id− 6Ω ⊗ Ω)ψ(Ω)dΩ,

= 2tr(ψ2)Id− 6ψ2.
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Chapter 3

Realizability

3.1 Introduction

In order to provide deeper physical meaning to the solution of moment equation,
one aims to relate the solution ψ of moment equation such as (2.3) to an underlying
kinetic fluence ψ.

Among the properties that satisfy a kinetic fluence ψ, this chapter focuses on the
positivity. Indeed, since ψ is a density in the space Z × [ǫmin, ǫmax] × S2, a negative
value of ψ is non-sense as it corresponds to a negative quantity of particles.

The necessity for a density to be positive is well understood. However it becomes
more complicated, after extraction of moments, to determine whether a vector ψ
is the moment vector of a non-negative function ψ. A vector is called realizable
if it is the moment vector of a non-negative function ψ(Ω). The definition of the
realizability property being difficult to use for practical applications, one typically
seeks characterizations.

The study of the realizability property originally emerged in the end of the
nineteenth century. This problem was mentioned by P. L. Chebyshev in 1873 ([8])
and was pushed forward by A. Markov ([21, 22]). However, it is T.-J. Stieltjes
who gave the name "the Moment Problem" ([34]) to the problem of characterizing
whether a vector V is realizable. This field of study was widely developed (see e.g.
with [1, 2, 17, 9, 19] and references therein) after E. Artin solved the 17-th Hilbert
problem ([3, 13])

Nowadays, the "moment problem" refers to the problem of characterizing the
realizability of a vector V when the domain S of integration (for our purpose, S =
[−1, 1] in 1D, and S = S2 in 3D) can be identified to a subset of R. Among
the moment problems, the problems of Hamburger (S = R), Hausdorff (S = [a, b]),
Stieltjes (S = R

+) and Toeplitz (S = S1) were solved and practical characterizations
are available (see e.g. Subsection 3.3.2 and [1, 9, 18]).

Commonly when the number of moments is finite, i.e. the vector ψ ∈ R
N with

N < ∞, the problem is called "truncated moment problem". When the set of inte-
gration S is not restricted to one dimension, such as in the present 3D problem, the
problem is called "the generalized moment problem". No practical characterization
of the realizability property were provided in the general case where the set of inte-
gration S is not one dimensional and for arbitrarily large order N of moments. The
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3.2. Preliminaries

moment problem on compact algebraic varieties (and semi-algebraic varieties), com-
monly called K-moment problem is widely studied ([12, 10, 20, 4]), but only partial
results were obtained for moments on S2. Some of them are recalled in this chapter
and will be used in the next one to study the realizability of moment closures.

3.2 Preliminaries

The truncated moment problem, i.e. the problem of characterizing whether a vector
V is a moment vector of a positive function ψ presents much more difficulties in 3D
as 1D. Although similar methods are used for both problems. A generic workframe
is given for both 1D and 3D problems. The generic variable of integration is written
x and it belongs to a set S, i.e. when studying 1D problems

x = µ ∈ [−1, 1] = S

and for 3D problems
x = Ω ∈ S2 = S.

The set of polynomials of degree less or equal to K is denoted R
K [X] in 1D, or

R
K [X1, X2, X3] in 3D.

3.2.1 The realizability domain

For writing purposes, the definition of the realizability property given here is slightly
different compared to the one given in the introduction, i.e. the underlying function
ψ is chosen to be strictly positive instead of non-negative. However, one can prove
that those two problems are equivalent, e.g. with the work of [23, 5, 6, 7, 15, 31, 14].

The following notations and definitions are used

Notation 3.1 The set of strictly positive L1 functions over a set S is denoted
L1(S)+, i.e. f ∈ L1(S)+ iff

f ∈ L1(S) and ess inf
S

f > 0.

The realizability property is commonly studied for moments under vectorial form
(or under matricial form, see Subsection 3.2.2).

The truncated moment problem yields

Does there exist a function ψ ∈ L1(S)+, such that V = 〈mψ〉? (3.1)

Remark that in 1D or 3D, only moments on the compact sets [−1, 1] and S2 are
studied. Then having ψ ∈ L1(S) is sufficient for the existence of the moment ac-
cording to any polynomial p. Indeed, on a compact S the polynomial p is bounded
by min(p) ∈ R and max(p) ∈ R and so

min(p) 〈ψ〉 ≤ 〈pψ〉 ≤ max(p) 〈ψ〉 .
Therefore 〈pψ〉 exists.
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3. Realizability

Definition 3.1 The realizability domain Rm associated to a vector of polyno-
mials m over S is the set of all realizable moment vectors

Rm :=
{

〈mψ〉 , ψ ∈ L1(S)+
}

. (3.2)

We first prove the following proposition.

Proposition 3.1 If m is a linearily independent family of polynomials over S,
then the realizability domain Rm is open.

Proof Suppose V = 〈mψ〉 ∈ Rm and define

ǫ := ess inf
S

ψ > 0.

Let us exhbibit a neighborhood of V included in Rm.
Define

Vi = 〈mmi〉 .
Simple computations show that the matrix 〈m ⊗ m〉 is symmetric positive defi-
nite, and therefore non-singular. Therefore the family (Vi){i=1,...,Card(m)} of its
column is a basis of RCard(m).

Therefore for all α > 0, the set

V =

{

V + α
∑

i

λiVi, λi ∈] − 1, 1[, i = 1, ..., Card(m)

}

(3.3)

is a neighborhood of V in R
Card(m).

Choose e.g.

α =
ǫ

2Card(m)
> 0.

With this choice of α, one can easily show that

α
∑

i

λimi(x) > −ǫ, ∀x ∈ S, ∀λi ∈] − 1, 1[, i = 1, ..., Card(m).

Therefore, with this choice of α, each vector of the set (3.3) is represented
by a function

ψ̃ = ψ + α
∑

i

λimi ∈ L1(S)

such that ess inf
S

ψ̃ > ǫ − ǫ
2 > 0. Therefore ψ̃ ∈ L1(S)+ and each point of V

is included in Rm. For each point V ∈ Rm, there exists a neighborhood of V
included in Rm. �

In order to study the geometry of the realizability domain, and especially its
boundary ∂Rm, one generally study at a slightly more general problem. By consid-
ering that L1(S)+ is a subset of M(S), the set of the Borel measures on S, one can
generalize the notion of moments.
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Example 3.1 Suppose S = [−1, 1] and m(µ) = (1, µ). Consider the sequence
(ψk)k∈N defined by

ψk(µ) =
1

k
√

2π
exp

(

−
(
µ− 1√

2k

)2
)

.

One can verify that ψk is bounded in L1(S) norm by 1. However the sequence
ψk does not converge in L1(S), while the sequence of its moments

∫ +1

−1
(1, µ)ψk(µ)dµ −→

k→∞
(1, 1)

does converge in R
2.

In the sense of measures, ψk converges to a Dirac measure in µ = 1

ψk(µ) −→
k→∞

δ(µ− 1),

and therefore the sequence of moments converges to the moments according to
this measure

∫

m(µ)ψk(µ)dµ −→
k→∞

∫ +1

−1
m(µ)δ(µ− 1) = (1, 1).

This examples is a motivation to extend the notion of moments according to L1

functions to moments according to measures.
Therefore one can generalize the truncated moment problem by looking for a

representing measure γ instead of a positive function ψ ∈ L1(S)+.

The truncated moment problem (according to measures) yields

Does there exist a measure γ such that V =

∫

S
mdγ(x)? (3.4)

This notion of moments according to a measure is required in order to characterize
the boundary of the realizability domain Rm.

In the next sections, the following set is studied.

Definition 3.2 The set Rm
m associated to a vector of polynomials m is defined

by

Rm
m :=

{

V ∈ R
Card(m), s.t. V = lim

k→∞
〈mψk〉 (3.5)

for some bounded sequence ψk in L1(S)+
}

.

Remark that each vector of Rm
m is represented by some measure γ

V ∈ Rm
m ⇒ V =

∫

S
m(x)dγ(x).

According to Definition 3.2 and to Proposition 3.1, the following relations hold
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Rm
m = Rm ∩ R

Card(m), Rm = int(Rm
m), (3.6)

where the superscript Ē refers to the closure of a set E and int(E) refers to the
interior of a set E.

Definition 3.1 of the realizability domain Rm (and the definition of the set Rm
m) is

difficult to apply to practical problems. Instead, one typically aims to characterize
the realizability property by some numerical conditions easier to check. For this
purpose, the following definition is introduced.

Definition 3.3 A convex cone C is a set stable by positive combinations, i.e.
iff

∀(V1,V2) ∈ C2 ∀(α1, α2) ∈ (R∗+)2, α1V1 + α2V2 ∈ C.

The following property offers a first characterization of realizability property.

Property 3.1 The realizability domain Rm and the set Rm
m are convex cones.

Proof Using Definition 3.1 of the realizability property, there exists
ψ1 ∈ L1(S)+ and ψ2 ∈ L1(S)+ such that

V1 = 〈mψ1〉 , V2 = 〈mψ2〉 .

Therefore one obtains

α1V1 + α2V2 = 〈m (α1ψ1 + α2ψ2)〉 ,

where α1ψ1 + α2ψ2 ∈ L1(S)+.
Similar computations hold for Rm

m. �

Remark 3.1 This property is commonly used when constructing numerical schemes
for moment equations in order to prove that such schemes preserve the realiz-
ability property from one step to another.

This characterization is convenient to construct realizable vector. However, in
order to exhibit the realizability property of a vector V, one still requires the knowl-
edge of two realizable vectors V1 and V2, which is a priori not a simpler problem
than the original one (3.1).

Strategy: In order to find practical characterization of the realizability property,
first a necessary condition for a vector to be realizable (Subsection 3.2.2) is seeked.
Then, under this condition, the existence of a representing measure (Sections 3.3
and 3.4) is proven by exhibiting one representing measure.
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3.2.2 The Riesz functional

In the following, we seek necessary conditions for a vector to be realizable. Those
are commonly easy to find. For numerical puprposes, we seek numerical inequality
conditions (because they are easy to check), i.e. we seek a set of N functions
(fi)i=1,...,N such that

V ∈ Rm ⇒ ∀i = 1, ..., N, fi(V) > 0.

For notation purposes, the Riesz functional ([27, 19, 12]) is used. This operator
rearranges the terms of a vector V.

Definition 3.4 (Riesz functional)
Consider a vector m ∈ (R[X])N of N polynomials of x, and a vector V ∈

R
N .

The Riesz functional RV associated to V sends any polynomial p = λm onto

RV(p) = λV. (3.7)

Remark that the Riesz functional associated to V is a linear map from Span(m) to
R.

If the vector V = 〈mψ〉 is the vector of moments of a function ψ ∈ L1(S)+, then
the Riesz functional of p is the moment of ψ according to p

RV(p) = 〈pψ〉 .

In the next sections, the Riesz functional is also applied to matrices of polyno-
mials. The Riesz functional is simply applied to each component of such a matrix

RV(M)i,j = RV(Mi,j).

Example 3.2 In 1D, consider the vector ψ = (ψ0, ψ1, ψ2) ∈ R
3, and the

vector of monomials m(µ) = (1, µ, µ2). The Riesz function according to the
vector ψ of the polynomial

p(µ) = 1 + 3µ− µ2

reads

Rψ(p) = Rψ(1) + 3Rψ(µ) − Rψ(µ2)

= ψ0 + 3ψ1 − ψ2 .

In 3D, consider the vector

ψ = (ψ0, ψ1
1, ψ

1
2, ψ

1
3, ψ

2
1,1, ψ

2
1,2, ψ

2
2,2, ψ

2
1,3, ψ

2
2,3, ψ

2
3,3) ∈ R

10,

and choose the vector of monomials m(Ω) = (1,Ω1,Ω2,Ω3). The Riesz func-
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tional according to ψ of the matrix m ⊗ m reads

Rψ(m ⊗ m) = Rψ








1 Ω1 Ω2 Ω3

Ω1 Ω2
1 Ω1Ω2 Ω1Ω3

Ω2 Ω1Ω2 Ω2
2 Ω2Ω3

Ω3 Ω1Ω3 Ω2Ω3 Ω2
3








= Rψ

(

1 ΩT

Ω Ω ⊗ Ω

)

=








ψ0 ψ1
1 ψ1

2 ψ1
3

ψ1
1 ψ2

1,1 ψ2
1,2 ψ2

1,3

ψ1
2 ψ2

1,2 ψ2
2,2 ψ2

2,3

ψ1
3 ψ2

1,3 ψ2
2,3 ψ2

3,3








=

(

ψ0 (ψ1)T

(ψ1) ψ2

)

.

One can easily observe the following necessary condition.

Proposition 3.2 A vector V is realizable only if the Riesz functional preserves
positivity, i.e.

V ∈ Rm ⇒
(
∀p ∈ Span(m), s.t. p > 0, then RV(p) > 0

)
. (3.8)

Proof Based on the definition of the realizability property

V ∈ Rm ⇒
(
∃ψ ∈ L1(S)+, s.t. V = 〈mψ〉

)
.

Suppose p = λm > 0 is a positive polynomial, then the product pψ > 0 is
positive and therefore the integral

RV(p) = 〈ψp〉 > 0.

�

In Sections 3.3 and 3.4, the condition (3.8) is studied when S = [−1, 1] and S = S2.

3.3 Moment realizability in 1D

This section is devoted to prove Theorems 3.1 and 3.2. This theorem was proven
e.g. in [16, 1, 9] in a slightly different way than presented here. The present proof
is devoted to introduce the 3D problem of the next section and the basics of the
atomic closure presented in [24, 30, 29] and recalled in Chapter 4 Section 4.7.2.

The vector of polynomials m(µ) is chosen to generate all the polynomials of
degree less or equal to N . The vector of monomials of degree up to K is denoted

mK(µ) = (1, µ, ..., µK).

The vector mN is composed of linearily indepent polynomials generating R
N [X].

For simplicity, the following choice of m is made

m = mN .
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3.3.1 Positive polynomials on the interval [−1, 1]

This subsection is devoted to motivate the use of moment matrices.
The condition (3.8) requires knowledge about the set of positive polynomials on

[−1, 1] as the condition RV(p) > 0 needs to be satisfied for all positive polynomials
p of degree less or equal to N .

First the following subset of positive polynomials of degree 2K on [−1, 1] is
defined.

Definition 3.5 A polynomial p ∈ R
2K [X] of degree 2K is a sum of squares if

it has the form

p =
J∑

i=1

p2
i , for some J ∈ N and some (pi){i=1,...,J} ∈ (RK [X])J .

The set of sum of squares of polynomials of degree K is denoted Σ2K [X].

Remark that a square of a polynomial q = λm for some λ ∈ R
Card(m) can be

written

q2 = (λm)2 = λT (m ⊗ m)λ.

Example 3.3 Choose m(µ) = (1, µ). The polynomial

p(µ) = 6 + 6µ+ 2µ2

is a sum of squares, because it can be written e.g.

p(µ) = (1 + µ)2 + 12 + (2 + µ)2 =
3∑

i=1

λTi (m(µ) ⊗ m(µ))λi,

where the coefficients λi read

λ1 = (1, 1), λ2 = (1, 0), λ3 = (2, 1).

Obviously sums of squares are non-negative, and the following characterizations
are a motivation to study moment matrices RV(m ⊗ m).

Proposition 3.3 ([26, 28]) Even case:
All polynomials p ∈ R

2K [X] of degree 2K, strictly positive on [−1, 1] have
the form

p(µ) = p1(µ) + (1 − µ2)p2(µ), (3.9)

where p1 ∈ Σ2K [X] and p2 ∈ Σ2K−2[X] are sums of squares.

78 T. Pichard



3. Realizability

Proposition 3.4 ([26, 28]) Odd case:
All polynomials p ∈ R

2K+1[X] of degree 2K + 1, strictly positive on [−1, 1]
have the form

p(µ) = (1 − µ)p1(µ) + (1 + µ)p2(µ), (3.10)

where p1 ∈ Σ2K [X] and p2 ∈ Σ2K [X] are sums of squares.

The even and odd cases are subcases of both Putinar [26] and Schmüdgen [28]
Positivstellensätze for univariate polynomials.

Propositions 3.3 and 3.4 can be rewritten under matricial form.

Even case:
A polynomial p ∈ R

2K [X] is strictly positive on [−1, 1] iff there exists coefficients
(λ1,i){i=1,...,J} ∈ R

K×J and (λ2,i){i=1,...,J} ∈ R
K−1×J such that

p =
J∑

i=1

[

λ1,i
T (mK ⊗ mK)λ1,i + λ2,i

T
(

(1 − µ2)mK−1 ⊗ mK−1

)

λ2,i

]

.

Odd case:
A polynomial p ∈ R

2K+1[X] is strictly positive on [−1, 1] iff there exists coeffi-
cients
(λ1,i){i=1,...,J} ∈ R

K×J and (λ2,i){i=1,...,J} ∈ R
K×J such that

p =
J∑

i=1

[

λ1,i
T ((1 − µ)mK ⊗ mK)λ1,i + λ2,i

T ((1 + µ)mK ⊗ mK)λ2,i

]

.

Using Proposition 3.2, this leads to writing the following necessary conditions
for a vector to be realizable.

Even case:
A vector V ∈ Rm2K

is realizable only if

RV (mK ⊗ mK) > 0, RV

(

(1 − µ2)mK−1 ⊗ mK−1

)

> 0.

Odd case:
A vector V ∈ Rm2K+1 is realizable only if

RV ((1 − µ)mK ⊗ mK) > 0, RV ((1 + µ)mK ⊗ mK) > 0.

In the next subsections, those conditions are shown to be sufficient for V to be
realizable.

3.3.2 The truncated Hausdorff moment problem

The aim of this subsection is to exhibit the solution of the truncated Hausdorf mo-
ment problem in theorem 3.1 and 3.2, i.e. to give a necessary and sufficient condition
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on matrices to be realizable moment matrices. This results was proven e.g. in [9].
A proof of this theorem is provided in order to exhibit the particular representing
measure (3.30) to realizable vector. This proof provides some understanding on po-
tential representing measures for a moment vector V, especially when V ∈ Rm

m is on
the boundary of the realizability domain. Some of the ideas presented in this section
will be generalized for the multi-D problem and will be used in the next chapter to
construct a realizable closure. Furthermore, the representing measure exhibited in
this subsection can be used to construct an atomic based closure which differs from
the Kershaw closure as described in [16, 24, 30, 29].

The principle of the method consists in exhibiting a measure representing any
vector V satisfying particular constraints. This measure is decomposed into a regular
part, i.e the Lesbesgues measure multiplied by a positive scalar, and a discrete
measure, i.e. a sum of Dirac measures. One also observes that the regular part
vanishes on the boundary of the realizability domain and vectors on the boundary
of the realizability domain can only be represented by a unique measure which is a
sum of Dirac measures.

First the following lemmas characterize potential singularities of the moment
matrices.

Lemma 3.1 (Even case) Suppose V ∈ R
2K such that

RV (mK ⊗ mK) ≥ 0, (3.13a)

RV

(

(1 − µ2)mK−1 ⊗ mK−1

)

≥ 0, (3.13b)

and at least one of those matrices is singular.
Even case 1: In the case when

rank (RV (mK ⊗ mK)) ≤ rank
(

RV

(

(1 − µ2)mK−1 ⊗ mK−1

))

, (3.14)

there exists a polynomial p ∈ R
J [X] of degree J ≤ K with distinct real roots

included in ] − 1, 1[, such that

RV(p2) = 0. (3.15)

Even case 2: In the case when

rank (RV (mK ⊗ mK)) > rank
(

RV

(

(1 − µ2)mK−1 ⊗ mK−1

))

, (3.16)

there exists a polynomial p ∈ R
J [X] of degree J ≤ K− 1 with distinct real roots

included in ] − 1, 1[, such that

RV((1 − µ2)p2) = 0. (3.17)

80 T. Pichard



3. Realizability

Lemma 3.2 (Odd case) Suppose V ∈ R
2K+1 such that

RV ((1 + µ)mK ⊗ mK) ≥ 0, (3.18a)

RV ((1 − µ)mK ⊗ mK) ≥ 0, (3.18b)

and at least one of those matrices is singular.
Odd case 1: In the case when

rank (RV ((1 + µ)mK ⊗ mK)) ≥ rank (RV ((1 − µ)mK ⊗ mK)) , (3.19)

there exists a polynomial p ∈ R
J [X] of degree J ≤ K with distinct real roots

included in ] − 1, 1[, such that

RV((1 − µ)p2) = 0. (3.20)

Odd case 2: In the case when

rank (RV ((1 + µ)mK ⊗ mK)) ≤ rank (RV ((1 − µ)mK ⊗ mK)) , (3.21)

there exists a polynomial p ∈ R
J [X] of degree J ≤ K with distinct real roots

included in ] − 1, 1[, such that

RV((1 + µ)p2) = 0. (3.22)

Proof For the sake of brevity, the proof is written for the Even case 1. The
result in the other cases can be obtained by similar computations.

According to the hypothesis of the lemma and to (3.14), the matrix (3.13a)
is singular. Then there exists λ ∈ R

K\{0RK } such that

λTRV (mK ⊗ mK)λ = RV

(

(λmK)2
)

= 0. (3.23)

Define the polynomial p = λmK ∈ R
K [X]. If several λ ∈ R

K satisfy (3.23), we
choose the one that provides a polynomial p = λmK of lowest degree. In the
following p is proven to have real distinct roots in [−1, 1].

p is real rooted: By contradiction, suppose p has a pair of complex roots,
i.e. it has the form

p = (µ2 + 2bµ+ c2)q with q ∈ R
K−2[X], (b, c) ∈ R

2 s.t. b2 < c.

Computing the Riesz functional of p2 reads

0 = RV

(

(µ2 + 2bµ+ c)2q2
)

= RV

([

(µ+ b)2 +
(

c− b2
)]2

q2
)

= RV

(

(µ+ b)4 q2
)

+ κ1RV

(

(µ+ b)2 q2
)

+ κ2RV

(

q2
)

, (3.24)

κ1 = 2
(

c− b2
)

> 0, κ2 =
(

c− b2
)2
> 0.
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Remark that each polynomial (µ + b)4q2, (µ + b)2q2 and q2 is the square of
a polynomial. Thus, according to (3.13a) each term in (3.24) is non-negative.
Since their sum is zero, each term is zero. In particular RV

(
q2
)

= 0 which
violates the hypothesis that p is the polynomial of lowest degree satisfying (3.23).

p has distinct roots: By contradiction, suppose that one of the roots of p
is a double root, i.e. p has the form

p = λmK = (µ− µ1)2q ∈ R
J [X].

The matrix RV(mK⊗mK) is real symmetric positive semi-definite and therefore
diagonalizable. If λ ∈ R

K is such that

λTRV(mK ⊗ mK)λ = 0,

then one actually has

RV(mK ⊗ mK)λ = 0RK . (3.25)

Multiplying (3.25) by the vector λ2 ∈ R
K such that λ2mK = q leads to write

that

RV ((mKλ2)(mKλ)) = RV

(

q2(µ− µ1)2
)

= 0.

Therefore the polynomial p2 = q(µ − µ1) satisfy (3.23) which violates the hy-
pothesis that p is the polynomial of lowest degree satisfying (3.23)

The roots of p are included in [−1, 1]: By contradiction, suppose that
one of the root µ1 of p is bigger than 1, i.e. p has the form

(µ− µ1)q

with q ∈ R
K−1[X] and µ1 ∈] + 1,+∞[. Computing the Riesz functional of p2

reads

RV

(

(µ− µ1)2q2
)

= κ1RV

(

q2
)

+ κ2RV

(

(1 − µ2)q2
)

+κ3RV

(

(1 − µ)2q2
)

+ κ4RV

(

(1 + µ)2q2
)

,

κ1 = (1 − µ1)2 > 0, κ2 = |1 − µ1| > 0,

κ3 =
|µ1| + µ1

2
≥ 0, κ4 =

|µ1| − µ1

2
≥ 0,

which leads again to RV

(
q2
)

= 0 and violates the hypothesis that p is the
polynomial of lowest degree satisfying (3.23). �

Under the hypothesis of Lemmas 3.1 and 3.2, one can prove the existence of a
representing measure for V.
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Lemma 3.3 (Even case) If V ∈ R
2K satisfies

RV(mK ⊗ mK) ≥ 0, RV

(

(1 − µ2)mK−1 ⊗ mK−1

)

≥ 0,

and such that one of those matrices is singular, then there exists a representing
measure for V.

Lemma 3.4 (Odd case) If V ∈ R
2K+1 satisfies

RV ((1 − µ)mK ⊗ mK) ≥ 0, RV ((1 + µ)mK ⊗ mK) ≥ 0,

and such that one of those matrices is singular, then there exists a representing
measure for V.

Proof The proof is again written for the even case when

rank (RV(mK ⊗ mK)) ≤ rank
(

RV

(

(1 − µ2)mK−1 ⊗ mK−1

))

,

and the other cases can be obtained by reproducing those computations.
Lemma 3.1 provides the existence of a polynomial p ∈ R

J [X] of degree
J ≤ K having J distinct roots (µi){i=1,...,J} in the interval [−1, 1] such that
RV(p2) = 0. Among the possible p, we choose one of lowest degree.

Suppose there exists a measure γ which moments are V, then

∫ +1

−1
p2(µ)dγ(µ) = 0.

Since p2 is non-negative, if such a measure γ exists, its support Supp(γ), i.e. the
intersection of all closed set the measure of which complements is zero, needs
to be included in the set Z(p) of zeros of p

Supp(γ) ⊂ Z(p). (3.26)

The only measures having a union of a finite number of singletons µi for
support have the form

γ =
J∑

i=1

αiδ(µ− µi). (3.27)

Therefore, the rest of the proof consists in proving that there exists a unique
set of coefficients αi > 0 such that the measure (3.26) has V for moments.

The moments according to γ of the form (3.27) read

∫ +1

−1
mK(µ) ⊗ mK(µ)dγ(µ) =

J∑

i=1

αimK(µi) ⊗ mK(µi).
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Then γ is a representing measure for V if non-negative scalars αi can be found
such that

RV(mK ⊗ mK) =
J∑

i=1

αimK(µi) ⊗ mK(µi).

Write VJ the truncation of the vector V up to the J-th component. By
rearranging the terms composing the matrices mK(µi) ⊗ mK(µi) into vector
and removing the redundant terms, one can rewrite this problem

Mα = VJ ,

where M is a Vandermonde matrix, i.e. Mi,j = µj−1
i and α ∈ R

J is the desired
vector of scalars. Vandermonde matrices are known to be invertible as long as
the µi are distinct which is verified here according to Lemma 3.1. It remains to
verify that the coefficients αi ≥ 0 are positive.

Let us define the Lagrange polynomials

qi(µ) =
J∏

j=1
j 6=i

(µ− µj),

then computing the moment of γ according to q2
i reads

RV(q2
i ) = αiqi(µi)

2,

which is strictly positive according to the hypothesis that p is the polynomial
of lowest degree such that RV(p2) = 0. Since the zeros of p are distinct, qi(µi)2

are strictly positive. Therefore the coefficients αi > 0, which leads to the result.
�

This proof provides several information on the representing measure on the boundary
of the realizability domain.

Definition 3.6 Suppose V ∈ Rm
m is represented by a measure

γ =
∑

i

αiδ(µ− µi)

composed only of Dirac measures. Then γ is called atomic representing measure
for V. Each Dirac measure δ(µ− µi) is called an atom.

A atomic representing measure composed of r atoms is called r-atomic rep-
resenting measure.

Remark 3.2 The proof of Lemma 3.3 and 3.4 provides the uniqueness of the
representing measure, which is atomic, under the hypothesis of Lemmas 3.3 and
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3.4 which can be interpreted as requiring that V ∈ ∂Rm
m is on the boundary of

the realizability domain.

With those lemmas, one obtains the following characterization of Rm
m in 1D.

Theorem 3.1 (Truncated Hausdorff moment problem [1, 9]) Even
case:
Consider V ∈ R

2K . The vector V ∈ Rm
m2K

iff

RV(mK ⊗ mK) ≥ 0, RV

(

(1 − µ2)mK−1 ⊗ mK−1

)

≥ 0. (3.28)

Theorem 3.2 (Truncated Hausdorff moment problem [1, 9]) Odd
case:
Consider V ∈ R

2K+1. The vector V ∈ Rm
m2K+1

iff

RV ((1 − µ)mK ⊗ mK) ≥ 0, RV ((1 + µ)mK ⊗ mK) ≥ 0. (3.29)

Proof Necessary condition: Using Propositions 3.2 and 3.3, if V ∈ Rm
m then

(3.28) and (3.29) are satisfied.
Sufficient condition: The sufficiency part is proven by exhibiting one pos-

sible representing measure, i.e. a positive constant multiplied by the Lesbegues
measure plus a sum of Dirac measures.

The proof is again given for the even case. The result for the odd case can
be obtained by adapting the computations.

If one of the matrices (3.28) is singular, the existence of a representing
measure is given by Lemma 3.3.

Suppose that the matrices (3.28) are non-singular, they are therefore strictly
positive according to the hypothesis.

Define V0 the moments according to the Lebesgues measure

V0 =

∫ +1

−1
m(µ)dµ,

and define the functions

W(x) = V0 − xV,

M1(x) = RW(x)(mK ⊗ mK)

= RV0(mK ⊗ mK) − xRV(mK ⊗ mK),

M2(x) = RW(x)

(

(1 − µ2)mK−1 ⊗ mK−1

)

= RV0

(

(1 − µ2)mK−1 ⊗ mK−1

)

− xRV0

(

(1 − µ2)mK−1 ⊗ mK−1

)

.

Remark that M1 and M2 are matrices of linear functions of x ∈ R, in particular
their components are C∞ functions of x. Furthermore, based on the hypothesis
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and on the definition of V0, they satisfy

det(M1(0)) > 0, lim
x→+∞

det(M1(x)) < 0,

det(M2(0)) > 0, lim
x→+∞

det(M2(x)) < 0.

Using the intermediate value theorem, there exists positive scalars x > 0 such
that det(M1(x)) = 0 and/or det(M2(x)) = 0. Write y the minimum of those
values. At that point, one has

M1(y) ≥ 0, M2(y) ≥ 0,

and one of those matrices is singular. According to Lemma 3.3, there exists a
unique representing measure γ for W (y) which has the form

dγ(µ) =
∑

i

αiδ(µ− µi),

where the scalars µi are the zeros of the characteristic polynomial of M1(y) or
M2(y) (the one of minimal dimension or M1(y) if they have the same dimension)
and the coefficients αi are the unique (positive) scalars such that this measure
has W (y) for moments.

Finally one verifies that the following measure

dγ(µ) + ydµ (3.30)

is positive and has V for moments. �

The idea of this atomic decomposition follows from the form of the unique rep-
resenting measure on the boundary ∂Rm

m and from the work of R. Curto and L.
Fialkow ([9, 11, 12, 10]). This representing measure could be used to construct
closure of 1D moment equations.

3.3.3 The realizability condition in 1D

The existence of a representing measure γ for a vector V ∈ int(Rm
m) in the interior

implies the existence of a positive L1([−1, 1])+ representing function ψ according
(3.6). This leads to

Corollary 3.1 Even case:
Consider V ∈ R

2K . The vector V ∈ Rm2K
is realizable iff

RV(mN ⊗ mN ) > 0, RV

(

(1 − µ2)mN−1 ⊗ mN−1

)

> 0. (3.31)

Corollary 3.2 Odd case:
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Consider V ∈ R
2K+1. The vector V ∈ Rm2K+1 is realizable iff

RV ((1 − µ)mN ⊗ mN ) > 0, RV ((1 + µ)mN ⊗ mN ) > 0. (3.32)

The next chapter is devoted to the closure problem. Commonly one aims to
define a closure ψN+1 such that the vector (ψ0, ..., ψN , ψN+1) ∈ RmN+1 is realizable.
Corollaries 3.1 and 3.2 leads to the following requirements.

Corollary 3.3 ([16, 1]) Even case:
Consider the vector V = (ψ0, ..., ψ2K−1, ψ2K) ∈ R

2K and write

V̄ := (ψ0, ..., ψ2K−1, 0)

the vector V with the last component replaced by 0.
The vector V ∈ Rm2K+2 is realizable iff

1. The truncated vector (ψ0, ..., ψ2K−1) ∈ Rm2K−1 is realizable

2. The last component ψ2K is bounded by

−det
(

RV̄

(
mK ⊗ mK

) )

det
(

RV

(
mK−1 ⊗ mK−1

) ) ≤ ψ2K , (3.33a)

ψ2K−2 +
det

(
RV̄

(
(1 − µ2)mK−1 ⊗ mK−1

) )

det
(

RV

(
(1 − µ2)mK−2 ⊗ mK−2

) ) ≥ ψ2K . (3.33b)

Corollary 3.4 ([16, 1]) Odd case:
Consider the vector V := (ψ0, ..., ψ2K , ψ2K+1) ∈ R

2K+1 and write

V̄ := (ψ0, ..., ψ2K , 0)

the vector V with the last component replaced by 0.
The vector V ∈ Rm2K+1 is realizable iff

1. The truncated vector (ψ0, ..., ψ2K) ∈ Rm2K
is realizable

2. The last component ψ2K+1 is bounded by

−ψ2K−det
(

RV̄

(
(1 + µ) mK ⊗ mK

) )

det
(

RV

(
(1 + µ)mK−1 ⊗ mK−1

) ) ≤ ψ2K+1, (3.34a)

ψ2K+
det

(
RV̄

(
(1 − µ) mK ⊗ mK

) )

det
(

RV

(
(1 − µ)mK−1 ⊗ mK−1

) ) ≥ ψ2K+1. (3.34b)

The conditions (3.33a-3.33b) and (3.34a-3.34b) for the moment of order up to
3 have the following form ([16, 24]). By extension, one also observes the following
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condition for scalars to be a moment of order 0 of a positive function.

N=0: 0 < ψ0, (3.35a)

N=1: − ψ0 < ψ1 < ψ0, (3.35b)

N=2:
|ψ1|2
ψ0

< ψ2 < ψ0, (3.35c)

N=3: −ψ2+
(ψ1 + ψ2)2

ψ0 + ψ1
< ψ3 < ψ2 −(ψ1 − ψ2)2

ψ0 − ψ1
. (3.35d)

Finally the realizability domain for the first order moments in 1D is characterized
by

R(1,µ) =
{
(ψ0, ψ1) ∈ R

2, s.t. |ψ1| < ψ0}, (3.36a)

R(1,µ,µ2) =
{
(ψ0, ψ1, ψ2) ∈ R

3, s.t. |ψ1| < ψ0,
|ψ1|2
ψ0

< ψ2 < ψ0}.

(3.36b)

The convex cones (3.36a) and (3.36b) are represented on Fig. 3.1 and 3.2. The first
set is represented in the plan (ψ0, ψ1) ∈ R

2, the second is represented in the plan
(
ψ1

ψ0 ,
ψ2

ψ0

)

∈ R
2.

ψ0

ψ1

R(1,µ)

Figure 3.1: Realizability domain
R(1,µ) for moments of order up to 1
in the space (ψ0, ψ1) ∈ R

2.

ψ2

ψ0

ψ1

ψ0

R(1,µ,µ2)

1

1-1

Figure 3.2: Realizability domain
R(1,µ,µ2) for moments of order up to

2 in the space (ψ
1

ψ0 ,
ψ2

ψ0 ) ∈ R
2.

3.4 Moment realizability in 3D

This section is devoted to introduce results about the realizability domain in 3D
which are used in the next chapter. Here the truncated moment problem on the
unit sphere S2 is focused on.
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3.4.1 Polynomials on S2

Before studying the truncated moment problem, one needs to choose a set of poly-
nomials m defined on S2. Choosing S2 as the set of integration (and as the set of
definition of the polynomials) leads to the following major differences compared to
the 1D case:

1. Choosing Ω ∈ S2 ⊂ R
3 forces us to study multivariate polynomials m(Ω).

Such multivariate polynomials can not be factorized as a product of polyno-
mials of degree one or two.

2. The set of integration S2 is a compact algebraic variety defined by

S2 =
{

Ω ∈ R
3, s.t. 1 − (Ω2

1 + Ω2
2 + Ω2

3) = 0
}

⊂ R
3.

Similarily to the 1D case, one typically aim to choose the vector of polynomials
m such that it is composed of linearily independent polynomials and it generates all
the polynomials of degree less or equal to N . Although, the meaning of "indepen-
dent" and of "generating" is ambiguous for multivariate polynomials on S2. For this
purpose, the following set is defined.

Definition 3.7 Define the polynomial

p0(X1, X2, X3) := 1 − (X2
1 +X2

2 +X2
3 ),

which is zero on S2.
The set IN is the set of polynomials of degree N generated by p0

IN := p0R
N−2[X1, X2, X3] =

{

p p0, p ∈ R
N−2[X1, X2, X3]

}

. (3.37)

First the following proposition provides an additional constraint on vectors to be
realizable.

Proposition 3.5 Consider a vector V ∈ Rm
m, then

RV(IN ) = {0}.

Proof Consider V ∈ Rm, then V is composed of moments of a function ψ ∈
L1(S2)+. All the polynomials of p ∈ IN are zero on S2. Therefore the integral
of their product ∫

S2
p(Ω)ψ(Ω)dΩ = 0

is zero. By continuity, it also holds on the boundary of the realizability domain.
�

This result is illustrated through the following example that will be used in the next
chapter.
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Example 3.4 Consider a vector V ∈ Rm
m, then

RV

(

1 − (Ω2
1 + Ω2

2 + Ω2
3)
)

= 0. (3.38)

Write
ψ0 = RV(1), ψ2 = RV(Ω ⊗ Ω).

Equation (3.38) provides the following relation between ψ0 and ψ2

ψ0 −
(

ψ2
1,1 + ψ2

2,2 + ψ2
3,3)
)

= ψ0 − tr(ψ2) = 0.

The vector m is chosen to be linearily independent in the sense

Span(m) ∩ IN = {0}, (3.39a)

and such that it generates R
N [X1, X2, X3] in the following sense

Span(m) ∪ IN = R
N [X1, X2, X3]. (3.39b)

i.e. m is a linearily independent and generating family modulo IN .
The vector m̃K is defined to be composed of all monomials of degree K is written

m̃K =
(

ΩK
1 , ΩK−1

1 Ω2, ΩK−1
1 Ω3, ΩK−2

1 Ω2
2, ... ,ΩK

3

)

,

and the vector of all monomials of degree K − 1 and K is written

mK = (m̃K−1, m̃K).

The following choice of m is made

m = mN .

Example 3.5 For the first orders N = 1 and N = 2, one has

m1(Ω) = (1, Ω1, Ω2, Ω3) ,

m2(Ω) =
(

Ω1, Ω2, Ω3, Ω2
1, Ω1Ω2, Ω2

2, Ω1Ω3, Ω2Ω3, Ω2
3

)

.

No polynomial of Span(m) can be factorized by p0, therefore this choice of m
satisfy (3.39a). One shows that (3.39b) is satisfied by comparing the dimensions of
Span(m), IN and R

N [X1, X2, X3].

Notation 3.2 After computations, the number of components of the vector mN

is (N + 1)2. It is afterward written

cN := Card(mN ) = (N + 1)2.
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For the problem of moments on S2, positive polynomials are also used. Propositions
3.3 and 3.4 can be generalized into Putinar ([26]) or Schmüdgen ([28]) (see also
Stengle [33]) Positivstellensätze in order to write a positive polynomial p on S2 as a
sum of squares

0 < p on S2 ⇔ p =
∑

i

q2
i . (3.40)

Although for multivariate polynomials, the degree of such a sum of squares repre-
sentation is not bounded by the degree of p, i.e. in (3.40) a priori 2deg(qi) ≤ deg(p)
does not hold ([32, 25]).

Sum of squares are still positive on S2, but there might be some positive poly-
nomials of degree 2K which are not sum of squares of polynomials of degree K.
Remark that Proposition 3.3 was not used in Subsection 3.3.2 and 3.3.3 but only
motivated the use of moment matrices.

3.4.2 Realizability of first orders moments

Some explicit conditions were found for moments on the unit sphere of order up to
one and to two. They recalled here because they will be used in the next chapter.

Realizability condition for moments of order up to one

The realizability condition for moments of order up to one on the unit sphere is
characterized by the following proposition.

Proposition 3.6 ([16]) Consider the vector V ∈ R
c1 and write

ψ0 = RV(1), ψ1 = RV(Ω).

The vector V ∈ Rm
m1

iff

|ψ1| ≤ ψ0. (3.41)

Furthermore, in the equality case, there exists a unique representing measure,
which has the form

γ(Ω) = ψ0δ

(

Ω − ψ1

ψ0

)

,

One can easily see that the condition (3.41) is necessary for V to be in Rm
m1

. This
condition was also proven to be sufficient in [16] by exhibiting the existence of the
following positive representing measure for V

γ(Ω) =
(

ψ0 + |ψ1|
)

δ

(

Ω − ψ1

|ψ1|

)

+
(

ψ0 − |ψ1|
)

δ

(

Ω +
ψ1

|ψ1|

)

.

Here γ is a positive measure as long as (3.41) is satisfied.
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This result leads to the following characterization of the realizability domain
Rm1

Rm1 =
{

(ψ0, ψ1) ∈ R × R
3, s.t. |ψ1| < ψ0

}

. (3.42)

This condition can be interpreted at the physical level by the boundedness of the
fluxes. Remark the similarilty with the 1D condition (3.35b).

Realizability condition for moments of order up to two

The realizability condition for moments of order up to two on the unit sphere is
characterized by the following proposition.

Proposition 3.7 ([16]) Consider the vector V ∈ R
c2 and write

ψ1 = RV(Ω), ψ2 = RV(Ω ⊗ Ω).

The vector V ∈ Rm
m2

iff

ψ0 := tr(ψ2) ≥ 0, (3.43a)

ψ0ψ2 − ψ1 ⊗ ψ1 ≥ 0. (3.43b)

Furthermore, if one of the eigenvalues of (3.43b) is zero, i.e.

∃W ∈ R
3, s.t. W

(

ψ0ψ2 − ψ1 ⊗ ψ1
)

W = 0,

then the support of any representing measure γ for V is in the set of zeros of
the polynomial p := (Ω − ψ1)W , i.e.

Supp(γ) ⊂ Z(p). (3.44)

One verifies that the condition (3.43) is necessary for V to be in Rm
m2

. This condition
was also proven to be sufficient in [16] by exhibiting the existence of one representing
measure for V positive as long as V satisfies (3.43).

This result leads to the following characterization of the realizability domain
Rm2

Rm2 =
{

V ∈ R
c2 , s.t. ψ0ψ2 − ψ1 ⊗ ψ1 > 0

}

. (3.45)

Remark the similarilty with the 1D condition (3.35c).

3.4.3 Partial results for higher order moments

No practical characterization of the realizability condition for high order moments on
the unit sphere S2 is known. This subsection is devoted to (partially) complete the
description of the realizability domain in multi-D and to provide few more results.
Those results do not provide a practical characterization of the realizability property
in the general case but they provide .
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3. Realizability

The necessary conditions for a vector V to be realizable proposed in (3.8) can
be completed.

For instance, one can first remark that any realizable vector V ∈ Rm
m2K

verifies
the following conditions.

Proposition 3.8 If V ∈ Rm
m2K

then

RV(I2K) = {0}, RV(mK ⊗ mK) ≥ 0.

Suppose furthermore that there exists a polynomial 0 ≤ p ∈ R
2K [X1, X2, X3]

non-negative over S2 such that

RV(p) = 0.

Then the support of γ is included in the zero set of p

Supp(γ) ⊂ Z(p).

Proof If V ∈ Rm
m2K

then it has a positive representing measure γ, i.e.

V =

∫

S2
m2K(Ω)dγ(Ω).

Based on the definition of the Riesz functional, for a non-negative polynomial
p ∈ R

2K [X1, X2, X3]

RV(p) =

∫

S2
p(Ω)dγ(Ω) = 0

implies that Supp(γ) ⊂ Z(p).
The equality RV(I2K) = {0} is provided by Proposition 3.5. Any square

of a polynomial is non-negative, and γ is a positive measure. This leads to the
inequality. �

A 1D version of this result was also used in the proof of Lemmas 3.3 and 3.4.
One method to characterize the realizability for arbitrary high order moments

over S2 consists in exhibiting a representing measure having the form of a sum
of Dirac measures. The following method aims to exhibit an atomic representing
measure for a vector V2K ∈ R

c2K composed of 2K + 2 atoms instead of 2K and,
contrarily to the method used to exhibit the measure (3.30) in 1D, this representing
measure is composed only of atoms and has no regular part dΩ. For this purpose,
the following notations are introduced.

Definition 3.8 Consider V2K ∈ R
c2K and write

MK := RV2K (mK ⊗ mK).

The vector V2K (and the associated matrix MK) admits a flat extension V2K+2 ∈
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3.4. Moment realizability in 3D

R
c2K+2 (associated to MK+1 ∈ R

cK+1×cK+1) iff

RV2K+2(m2K) = V2K , rank
(

MK+1
)

= rank
(

MK
)

.

Example 3.6 Choose
m(Ω) = m0(Ω) = 1,

and a vector ψ and its associated matrix M defined by

ψ = 1 ∈ R
c0 , M = Rψ(m0 ⊗ m0) = 1 ∈ R

c0×c0 .

The vector ψ̄ and its associated matrix M̄ defined by

ψ̄ =

(

1,
3

5
,

4

5
, 0,

9

25
,

12

25
,

16

25
, 0, 0, 0

)

,

M̄ = Rψ̄(m1 ⊗ m1) =








1 4
5

3
5 0

4
5

16
25

12
25 0

3
5

12
25

9
25 0

0 0 0 0








are a flat extension of ψ and M . Indeed one can verify that

rank(M) = rank(M̄) = 1, Rψ̄(m0) = ψ = (1).

In order to characterize the realizability of a vector V2K ∈ R
c2K , one may look for

an extension V2K+2 the realizability of which can be proven, e.g. by exhibiting one
representing measure. Typically one seeks an extension that is represented by a sum
of Dirac measures.

Definition 3.9 A r-atomic representing measure for V ∈ Rm
m is a representing

measure γ for V of the form

γ(Ω) =
r∑

i=1

αiδ(Ω − Ωi),

with (αi){i=1,...,r} ∈ (R∗+)r and (Ωi){i=1,...,r} ∈ (S2)r.

The notion of flat extension is implicitly related to the existence of an atomic rep-
resenting measure. The following theorem characterizes the part of the realizability
domain, which is represented by r-atomic measures.

Theorem 3.3 ([12]) Consider V2K ∈ R
c2K and define

r := rank (RV2K (mK ⊗ mK)) .
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3. Realizability

There exists a r-atomic representing measure for V2K iff

RV2K (mK ⊗ mK) ≥ 0

and V2K admits a flat extension V2K+2 satisfying

RV2K+2(I2K+2) = {0}, (3.46a)

RV2K+2(mK+1 ⊗ mK+1) ≥ 0. (3.46b)

Furthermore, this flat extension V2K+2 admits a unique representing measure,
which is r-atomic.

This theorem can be illustrated through Example 3.6. One can verifiy in this ex-
ample that δ

(

Ω.(3
5 ,

4
5 , 0) − 1

)

is a representing measure for ψ and the unique rep-

resenting measure for ψ̄.

Remark 3.3 This theorem provides a method to characterize the realizability
property for even order moments. It can also be used for odd order moments in
the following way.

Consider V2K+1 ∈ R
c2K+1 and write its restriction to the 2K-th order

V2K := RV2K+1(m2K).

There exists a r-atomic representing measure for V2K+1 ∈ Rm
m2K+1

iff there

exists a flat extension V2K+2 of V2K satisfying (3.46) and such that

RV2K+2(m2K+1) = V2K+1.

3.5 Discussion

Due to the positivity of the solution ψ of kinetic equation of the form (2.1) (or (1.11)
with the different collision operators (1.14), (1.34) or (1.36) for electron collisions),
the solution ψ of the moment equations (2.2) (or (2.3) with the different collision
operators (2.11), (2.12) or (2.13) for electron collisions) is expected to be in the
realizability domain Rm.

In this chapter, link were made between the realizability domain and the set of
positive measures over the domain of integration S. However no practical character-
izations were found for arbitrarily large order moments on the unit sphere, and only
partial results were provided, i.e. necessary but a priori not sufficient conditions for
a vector to be realizable.

In practice, for every point of the realizability domain, one can reconstruct a
representing measure on S. This is one common idea to construct the closure of
moment equations, e.g. to compute the flux function F in (2.1). However, as
described in this chapter, reconstructing such a measure (or a L1(S)+ function) is
not an easy task. Especially, the method presented in this chapter is not general
enough and can not be applied to construct representing measure for moments on
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3.5. Discussion

S2 of order more than 2. For practical applications, the closure is often preferred
to be written as an analytical smooth function from Rm

⋗ to R
3×Card(m) in 3D. In

the next chapter, the characterization of the realizability domain in Theorems 3.1
and 3.2 in 1D and in Propositions (3.6) and (3.7) in 3D are exploited in order to
construct analytical approximations of the entropy-based M1 and M2 closures.

96 T. Pichard



Bibliography

[1] N. I. Akhiezer. The classical moment problem. Hafner Publ. Co., 1965.

[2] N. I. Akhiezer and M. G. Krein. Some questions in the theory of moments.
Translations of mathematical monographs. American Mathematical Society,
1974.

[3] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math.
Sem. Hamburg, 5(1):100–115, 1923.

[4] G. Blekherman and J.B. Lasserre. The truncated K-moment problem for closure
of open sets. arXiv:1108.0627, 2011.

[5] J. Borwein and A. Lewis. Duality relationships for entropy-like minimization
problems. SIAM J. Control Optim., 29(2):325–338, 1991.

[6] J. Borwein and A. Lewis. Partially finite convex programming, Part I: Quasi
relative interiors and duality theory. Math. Program., 57:15–48, 1992.

[7] J. Borwein and A. Lewis. Partially finite convex programming, Part II. Math.
Program., 57:49–83, 1992.

[8] P. L. Chebyshev. Sur les fonctions qui différent le moins possible de zéro. Notes
Acad. Sci., XXII(1):189 – 215, 1873.

[9] R. Curto and L. A. Fialkow. Recusiveness, positivity, and truncated moment
problems. Houston J. Math., 17(4):603–634, 1991.

[10] R. Curto and L. A. Fialkow. The truncated complex K-moment problem. T.
Am. Math. Soc., 352(6):2825–2855, 2000.

[11] R. Curto and L. A. Fialkow. A duality prood to Tchakaloff’s theorem. J. Math.
Anal. Appl., 269:519–536, 2002.

[12] R. Curto and L. A. Fialkow. Truncated K-moment problems in several variables.
arXiv preprint math/0507067, 2005.

[13] D. W. Dubois. Note on Artin’s solution of Hilbert’s 17th problem. Bull. Am.
Math. Soc., 73(4):540 – 541, 1967.

97



BIBLIOGRAPHY

[14] C. D. Hauck, C. D. Levermore, and A. L. Tits. Convex duality and entropy-
based moment closures: Characterizing degenerate densities. SIAM J. Control
Optim., 2007.

[15] M. Junk. Maximum entropy for reduced moment problems. Math. Mod. Meth.
Appl. S., 10(1001–1028):2000, 1998.

[16] D. Kershaw. Flux limiting nature’s own way. Technical report, Lawrence Liv-
ermore Laboratory, 1976.

[17] M. G. Krein and A. A. Nudelman. The Markov moment problem and extremal
problems : Ideas and problems of P. L. Cebysev and A. A. Markov and their
further development. American Mathematical Society, 1977.

[18] H. J. Landau. The classical moment problem: Hilbertian proofs. J. Funct.
Anal., 38(2):255 – 272, 1980.

[19] J. B. Lasserre. Moments, positive polynomials and their applications. Imperial
College press optimization series, 2010.

[20] M. Laurent. Revisiting two theorems of Curto and Fialkow on moment matrices.
Proc. A.M.S., 133(10):2965–2976, 2005.

[21] A. A. Markov. Finding the smallest and the largest values of some function
that deviates least from zero. Soobshch. Kharkov Soc. Math., 1(1), 1884.

[22] A. A. Markov. On functions of least deviation from zero in a given interval.
1892.

[23] L. R. Mead and N. Papanicolaou. Maximum entropy in the problem of mo-
ments. J. Math. Phys., 25(8):2404–2417, 1984.

[24] P. Monreal. Moment realizability and Kershaw closures in radiative transfer.
PhD thesis, Rheinisch-Westfälische Technische Hochschule, 2012.

[25] J. Nie and M. Schweighofer. On the complexity of Putinar’s Positivstellensatz.
J. Complexity, 23(1):135 – 150, 2007.

[26] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana U.
Math. J., 42(3):969–984, 1993.

[27] M. Riesz. Sur le problème des moments, troisième note. Ark. Math. Astr. Fys.,
17(16):1–52, 1923.

[28] K. Schmüdgen. The K-moment problem for compact semi-algebraic sets. Math.
Ann., 289(2):203–206, 1991.

[29] F. Schneider. Moment models in radiation transport equations. PhD thesis,
Teschnische Universität Kaiserslautern, 2015.

98 T. Pichard



BIBLIOGRAPHY

[30] F. Schneider. Kershaw closures for linear transport equations in slab geometry
I: Model derivation. J. comput. phys., pages –, 2016.

[31] J. Schneider. Entropic approximation in kinetic theory. ESAIM-Math. Model.
Num., 38(3):541–561, 2004.

[32] M. Schweighofer. On the complexity of Schmüdgen’s Positivstellensatz. J.
Complexity, 20(4):529 – 543, 2004.

[33] G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry.
Math. Ann., 207(2):87–97, 1974.

[34] T.-J. Stieltjes. Recherches sur les fractions continues. Anns. Fac. Sci. Toulouse
: Mathématiques, 8(4):J1–J122, 1894.

Mathematical modelling for dose deposition in photontherapy 99



BIBLIOGRAPHY

100 T. Pichard



Chapter 4

Moment closure

4.1 Introduction

In this chapter, both vectorial and tensorial notations for the moments are used.
As a continuity, the moment problem consists in studying the existence of a

representing measure for a vector V, the closure problem consists in chosing one
of those representing measures. Indeed, in the last chapter, it was shown that the
representing measures (or representing L1(S)+ functions) for a vector V was not
unique except for particular vectors V on the boundary of the realizability domain
∂Rm.

The choice of the closure has a significant influence on the properties of the re-
sulting moment model. Among the desired properties one expects from a moment
model and that the choice of the closure influence, one can specify hyperbolicity,
realizability preservation, entropy dissipation and the accuracy of modelling the
physical phenomena presented in Chapter 1, especially the ability of modelling ac-
curately beams of particles is non-trivial. Each of those properties are to be kept in
mind when constructing the closure of a moment system of equations.

This chapter is organized as follow. In the next section, some preliminar nota-
tions are given and the closure problem is presented. Then the major properties
expected from the closure are presented. In the following sections, several choices
of closures are shown with their characteristics. The last section is devoted to con-
cluding remarks.

4.2 The closure problem

For convenience, and to exhibit several properties of the closure, the system of
moments of the equation (2.1) is studied. This equation is recalled here.

in 1D: ∂tψ + µ ∂xψ = C(ψ), (4.1a)

in 3D: ∂tψ + Ω∇xψ = C(ψ), (4.1b)

where C(ψ) is a collision operator which satisfies certain properties that will be
specified in the next section in order to illustrate certain requirement on the closure.
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4.2. The closure problem

The system of moments extracted from this equation reads (2.2). For conve-
nience, this system is recalled here.

in 1D:

{
∂tψ + ∂xF = C,
∂tψ

i + ∂xψ
i+1 = Ci,

(4.2a)

in 3D:

{
∂tψ + ∇xF = C,
∂tψ

i + ∇xψ
i+1 = Ci.

(4.2b)

The system (4.2) requires a closure (both in 1D or 3D), because it has more
unknowns than equations. In practice, the closure is commonly defined by recon-
structing an ansatz ψR from the first moments (ψ0, ..., ψN ), i.e. such that

in 1D:

{
〈

(1, µ, ..., µN )ψR
〉

= (ψ0, ..., ψN ),

〈m(µ)ψR〉 = ψ,
(4.3a)

in 3D:

{
〈

(1,Ω, ...,Ω⊗N )ψR
〉

= (ψ0, ..., ψN ),

〈m(Ω)ψR〉 = ψ,
(4.3b)

and then computing the other terms using this ansatz, i.e. the higher order moment
and the moments of the collision operator

in 1D:







{
ψN+1(ψ0, ..., ψN ) ≈

〈

µN+1ψR
〉

,

Ci(ψ0, ..., ψN ) ≈
〈
µiC(ψR)

〉
,

{
F (ψ) ≈ 〈µmψR〉 ,
C(ψ) ≈ 〈mC(ψR)〉 ,

(4.4a)

in 3D:







{
ψN+1(ψ0, ..., ψN ) ≈

〈

Ω⊗N+1ψR
〉

,

Ci(ψ0, ..., ψN ) ≈
〈
Ω⊗iC(ψR)

〉
,

{
F (ψ) ≈ 〈Ω ⊗ mψR〉 ,
C(ψ) ≈ 〈mC(ψR)〉 ,

(4.4b)

This method corresponds to approximate the kinetic fluence ψ by an ansatz ψR.
The first problem when defining a closure for angular moment models is the

construction of such an ansatz ψR.

in 1D:

find ψR ∈ L1([−1, 1]), s.t.
〈

(1, µ, ..., µN )ψR
〉

= (ψ0, ..., ψN ),

in 3D:

find ψR ∈ L1(S2), s.t.
〈

(1,Ω, ...,Ω⊗N )ψR
〉

= (ψ0, ..., ψN ).

The second problem is the computation of the integrals (4.4) which may be non-
analytical, depending on the obtained ansatz ψR.

The next section describes the main desired properties that one typically expects
to obtain from the moment model and that are direct consequences of the choice of
the closure. The following Sections 4.4, 4.5, 4.6 and 4.7 describe possible choices of
ψR with consideration to those desired properties.
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4. Moment closure

4.3 Properties of the closure

This section describes how the properties of hyperbolicity, positivity and entropy
dissipation, described in Chapter 2 Section 2.1 at the kinetic level, can be interpreted
after moment extraction and how the choice of the closure affects those properties.

4.3.1 Hyperbolicity

A partial differential equation of the form

∂tψ + ∂xF(ψ) = 0, (4.5)

is called hyperbolic if the Jacobian of the flux

J := ∂ψF(ψ) (4.6)

is diagonalizable with real eigenvalues, for all possible values of ψ. Those possible
values may be restrained to all realizable vectors ψ ∈ Rm depending on the chosen
closure, if this property needs to be satisfied by the solution of moment system. This
is the case when choosing e.g. the MN closure (see Section 4.4 below), but not when
chosing e.g. the PN closure (see Subsection 4.7.1 below).

The left-hand side of the kinetic equation (4.1) and its associated moment system
(4.2) are of the form (4.5). The kinetic equation is hyperbolic (see Section 2.1). The
flux term of the moment system (4.2) is defined by the closure relation. One typically
aims to define a closure such that the moment system is hyperbolic, i.e. find a flux
function F such that

J := ∂ψF (ψ) is diagonalizable with real eigenvalues.

This property may not be easy to check a posteriori, because the Jacobian J is a
function of the unknown ψ and computing its eigenvalue for all values of ψ may not
be possible. The following theorem proposes a characterization of the hyperbolicity
when the closure has a certain form.

Theorem 4.1 ([17]) Suppose that the unknown ψ is defined as a function of
a vector λ ∈ R

Card(m) into R
Card(m), i.e. such that (4.5) has the form

∂tψ(λ(t, x)) + ∂xF(ψ(λ(t, x))) = 0.

If the matrices

∂λψ and ∂λF (ψ) are symmetric,

∂λψ is positive definite,

then the system (4.2) is hyperbolic. Such a system is called symmetric hyper-
bolic.
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4.3. Properties of the closure

In 3D, the flux function has three directions, i.e. the value of the flux function
F (ψ) = (F1(ψ),F2(ψ),F3(ψ)) is a matrix in R

3×Card(m). One generally requires
the hyperbolicity property (4.6) to be fulfilled by the Jacobians

Fn(ψ) = n1F1(ψ) + n2F2(ψ) + n3F3(ψ) (4.7)

according to all directions n = (n1, n2, n3) ∈ S2. Theorem 4.1 also holds in 3D, it
was originally written in [17] in N dimension.

Corollary 4.1 ([17]) Suppose that the unknown ψ is defined as a function of
a vector λ ∈ R

Card(m) into R
Card(m), i.e. such that (4.5) has the form

∂tψ(λ(t, x)) + ∇x.F (ψ(λ(t, x))) = 0.

If the matrices

∂λψ and fori = 1, 2, 3, ∂λFi(ψ) are symmetric,

∂λψ is positive definite,

then the system (4.2) is hyperbolic.

One observes that if the matrix ∂λFi(ψ) is symmetric for all i then the matrix
∑

i
ni∂λFi(ψ) is also symmetric and the results follow from the 1D result in Theorem

4.1.

4.3.2 Positivity

Typically the solution ψ of a kinetic equation of the form (4.1) is positive (see e.g.
[15] for linear collision operator, or [9, 10]).

The positivity of a function ψ is translated at the moment level by the realizabil-
ity of the unknown ψ ∈ Rm, that was studied in the previous chapter. Therefore
one typically expects the solution of the moment system (4.2) to be realizable.

As described in the introduction, the closure is tyically chosen by computing
the moment of order N + 1 of an ansatz ψR reconstructed from the first moments
ψ. If this ansatz is constructed as a positive L1(S)+ function of ψ ∈ Rm, then the
solution ψ is directly related to some underlying kinetic fluence, i.e. the constructed
ansatz ψR. Therefore, by constructing a realizable closure, one relates the solution
of the moment system to a positive kinetic fluence.

4.3.3 Entropy dissipation

The kinetic equation (4.1) dissipates an convex entropy η if
〈
η′(ψ)C(ψ)

〉
≤ 0 (4.8)

for all possible ψ ∈ L1(S) such that C(ψ) ∈ L1(S). The entropy η may potentially
be defined only on a part of L1(S), e.g. the Boltzmann entropy below is defined on
L1(S)+.

104 T. Pichard



4. Moment closure

Similarily as for the positivity property, when the closure of the moment system
(4.2) is defined from a reconstructed ansatz ψR, one may expect the underling kinetic
system to dissipate the entropy η, i.e. one may expect

〈
η′(ψR)C(ψR)

〉
≤ 0.

Based on the derivation of the linear transport equation of photons and electrons
(1.11) from a (qudratic) Boltzmann operator (see e.g. [9]), one may expect the
Boltzmann entropy

η(ψ) = H(ψ) = ψ logψ − ψ (4.9)

for the photons and the electron to be dissipated by this system of equation, i.e. the
function H(ψγ) + H(ψe). The entropy-based closure described in the next section is
based on Boltzmann entropy.

In the next three sections, some closures are proposed. For each of these clo-
sures, the hyperbolicity, the realizability and the entropy-dissipation properties are
considered.

4.4 The entropy-based (MN) closure

The entropy-based closure, also called MN closure (the "M" refers to G. Minerbo [30,
31]), is based on a entropy minimization procedure. It is obtained by reconstructing
an ansatz ψR = ψMN

. This ansatz is chosen such that it minimizes an entropy
function η under positivity and moment constraints.

Suppose ψ ∈ Rm. The ansatz ψMN
is chosen such that it is non-negative and

satisfies the moment constraints (4.3). Therefore, it is chosen in the set

F(ψ) :=
{

ψ ∈ L1(S)+, s.t. 〈mψ〉 = ψ
}

. (4.10)

Among the possible candidates in F(ψ), the MN ansatz is the one that minimizes
the entropy η

ψMN
:= argmin

ψ∈F(ψ)
η(ψ). (4.11)

The following theorem provides the existence and uniqueness of such an ansatz and
its form.

Theorem 4.2 ([29, 4, 5, 6, 37, 22, 20]) Consider
a realizable vector ψ ∈ Rm, and a convex entropy function η the deriveative of
which η′ > 0 is strictly positive.

Then the MN ansatz defined in (4.11) exists and is unique. Furthermore it
has the form

ψMN
= η∗′(λTm). (4.12)
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4.4. The entropy-based (MN) closure

where the superscript ∗ refers to the Legendre dual (especially, it satisfies η′−1 =
η∗′), and λ ∈ R

Card(m) are Lagrange multipliers for the problem (4.11).

A first verion of this result was proposed in [29] in 1D. Then it was proven in
the serie [4, 5, 6] for the more general case where S is non-necessarily compact and
non necessarily in 1D, that the optimization problem (4.11) a unique solution (under
condition that can be simplified into the condition ψ ∈ Rm for the present problem).
It was also proven that if the derivatice of the entropy is not necessarily positive
then the problem (4.11) still has a unique solution solution which takes the form

ψMN
= (η + 1R+)∗′(λTm). (4.13)

This result was afterward completed and applied to moment closure problems in
[37, 22, 20, 26].

In the rest of the manuscript, η is always chosen to be Boltzmann entropy. How-
ever, other choices of entropy are also possible, especially more physically relevant
ones such as bosons and fermions entropy (see e.g. [25]).

Example 4.1 When chosing η to be the Boltzmann entropy function

η(ψ) = H(ψ) := ψ log(ψ) − ψ,

this leads to writing the MN ansatz

H′−1 = H∗′ = exp ⇒ ψMN
= exp(λTm). (4.14)

This type of closure is commonly chosen because it offers several mathematical
and physical properties.

Advantages

On the physical level, the entropy minimization procedure corresponds to chosing
the most physically probable ansatz having the moments ψ ([21]).

On the mathematical level, based on its construction, the MN model (i.e. the
moment model with the MN closure) is hyperbolic, realizable and entropy dissipa-
tive.
Hyperbolicity: With the MN closure, one has

ψ =
〈

m exp(λTm)
〉

, ∂λψ is symmetric positive definite

F(ψ) =
〈

µm exp(λTm)
〉

, ∂ψF(ψ) is symmetric.

Therefore one can apply Theorem 4.1 and the MN model is symmetric hyperbolic.
Realizability: According to (4.14), the MN ansatz has the form exp(λTm) which
is obviously positive.
Entropy dissipation: Similarily, one can replace ψ by the ansatz ψMN

in (4.8).
If (4.8) holds for all possible ψ it especially holds for ψMN

. And therefore the
underlying kinetic model dissipates an entropy.
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Drawbacks

Non-linearity: The original kinetic equations studied in this manuscript are all
linear equations of ψ. Closing the moment equations using the entropy-based method
leads to non-linear equations. Indeed the flux term F (ψ) is not a linear function of
ψ.

Additionally to the difficulties introduced by non linear terms, such a non-
linearity is also responsible for a non-physical effect appearing when studying mul-
tiple beam crossing each others. Indeed, consider ψ is the solution of the (linear)
kinetic equation (1.11) with a boundary condition chosen to be a sum of incoming
beams ψ|Γ− =

∑

i
ψbi then ψ =

∑

i
ψi is the sum of the solutions ψi of (1.11) with

boundary condition ψbi . This property does not hold for non-linear equations such
as the MN equations.
Computational costs: The MN closure is commonly computed by solving numer-
ically (see e.g. [19, 2, 1]) the following optimization problem

λMN
= argmin
λ∈RCard(m)

(〈

mη∗′(λTm)
〉

−ψTλ
)

, (4.15)

and then computing numerically the integral

F (ψ) =
〈

η∗′(λTMN
m)
〉

. (4.16)

Typically, the optimization problem (4.15) is solved with an iterative method
which requires the computation of integrals at each step. Typically a quadrature
formula is used to compute such integrals, and to compute the integral (4.16). Both
the iterative method and the quadrature rule introduce computational costs and
numerical errors.

Alternative methods reducing these numerical costs and errors can be found in
[2, 1]. The next section describes approximated closures for the closures of the first
two order angular moment models.

4.5 The M1 closure

This section is devoted to the computation of an approximation of the M1 closure.
This approximation requires low computational costs and retains some characteris-
tics of the exact closure.

For convenience the following notation is introduced.

Notation 4.1 The i-th order moment normalized by the zeroth order moment
is denoted

N i :=
ψi

ψ0
. (4.17)

Mathematical modelling for dose deposition in photontherapy 107



4.5. The M1 closure

4.5.1 The approximated M1 closure

The M1 model is the first order entropy-based moment model. This model is com-
monly used in various fields of physics because it is accurate for a large range of
physical phenomena and it is simple of implementation.

In 1D:

For convenience in this paragraph, we only focus on the moments according to
Ω1 = µ and therefore the subscript are dropped from the moments, i.e. N1 ≡ N1

1

and N2 ≡ N2
1,1.

First, we focus on the M1 model in 1D. The vector of polynomials m is

m(µ) = (1, µ).

The 1D M1 ansatz reads

ψM1(Ω) = exp(λ0 + λ1µ), (4.18)

where (λ0, λ1) ∈ R
2 are the unique coefficients such that ψM1 has the moments

〈ψM1(µ)〉 = ψ0, 〈µψM1(µ)〉 = ψ1.

The M1 closure is typically computed through the Eddington factor χ2 = N2, be-
cause χ2 is a scalar function of only one scalar N1 (see e.g. [25, 16]) which can easily
be approximated. Indeed χ2 is a function of the scalar λ1

χ2 =
2 − 2λ1coth(λ1) + λ2

1

λ2
1

,

and computations show that N1 ∈] − 1, 1[ is in bijection with λ1 ∈ R

N1 =
λ1coth(λ1) − 1

λ1
.

One observes from these computations that χ2 is an even function of λ1 and N1 is
an odd function (bijection) of λ1, therefore χ2 is an even function of N1.

There is no analytical formula for χ2(N1), except for particular choices of entropy
η (see e.g. [25, 16]). It can be computed e.g. by solving numerically (4.15) and
computing (4.16). In order to reduce computational costs compared to this methods,
one can compute an (analytical) approximation of the Eddington factor.

We aim to construct an approximation of the Eddington factor that provides a
closure ψ2 = ψ0χ2 realizable and hyperbolic.

Property 4.1 Realizability: Using (3.35c), the realizability condition on ψ2

equivals to the following condition on χ2

|N1|2 < χ2(N1) < 1, ∀N1 ∈] − 1, 1[. (4.19)

For this purpose, χ2(N1) is rewritten as a convex combination of the bounds
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|N1|2 and 1

χ2(N1) = θ1(N1) |N1|2 + (1 − θ1(N1)) 1, (4.20)

therefore we need only to approximate the function θ1 from [0, 1[ to ]0, 1[.
Hyperbolicity: The Jacobian of the flux (in 1D) reads

J = ∂ψF (ψ) =

(

0 1
χ2(N1) −N1χ′

2(N1) χ′
2(N1)

)

. (4.21)

Computations show that J is diagonalizable with real eigenvalues iff

(

χ′
2(N1)

)2
+ 4

[

χ2(N1) −N1χ′
2(N1)

]

≥ 0, ∀N1 ∈] − 1, 1[. (4.22)

For the approximation of χ2 to provide an hyperbolic and realizable closure, it needs
to interpolate the exact value and the exact derivative of χ2 on the boundary of the
realizability domain (for M1 in 1D this corresponds to N1 = ±1). Indeed having a
wrong value of χ2(1) or of χ′

2(1) leads to violate (4.19) or (4.22) or both.
Furthermore, we force the approximation to interpolate the value of χ2(0) and

χ′
2(0) when N1 = 0. This corresponds to the case where ψM1 is isotropic.

In order to compute the values χ2(0), χ2(1), χ′
2(0) and χ′

2(1), the Eddington
factor and its derivative can be written

χ2(N1) =

〈
µ2 exp(λ1(N1)µ)

〉

〈exp(λ1(N1)µ)〉 , χ′
2(N1) =

dλ1

dN1

d

dλ1

〈
µ2 exp(λ1(N1)µ)

〉

〈exp(λ1(N1)µ)〉 ,

where dλ1
dN1 =

(
dN1

dλ1

)−1
. Then one remarks that

N1(λ1 = 0) = 0, lim
λ1→+∞

N1 = 1,

and since N1 is a bijection of λ1, this implies that

λ1(N1 = 0) = 0, lim
N1→1

λ1 = +∞,

then computing χ2 and its derivative at those values using the symbolic computation
software MAPLE ([27]) leads to

χ2(1) = 1, χ2(0) =
1

3
, χ′

2(1) = 2, χ′
2(0) = 0. (4.23)

In the end, we propose the following approximation of θ1

θ1(N1) ≈ |N1|2 +
2

3
(1 − |N1|2)

+ |N1|2(1 − |N1|2)
(

c0 + c1|N1|2 + c2|N1|4
)

, (4.24)

where the coefficients c0 = −0.0954823981432433, c1 = 0.229069986304953
and c2 = −0.0344846229504588 are computed with MAPLE ([27]) such that the
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approximated χ2 given in (4.20) fit the exact χ2 for 103 values of N1 equally dis-
tributed in [0, 1], i.e. it minimizes the discrete L2 error compared to the values
obtained by solving (4.15) and computing numerically (4.16).

One verifies a posteriori that this approximation of θ1 is in ]0, 1[, i.e. it provides
a realizable closure, and that the condition (4.22) is satisfied, i.e. it provides a
hyperbolic closure.

In 3D:

For the M1 model in 3D, the vector m reads

m(Ω) = (1,Ω1,Ω2,Ω3).

Define the vector λ1 = (λ1, λ2, λ3) ∈ R
3. The M1 ansatz reads

ψM1(Ω) = exp(λ0 + λ1Ω), (4.25)

where λ0 ∈ R and λ1 ∈ R
3 are the unique coefficients such that ψM1 has the moments

〈ψM1(Ω)〉 = ψ0, 〈ΩψM1(Ω)〉 = ψ1.

Proposition 4.1 ([25]) Define the vector

n =
ψ1

|ψ1| .

The M1 closure has the form

ψ2 = ψ0
(

1 − χ2

2
Id+

3χ2 − 1

2
n⊗ n

)

. (4.26)

Proof One observes that the ansatz ψM1 is invariant by rotation around the
axis λ1. Define a rotation matrix R ∈ R

3×3 along the axis λ1, i.e. such that

λ1 = Rλ1.

Using the change of variable Ω” = RΩ in the computation of ψ0 read

ψ0 = 〈ψM1(Ω)〉 = 〈exp(λ0 + λ1Ω)〉
= 〈exp(λ0 +Rλ1Ω)〉
= 〈exp(λ0 + λ1Ω”)〉 = ψ0

and for ψ1

ψ1 = 〈ΩψM1(Ω)〉 = 〈Ω exp(λ0 + λ1Ω)〉
= 〈Ω exp(λ0 +Rλ1Ω)〉
= RT 〈Ω” exp(λ0 + λ1Ω”)〉 = RTψ1.
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Since ψ is invariant by rotation around the axis λ1, its moment are too, which
means that ψ1 = αλ1 for some α ∈ R. Similarily computing the moment of
order 2 leads to write that

ψ2 = RTψ2R,

i.e. ψ2 is also invariant around the axis λ1. Therefore ψ2 can only have the
form

ψ2 = αId+ βψ1 ⊗ ψ1, for some scalarsα, β.

Finally, remarking that

ψ0 = 〈ψM1〉 =
〈

|Ω|2ψM1

〉

= 〈tr(Ω ⊗ Ω)ψM1〉 = tr(ψ2)

leads to the write ψ2 under the form (4.26). �

Using the approximation of χ2 proposed in the previous paragraph leads to a hy-
perbolic and realizable closure approximating the M1 closure.

4.5.2 The advantages of the M2 model

Before describing the approximated M2 closure, such a work is motivated here.
Despite improving the accuracy of the model, due to the better flexibility of the

M2 ansatz compared to the M1 ansatz ψM1 , the M2 model is also able to model a
larger range of physical phenomena than the M1 model.

This improvement can be illustrated by two problems emerging in the field of
radiotherapy. First the physics of the angular diffusion is better modeled with the
M2 model than with the M1 model. Second the M1 model is not able to model
multiple beams of particles crossing each others.

Angular diffusion modelling

Suppose an elastic linear Boltzmann operator Gel−Pel characterized by a differential
cross section σel. Decomposing σel into polynomials reads

σel(ǫ, µ) =
∞∑

i=0

σiel(ǫ)µ
i.

Then extracting the N first moments of the collisional operator is equivalent to
truncating this expansion at degree N . Clearly the collisions are better modelled
as N increases. This phenomenon is illustrated through the test cases in Part III
Chapter 5 Subsections 5.3.1 and 5.3.3.
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Multiple beams

Consider two perfect beams of opposite direction ±e1 crossing each other. This is
modelled by a sum of two Dirac peaks

ψ = δ(Ω.e1 − 1) + δ(Ω.(−e1) − 1).

Extracting the moments of such a measure reads

ψ0 = 〈ψ〉 = 2,

ψ1 = 〈Ωψ〉 = 0R3 ,

ψ2 = 〈Ω ⊗ Ωψ〉 = 2e1 ⊗ e1.

Remark that the first two moments (ψ0, ψ1) are identical to the first two moments
of an isotropic distribution ψ = 1/2π. Since only (ψ0, ψ1) are considered in the
M1 model, then the M1 model is unable to distinguish two beams from a isotropic
distribution.

In the M2 model, the moment ψ2 is also considered and therefore the M2 is able
to distinguish two beams from an isotropic distribution. This is illustrated through
the test case of Part III Chapter 5 Subsection 5.3.2.

This problem also appears in multi-D when the two beams are not along the
same direction. Consider a distribution of two beams of respective directions e1 and
e2

ψ = δ(Ω.e1 − 1) + δ(Ω.e2 − 1).

The moments of such a measure are

ψ0 = 〈ψ〉 = 2,

ψ1 = 〈Ωψ〉 = e1 + e2,

ψ2 = 〈Ω ⊗ Ωψ〉 = e1 ⊗ e1 + e2 ⊗ e2.

Using the rotational invariance ψM1 (see proof of Proposition 4.1), the M1 ansatz
computed from the moment (ψ0, ψ1) of such a distribution has the form

ψM1(Ω) = exp(λ0 + α(e1 + e2)Ω),

and is therefore a single imperfect beam of direction (e1 + e2). This is illustrated
through the test case of Part III Chapter 5 Subsection 5.3.4.

As for the previous case, the M2 model is able to distinguish those two beams.
This problem emerges from the form of the MN ansatz ψMN

defined in (4.11).
One simply observes that the MN model for a given N ∈ N is able to distinguish
multiple beams at the points Ω = Ωb

i if there exists λ ∈ R
Card(m) such that the MN

ansatz ψMN
= exp(λTm) presents a local maxima in each of the points Ωb

i .

Remark 4.1 Typically, the multiple beam problem is solved by exploiting the
linearity of the underlying kinetic equation (2.1) (or (1.11)). Consider N bound-
ary conditions ψbi

modeling at most one entering beam and initial condition
ψi(ǫ = 0) = 0. Then the sum

∑

i
ψi of the solutions ψi to (2.1) with those initial-

boundary conditions is the solution to the kinetic equation (2.1) with the bound-
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ary condition ψ|∂Z =
∑

i
ψbi

and initial condition ψ(ǫ = 0) = 0. Each solution

ψi can be approximated by solving the M1 system (2.2) (or (2.3)), and one may
obtain ψ by summing those contributions ψi.

4.6 The approximated M2 closure

The M2 ansatz in 3D does not present such a rotational invariance as the M1 ansatz.
The method proposed in the last section does not lead to such a simplification of
the problem.

In this section, in 3D, the vector m is chosen to be

m(Ω) =
(

Ω1, Ω2, Ω3, Ω2
1, Ω2

2, Ω2
3, Ω1Ω2, Ω1Ω3, Ω2Ω3

)T
,

which generates all polynomials on S2 of degree 2, and the M2 ansatz is denoted

ψM2(Ω) = exp(λm(Ω)), (4.27)

for λ ∈ R
9.

4.6.1 An hierarchy of sets

The strategy to construct an approximation of the M2 closure consists in exploiting
the hierarchical character of the MN models, i.e. the fact that the MN−1 is a subcase
of the MN model. The hierarchical character of the MN models can be illustrated
through the following example.

Example 4.2 The M2 ansatz is mor flexible than the M1 ansatz. Indeed one
observes that the M1 ansatz ψM1 is a particular value of M2 ansatz

ψM1(Ω) = exp(λ0 + λ1Ω1 + λ2Ω2 + λ3Ω3)

= exp(λ1Ω1 + λ2Ω2 + λ3Ω3 + λ0(Ω2
1 + Ω2

2 + Ω2
3)),

i.e. the M1 ansatz (4.25) is the M2 ansatz (4.27) where the coefficients λ have
the form

λ = (λ1, λ2, λ3, λ0, λ0, λ0, 0, 0, 0) .

The following hierarchy of subdomains of R9 is considered

L0 := R
9, (4.28a)

L1 :=
{

(λ1, 0, 0, λ4, λ6, λ9, 0, 0, 0), s.t. (λ1, λ4, λ6, λ9) ∈ R
4
}

⊂ L0, (4.28b)

L2 :=
{

(λ1, 0, 0, λ4, λ6, λ6, 0, 0, 0), s.t. (λ1, λ4, λ6) ∈ R
3
}

⊂ L1, (4.28c)

L3 :=
{

(λ1, 0, 0, λ4, λ4, λ4, 0, 0, 0), s.t. (λ1, λ4) ∈ R
2
}

⊂ L2. (4.28d)
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Choosing λ in those sets in (4.27) leads to ansätze ψM2 in the sets

E0 :=
{

exp(λTm(Ω)), λ ∈ L0

}

⊂ L1(S2)+, (4.29a)

E1 :=
{

exp(λ1Ω1 + λ4Ω2
1 + λ6Ω2

2 + λ9Ω2
3), (λ1, λ4, λ6, λ9) ∈ R

4
}

⊂ E0, (4.29b)

E2 :=
{

exp(λ6 + λ1Ω1 + (λ4 − λ6)Ω2
1), (λ1, λ4, λ6) ∈ R

3
}

⊂ E1, (4.29c)

E3 :=
{

exp(λ4 + λ1Ω1), (λ1, λ4) ∈ R
2
}

⊂ E2. (4.29d)

Remark 4.2 One observes the following properties.

• The functions of the form (4.29d) are M1 ansätze (4.25).

• The functions of the form (4.29c) are 1D ansätze, as they depend only on
one variable Ω1.

• Computations show that the moments ψ1 and ψ2 of functions of the form
(4.29b) are the moments such that ψ1 is an eigenvector of ψ2.

The hierarchy of the sets of exponential functions (4.29) is illustrated on Fig.
4.1, 4.2, 4.3, 4.4, 4.5 and 4.6. On those plots, the unit sphere is colored by the value
of a possible function of the sets (4.29) (where blue corresponds to the lowest value
and red the highest). As E3 and E2 are sets of 1D distributions, those distributions
can be represented along the preferred axis, i.e. as a function of Ω1.

Figure 4.1: Unit sphere colored by
one possible function in E3.

Figure 4.2: Function in E3 as a func-
tion of Ω1.
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Figure 4.3: Unit sphere colored by
one possible function in E2\E3.

Figure 4.4: Function in E3\E2 as a
function of Ω1.

Figure 4.5: Unit sphere colored by
one possible function in E1\E2.

Figure 4.6: Unit sphere colored by
one possible function in E0\E1.

Extracting the moments of order up to 2 of these functions leads to define the
following hierarchy of subdomains of Rm

R0 := {〈mψ〉 , ψ ∈ E0} , (4.30a)

R1 := {〈mψ〉 , ψ ∈ E1} ⊂ R0, (4.30b)

R2 := {〈mψ〉 , ψ ∈ E2} ⊂ R1, (4.30c)

R3 := {〈mψ〉 , ψ ∈ E3} ⊂ R2. (4.30d)

Remark 4.3 According to Theorem 4.2 ([4, 5, 6, 22, 37, 20]), each realizable
vector V ∈ Rm are the moments of an exponential function of the form (4.29a),
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i.e.

R0 = Rm.

Furthermore the set L0 (resp. L1, L2 and L3) of Lagrange multipliers is in
bijection with the sets of realizable moments R0 (resp. R1, R2 and R3).

4.6.2 Transformation of the realizability domain

As for the M1 case (Section 4.5), one can use a rotation and a normalization on the
moments and write

ψ3 = ψ0Rot3(R,N3), (4.31)

where Rot3(R,N3) is the rotation of the tensor N3 of order 3 according to the
rotation R

Rot3(R,N3) =
3∑

i=1

3∑

j=1

3∑

k=1

Ri,i′Rj,j′Rk,k′N3
i′,j′,k′ .

Furthermore, by computing the moments ψ0, ψ1, ψ2 and ψ3, and using again the
change of variable Ω′ = RΩ (see Subsection 4.5.1), one observes that the tensor
Rot3(R,N3) in (4.31) depends only on RN1 and RN2RT .

Using (3.43) and (4.17), the moment N2 can be rewritten

N2 = N1 ⊗N1 + (1 − |N1|2)RDiag(γ1, γ2, 1 − γ1 − γ2)RT , (4.32)

where R is a rotation matrix and γ1 ∈]0, 1[ and γ2 ∈]0, 1 − γ1[.
For the purpose of the present approximation of the closure, the moments are

rotated according to a rotation R that diagonalizes the matrix

N2 −N1 ⊗N1.

If N1 is an eigenvector of N2, then we additionally require that R sends N1 onto
|N1|e1. For convenience, the sets of normalized realizable vectors rotated by R are
written

R̃0 :=
{
V ∈ R0, s.t. ψ0 = 1, N2 −N1 ⊗N1 is diagonal

}
, (4.33a)

R̃1 :=
{
V ∈ R1, s.t. ψ0 = 1,

N1 = |N1|e1, N2 −N1 ⊗N1 is diagonal
}

⊂ R̃0, (4.33b)

R̃2 :=
{
V ∈ R2, s.t. ψ0 = 1,

N1 = |N1|e1, N2 −N1 ⊗N1 is diagonal
}

⊂ R̃1, (4.33c)

R̃3 :=
{
V ∈ R3, s.t. ψ0 = 1,

N1 = |N1|e1, N2 −N1 ⊗N1 is diagonal
}

⊂ R̃2. (4.33d)
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Remark 4.4 Consider V ∈ R0 such that ψ1 = RV(Ω) is an eigenvector of
ψ2 = RV(Ω ⊗ Ω). Rotating ψ1 and ψ2 with R reads

Rψ1 = |ψ1|e1, Rψ2RT is diagonal. (4.34)

Using again Theorem 4.2 with m(Ω) = (Ω1,Ω
2
1,Ω

2
2,Ω

2
3) leads to write that if

(ψ1, ψ2) satisfy (4.34) then there exists an exponential function ψ ∈ R1 such
that

Rψ1 =

∫

S2
Ωψ(Ω)dΩ, Rψ2RT =

∫

S2
Ω ⊗ Ωψ(Ω)dΩ.

Computing the moments of order one and two of the functions (4.29) normalized
by ψ0 and rotated by R leads to

ψ ∈ E0, ⇒
{ N1 ∈ B(0R3 , 1),
N2 =

[
N1 ⊗N1 +

(
1 − |N1|2

)
Diag (γ1, γ2, 1 − γ1 − γ2)

]
,

(4.35a)

ψ ∈ E1, ⇒
{ N1 = N1

1 e1,
N2 =

[
|N1

1 |2e1 ⊗ e1 +
(
1 − |N1

1 |2
)
Diag (γ1, γ2, 1 − γ1 − γ2)

]
,

(4.35b)

ψ ∈ E2, ⇒
{ N1 = N1

1 e1,

N2 =

[

|N1
1 |2e1 ⊗ e1 +

(
1 − |N1

1 |2
)
Diag

(

γ1,
1 − γ1

2
,
1 − γ1

2

)]

,

(4.35c)

ψ ∈ E3, ⇒
{ N1 = N1

1 e1,

N2 =

[

3χ2(N1
1 ) − 1

2
e1 ⊗ e1 +

1 − χ2(N1
1 )

2
Id

]

,
(4.35d)

where χ2 is the Eddington factor (see Subsection 4.5.1 or e.g. [25]). For convenience,
the following parametrizations of R̃0, R̃1, R̃2 and R̃3

P0 := B(0R3 , 1)×]0, 1[×]0, 1 − γ1[,

P1 :=
{

(N1, γ1, γ2) ∈ P0 s.t. N1 = N1
1 e1

}

,

P2 :=

{

(N1, γ1, γ2) ∈ P1 s.t. γ2 =
1 − γ1

2

}

,

P3 :=

{

(N1, γ1, γ2) ∈ P2 s.t. γ1 =
χ2(|N1

1 |) − |N1
1 |2

1 − |N1
1 |2

}

,

For a vector V to be in the set R̃0, respectively R̃1, R̃2, R̃3, then the normal-
ized moments (N1, N2) satisfy (4.35a) where the parameters (N1, γ1, γ2) are in P0,
respectively P1, P2, P3.

The hierarchy of sets P3 ⊂ P2 ⊂ P1 is represented on Fig. 4.7 in the space
(N1

1 , γ1, γ2) ∈ R
3. On Fig. 4.7, the red curve represents P3 in the space (N1

1 , γ1, γ2) ∈
R

3. This set is included into the green plane representing P2 which is itself included
in the blue volume representing P1.
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N1
1

γ1

γ2

1

1

-1

Figure 4.7: Representation of P3 (red line), P2 (green plane) and P1 (blue
volume) in the space (N1

1 , γ1, γ2) ∈ R
3.

Similarly, computing the third order moment of the functions (4.29) normalized
by ψ0 reads

ψ ∈ E1, ⇒ N3 = κ211,1,1 + κ3T1,2,2 + (N1
1 − κ2 − κ3)T1,3,3, (4.36a)

ψ ∈ E2, ⇒ N3 = κ111,1,1 +
N1

1 − κ1

2
(T1,2,2 + T1,3,3), (4.36b)

ψ ∈ E3, ⇒ N3 = χ311,1,1 +
N1

1 − χ3

2
(T1,2,2 + T1,3,3), (4.36c)

Ti,j,j = 1i,j,j + 1j,i,j + 1j,j,i, 1i,j,k = ei ⊗ ej ⊗ ek,

where χ3, κ1, κ2 and κ3 are scalar coefficients depending on (N1, γ1, γ2) in P3 for
χ3, in P2 for κ1, and in P1 for κ2 and κ3, i.e. χ3 is a function of |N1| ∈ [0, 1[, κ1

of |N1| ∈ [0, 1[ and γ1 ∈]0, 1[ and κ2 and κ3 of |N1| ∈ [0, 1[, of γ1 ∈]0, 1[ and of
γ2 ∈]0, 1 − γ1[.

Strategy of the approximation: The idea is to construct an approximation
of N3 for V ∈ R̃3, using the same techniques as in Subsection 4.5.1 and to extend
progressively this approximation to R̃2, to R̃1 and finally to R̃0. This corresponds to
approximating progressively χ3 as a function of N1

1 in (4.36c), then κ1 as a function
of (N1

1 , γ1) in (4.36b), then κ2 and κ3 as a function of (N1
1 , γ1, γ2) in (4.36a) and

finally N3 as a function of (N1, γ1, γ2) ∈ P0.

4.6.3 In R̃3, i.e. for M1 ansätze

For convenience in this subsection and in the next one (in 1D), we only focus on
the moments according to Ω1 = µ and therefore the subscript are dropped from the
moments, i.e. N1 ≡ N1

1 , N2 ≡ N2
1,1 and N3 ≡ N3

1,1,1.

118 T. Pichard



4. Moment closure

Reproducing the computations of Subsection 4.5.1 for the moment of order 3
reads (4.36c). Therefore, after rotation and normalization, one only needs to study
the following 1D problem.

For the M1 ansatz, the vector of polynomials m is

m(µ) = (1, µ).

For moments in R̃3, the associated ansatz ψR̃3
, i.e. a M1 ansatz, reads

ψR̃3
(Ω) = exp(λ0 + λ1µ), (4.37)

where (λ0, λ1) ∈ R
2 are the unique coefficients such that ψM1 satisfies
〈

µψR̃3
(µ)
〉

= ψ1,
〈

µ2ψR̃3
(µ)
〉

= ψ2.

Property 4.2 Realizability: Using (3.35c), the realizability condition on ψ3

equivals to the following condition on N3

b−(N1, N2) < N3 < b+(N1, N2), (4.38)

b−(N1, N2) := −N2 +
(N1 +N2)2

(1 +N1)
, b+(N1, N2) := N2 − (N1 −N2)2

(1 −N1)
.

For this purpose, χ3 = N3 is rewritten as a convex combination of b− and b+

χ3(N1) = b−(N1, χ2(N1)) θ2(N1) (4.39)

+ b+(N1, χ2(N1))
(

1 − θ2(N1)
)

.

therefore one only needs to approximate the function θ3

from (N1, γ1) ∈ [0, 1[×]0, 1[ to ]0, 1[.

Using the change of variable Ω = −Ω′ in (4.36c), one observes that N3 is an odd
function of λ1. Similarily N1 is odd and N2 is even in λ1. This leads to write that
χ3 is an odd function of N1.

The coefficient θ2 is approximated such that χ3 is odd and interpolates the values
of χ3 and its derivative χ′

3 for N1 = ±1 and for N1 = 0. Those values read (using
the same method as for (4.23))

χ3(1) = 1, χ3(0) = 0, χ′
3(1) = 3, χ′

3(0) = 1
2 .

In the end, the following approximation of θ2 is proposed

θ2(N1) ≈ 1

2
+N1

(

−1

2
+ (1 − |N1|2)(d0 + d1|N1|2 + d2|N1|4)

)

,

where the coefficients d0 = 0.386143553495150, d1 = 0.488034553677475
and d2 = −0.681343955348390 are computed with MAPLE ([27]) such that the ap-
proximated χ3 given in (4.40) approximates the exact χ3 for 103 values of x equally
distributed in [0, 1], i.e. it minimizes the discrete L2 error compared to the values
obtained by solving numerically (4.15) and computing (4.16).

One verifies a posteriori that this approximation of θ2 is in ]0, 1[, i.e. it provides
a realizable closure.
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4.6.4 In R̃2, i.e. for 1D ansätze

Now, we focus on the M2 model in 1D. The vector of polynomials m is

m(µ) = (1, µ, µ2).

For moments in R̃2, the associated ansatz ψR̃2
, i.e. a 1D M2 ansatz, reads

ψR̃2
(Ω) = exp(λ0 + λ1µ+ λ2µ

2), (4.40)

where (λ0, λ1, λ2) ∈ R
3 are the unique coefficients such that ψR̃2

satisfies
〈

ψR̃2
(µ)
〉

= ψ0,
〈

µψR̃2
(µ)
〉

= ψ1,
〈

µ2ψR̃2
(µ)
〉

= ψ2.

Property 4.3 Realizability: According to (4.38), the closure N3(N1, γ1) is
realizable if it can be written as a convex combination of b− and b+

N3(N1, γ1) = b−

(

N1, N2(N1, γ1)
)

θ3(N1, γ) (4.41)

+ b+

(

N1, N2(N1, γ1)
) (

1 − θ3(N1, γ1)
)

,

where the functions b− and b+ are defined in (4.38), and N2(N1, γ1) is given by
(4.35c).
Hyperbolicity: The Jacobian of the flux (in 1D) reads

∂ψF(ψ) =






0 1 0
0 0 1
a b c




 ,

a = N3(N1, N2) − N1∂N1N3(N1, N2) − N2∂N2N3(N1, N2),

b = ∂N1N3(N1, N2) c = ∂N2N3(N1, N2).

The Jacobian ∂ψF(ψ) has real eigenvalues iff the discriminant ∆ of the char-
acteristic polynomial (here of degree 3) is non-negative

∆ = 18abc− 4ac3 + b2c2 − 4b2 − 27a2 ≥ 0. (4.42)

Using again the change of variable Ω = −Ω′ in (4.36b) leads to write that N3 is an
odd function of N1.

The coefficient θ3 is approximated such that N3 is an odd function of N1 and
such that it interpolates the following values of N3

N3
(
N1, γ1 = 0

)
=
(
N1
)3
, N3

(

N1, γ1 =
χ2(|N1

1 |) − |N1
1 |2

1 − |N1
1 |2

)

= χ3(N1)

N3
(
N1, γ1 = 1

)
= N1,

i.e. it retreives the exact N3 on the boundary of the realizbility domain (γ1 = 0 or
γ1 = 1) where the exact values of N3 are computed from (4.15) and it retreives the
previous approximation (4.36c) in the M1 case (N1, γ1, γ2) ∈ P3.
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Notation 4.2 The polynomial of degree two interpolating the values A, B and
C at the points a, b and c is denoted E.
The polynomial of degree three which is zero in a, b and c is denoted Z.

E ((A, a), (B, b), (C, c)) (x) := A
x− b

a− b

x− c

a− c
+ B

x− a

b− a

x− c

b− c

+ C
x− a

c− a

x− b

c− b
,

Z (a, b, c) (x) := (x− a)(x− b)(x− c).

In the end, the following approximation of θ3 is proposed

a1 := 0, A1 :=
b+ − κ1

b+ − b−
(N1

1 , a1),

a2 :=
χ2(|N1

1 |) − (N1
1 )2

1 − (N1
1 )2

, A2 :=
b+ − κ1

b+ − b−
(N1

1 , a2),

a3 := 1, A3 :=
b+ − κ1

b+ − b−
(N1

1 , a3),

(4.43)

θ3(N1
1 , γ1) ≈ E ((A1, a1) , (A2, a2) , (A3, a3)) (γ1) (4.44)

+Z (a1, a2, a3) (γ1)Q1(N1
1 , γ1),

where Q1 is a polynomial of N1
1 and γ1 of degree sixteen.

The coefficients of the polynomial Q1 are computed to minimize the discrete L2

distance between the approximation and the κ1 computed by solving (4.15) for 104

values of (N1
1 , γ1) ∈ [0, 1] × [0, 1]. Those values are chosen from 100 values of N1

1

equally distributed in [0, 1] and 100 of γ1 equally distributed in [0, 1].
In this process, the minimization problem (4.15) is solved numerically using

the minimization routine HUMSL of MINPACK ([33]) which calls the quadrature
routine DQAGS of QUADPACK ([34]). Both those routines are iterative, and the
error tolerance for both routines was fixed at 10−9.

In the next subsections, an approximation of the closure is proposed in R̃1 and
in R̃0 based on the approximation (4.41,4.44) and the error produced in the ap-
proximation (4.41,4.44) propagates and will be amplified in the next step of the
approximation. Therefore a high accuracy is required, which explains why the poly-
nomial Q1 was chosen to be of such a high degree.

The discrete L∞ error compared to the numerical solution of (4.15) for those
104 values of (N1

1 , γ1) ∈ [0, 1] × [0, 1] is 8.43 × 10−3.
One verifies a posteriori that this approximation of N3 satisfies (4.42) and that

θ3 ∈ [0, 1] for all (N1, γ1) ∈ [−1, 1] × [0, 1]. Therefore this approximation of the 1D
M2 closure is hyperbolic and realizable.

4.6.5 In R̃1

In R̃1, the vector of polynomials m is

m(Ω) = (Ω1, Ω1
1, Ω2

2, Ω2
3).
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For moments in R̃1, the associated ansatz ψR̃1
∈ E1 reads

ψR̃1
(Ω) = exp(λ1Ω1 + λ2Ω1

1 + λ3Ω2
2 + λ4Ω2

3), (4.45)

where (λ1, λ2, λ3, λ4) ∈ R
4 are the unique coefficients such that ψR̃1

satisfies
〈

Ω1ψR̃1
(Ω)

〉

= ψ1
1,

〈

Ω2
1ψR̃1

(Ω)
〉

= ψ2
1,1,

〈

Ω2
2ψR̃1

(Ω)
〉

= ψ2
2,2

〈

Ω2
3ψR̃1

(Ω)
〉

= ψ2
3,3.

Similarily as in the previous subsections, an approximation of the scalars κ2 and
κ3, defined in (4.36a), interpolating the exact values of N3 on the boundary of
the realizability domain and interpolating the previous approximation when γ2 =
(1 − γ1)/2. Here the boundary of the realizability domain corresponds to fixing
γ2 = 0 and γ2 = 1 − γ1. Using Proposition (3.7), those values reads

b1 := 0, b2 :=
1 − γ1

2
, b3 := 1 − γ1,

B1 := κ2(N1
1 , γ1, b1) = (N1

1 )3 +N1
1 (1 − |N1

1 |2)γ1,
B2 := κ2(N1

1 , γ1, b2) = κ1(N1
1 , γ1),

B3 := κ2(N1
1 , γ1, b3) = (N1

1 )3 +N1
1 (1 − |N1

1 |2)γ1,
C1 := κ3(N1

1 , γ1, b1) = 0,
C2 := κ3(N1

1 , γ1, b2) = 1
2

(
N1

1 − κ1(N1
1 , γ1)

)
,

C3 := κ3(N1
1 , γ1, b3) = (N1

1 )3 +N1
1 (1 − |N1

1 |2)(1 − γ1).

Similarly as in the previous subsection, the following approximations of κ2 and κ3

are proposed

κ2(N1, γ1, γ2) ≈ E ((B1, b1), (B2, b2), (B3, b3)) (γ2)

+Z(b1, b2, b3)(γ2) Q2(N1
1 , γ1, γ2), (4.46a)

κ3(N1, γ1, γ2) ≈ E ((C1, b1), (C2, b2), (C3, b3)) (γ2)

+Z(b1, b2, b3)(γ2) Q3(N1
1 , γ1, γ2) (4.46b)

whereQ2 andQ3 are polynomials ofN1, γ1 and γ2 of degree eight. As in the previous
subsection, the coefficients of Q2 and Q3 are computed so that they minimize the
discrete L2 distance between the approximations and the coefficients κ2 and κ3

computed by solving (4.15) for 8 × 103 values of (N1
1 , γ1, γ2) ∈ P1. Those values are

chosen from 20 values of N1
1 equally distributed in [0, 1], 20 values of γ1 in [0, 1] and

20 of γ2 in [0, 1 − γ1].
In this process, the minimization problem (4.15) is solved numerically using the

minimization routine HUMSL of MINPACK ([33]) which calls the cubature routine
DCUHRE from [3]. Both those routines are iterative, and the error tolerances for
both routines was fixed at 10−9.

The discrete L∞ error compared to the numerical solution of (4.15) for those
8 × 103 values of (N1, γ1, γ2) ∈ P1 is 2.09.10−2.

Studying the hyperbolicity and the realizability properties is no simpler for mo-
ments in R̃1 than in R̃0. Therefore, those properties are studied in the more general
case of moments in R̃0 in the next subsection.
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4.6.6 In the whole realizability domain R̃0

The approximation (4.36a-4.46) of the previous subsection provides a closure when
N1 is along one of the Cartesian axes. One can also compute the closure when
|N1| = 1 through the equality case of Proposition 3.6. In that case, all the moments
of higher order read

N i = (N1)⊗i. (4.47)

Now we aim to approximate N3 at any point P = (N1, γ1, γ2) ∈ P0. Define the
following points (see Fig. 4.8 and 4.9)

P1 = (N1
1 e1, γ1, γ2), P2 = (N1

2 e2, γ1, γ2), P3 = (N1
3 e3, γ1, γ2).

Those points correspond to the projections of P onto each Cartesian axis at fixed
γ1 and γ2. At those points, N1 is an eigenvalue of N2 and therefore the previous
approximation can be used, i.e. use the appropriate rotation to turn ψ1 onto the
axis e1. Now define the following lines and their intersection points with the unit
sphere (see Fig. 4.8 and 4.9)

L1 = (P1, P ), L2 = (P2, P ), L3 = (P3, P )

P4 = L1 ∩ S2 =

(

N1 + (N1 −N1
1 e1)

√

1 − |N1
1 |2

|N1
2 |2 + |N1

3 |2 , γ1, γ2

)

,

P5 = L2 ∩ S2 =

(

N1 + (N1 −N1
2 e2)

√

1 − |N1
2 |2

|N1
1 |2 + |N1

3 |2 , γ1, γ2

)

,

P6 = L3 ∩ S2 =

(

N1 + (N1 −N1
3 e3)

√

1 − |N1
3 |2

|N1
1 |2 + |N1

2 |2 , γ1, γ2

)

.

According to (4.47), the closure N3 at the points P4, P5 and P6 read

N3(P4) =

(

N1 + (N1 −N1
1 e1)

√

1 − |N1
1 |2

|N1
2 |2 + |N1

3 |2

)⊗3

,

N3(P5) =

(

N1 + (N1 −N1
2 e2)

√

1 − |N1
2 |2

|N1
1 |2 + |N1

3 |2

)⊗3

,

N3(P6) =

(

N1 + (N1 −N1
3 e3)

√

1 − |N1
3 |2

|N1
1 |2 + |N1

2 |2

)⊗3

.

For P ∈ P0, the different components of the closure N3 are approximated by dif-
ferent convex combinations. In particular, N3

i,j,j(P ) is approximated by a convex
combination of N3

i,j,j(Pi) and N3
i,j,j(P3+i).

Similarly, the value of N3
1,2,3 is known at the points

P0 = (0R3 , γ1, γ2), P7 = (N1/|N1|, γ1, γ2),

N3(P0) = 0R3×3×3 , N3(P7) =

(

N1

|N1|

)⊗3

.
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N1
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N1
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1
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1

Figure 4.8: Configuration at fixed γ1

and γ2.

N1
3

N1
2

P7

P8

1 − |N1
1 |2

1 − |N1
1 |2

Figure 4.9: Configuration at fixed γ1,
γ2 and N1

3 .

Therefore N3
1,2,3 can be approximated by a convex combination of N3

1,2,3(P0) and
N3

1,2,3(P7). In the end, for a point P ∈ P0 those approximations read

N3
1,1,1(P ) ≈ (1 − α1)N3

1,1,1(P1) + α1N
3
1,1,1(P4), (4.48a)

N3
1,2,2(P ) ≈ (1 − α1)N3

1,2,2(P1) + α1N
3
1,2,2(P4), (4.48b)

N3
1,3,3(P ) ≈ (1 − α1)N3

1,3,3(P1) + α1N
3
1,3,3(P4), (4.48c)

N3
1,1,2(P ) ≈ (1 − α2)N3

1,1,2(P2) + α2N
3
1,1,2(P5), (4.48d)

N3
2,2,2(P ) ≈ (1 − α2)N3

2,2,2(P2) + α2N
3
2,2,2(P5), (4.48e)

N3
2,3,3(P ) ≈ (1 − α2)N3

2,3,3(P2) + α2N
3
2,3,3(P5), (4.48f)

N3
1,1,3(P ) ≈ (1 − α3)N3

1,1,3(P3) + α3N
3
1,1,3(P6), (4.48g)

N3
2,2,3(P ) ≈ (1 − α3)N3

2,2,3(P3) + α3N
3
2,2,3(P6), (4.48h)

N3
3,3,3(P ) ≈ (1 − α3)N3

3,3,3(P3) + α3N
3
3,3,3(P6), (4.48i)

N3
1,2,3(P ) ≈ (1 − α4)N3

1,2,3(P0) + α4N
3
1,2,3(P7), (4.48j)

α1 =
|N1

2 |2 + |N1
3 |2

1 − |N1
1 |2 , α2 =

|N1
1 |2 + |N1

3 |2
1 − |N1

2 |2 ,

α3 =
|N1

1 |2 + |N1
2 |2

1 − |N1
3 |2 , α4 = |N1|.

Remark that those linear combinations are only one choice, and several others were
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possible. However this choice was found to give the best approximation of the M2

closure.

Precision and numerical cost

First the accuracy and the computational costs of the approximation (4.48) in P0

are compared to the ones of the minimization procedure (4.15).
The approximation is compared to the solution of (4.15) computed numerically

for 3.2 × 106 values of (N1, γ1, γ2) ∈ P0. Those values are obtained from 20 val-

ues of N1
1 equally distributed in [0, 1], 20 of N1

2 in [0,
√

1 − |N1
1 |2], 20 of N1

3 in

[0,
√

1 − |N1
1 |2 − |N1

2 |2], 20 of γ1 in [0, 1] and 20 of γ2 in [0, 1 − γ1].
In this process, the minimization problem (4.15) is solved numerically using the

minimization routine HUMSL of MINPACK ([33]) which calls the cubature routine
DCUHRE from [3] (see e.g. [19, 2, 1] for more robust methods). Both those routines
are iterative, and the error tolerance for both routines was fixed at 10−9.

The discrete L∞ error compared to the numerical solutions of the minimization
problem (4.15) for 3.2 × 106 values of P ∈ P̃0 is of 3.12 × 10−2.

In order to compare the computational costs between evaluating the value of the
approximation and the numerical methods for solving (4.15), the error tolerance in
this numerical method is fixed at 3 × 10−2, i.e. such that both methods have the
same accuracy.

The computational time required for computing N3 for 3.2×106 values of P ∈ P̃0

with both methods are summarized in Table 4.1.

Minimization solver Approximation
Computation times 1654 sec = 27 min 34 sec 0.434 sec

L∞ error ≤ 3 × 10−2 3.12 × 10−2

Table 4.1: Computation times and discrete L∞ error with the approximation
and the numerical method for solving (4.15) for 3.2 × 106 values of P ∈ P0.

Hyperbolicity

For moments in R̃1 or in R̃0, the Jacobians J of the flux (defined in (4.6)) are
10 × 10 matrices. No analytical condition were found to verify that such matrices
were diagonalizable with real eigenvalues for all ψ ∈ Rm.

Instead, one can verify that those matrices are diagonalizable with real eigenval-
ues for a finite number of points in P ∈ P0. This does not prove that the approxi-
mation is hyperbolic, but this provides a good indication that the approximation is
not non-hyperbolic.

For this purpose, consider 105 values of P ∈ P0 obtained from 10 values of N1
1

in [0, 1], 10 of N1
2 in [0,

√

1 − |N1
1 |2], 10 of N1

2 in [0,
√

1 − |N1
1 |2 − |N1

2 |2], 10 of γ1 in
[0, 1] and 10 of γ2 in [0, 1 −γ1], each equally distributed in their respective intervals.
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The Jacobians were found to be diagonalizable with real eigenvalues at each of those
105 points P ∈ P0.

Remark that improper numerical methods for solving the minimization problem
(4.15) also introduces numerical errors which may result in losing the hyperbolicity
property.

Realizability

In multi-D, no sufficient conditions for a vector to be realizable were found. As the
closure proposed here is exact on the boundary of the realizability domain and ap-
proximates a realizable closure, one may expect the approximation to be realizable.

4.7 Other closures

The MN closure was mainly studied in this thesis because it retains the major
characteristics of the underlying kinetic model. Although other closures for angular
moment models are available.

4.7.1 The polynomial (PN) closure

The PN (the "P" stands for polynomial) closure is often used in computational
physics because it is very simple of implementation and it offers several desirable
properties.

As for the MN closure, the PN closure is obtained by reconstructing an ansatz
ψPN

which is simply chosen to be a polynomial of degree N

ψPN
= mλ, (4.49)

where λ is the unique vector such that

ψ = 〈m (mλ)〉 = 〈m ⊗ m〉λ,

which can simply be computed by inverting the matrix 〈m ⊗ m〉. And the closure
is again computed from the ansatz ψPN

through

F (ψ) = 〈Ω ⊗ m ⊗ m〉λ.

Advantages

Linearity: Based on their definitions, both the PN ansatz ψPN
and the PN closure

are linear functions of ψ.
The PN model can also be interpreted as a spectral method ([8], see also [7]), i.e.
as a truncated polynomial expansion of ψ.
Hyperbolicity: The Jacobians of the fluxes do not depend on ψ and one verifies
a priori that they are diagonalizable with real eigenvalues.

126 T. Pichard



4. Moment closure

Entropic: The PN closure can be interpreted as an entropy-based method (see e.g.
[18]). Indeed, the PN ansatz is the function minimizing the quadratic entropy

η(f) = f2

over the set of L1(S) functions (here non-restricted to positive ones L1(S)+) having
ψ for moments

{

ψ ∈ L1(S), s.t. 〈mψ〉 = ψ
}

. (4.50)

(S)

Drawbacks

Non-realizable: The PN ansatz ψPN
defined in (4.49) is simply a polynomial of

degree N . There are no constraints on the coefficients λ to enforce the positivity of
ψPN

. Therefore, for a realizable vector ψ ∈ Rm, the vector (ψ, F (ψ)) is not always
a vector of moments when F is chosen to be the PN closure. This phenomenum
may lead to instabilities ([18, 28]) or to modelling issues. This problem can also be
adressed by choosing a positive ansatz ψ ∈ L1(S)+ in (4.50) (see [18]), although this
requires to use similar numerical methods to compute such an ansatz as to compute
a MN ansatz.
Beam modelling issue: When considering a beam in the direction ei, i.e. a Dirac
measure, the PN ansatz fails to approximate such a measure. Indeed extracting the
moments ψ of such a Dirac measure and reconstructing the PN ansatz ψPN

from
those moments, one observes that the PN ansatz differs from the original Dirac
measure.

Example 4.3 Consider a 1D measure of the form

ψ = δ (µ− 1) .

Extracting the first two order moments reads

ψ0 = 1, ψ1 = 1.

Computing the PN ansatz from those reads

ψPN
(µ) =

1 + 3µ

2
.

Finally the closure differs from the only realizable closure in that case

∫ +1

−1
µ2ψPN

(µ)dµ =
1

3
6= 1 =

∫ +1

−1
µ2δ(µ− 1).

This problem does not appear with the MN closure. This is simply due to the fact
that the sum of N Dirac measures are in the closure of the set of possible MN ansatz
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(a Dirac is the limit of an exponential function, see Example 3.1), while they are
not in the set of possible PN ansatz

ψ ∈
{
exp(λm), λ ∈ RCard(m)

}
, ψ /∈ RCard(m)[X1, X2, X3].

In external radiotherapy, modeling beams of particles is of major importance. In
order to obtain accurate results when considering beams with a PN model, one needs
to use a high order model (N large) which results in raising the numerical costs as
the size of ψ raises as (N + 1)2.

4.7.2 An atom-based (KN) closure

The Kershaw closure, or KN closure (the "K" stands for D. Kershaw [23]), is based
on an atomic decomposition ([23, 32, 35, 36, 11, 24]).

In 1D, the idea proposed in [32, 35, 36] consists in exploiting the knowledge of
the unique representing measure for a vector V ∈ ∂Rm

m on the boundary of the
realizability domain (see the proof of Theorem 3.1). From this unique representing
measure, one deduces the existence of a unique realizable closure on this boundary,
which can be computed numerically.

When the vector V ∈ Rm is in the interior of the realizability domain, it can be
written as a convex combination of vectors V1 and V2 on the boundary ∂Rm

m and
of an equilibrium point V0 = 〈m〉 (see [32, 35, 36] for details)

V = α0V0 + α1V1 + α2V2. (4.51)

Remark that a similar method was used to construct (3.30). At each of these points
a representing measure is known

V0 =

∫ +1

−1
m(µ)dµ, V1 =

∫ +1

−1
m(µ)dγ1(µ), V2 =

∫ +1

−1
m(µ)dγ2(µ),

where γ1 and γ2 are sums of Dirac measures.
Finally the KN closure consists in writing the flux F(V) from this representing

measure

F(V) = α0

∫ +1

−1
µm(µ)dµ+ α1

∫ +1

−1
µmdγ1(µ) + α2

∫ +1

−1
µm(µ)dγ2(µ).

Remark that such an atom-based closure is non unique because different sets of
coefficients α0, α1, α2 and of vectors V1 and V2 satisfy (4.51). The ones proposed
and studied in [32, 36] are possible atom-based closure that were shown to have
certain properties. Although other choices of atom-based representing measures can
be proposed. The one proposed in (3.30) was shown to have the minimum number
of atoms in [11, 13, 14, 12].

Advantages

By construction this closure is realizable.
The 1D K1 and K2 closures were found to be hyperbolic ([32, 36, 35]).
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Drawbacks

The main issue is the current lack of knowledge on the realizability property for
moments over S2. This closure is therefore restricted to 1D problems.
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Chapter 5

Numerical schemes

5.1 Introduction

This chapter is devoted to constructing numerical schemes adapted to the M1 and
M2 model constructed in the previous chapters. In addition to the common stability
and consistency requirements, numerical schemes for MN equations need to preserve
the realizability property. Indeed if this property is lost during the computations,
the MN closure exists not and the computations break.

The numerical schemes constructed in this chapter are based on methods com-
monly used for hyperbolic systems of conservation laws, and some of them can
only be used when considering hyperbolic operators. However, not all the moment
equations studied possesses such operators, e.g. the moment equations for pho-
tons transport (2.3) do not. Therefore, numerical schemes are constructed for the
following three types of equations.

• For the sake of simplicity, the issues emerging when constructing numerical
schemes for moment equations are first described and solved on the following
toy problem

in 1D: ∂ǫψ − 1

ρ
∂xF(ψ) = 0, (5.1a)

in 3D: ∂ǫψ − 1

ρ
∇xF (ψ) = 0, (5.1b)

and afterward apply to the particle transport equations.

• As an extension, the transport of electrons alone (without photons) is consid-
ered, when the collision operator is chosen to be either a LBCSD operator or
a LBFP operator. Such a transport equation contains an hyperbolic operator
(see Chapter 2). For simplicity, the gain term of Møller’s secondary electrons
is also removed. Such an equation is rewritten

in 1D: ∂ǫ(Sψ) − 1

ρ
∂xF(ψ) +Mψ = 0, (5.2a)

in 3D: ∂ǫ(Sψ) − 1

ρ
∇xF (ψ) +Mψ = 0, (5.2b)

137



5.1. Introduction

where ψ ≡ ψe are the moments of the fluence of electrons and the matrix M
is defined by

M(ǫ) = sMott(ǫ) − σT,Mott(ǫ)Id (5.3a)

when considering a CSD operator,

M(ǫ) = T (ǫ)MFP when considering a FP operator, (5.3b)

see Appendices 2.A.1 and 2.A.2 for the definitions of the matrices s and MFP .

• Finally, the equations of transport of electrons and photons together are con-
sidered. Such a system contains no hyperbolic operator, they are rewritten

in 1D: ∂xF(ψ) − ρQ(ψ) = 0, (5.4a)

in 3D: ∇xF (ψ) − ρQ(ψ) = 0, (5.4b)

where ψ ≡ (ψγ ,ψe) are the moments of the fluences of photons and electrons
and Q is the associated collision operator. In the present work, the electron
collisions are chosen to be modeled by a LBCSD operator, so Q is chosen to
be

Q(ψ) =

(

GC,γ(ψγ) − PC(ψγ), (5.5)

∂ǫ(Sψe) + (GM,2 +M)(ψe) + GC,e(ψγ)

)

.

Remark 5.1 At the numerical level, the transport of electrons can not be mod-
eled by the original linear Boltzmann model. Indeed, in Subsections 1.4.3 and
1.4.4, the differential cross sections for electronic collisions were shown to be
very peaked along the line ǫ′ = ǫ. For such an equation to be accurately dis-
cretized, one would need the energy grid to be fine enough to capture such a
peak. For application to the present problem, using such a fine grid was found
to be numerically too costly.

Remark that even if the elastic cross section, i.e. σMott is peaked in angle
along the line Ω′.Ω = 1, this peak appears not after integration when considering
moment models. Therefore the CSD approximation can be used at the numerical
level with moment models, but not with the kinetic model.

In all this chapter, the energy variable ǫ is considered as a "numerical time".
As desribed in Remark 1.6, the equations of transport of electrons and photons

need to be solved backward in energy, i.e. from a maximum energy ǫ0 = ǫmax to a
minimum one ǫnmax = ǫmin. This direction is unusual and for the sake of simplicity
and in order to use the "classical" notations and retreive some results from the
litterature, the toy problem (5.1) is solved forward in energy, while the transport
equations (5.2) and (5.4) are solved backward in energy.
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The superscript n to the cell [ǫn+ 1
2 , ǫn− 1

2 ] and the superscript n + 1
2 to the

interface ǫn+ 1
2 between ǫn+1 and ǫn. Remark that ǫn > ǫn+1 and ǫn− 1

2 > ǫn+ 1
2 when

the energy is considered in the backward direction.
Finite volume and finte differences schemes are used, and the spatial grid is

always chosen to be Cartesian. In 1D, the subscript l refers to the cell [xl− 1
2
, xl+ 1

2
]

and the subscript l + 1
2 to the interface xl+ 1

2
.

5.2 Approximate Riemann solver

Several numerical schemes adapted to angular moment equations such as (5.1) were
proposed in the litterature (see e.g. [10, 24, 17, 7]).

Such state-of-the-art methods are typically stable under a Courant-Friedrichs-
Lewy (CFL) condition depending on density ρ. Such stability conditions typically
become very restrictive when the medium contains low density region ([8, 22]), e.g.
in the field of medical physics when irradiating a lung (ρlung ≈ 0.3). This problem is
first presented through the following standard technique for the 1D equation (5.1a)
and addressed in Sections 5.4, 5.5 and 5.7.

The HLL approximate Riemann solver (named after A. Harten, P. D. Lax and B.
Van Leer [15]) is commonly used for MN equations because it is known to preserve
realizability from one energy step to another (see e.g. [7]) and is easy to construct
even when considering non-linear fluxes (which is the case with MN equations). This
scheme is obtained by approximating the solution of the Riemann problem at each
interface xl+ 1

2
.

5.2.1 The Riemann problem in 1D

Consider that the relative density ρ(x) = ρ is homogeneous in a 1D medium and
ψ(x, ǫn) is constant on each side of the interface xl+ 1

2
and denote

{

ψ(ǫn, x) = ψL,
F(ψ)(ǫn, x) = FL,

∀x ∈] − ∞, xl+ 1
2
], (5.6a)

{

ψ(ǫn, x) = ψR,
F(ψ)(ǫn, x) = FR,

∀x ∈ [xl+ 1
2
,+∞[. (5.6b)

The solution of the Riemann problem (5.1a) with the initial condition (5.6) is
composed of waves of different velocity which are the eigenvalues of ∂ψF/ρ. In the
case of the MN system of equations, those velocities are bounded using the following
lemma.

Lemma 5.1 The eigenvalues of the Jacobian ∂ψF(ψ) are bounded by 1 for all
realizable moments ψ ∈ Rm, i.e.

∀ψ ∈ Rm, Sp (∂ψF(ψ)) ⊂] − 1, 1[.
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Proof Using the form of the 1D MN closure (4.37), define the matrices

A := ∂ψF(ψ),

B := ∂λF(ψ) =

∫ +1

−1
µm(µ) ⊗ m(µ) exp(λTm(µ))dµ,

C := ∂λψ =

∫ +1

−1
m(µ) ⊗ m(µ) exp(λTm(µ))dµ.

The Jacobian ∂ψF(ψ) can be rewritten

∂ψF(ψ) = A = BC−1.

One needs to check that the eigenvalues αi associated to the eigenvectors Vi are
of norm inferior to 1

AVi = BC−1Vi = αiVi ⇒ BWi = αiCWi

where Wi = C−1Vi. Then one has

αi =
BWi.Wi

CWi.Wi
.

Remark that the matrix C is strictly positive as long as ψ is realizable, so here
CWi.Wi > 0. Using a Poincaré inequality, one finds

BWi.Wi =

∫ +1

−1
µ(m(µ)TWi)

2 exp(λTm(µ))dµ

≤
∫ +1

−1
(m(µ)TWi)

2 exp(λTm(µ))dµ = CWi.Wi,

which leads to the result. �

This result also holds in multi-D.
Define the cone Cn

l+ 1
2

(see Fig. 5.1) by

Cn
l+ 1

2
:=
{

(x, ǫ) ∈ R × R
+, s.t. ρ|xl+ 1

2
− x| ≤ |ǫn − ǫ|

}

.

Using Lemma 5.1, the velocities of the waves propagating from the interface xl+ 1
2

are
inferior in norm to 1/ρ. This implies that the solution ψ of the Riemann problem
is constant out of the cone Cn

l+ 1
2

, i.e. ψ(x, ǫ) = ψnl on the left of the cone (when

(x − xl+ 1
2
)ρ < −(ǫ − ǫn)) and to ψ(x, ǫ) = ψnl+1 on the right of the cone (when

(x− xl+ 1
2
)ρ > (ǫ− ǫn)).

In order to construct the approximate Riemann solver, the value of ψ(x, ǫ) inside
the cone Cn

l+ 1
2

is approximated by its average value written ψ∗
l+ 1

2
which is given by

ψ∗
l+ 1

2
=

1

∆x

∫ x
l+ 1

2
+ ∆ǫ

ρ

x
l+ 1

2
− ∆ǫ

ρ

ψ(ǫn + ∆ǫ, x)dx.
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x

ǫ

ǫn+1

ǫn xl− 1
2

xl+ 1
2

ψn
lψn

l−1 ψn
l+1

ψ∗
l− 1

2
ψ∗
l+ 1

2

Figure 5.1: Configuration for the approximate Riemann solver.

This average value can be computed by integrating (5.1a) over [xl+ 1
2

− ∆ǫ
ρ
, xl+ 1

2
+

∆ǫ
ρ

] × [ǫn + ∆ǫ, ǫn] (in red on Fig. 5.1). It reads

0 =

∫ x
l+ 1

2
+ ∆ǫ

ρ

x
l+ 1

2
− ∆ǫ

ρ

∫ ǫn+∆ǫ

ǫn

[

∂ǫψ − 1

ρ
∂xF(ψ)

]

(ǫ, x)dǫdx

=
2∆ǫ

ρ

[

ψ∗
l+ 1

2
− ψnl +ψnl+1

2

]

− ∆ǫ

ρ

(
F(ψnl+1) − F(ψnl )

)
.

This leads to write

ψ∗
l+ 1

2
=

1

2

[
ψnl+1 +ψnl +

(
F(ψnl+1) − F(ψnl )

)]
. (5.7)

One can prove that this intermediate state is realizable using the following proposi-
tion.

Proposition 5.1 Suppose ψ ∈ Rm and the flux F(ψ) is defined from a realiz-
able closure, i.e. such that

∃ψ > 0 s.t. ψ = 〈mψ〉 , F(ψ) = 〈µmψ〉 ,

then
ψ ± F(ψ) ∈ Rm.

Proof Define V ∈ R
N+1 such that

ψ = RV(m), F(ψ) = RV(µm).
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If F is computed from a realizable closure such as MN closure, then V ∈ RmN+1

is realizable, i.e.

∃ψ ∈ L1([−1, 1])+, s.t. V = 〈mN+1ψ〉 .

Then one has
ψ ± F(ψ) = 〈(1 ± µ)mψ〉 ,

with (1 + µ)ψ ∈ L1([−1, 1])+ is positive. Therefore ψ ± F(ψ) are the moments
of a positive L1(S)+ function. �

Using this result, if ψnl ∈ Rm, ψnl+1 ∈ Rm and the fluxes F are defined from a MN

closure, then the intermediate state reads

ψ∗
l+ 1

2
=

(
ψnl − F(ψnl )

2

)

+

(
ψnl+1 + F(ψnl+1)

2

)

∈ Rm.

This is a positive combination of realizable vector, it is therefore realizable according
to Property 3.1.

5.2.2 The fast characteristic problem

With those computations, one can approximate the value of ψn+1
l at new energy

step.
Consider that ψnl is constant in each cell x ∈ [xl− 1

2
, xl+ 1

2
]. Approximate the

solution of the Riemann problems at each interface xl+ 1
2

with (5.7). The value of

ψn+1
l is computed by the following integral over [xl− 1

2
, xl+ 1

2
] (in blue on Fig. 5.1)

ψn+1
l =

1

∆x

∫ x
l+ 1

2

x
l− 1

2

ψ(x, ǫn+1)dx,

where the value of ψ(x, ǫn+1) is approximated by ψ∗
l+ 1

2
in each cone Cn

l+ 1
2

. This

leads to

ψn+1
l =

1

∆x

[
∆ǫn

ρ
(ψ∗

l− 1
2

+ψ∗
l+ 1

2
) +

(

∆x− 2∆ǫn

ρ

)

ψnl

]

=
1

∆x

[
∆ǫn

ρ

ψnl−1 − F(ψnl−1)

2
+

∆ǫn

ρ

ψnl+1 + F(ψnl+1)

2

+

(

∆x− ∆ǫn

ρ

)

ψnl

]

, (5.8)

which can be written under the finite volume form

ψn+1
l = ψnl +

∆ǫn

ρ∆x

(

Fn
l+ 1

2
− Fn

l− 1
2

)

, (5.9a)

Fn
l+ 1

2
=

1

2

[
F(ψnl+1) + F(ψnl ) + (ψnl+1 −ψnl )

]
. (5.9b)
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Remark that such an approximation is only possible if the cones Cn
l+ 1

2

emerging

from all interfaces xl+ 1
2

do not intersect each other, this means under the following
condition

∆ǫn ≤ ρ∆x. (5.10)

One observes through (5.8) that ψn+1
l is a positive combination of realizable vectors

under the condition (5.10). Therefore this scheme preserves the realizability property
from one energy step to another (see Property 3.1).

Remark 5.2 (Position of the problem) This stability condition can be very
restrictive when the density ρ has a very low value. In radiotherapy, very het-
erogeneous media are considered. Those media may contain very low density
media, e.g. the relative density of the lungs compared to is typically around
ρlung ≈ 0.3 and the relative density of air is 10−3. Such low density regions
are less collisional, i.e. the particles collide less in it. However the numerical
scheme requires smaller energy steps ∆ǫn. In the next subsections, alternatives
to this approach non-constrained by stability conditions are described.

5.2.3 Application to electrons transport equations

The approximate Riemann solver approach is only considered with an hyperbolic op-
erator, therefore only the transport of electrons (5.2) is considered and the collisions
are modeled by a CSD or a FP operator.

This method is now used for (5.2) which is considered backward in energy, i.e.
ǫn+1 < ǫn. For this purpose, a splitting method is used. One first solves the equiation
without the term Mψ and add its influence a posteriori. In multi-D, the equation
is solved explicitely in each direction of space and the influence of the term Mψ is
added a posteriori.

The inhomogeneous density ρ is approximated by a constant ρl+ 1
2

in each dual
cell [xl, xl+1]. This choice is motivated by two reasons: it simplifies the computation
of the solution of the Riemann problem, and it leads to a conservative form of the
numerical scheme (see (5.11) below).

Applying the previous computations to the hyperbolic operator of (5.2a), i.e. to

ρ∂ǫ(Sψ) − ∂xF(ψ) = 0

leads to write

Sn+1ψ
n+ 1

2
l = Snψnl − ∆ǫn

∆x





Fn
l+ 1

2

ρl+ 1
2

−
Fn
l− 1

2

ρl− 1
2



 , (5.11)

Fn
l+ 1

2
=

1

2

[
F(ψnl+1) + F(ψnl ) − (ψnl+1 −ψnl )

]
,

where Sn = S(ǫn). The condition (5.10) turns into

∆ǫn ≤ Sn
(

1
2∆xmax

l

(

1
ρ

l+ 1
2

+ 1
ρ

l− 1
2

))−1

. (5.12)
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Now one needs to add the influence of the operator ρMψ which is chosen to be
discretized implicitly. In the end, the scheme reads

(Sn+1Id− ∆ǫnMn+1)ψn+1
l = Snψnl − ∆ǫn

∆x





Fn
l+ 1

2

ρl+ 1
2

−
Fn
l− 1

2

ρl− 1
2



 ,

where the matrix Mn = M(ǫn), and it can be rewritten

(

Sn+1Id− ∆ǫnMn+1
)

ψn+1
l =

1

∆x







∆x− ∆ǫn

Sn




1

ρl− 1
2

+
1

ρl+ 1
2







Snψnl

+ ∆ǫn




ψnl−1 + F(ψnl−1)

2ρl− 1
2

+
ψnl+1 + F(ψnl+1)

2ρl+ 1
2







 .

(5.13)

Proposition 5.2 If the condition (5.12) is satisfied, then the scheme (5.13)
preserves the realizability property from one energy step to another in the fol-
lowing sense.
If

∀l, ∀n′ < n+ 1, ψn
′

l ∈ Rm,

then
∀l, ψn+1

l ∈ Rm.

Proof
With a CSD operator: Consider that M = (sn+1

Mott−σn+1
T,Mott) corresponds

to the CSD operator. The scheme (5.13) can be rewritten

(Sn+1Id + ∆ǫn(σn+1
T,MottId− sn+1

Mott))ψ
n+1
l = Rn

l , (5.14a)

Rn
l =

1

∆x



∆ǫn




ψnl−1 + F(ψnl−1)

2ρl− 1
2

+
ψnl+1 + F(ψnl+1)

2ρl+ 1
2





+



∆x− ∆ǫn

Sn




1

ρl− 1
2

+
1

ρl+ 1
2







Snψnl



 . (5.14b)

Using Proposition 5.1, one observes that the right-hand side Rn
l is a positive

combination of realizable vectors, and therefore, using Property 3.1, it is realiz-
able Rn

l ∈ Rm.
Define the function

J(ψ) =
Rn
l + ∆ǫnsn+1

Mottψ

Sn+1 + ∆ǫnσn+1
T,Mott

.

The function J is a contraction because it is Lipschitz continuous with a Lips-
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chitz constant lower than 1. Indeed, one has

J(ψ1) − J(ψ2) =
∆ǫnsn+1

Mott(ψ1 −ψ2)

Sn+1 + ∆ǫnσn+1
T,Mott

,

and since σiMott ≤ σ0
Mott = σT,Mott, the eigenvalues of the matrix

∆ǫnsn+1
Mott

Sn+1 + ∆ǫnσn+1
T,Mott

are of norm inferior to 1. Therefore, Banach fixed point theorem provides the
existence and uniqueness of a fixed point of J and the sequence

ψ(k+1) = J(ψ(k))

converges to it.
Since Rn

l ∈ Rm, write Rn
l = 〈mfR〉 with fR ∈ L1([−1, 1])+, and initialize

ψ
n+1,(0)
l = Rn

l ∈ Rm.

Now, by induction, suppose ψn+1,(k)
l =

〈

mf (k)
〉

with f (k) ∈ L1([−1, 1])+, one
has

ψ
n+1,(k+1)
l = J(ψ

n+1,(k)
l ) =

Rn
l + ∆ǫnsn+1

Mottψ
n+1,(k)
l

Sn + ∆ǫnσn+1
T,Mott

=

〈

m

fR(µ) + ∆ǫn
∫ +1

−1
σMott(ǫ

n+1, µ′, µ)f (k)(µ′)dµ′

Sn+1 + ∆ǫnσT,Mott(ǫn+1)

〉

.

Since fR, f (k), σn+1
Mott and σn+1

T,Mott are positive, ψn+1,(k+1)
l is the moment vector

of a positive function.
Thus, at the limit, the fixed point ψn+1

l to (5.14a) is in the closure of the
realizability domain Rm

m. Moreover, by definition of this fixed point, ψn+1
l =

J(ψn+1
l ) is a positive combination of a vector sn+1ψn+1

l in the closure Rm
m of

Rm and of a vector Rn
l in the interior Rm. Therefore such a combination

ψn+1
l ∈ Rm is in the interior of the realizability domain.

With a FP operator: Consider now that M = T (ǫ)MFP corresponds to
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the FP operator. The scheme (5.13) can be rewritten

(Sn+1Id − ∆ǫnTn+1MFP )ψn+1
l = Rn

l , (5.15a)

Rn
l =

1

∆x



∆ǫn




ψnl−1 + F(ψnl−1)

2ρl− 1
2

+
ψnl+1 + F(ψnl+1)

2ρl+ 1
2





+



∆x− ∆ǫn

Sn




1

ρl− 1
2

+
1

ρl+ 1
2







Snψnl



 , (5.15b)

where the right-hand side Rn
l ∈ Rm is realizable as it is a sum of realizable

vectors.
The equation (5.15a) is the moments of the following kinetic equation

0 = Sn+1ψn+1
l − ∆ǫnTn+1MFPψ

n+1
l − Rn

l

=
〈

m
(

Sn+1ψ − ∆ǫnTn+1∂µ
(

(1 − µ2)∂µψ
)

− fR
)〉

.

Consider the problem
{

Sn+1ψ − ∆ǫnTn+1∂µ
(
(1 − µ2)∂µψ

)
− fR = 0

∂µψ(µ = ±1) = 0
. (5.16)

In the spirit of [12, 18, 19], define the function

H(x) =

{

x2 if x ≤ 0
0 otherwise

.

Multiplying (5.16) by H ′(ψ) and integrating it over µ ∈ [−1, 1], and using an
integration by part leads to
〈

Sn+1ψH ′(ψ)
〉

+ ∆ǫnTn+1
〈

(1 − µ2)(∂µψ)2H ′′(ψ)
〉

−
〈
fRH

′(ψ)
〉

= 0.

Based on the definition of H, one verifies that each of those three terms is non-
negative. Since their sum is zero, they are all zero. Especially, from the first
term, one deduces the positivity of ψ.

Therefore, this positive function ψ which moments are ψn+1
l . �

5.2.4 Application in multi-D

When considering the multi-D problem (5.1b), a splitting method is again used.
One writes a Riemann solver at each interface (in each direction) and approximates
its solution. Here, X = (x, y) and the index m refers to the second space variable
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y. In the end, in 2D the schemes reads

(Sn+1Id− ∆ǫnMn+1)ψn+1
l,m = Snψnl,m − ∆ǫn

∆x





Fn
l+ 1

2
,m

ρl+ 1
2
,m

−
Fn
l− 1

2
,m

ρl− 1
2
,m





−∆ǫn

∆y





Fn
l,m+ 1

2

ρl,m+ 1
2

−
Fn
l,m− 1

2

ρl,m− 1
2



 , (5.17a)

where the fluxes read

Fn
l+ 1

2
,m

=
1

2

[

F (ψnl+1,m)e1 + F (ψnl,m)e1 − (ψnl+1,m −ψnl,m)
]

, (5.17b)

Fn
l,m+ 1

2
=

1

2

[

F (ψnl,m+1)e2 + F (ψnl,m)e2 − (ψnl,m+1 −ψnl,m)
]

, (5.17c)

and the matrix M is identical to the one of the previous subsection. This scheme
is stable and preserves the realizability property under the condition

∆ǫn ≤ Sn min
l,m

[

1

2∆x




1

ρl+ 1
2
,m

+
1

ρl− 1
2
,m



+
1

2∆y




1

ρl,m+ 1
2

+
1

ρl,m− 1
2





]−1

.

(5.18)

This method is efficient, although the problem emerging with the condition (5.12),
described in Remark 5.2, is too restrictive for our medical applications. In Sections
5.4, 5.5 and 5.7, alternatives are presented. In the next section, numerical test cases
are presented.

5.3 Tests on the method of moments

These first test cases are very basic test cases emerging in the field of radiation
dose computation. The studied medium, commonly called phantom in the field of
radiation therapy, is composed of homogeneous water, i.e. the relative density is
fixed ρ(x) = 1, and one or two beams of electron are injected on the boundary of
the medium. This problem is studied first in 1D, then in 2D.

Through such basic test cases, we aim to study the accuracy of the method
of moments, and especially compare the M1 and M2 models. Only the numerical
schemes (5.13) and (5.17) presented in the last section are used.

5.3.1 Single beam in 1D

In 1D, considering only the transport of electrons leads to considering the kinetic
equation

∂ǫ(Sψ) − µ

ρ
∂xψ + T∂µ

(

(1 − µ2)∂µψ
)

= 0. (5.19)
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Discretizing directly the 1D kinetic equation (5.19) was affordable. For this purpose,
the dose results obtained with the different numerical schemes for moment equations
were compared to the kinetic results obtained with the following scheme.

Using a first order explicit Euler energy discretization, an upwind scheme for the
x-derivative and a midpoint quadrature rule leads to write the following scheme for
the 1D kinetic equation (5.19)

Sn+1ψn+1
l,p = Snψnl,p − ∆ǫn

∆x





Fn
l+ 1

2
,p

ρl+ 1
2

−
Fn
l− 1

2
,p

ρl− 1
2



+
∆ǫnTn

∆µ

(

Gn
l,p+ 1

2
−Gn

l,p− 1
2

)

,

(5.20a)

Fn
l+ 1

2
,p

= µ+
p ψ

n
l,p + µ−

p ψ
n
l+1,p, (5.20b)

Gn
l,p+ 1

2
=

(

1 −
(
µp + µp+1

2

)2
)

(ψnl,p+1 − ψnl,p)

∆µ
, (5.20c)

where µ± = (µ± |µ|)/2. Here the subscript p refers to the cosangle µ. This scheme
is stable under the CFL condition

∆ǫn ≤ Sn
(

1

min ρ∆x
+

2Tn

∆µ2

)−1

. (5.21)

The M1 and M2 equations extracted from (5.19) have the form (5.2) and are dis-
cretized using the numerical scheme (5.13) where the energy step ∆ǫn is fixed so
that

∆ǫnMN
= 0.95Sn∆x, (5.22)

this corresponds to the CFL condition (5.12) , while the energy step for the kinetic
model is fixed by

∆ǫnkinetic = 0.95Sn
(

1

∆x
+

2Tn

∆µ2

)−1

. (5.23)

The 1D medium is 6 cm long meshed with 600 cells in position, and for the kinetic
model 128 cells were used for the µ variable.

A beam of ǫ0 = 10 MeV electrons is injected on the boundary of the medium,
this is imposed by a boundary condition

ψn0,p = 1010 exp
(

−αǫ (ǫn − ǫ0)2
)

exp
(

−αµ (µp − 1)2
)

, µp > 0, (5.24a)

ψnlmax,p = 0, µp < 0, (5.24b)

with αǫ = 100 and αµ = 1000 for the kinetic model. For the moment models, the
following condition is imposed on the boundary

ψn0 = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ− 1)2
)〉

, (5.25a)

ψnlmax
= 0

RCard(m) . (5.25b)

The initial energy is fixed at ǫmax = 1.2ǫ0 and the final one at ǫmin = 10−3 MeV.
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In order to compare, the dose results with the different methods are normalized
by the quantity of electrons Ne injected in the medium defined for the kinetic model
by

Ne =
pmax∑

p=1

nmax∑

n=1

[

ψn0,p1[0,1](µp) + ψnlmax+1,p1[−1,0](µp)
]

∆ǫn∆µ,

and for the moment models by

Ne =
nmax∑

n=1

[

ψ0,n
0 + ψ0,n

lmax+1

]

∆ǫn,

where nmax is the number of energy steps and pmax = 128 is the number of angle
cells.

The doses obtained with the kinetic, M1 and M2 models are plotted on Fig. 5.3,
and the computational times are gathered in Table 5.1.
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Figure 5.2: Doses obtained with the kinetic and approximated M1 and M2

models.

Furthermore, in 1D, it was also affordable to solve numerically the optimization
problem (4.15) in order to construct the MN closure. This optimization problem
was solved numerically using the minimization routine HUMSL of MINPACK ([20])
which is calling the quadrature routine DQAGS of QUADPACK ([23]). Those rou-
tines are based on iterative methods the maximum residual of which is fixed at
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Models Kinetic approximated M1 approximated M2

Computation times 32.17 sec 0.01885 sec 0.043063 sec
Number of energy steps 51294 634 634

Table 5.1: Computational times to obtain the dose results in the case of a 1D
beam of 10 MeV electrons in water with the different models.

10−10. This method was used because of its simplicity of implementation. For more
evolved method adapted to this problem, the reader is referred e.g. to [16, 2, 1].

The results obtained with the approximated M1 and M2 closures are compared
to those obtained with the closure computed by solving numerically the optimization
problem (4.15) on Fig. 5.3 and the computational times are gathered in Table 5.2.
Those computations were performed on one single processor. This first case shows
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Figure 5.3: Doses obtained with the M1 and M2 models with the closures
obtained by approximation or numerical optimization.

Closure approximated M1 optimization M1

Computation times 0.01885 sec 4.107181 sec

Closure approximated M2 optimization M2

Computation times 0.043063 sec 8.347469 sec

Table 5.2: Computational times to obtains the dose results in the case of a 1D
beam of 10 MeV electrons in water with the different models.

that the MN models have the right behaviour compared to the kinetic reference.
Each dose obtained with the method of moments slowly raises at the entry, reaches
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its maximum value and drops to zero. The reference kinetic dose curve has a similar
shape.

Although the dose obtained with the M1 model is imprecise. The derivative of
the dose at the entry is too high. The doses obtained with the M2 and the kinetic
models have a lower derivative at the entry and a higher maximum and they decrease
faster after the maximum.

Such discrepancies are due to the approximation made when extracting the mo-
ments of the kinetic equation as described in Subsection 4.5.2. The M2 model
provides more accurate results than the M1 model, the doses obtained with this
model follows precisely the one of the kinetic model.

When comparing the dose profiles obtained with the approximated M1 or M2

closures to the ones obtained with a closure computed by a numerical optimization
procedure, one observes very little discrepancies. Therefore, the approximations
of the closures are accurate and they are assumed to be accurate enough dor the
present applications.

Table 5.2 shows that the computations with the approximated MN closures
require a significantly lower computational times than the computations with a clo-
sure computed from a numerical minimization procedure (around 200 times faster).
Those computations are themself faster than the kinetic computations (between 5
to 10 times faster).

5.3.2 Double beam in 1D

The non-linear effects emerging with the MN models when stufying multiple beams
crossing each other, described in Subsection 4.5.2, is studied through this test case.
A beam of 10 MeV electrons is injected at both ends of a 8 cm long homogeneous
water phantom. This is modeled by the following boundary conditions for the kinetic
model

ψn0,p = 1010 exp
(

−αǫ (ǫn − ǫ0)2
)

exp
(

−αµ (µp − 1)2
)

, µp > 0,

ψnlmax,p = 1010 exp
(

−αǫ (ǫn − ǫ0)2
)

exp
(

−αµ (µp + 1)2
)

, µp < 0,

with ǫ0 = 10 MeV, αǫ = 100 and αµ = 1000 and for the moment models

ψn0 = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ− 1)2
)〉

,

ψnlmax
= 1010 exp

(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ+ 1)2
)〉

.

The initial energy is fixed at ǫmax = 1.2ǫ0 and the final one at ǫmin = 10−3 MeV.
The domain is meshed with 800 cells in position and the energy step sizes ∆ǫn are
fixed by the same conditions (5.22) and (5.23) as in the previous test case. The 8
cm long water phantom is meshed with 800 cells, and for the kinetic model 128 cells
are used for the µ variable in [−1, 1].

The doses obtained with the kinetic, M1 and M2 models are plotted on Fig. 5.4,
and the computational times are gathered in Table 5.3.

When using a non-linear moment model such as the MN models on this problem,
an artificial bump is observed in the middle of the medium, i.e. a peak of dose for
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Figure 5.4: Doses obtained with the M1 and M2 models with the closures
obtained by approximation or numerical optimization.

Models Kinetic approximated M1 optimization M1

Computation times 44.997 sec 0.0278 sec 6.064254 sec
Number of energy steps 51350 634 634

Models approximated M2 optimization M2

Computation times 0.051825 sec 15.39329 sec
Number of energy steps 634 634

Table 5.3: Computational times to obtains the dose results in the case of two
1D beams of 10 MeV electrons in water with the different models.

the M1 model and a drop for the M2 model. This artificial phenomenum has smaller
effect when the number of moments N raises. This problem was also studied e.g. in
[16].

Although, as described in Subsection 4.5.2, the kinetic equation are linear while
the MN models are not. This effect is due to the non-linearity of the moment closure.
By computing the dose created by each beam seperately and summing them, one
can get rid of this artificial effect of the MN model (see Remark 4.1). This method
is afterward referred to as the double MN models. The doses obtained using the
MN and double MN models are compared on Fig. 5.5.

As in the previous test case, the double M2 model is very accurate while the dose
obtained with the double M1 model is overdiffused. One observes that the artificial
bump only appears in a small region in the center of the medium, i.e. in a 2 cm
long interval for the M1 model and a 1 cm long interval for the M2 model. In the
rest of the meidum, the MN and double MN models gives approximately the same
dose.
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Figure 5.5: Dose obtained with the M1, double M1, M2 and double M2 models
with the approximated closures.

5.3.3 Single beam in 2D

In 2D, discretizing directly the kinetic electrons transport equation, i.e. using a
discrete ordinate method, was found too costly for our applications. Instead, the
doses obtained with the moment models are compared to a reference given by the
Monte Carlo code PENELOPE ([14, 5, 6]). The physics of the collisions considered in
this code is more complete than the one presented in this manuscript, although in the
energy range considered here, the collisions considered in Chapter 1 are predominant.

In order to compare the dose results with the Monte Carlo results, the doses are
normalized by their maximum values. Such a normalized dose is commonly called
percentage depth dose (PDD).

The transport of electrons in this code is based on the the CSD operator (1.30),
therefore the moment equations solved here are (5.2b) where the matrix M is given
by (5.3a) and it corresponds to the CSD operator.

Similarily, computing the closure by solving numerically the optimization prob-
lem (4.15) was possible in 1D and for a finite number of points, but it was found
too costly for application in the numerical solver (5.13), so only the approximated
closures are used.

The medium is a square of dimension 6 cm × 6 cm composed of water. The
beam of 10 MeV electrons is injected on the boundary of the medium

ψ(X, ǫ,Ω) = 1010 exp
(

−αǫ (ǫ− ǫ0)2
)

exp
(

−αµ (Ω1 − 1)2
)

1B(X),

B =

{

X = (x, y), x = 0 cm, y ∈ [2.5 cm, 3.5 cm]

}

.

for all (X,Ω) ∈ Γ−, with αǫ = 200 and αµ = 1000 for the kinetic model. For the
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moment models, the following conditions are imposed on the boundary

ψn0,m = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ− 1)2
)〉

1B(Xl,m),

ψnl,0 = ψnlmax,m = ψnl,mmax
= 0

RCard(m) ,

where number of cells in the first and second spatial direction are lmax = 600 and
mmax = 600 and the energy step ∆ǫn is fixed based on the CFL condition (5.18)

∆ǫn = 0.95Sn
(

1

∆x
+

1

∆y

)−1

.

The initial energy is fixed at ǫmax = 1.2ǫ0 and the final one at ǫmin = 10−3 MeV.
The doses obtained with the Monte Carlo solver and the M1 and M2 solver

(5.17) are plotted on Fig. 5.6, and the computational times are gathered in Table
5.4. The solver for the moment models was parallelized and the computations were
performed on 4 processors.

Figure 5.6: Doses obtained with the Monte Carlo solver and the approximated
M1 and M2 models.

Models Monte Carlo approximated M1 approximated M2

Computation times ≈ 10 hours 135.223 sec 510.794 sec

Table 5.4: Computational times required to obtain the dose results in the case
of a 2D beam of 10 MeV electrons in water with the different solvers.

One observes a similar behavior as for the 1D case in Subsection 5.3.1. The M1

results is slightly overdiffusive while the M2 results are more accurate. Although
the diffusive effect in multi-D is lower than in 1D.

154 T. Pichard



5. Numerical schemes

5.3.4 Double beam in 2D

As in Subsection 5.3.4, the multi-beam instability is studied through this test case
in 2D. Two orthogonal beams of 10 MeV electrons are injected on the boundary of
a water phantom. This is modelled by the following boundary conditions for the
kinetic model

ψ(X, ǫ,Ω) = 1010 exp
(

−αǫ (ǫ− ǫ0)2
) [

exp
(

−αµ (Ω1 − 1)2
)

1B1(X)

+ exp
(

−αµ (Ω2 − 1)2
)

1B2(X)
]

,

B1 =

{

X = (x, y), x = 0 cm, y ∈ [0.75 cm, 1.25 cm]

}

,

B2 =

{

X = (x, y), x ∈ [0.75 cm, 1.25 cm], y = 0 cm
}

.

for all (X,Ω) ∈ Γ−, with ǫ0 = 10 MeV, αǫ = 200 and αµ = 1000 and for the moment
models

ψn0,m = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(Ω) exp
(

−αµ (Ω1 − 1)2
)〉

1B1(Xl,m),

ψnl,0 = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(Ω) exp
(

−αµ (Ω2 − 1)2
)〉

1B2(Xl,m),

ψnlmax,m = ψnl,mmax
= 0

RCard(m) .

The spatial domain and the energy spectrum are identical to the ones of the last
test case in Subsection 5.3.3.

The dose obtained with the kinetic, M1 and M2 models are plotted on Fig. 5.7,
and the computational times are identical to the ones of the previous test case (see
Table 5.4).

As described in Subsection 4.5.2, when using the M1 model, the two beams merge
into one of direction e1 + e2. This artificial effect appears not when considering the
two beams seperately, i.e. when using the double M1 model.

As in the 1D double beam case, the dose obtained with the M2 model presents a
small bump where the beams cross each other. Even if the M2 model is non-linear,
it is able to differentiate the two beams.

The comparisons with the reference Monte Carlo results show that the dose
obtained with the double M1 model is more diffused than the one with the M2

model. The dose obtained with M2 model is very close to the one obtained with the
double M2 model except in the small region where the beams cross each others.

5.4 Relaxation method

In order to construct inconditionnally stable schemes preserving the realizability
property, a relaxation method is used. Commonly, such a method leads to construct
numerical schemes having the same structures as the ones based on an approximate
Riemann solver approach. However the relaxation method offers more flexibility
which can be exploited to construct inconditionnally stable schemes.
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Figure 5.7: Doses obtained with the Monte Carlo solver and the approximated
M1, M2, double M1 and double M2 models.

5.4.1 Relaxed equations in 1D

The relaxation method described here is based on the work of D. Aregba-Driollet
and R. Natalini ([21, 3, 11, 4]). This method was originally developed for hyperbolic
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equations and afterward completed for parabolic ones.
The relaxation method is first described for 1D problems. Consider the 1D

equation (5.1a). Chose J relaxation directions (λj)j=1,...,J ∈ R
J . To each relaxation

direction, associate a Lipschitz continuous function Mj(ψ), such that

J∑

j=1

Mj(ψ) = ψ,
J∑

j=1

λjMj(ψ) = F(ψ). (5.26)

Such functions Mj are afterward referred to as Maxwellians (as it will represent an
equilibrium). At this point, they are also assumed to be realizable Mj(ψ) ∈ Rm as
long as ψ ∈ Rm.

The following system of equations is a relaxation system for (5.1a)

∂ǫf
τ
j − λj

ρ
∂xf τj =

1

τ



Mj





J∑

j=1

f τj



− f τj



 , ∀j = 1, ..., J, (5.27)

where τ > 0 is a relaxation parameter.
In the limit τ → 0, the solution of (5.27) corresponds to the solution of the

original problem (5.1a). Indeed, formally, multiplying (5.27) by τ and having τ
tends to zero leads to

f0
j = Mj





J∑

j=1

f0
j



 ,

then replacing f0
j by Mj(

J∑

j=1
f0
j ) in (5.27) and summing over j reads exactly (5.1a).

This result was proven in [21] in the case of scalar hyperbolic equations under
the requirement ([21, 9, 4]) that all the eigenvalues of ∂ψF(ψ)/ρ are bounded by the
extremal relaxation speeds, i.e.

Spectrum
(

∂ψ
F(ψ)

ρ

)

⊂
[

min
j

λj
ρ
,max

j

λj
ρ

]

. (5.28)

For the present applications, the following choice was made

J = 2, λ1 = 1 and λ2 = −1.

This leads to the following definition of the Maxwellians (which are uniquely deter-
mined by (5.31) with this choice of relaxation parameters)

M1(ψ) =
ψ + F(ψ)

2
, M2(ψ) =

ψ − F(ψ)

2
. (5.29)

Using Lemma 5.1, one verifies that these relaxation parameters satisfy (5.28) and
using Proposition 5.1, those Maxwellians are realizable when ψ ∈ Rm is realizable.

The idea to construct numerical schemes is to use the following splitting method.
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1. At the entry of each energy cell ǫn, the solution fj is initialized at the
value of its associated Maxwellian

f1(ǫn) := M1 (ψ(ǫn)) f2(ǫn) := M2 (ψ(ǫn)) .

2. The homogeneous relaxed equations are solved, i.e. the part without the
non-linear relaxation term

∂ǫf1 − 1

ρ
∂xf1 = 0, ∂ǫf2 +

1

ρ
∂xf2 = 0, (5.30)

One obtains the intermediate values f1
n+ 1

2 and f2
n+ 1

2 from those compu-
tations.

3. The influence of the relaxation term is added. In the limit τ → 0, this
corresponds to projecting

ψ(ǫn+1) = f1
n+ 1

2 + f2
n+ 1

2 . (5.31)

Remark that the homogeneous equation (5.30) is linear which offers much flexibility
in the choice of a numerical schemes to solve such an equation. In the next sections,
some numerical schemes for solving (5.30) are presented.

Remark 5.3 Using the upwind scheme on (5.30) and rewriting it in terms of
ψ, one verifies that the resulting scheme is exactly the approximate Riemann
solver (5.9) (see also [10, 24, 17]).

Applying the relaxation method to the particle transport equations corresponds
to replacing (5.30) by

∂ǫ(Sf1) − 1

ρ
∂xf1 +M f1 = 0, (5.32a)

∂ǫ(Sf2) +
1

ρ
∂xf2 +M f2 = 0, (5.32b)

when considering the transport of electrons alone, or by

∂xf1 − ρQ(f1) = 0, −∂xf2 − ρQ(f2) = 0, (5.33)

when considering the transport of photons and electrons together.

5.4.2 Extension to multi-D

As in 1D, choose J directions of relaxation λj ∈ R
3 (for 3D problems or λj ∈ R

2 in
2D), which are vectors instead of scalars in the multi-D case.

The requirement (5.28) on the λj turns into

∀n ∈ S2, Spectrum
(

∂ψ
Fn(ψ)

ρ

)

⊂
[

min
j

λj .n

ρ
,max

j

λj .n

ρ

]

, (5.34)
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where Fn is defined in (4.7).

The 1D method did not use any 1D argument. One can rewrite the previous
method with vectors λj instead of scalars. Then the method for solving the moment
systems can be rewritten.

1. At each energy step, initialize fnj := Mn
j , where the Maxwellians Mn

j

satisfy

J∑

j=1

Mn
j = ψn ∈ R

4,
J∑

j=1

λj ⊗ Mj
n = F (ψn) ∈ R

3×4, (5.35)

where ⊗ denotes tensorial product.

2. Then, compute f
n+ 1

2
j for each 1 ≤ j ≤ J by solving the homogeneous

relaxed equations, i.e.

∂ǫfj − λj
ρ
.∇xfj = 0, 1 ≤ j ≤ J. (5.36)

when considering (5.1b) or

∂ǫ(Sfj) − λj
ρ
.∇xfj −M fj = 0, ∀j = 1, ..., J, (5.37)

when considering the electron transport (5.2) or

λj .∇xfj − ρQ(fj) = 0, ∀j = 1, ..., J, (5.38)

when considering the coupled photon and electron transport (5.4)

3. Finally, update ψn+1 :=
J∑

j=1
f
n+ 1

2
j .

For the sake of simplicity, only two dimensional problem are considered but the
method can easily be extended to higher dimensional problems. This method was
tested with the following sets of relaxation parameters:

• Cartesian relaxation

Relaxation directions λ1 = (2, 0), λ2 = (−2, 0), (5.39a)

λ3 = (0, 2), λ4 = (0,−2),

Associated Maxwellians Mi =
1

4

(

ψ +
λi
|λi|

F (ψ)

)

, (5.39b)
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• Diagonal relaxation

Relaxation directions λ1 =
1√
2

(2, 2), λ2 =
1√
2

(−2, 2), (5.40a)

λ3 =
1√
2

(−2,−2), λ4 =
1√
2

(2,−2),

Associated Maxwellians Mi =
1

4

(

ψ +
λi
|λi|

F (ψ)

)

, (5.40b)

• Star relaxation

Relaxation directions λ1 = (4, 0), λ2 = (0, 4), (5.41a)

λ3 = (−4, 0), λ4 = (0,−4),

λ5 =
1√
2

(4, 4), λ6 =
1√
2

(−4, 4),

λ7 =
1√
2

(−4,−4), λ8 =
1√
2

(4,−4),

Associated Maxwellians Mi =
1

8

(

ψ +
λi
|λi|

F (ψ)

)

. (5.41b)

Remark that those relaxation directions λj satisfy the condition (5.34) and their
associated Maxwellians Mj are realizable as long ψ ∈ Rm according to Property
3.1.

5.5 An explicit Finite Difference (FD) scheme

for linear equations

This section is devoted to constructing unconditionally stable numerical schemes to
solve the (linear) homogeneous relaxed equations (5.30), (5.32), (5.33), (5.36), (5.37)
and (5.38).

The first method, presented in Subsection 5.5.1, is based on the method of
characteristics. Similarily as the approximate Riemann solver, this method can only
be applied when the considered equations contains an hyperbolic operator. Therefore
they are only applied to the transport of electrons when considering whether a CSD
(2.9) or a FP (2.10) collision term. Another alternative, i.e. an implicit solver,
is presented in Section 5.7, and it can be applied when considering more general
collision operators.

5.5.1 A FD scheme for the 1D toy equations

For the sake of simplicity, the numerical scheme is presented on the scalar equation

∂ǫψ − 1

ρ(x)
∂xψ = 0, (5.42)
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which corresponds to chosing λj = 1 in (5.30). The other cases, i.e. λ = −1 or
λ ∈ R, can be treated similarily. Remark also that the equations composing the
system (5.30) are independent, therefore one can construct a numerical scheme in
the scalar case (5.42) and apply this method to each equation of the system (5.30)
separately.

The density ρ is considered constant equal ρl+ 1
2

in each dual cell [xl, xl+1].

The method of characteristic

Using the method of characteristics, ψ is constant along the characteristic curves
(see the configuration on Fig. 5.8)

d

dǫ
ψ
(

ǫ, y(ǫ, e0, x)
)

= 0, (5.43)

d

dǫ
y(ǫ, e0, x) = − 1

ρ(x)
, y(e0, e0, x) = x. (5.44)

The characteristic curve the foot of which is xl in e0 reads

y(ǫ, e0, xl) = xl − ǫ− e0

ρl− 1
2

, (5.45)

if the characteristic curve y reaches not the point xl+1 in the interval ]ǫ, e0], i.e. if

|ǫ− e0| ≤ ρl− 1
2
|y(ǫ, e0, xl) − xl|. (5.46)

The relation (5.45) can easily be inverted

y(ǫ, e0, x) = z ⇒ x(ǫ, e0, z) = z +
ǫ− e0

ρl+ 1
2

,

A convex combination

With those computations, one obtains

ψn+1
l = ψ

(

ǫn+1, xl
)

= ψ



ǫn, xl +
ǫn+1 − ǫn

ρl+ 1
2



 .

Approximating ψ (ǫn, x) by a piecewise affine function having ψnl for value at each
node xl leads to the well-known upwind scheme

ψn+1
l =



1 − ∆ǫn

ρl+ 1
2
∆x



ψnl +
∆ǫn

ρl+ 1
2
∆x

ψnl+1,

and the condition (5.46) corresponds to the Courant-Friedrichs-Lewy (CFL) condi-
tion

∀l, ∆ǫn

ρl+ 1
2
∆x

≤ 1.
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x

ǫ

xl xl+1 xl+2

ǫn + ∆ǫn

ǫn

x
=
x
l +

1ρ
l+

1
2 (ǫ n+

1−
ǫ)

Figure 5.8: Characteristic curves when ∆ǫn ≤ ρl+ 1
2
∆x.

An unconditionally stable scheme

Using the same method, one can construct a numerical scheme non constrained by
the condition (5.46). Consider that the characteristic curve (5.45) can cross more
than one cell (see configuration on Fig. 5.9). Equation (5.45) is modified into

y(ǫ, e0, xl) = xl −
K−

l
−1

∑

k=0




ek+1 − ek

ρl−k− 1
2



− ǫ− eK
−
l

ρl−K−
l

− 1
2

(5.47)

where the scalars ek and the integer K−
l are such that

∀k = 0, ...,K−
l − 1, (ek+1 − ek) = ρl−k− 1

2
∆x,

K−
l

−1
∑

k=0

ρl−k− 1
2
∆x ≤ ǫ− e0 ≤

K−
l∑

k=0

ρl−k− 1
2
∆x.

Inverting (5.47) reads

y(ǫ, e0, x) = z ⇒ x(ǫ, e0, z) = z +

K+
l

−1
∑

j=0




ej+1 − ej

ρl+j+ 1
2



+
ǫ− eK

+
l

ρl+K+
l

+ 1
2

(5.48)

where the scalars ek and the integer K+
l are such that

∀j = 0, ...,K+
l − 1, (ej+1 − ej) = ρl+j+ 1

2
∆x,

K+
l

−1
∑

j=0

ρl+j+ 1
2
∆x ≤ ǫ− e0 ≤

K+
l∑

j=0

ρl+j+ 1
2
∆x.
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One obtains

ψn+1
l = ψ

(

ǫn+1, xl
)

= ψ




ǫn, xl +

K+
l

−1
∑

j=0




ej+1 − ej

ρl+j+ 1
2



+
ǫn+1 − eK

+
l

ρl+K+
l

+ 1
2






= ψ



ǫn, xl+K+
l

−1 +
ǫn+1 − eK

+
l

ρl+K+
l

+ 1
2



 .

Approximating ψ (ǫn, x) by a piecewise affine function having ψnl for value at each
node xl leads to

ψn+1
l = (1 − αl)ψ

n
l+K+

l

+ αlψ
n
l+K+

l
+1
, αl =

(ǫn+1 − eK
+
l )

ρl+K+
l

+ 1
2

. (5.49)

x

ǫ

xl+K+
l

xl+1 xl+K+
l

−1xl

ρl+ 1
2

ρl+ 3
2

ρl+ 5
2

ǫn + ∆ǫn

ǫn

e1

e2

Figure 5.9: Configuration for the unconditionally Finite Difference scheme
with K+

l = 3

Property 5.1

• If the characteristic curves do not cross more than one cell, this scheme
is equivalent to the original upwind scheme. This corresponds to the case
where the common CFL condition (5.46) is satisfied.

• One verifies that the consistency error is of order 1 in ∆x and in ∆ǫn.

• In the end, the scheme (5.49) expresses ψn+1
l as a convex combination of

ψnl′ for different l′. Therefore it is monotone, Total Variation (TV) stable
and it preserves the realizability (according to Property 3.1).
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Remark 5.4 There are no stability restrictions on this scheme, so it is more
stable than the common upwind scheme. However, the precision of this scheme
when extending the stencil, i.e. when K+

l > 1, is lower than the one of the
upwind scheme the common CFL restriction.

5.5.2 Extension to multi-D

The 2D linear transport equation read

∂ǫψ − λ

ρ
.∇xψ = 0.

Again, one can construct a FD scheme by following the characteristic curves (in
2D). Given a cell Cl+ 1

2
,m+ 1

2
= [xl, xl+1] × [ym, ym+1] which center is Xl,m = (xl, ym),

one can find the origin Xc = (xc, yc) of the characteristic which passes through
Xl,m at energy ǫn + ∆ǫn (see configuration on Fig. 5.10). From this, one defines a
Finite Difference scheme by approximating the value of ψ(ǫn, Xc) using the values
ψ(ǫn, Xl′,m′) at the nearest cell centers Xl′,m′ around Xc. This reads

ψn+1
l,m = ψ(ǫn+1, Xl,m) = ψ(Xc, t

n)

≈
1∑

i=0

1∑

j=0

|xc − xl′+i|
|xl′+1 − xl′ |

|yc − ym′+j |
|ym′+1 − ym′ |ψ

n
l′+i,m′+j , (5.50)

if Xc ∈ Cl′+ 1
2
,m′+ 1

2
.

Xl,m

Xc

xl′ xl′+1

ym′

ym′+1

Figure 5.10: A characteristic curve in two dimensions. Configuration for the
2D Finite Difference scheme.

5.5.3 Application to electrons transport

For the relaxed electron transport equations (5.32), one can use a splitting method
and solve first the homogeneous equation and add the remaining terms implicitly
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afterward. This reads

(Sn+1Id− ∆ǫnMn+1)f1
n+1
l = Sn

[

(1 − α−
l )f1

n
l−K−

l

+ α−
l f1

n
l−K−

l
−1

]

, (5.51a)

(Sn+1Id− ∆ǫnMn+1)f2
n+1
l = Sn

[

(1 − α+
l )f2

n
l+K+

l

+ α+
l f2

n
l+K+

l
+1

]

, (5.51b)

α−
l =

(ǫn − ǫ−)

ρl−K−
l

− 1
2

, α+
l =

(ǫn − ǫ+)

ρl+K+
l

+ 1
2

, (5.51c)

where the scalars ǫ− and ǫ+ and the integer K−
l and K+

l are determined by

ǫ− = ǫn −
K−

l
−1

∑

k=0

ρl−k− 1
2
∆x, ǫ+ = ǫn −

K+
l

−1
∑

k=0

ρl+k+ 1
2
∆x, (5.51d)

K−
l

−1
∑

k=0

ρl−k− 1
2
∆x ≤ ∆ǫn ≤

K−
l∑

k=0

ρl−k− 1
2
∆x,

K+
l

−1
∑

k=0

ρl+k+ 1
2
∆x ≤ ∆ǫn ≤

K+
l∑

k=0

ρl+k+ 1
2
∆x.

(5.51e)

When applied to the 2D problem (5.2), this reads

(Sn+1Id− ∆ǫnMn+1)fi
n+1
l,m =

1∑

i=0

1∑

j=0

|xc − xl′+i|
|xl′+1 − xl′ |

|yc − ym′+j |
|ym′+1 − ym′ |S

nψnl′+i,m′+j (5.52)

when the foot of the characteristic Xc is in the cell Cl′+ 1
2
,m′+ 1

2
.

Proposition 5.3 The schemes (5.51) and (5.52) preserve the realizability prop-
erty from one energy step to another.

Proof The proof is identical to the one of Proposition 5.2. �

5.6 Tests with fast characteristics

The aim of this section is to show the efficiency of the explicit solvers (5.51) in
1D and (5.52) in 2D when the medium contains low density regions. Therefore
those numerical schemes are compared to the reference approximate Riemann solvers
(5.13) and (5.17) for moment equations, which equivals to the schemes (5.51) and
(5.52) with the restrictive condition (5.12). As the purpose of this section is only to
test the accuracy of the numerical methods for fast characteristics, kinetic (in 1D)
or Monte Carlo (in 2D) results are provided only as indication.

The accuracy of the approximation of the moment closures were tested in the
last section. Here, in order to accelerate the computations, only the approximated
closures are used.
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5.6.1 In a 1D medium containing air

For this test case, the domain is chosen to be 12 cm long. The density of th medium
is chosen to be

ρ(x) = 10−3
(

1[0 cm,2 cm]∪[4 cm,6 cm]∪[8 cm,10 cm](x)

+1[2 cm,4 cm]∪[6 cm,8 cm]∪[10 cm,12 cm](x)
)

,

which corresponds to a medium composed of 2 cm wide slabs of alternatively air
(ρair = 10−3) or water (ρwater = 1).

A beam identical to the one of Subsection 5.3 is injected on the boundary of the
medium. This corresponds to fixing the boundary conditions (5.24) for the kinetic
model or (5.25) for the moment models.

The kinetic equation (5.19) is solved with the numerical scheme (5.20). The
results with the explicit solver (5.51) (with different energy step sizes) for moment
equations are compared on this test case.

The medium is uniformly meshed with 1200 cells, and 128 cells in µ were used
for the kinetic model. The energy step is fixed by the condition (5.21) for the kinetic
model. For the moment models, the results with two different energy step sizes. The
first energy step size is

∆ǫnair = 0.95ρairS
n ∆x

max
j

|λj |
. (5.53)

It corresponds to (5.12). In that case, the explicit numerical scheme (5.51) is equiv-
alent to the approximate Riemann solver (5.13) as the characteristic curves do not
cross more than one cell (see Property 5.1). The second energy step size is

∆ǫnwater = 0.95ρwaterS
n ∆x

max
j

|λj |
. (5.54)

The explicit numerical schemes (5.51) can be used without any condition on the
energy step size so fixing a fine or a coarse energy step will only affect the accuracy
and the computational time of the method.

The doses obtained with the kinetic scheme (5.20) and the M1 and M2 models
with the explicit (5.51) numerical scheme are plotted on Fig. 5.11 and the compu-
tational times are gathered in Table 5.5.

The results with larger energy steps ∆ǫn = ∆ǫnwater show good agreements with
those with fine ones ∆ǫn = ∆ǫnair.

When using fine energy steps, one needs around 1000 times more steps than
when using the coarse steps because

∆ǫnwater
∆ǫnair

= 103.

This leads to a large difference in the computational times, the explicit solver is
around 900 times faster with coarse steps than with fine ones.
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Figure 5.11: Doses obtained with the kinetic solver and the M1 and M2 solvers
with fine and coarse energy steps ∆ǫn.

Model and energy step Kinetic M1 with ∆ǫnair M1 with ∆ǫnwater
Computation times 860.685 sec 19.041089 sec 0.073788 sec

Number of energy steps 683219 632468 634

Model and energy step M2 with ∆ǫnair M2 with ∆ǫnwater
Computation times 64.149026 sec 0.136977 sec

Number of energy steps 632468 634

Table 5.5: Computational times with the kinetic solver (5.20), and the explicit
solver (5.51) for the M1 and M2 models with a fine ∆ǫnair and a coarse ∆ǫnwater
energy step size.

5.6.2 In a 2D cut of a chest

The density map presented in the last test case contained extremely low density
regions (ρair = 10−3). The 2D density map in the present test case corresponds to
a cut of a human chest. The aim of this test case is to show that the numerical
schemes are efficient for more practical applications.

The domain is of size 22.3 cm × 29.5 cm, meshed with 223 × 295 cells.
A beam is imposed on the boundary. It is modeled by the following boundary

condition

ψ(X, ǫ,Ω) = 1010 exp
(

−αǫ (ǫ− ǫ0)2
)

exp
(

−αµ (Ω1 + 1)2
)

1B(X),

B =

{

X = (x, y), x = 0 cm, y ∈ [18 cm, 20 cm]

}

.

for all (X,Ω) ∈ Γ−, with ǫ0 = 10 MeV, αǫ = 200 and αµ = 1000 and for the moment
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models

ψnlmax,m = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(Ω) exp
(

−αµ (Ω1 + 1)2
)〉

1B(Xl,m),

ψnl,0 = ψn0,m = ψnl,mmax
= 0

RCard(m) .

This case is meant to test the relaxation method and the numerical schemes for the
relaxed equations. Especially the influence of the choice of the relaxation parameter,
i.e. with the caretesian, diagonal or star relaxation directions, is tested on this
problem.

The dose results obtained with coarse energy steps ∆ǫwater (5.54) using the
explicit scheme are compared to the result with fine energy steps ∆ǫair (5.53).

The isodose curves of 5% (red), 10% (orange), 25% (green), 50% (light blue),
70% (dark blue) and 80% (violet) of the maximum dose are plotted on Fig. 5.12
over the density map in grayscale. The computational times for this test case are
gathered in Table 5.6.

Figure 5.12: Isodose curves in a chest at 5% (red), 10% (yellow), 25% (green),
50% (cyan) and 80% (blue) of the maximum dose with a fine ∆ǫn (left) and
a coarse ∆ǫn using cartesian (middle left), diagonal (middle right) and star
(right) directions of relaxation.

The isocurves of absolute error compared to the explicit scheme with a fine
energy step ∆ǫnair at 0.2% (yellow), 0.5% (light blue), 1% (red) are plotted on Fig.
5.13.

The dose obtained with the explicit scheme with coarse energy steps ∆ǫnwater
with cartesian directions of relaxation with the approximated M1 and M2 models
are compared to a reference Monte Carlo results of Fig. 5.14, and the computational
times are gathered in Table 5.14.

The shape of the dose obtained with the different relaxation parameters with a
coarse ∆ǫnwater are close to the one obtained with the cartesian relaxation parameters
when using fine ∆ǫnair. The absolute error is smaller than 5.3140% of the maximum
dose when using the cartesian directions of relaxation, than 12.702% with the diago-
nal directions, and than 3.4072% with the star directions. The maximum errors are
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Relaxation directions and ∆ǫn Cartesian, ∆ǫnair Cartesian, ∆ǫnwater
Computation times 5939.6982 sec 20.8869 sec

Number of energy steps 247930 885

Relaxation directions and ∆ǫn Diagonal, ∆ǫnwater Star, ∆ǫnwater
Computation times 22.6130 sec 61.2220 sec

Number of energy steps 885 1768

Table 5.6: Computational times with the explicit solver (5.51) with the differ-
ent relaxation directions and the different energy step sizes.

Figure 5.13: Isodose curves of absolute error compared to the dose obtained
with explicit scheme with fine energy steps ∆ǫnair in a chest at 0.5% (red), 1%
(yellow) and 2% (green) of the maximum dose with coarse energy steps ∆ǫn

with cartesian (left), diagonal (middle) and star (right) directions of relaxation.

Solver Monte Carlo M1 model M2 model

Computation times 14 hours 20.8869 sec 74.3470 sec

Table 5.7: Computational times with the Monte Carlo solver, and the explicit
solver (5.51) for the M1 and M2 models using the Cartesian directions of
relaxation.

located in the middle of the medium at about 2 cm and 6 cm depth and on each side
of the beam at the entry of the low density regions (lungs). When using the diagonal
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Figure 5.14: Isodose curves in a chest at 5% (red), 10% (yellow), 25% (green),
50% (cyan) and 80% (blue) of the maximum dose with a Monte Carlo solver
(left), with the explicit scheme with coarse energy steps ∆ǫn for the M1 model
(middle) and M2 model (right) with cartesian directions of relaxations.

directions of relaxation, the information is transported in diagonal direction. Thus,
when transporting particles along the x-axis, the scheme does not transport them
from one cell to its neighboor. This results in some irregularities which can be seen
in Fig. 5.13. The relaxed models are better when the directions of relaxation are
collinear to the mesh directions (i.e. cartesian directions).

Using a the numerical schemes with coarse energy steps provides a significant
speed-up factor compared to the reference method and it provides a relatively good
accuracy compared to those reference results.

The Cartesian directions of relaxation provides more accurate results than the
diagonal and the star directions of relaxation. Therefore, Cartesian directions of
relaxations are chosen for the next 2D tests.

5.7 An implicit scheme for linear equations

The last approach consists in treating implicitly the non-linear flux term in the
transport equations.
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5.7.1 For the toy problem

On the homogeneous relaxed equations (5.30), such a scheme simply reads



1 +
∆ǫn

ρl− 1
2
∆x



 (f1
τ )n+1
l = (f1

τ )nl +
∆ǫn

ρl− 1
2
∆x

(f τ1 )n+1
l−1 = 0,



1 +
∆ǫn

ρl+ 1
2
∆x



 (f2
τ )n+1
l = (f2

τ )nl +
∆ǫn

ρl+ 1
2
∆x

(f τ2 )n+1
l+1 = 0,

which can be obtained e.g. by a Finite Difference approach. When applying this
scheme to (5.30) in the relaxation method, this scheme leads to write the following
scheme for ψ

ψn+1
l − ∆ǫn

∆x





Fn+1
l+ 1

2

ρl+ 1
2

−
Fn+1
l− 1

2

ρl− 1
2



 = ψnl , (5.55a)

Fn+1
l+ 1

2

=
1

2

[

F(ψn+1
l+1 ) + F(ψn+1

l ) + (ψn+1
l+1 −ψn+1

l )
]

. (5.55b)

which equivals to rewriting (5.9) with implicit fluxes.

5.7.2 For the transport equations

When applied to the transport equations of electrons (5.2), this scheme reads

(

Sn+1Id− ∆ǫnMn+1
)

ψn+1
l +

∆ǫn

∆x





Fn+1
l+ 1

2

ρl+ 1
2

−
Fn+1
l− 1

2

ρl− 1
2



 = Snψnl , (5.56a)

Fn+1
l+ 1

2

=
1

2

[

F(ψn+1
l+1 ) + F(ψn+1

l ) − (ψn+1
l+1 −ψn+1

l )
]

, (5.56b)

Such a discretization can also be applied for the transport of both photons and
electrons (5.4), i.e. to the relaxed equation (5.33). This leads to write the numerical
scheme

An+1
γ→γψγ

n+1
l +

∆ǫn

∆x





Fγ
n+1
l+ 1

2

ρl+ 1
2

−
Fγ

n+1
l− 1

2

ρl− 1
2



 =
n∑

n′=1

Bn′,n+1
C,γ ψγ

n′

l (5.57a)

An+1
e→eψe

n+1
l +

∆ǫn

∆x





Fe
n+1
l+ 1

2

ρl+ 1
2

−
Fe

n+1
l− 1

2

ρl− 1
2



 =
n∑

n′=1

Bn′,n+1
e→e ψe

n′

l +Bn′,n+1
γ→e ψγ

n′

l ,

(5.57b)

for α = γ, e Fα
n+1
l+ 1

2

=
1

2

[
F(ψα

n+1
l+1 ) + F(ψα

n+1
l ) − (ψα

n+1
l+1 −ψαn+1

l )
]
, (5.57c)
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where the matrices An+1
γ→γ , An+1

e→e, B
n′,n+1
γ→γ , Bn′,n+1

e→e and Bn′,n+1
γ→e read

An+1
γ→γ = σn+1

T,C Id− sn+1,n+1
C,γ ∆ǫn, Bn′,n+1

γ→γ = sn
′,n+1
C,γ ∆ǫn

′

,

An+1
e→e =

Sn+1

∆ǫn
Id−Mn+1, Bn′,n+1

γ→e = sn
′,n+1
C,e ∆ǫn

′

,

Bn′,n+1
e→e =

SnId

∆ǫn
δn′,n,

In 2D, this numerical scheme reads

An+1
γ→γψγ

n+1
l,m +

∆ǫn

∆x





Fγ
n+1
l+ 1

2
,m

ρl+ 1
2
,m

−
Fγ

n+1
l− 1

2
,m

ρl− 1
2
,m





+
∆ǫn

∆y





Fγ
n+1
l,m+ 1

2

ρl,m+ 1
2

−
Fγ

n+1
l,m− 1

2

ρl,m− 1
2



 =
n∑

n′=1

Bn′,n+1
C,γ ψγ

n′

l,m (5.58a)

An+1
e→eψe

n+1
l,m +

∆ǫn

∆x





Fe
n+1
l+ 1

2
,m

ρl+ 1
2
,m

−
Fe

n+1
l− 1

2
,m

ρl− 1
2
,m



 (5.58b)

+
∆ǫn

∆y





Fe
n+1
l,m+ 1

2

ρl,m+ 1
2

−
Fe

n+1
l,m− 1

2

ρl,m− 1
2



 =
n∑

n′=1

Bn′,n+1
e→e ψe

n′

l,m +Bn′,n+1
γ→e ψγ

n′

l,m,

for α = γ, e, Fα
n+1
l+ 1

2
,m

=
1

2

[
F(ψα

n+1
l+1,m) + F(ψα

n+1
l,m ) − (ψα

n+1
l+1,m −ψαn+1

l,m )
]
,

(5.58c)

Fα
n+1
l,m+ 1

2

=
1

2

[
F(ψα

n+1
l,m+1) + F(ψα

n+1
l,m ) − (ψα

n+1
l,m+1 −ψαn+1

l,m )
]
.

(5.58d)

5.7.3 Computing ψn+1
l

The numerical schemes (5.56), (5.56), (5.57) and (5.58) can be rewritten under the
form

J(ψn+1)l = Rn
l , (5.59)

where J is a non-linear function of the unknown ψn+1 and Rn
l contains all the terms

ψn
′

for n′ < n+ 1. In order to use the implicit schemes, the function J needs to be
invertible and its inverse needs to be realizable.

In order to compute ψn+1 and to prove the existence of a realizable solution to
(5.59), an iterative method can be used. This method is inspired of [13].

Rewrite (5.59) under the form

−L(ψn+1
l−1 ) +D(ψn+1

l ) −R(ψn+1
l+1 ) = Rn

l , (5.60)
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where L(ψn+1
l−1 ), respectively D(ψn+1

l ) and R(ψn+1
l+1 ), contains all the terms depend-

ing of ψn+1
l−1 , respectively ψn+1

l and ψn+1
l+1 . When applied to (5.56), this reads

L(ψn+1
l−1 ) =

∆ǫn

ρl− 1
2
∆x

ψn+1
l−1 − F

(

ψn+1
l−1

)

2
, (5.61a)

R(ψn+1
l+1 ) =

∆ǫn

ρl+ 1
2
∆x

ψn+1
l+1 + F

(

ψn+1
l+1

)

2
, (5.61b)

D(ψn+1
l ) =



1 +
∆ǫn

∆x




1

ρl− 1
2

+
1

ρl+ 1
2







ψn+1
l , (5.61c)

Rn
l = ψnl , (5.61d)

when applied to (5.56), this reads

L(ψn+1
l−1 ) =

∆ǫn

ρl− 1
2
∆x

ψn+1
l−1 − F

(

ψn+1
l−1

)

2
, (5.62a)

R(ψn+1
l+1 ) =

∆ǫn

ρl+ 1
2
∆x

ψn+1
l+1 + F

(

ψn+1
l+1

)

2
, (5.62b)

D(ψn+1
l ) =



Sn+1 +
∆ǫn

∆x




1

ρl− 1
2

+
1

ρl+ 1
2



 Id− ∆ǫnMn+1



ψn+1
l ,(5.62c)

Rn
l = Snψnl , (5.62d)

and when applied to (5.57), this reads

L(ψn+1
l−1 ) =




∆ǫn

ρl− 1
2
∆x

ψγ
n+1
l−1 − F

(

ψγ
n+1
l−1

)

2
,

∆ǫn

ρl− 1
2
∆x

ψe
n+1
l−1 − F

(

ψe
n+1
l−1

)

2



 ,

(5.63a)

R(ψn+1
l+1 ) =




∆ǫn

ρl+ 1
2
∆x

ψγ
n+1
l+1 + F

(

ψγ
n+1
l+1

)

2
,

∆ǫn

ρl+ 1
2
∆x

ψe
n+1
l+1 + F

(

ψe
n+1
l+1

)

2



 ,

(5.63b)

D(ψn+1
l ) =







An+1
γ→γ +

∆ǫnId

∆x




1

ρl− 1
2

+
1

ρl+ 1
2







ψγ
n+1
l , (5.63c)



An+1
e→e +

∆ǫnId

∆x




1

ρl− 1
2

+
1

ρl+ 1
2







ψe
n+1
l +An+1

γ→eψγ
n+1
l



 ,

Rn
l =

(
n∑

n′=1

Bn′n+1
γ→γ ψγ

n′

,
n∑

n′=1

Bn′n+1
e→e ψe

n′

+Bn′n+1
γ→e ψγ

n′

)

. (5.63d)

Remark that in each case the diagonal term D is linear and can be inverted
numerically. The following iterative algorithm can be used to compute the solution
of (5.59).
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Algorithm 5.1
Initialization: Set

ψ
n+1,(0)
l = ψnl ∀l. (5.64)

Iteration: Solve iteratively

ψ
n+1,(k+1)
l = D−1

(

Rn
l + L(ψ

n+1,(k)
l−1 ) +R(ψ

n+1,(k)
l+1 )

)

, (5.65)

until the following residual error

r(k) =
∥
∥
∥D(ψ

n+1,(k)
l−1 ) − Rn

l − L(ψ
n+1,(k)
l−1 ) −R(ψ

n+1,(k)
l+1 )

∥
∥
∥

∞
(5.66)

reaches a desired values maximum values rmax or until k reaches a maximum
value kmax.

Proposition 5.4 Suppose ψn
′

l is realizable for all l and all n′ < n+ 1.
Then there exists a unique set of realizable vectors (ψn+1){l=1,...,lmax} satisfying
(5.59) for all l.

Moreover the algorithm 5.1 converges to this solution and ψ
n+1,(k+1)
l ∈ Rm is

realizable for all l at each step (k).

Proof The Jacobian of J is a block matrix which is defined by

(
∂J(ψ)

∂ψ

)

l,k

=
∂J(ψ)l
∂ψk

= D−1

[

∂L

∂ψl−1

(ψl−1)δk,l−1 +
∂R

∂ψl+1

(ψl+1)δk,l+1

]

.

Then using a Gershgörin theorem for block matrices ([25]) leads to write
that all the eigenvalues of the Jacobian of J are bounded by

Sp

(
∂J(ψ)

∂ψ

)

⊂ [−r,+r],

r = |||D|||−1 max
l

(
∂L

∂ψl
(ψl) +

∂R

∂ψl
(ψl)

)

.

The eigenvalues of the Jacobians ∂L
∂ψl

and ∂R
∂ψl

can be bounded using Lemma 5.1.

Comparing those eigenvalues to |||D|||−1, where D is given by (5.61), (5.62) or
(5.63), leads to write that the spectral radius r is strictly inferior to 1. This
implies that the function J is contractant, so it has a unique fixed point, and
Algorithm 5.1 converges to this fixed point.

It remains to verify that ifψn,(k)
l is realizable for all l, thenψn,(k+1)

l = J(ψ
n,(k)
l )

remains realizable.
By assumption ψn = ψn+1,(0) is realizable. As Rn

l is a positive combination
of realizable vectors, it is also realizable.

Then, by iteration, if ψn+1,(k)
l is realizable for all l, then L(ψ

n+1,(k)
l ) and
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R(ψ
n+1,(k)
l ) are realizable (according to Proposition 5.1), and it remains to prove

that D−1 preserves realizability.
In the case of the toy problem (5.55), D = αId with α > 0, therefore

the realizability is obviously preserved. In the case of the electron transport
(5.56), it was proven in Proposition 5.2. And in the case of coupled photons
and electrons transport (5.57), it can be proven by reproducing the proof of
Proposition 5.2. �

Remark 5.5 The iterative method proposed in Algorithm 5.1 can be seen as
a Jacobi method with non-linear extra-diagonal terms L and R. Similarily, a
Gauss-Seidel method for this non-linear problem can be written. It consists in
solving alternatively

ψ
n+1,(k+1)
l = D−1

(

Rn
l + L(ψ

n+1,(k)
l−1 ) +R(ψ

n+1,(k+1)
l+1 )

)

, (5.67a)

ψ
n+1,(k+1)
l = D−1

(

Rn
l + L(ψ

n+1,(k+1)
l−1 ) +R(ψ

n+1,(k)
l+1 )

)

, (5.67b)

instead of (5.65) in Algorithm 5.1. This algorithm was tested experimentally
and converged to the desired state. However, it was not proven to be convergent
at the theoretical level.

5.8 Tests on the implicit solver

The aim of those test is to study the implicit scheme (5.57). Especially, two conver-
gence rates are studied: the convergence of Algorithm (5.1) according to the number
kmax of iterations to reach the resdual rmax, and the convergence of the nummerical
scheme according to the cells size ∆ǫn and ∆x.

Two test cases are proposed, a 1D electron beam and a 2D photon beam.

5.8.1 A 1D electron beam

This test case is identical to the one in Subsection 5.3.1, but only the implict solver
(5.57) is used. However, as the implicit numerical scheme is more flexible than the
explicit one, all the physics of the electronic collisions described by Equation 5.4 was
included for this test case.

The objective of this subsection is only to study the convergence rates. Dose
results obtained with Algorithm 5.1 are presented in the next subsection.

Convergence of Algorithm 5.1

The number of spatial cells is fixed at 600 and the energy step is fixed by

∆ǫn = 5Sn∆x, (5.68)

with an initial energy ǫmax = 1.2ǫ0 = 12 MeV and a final energy at ǫmin = 10−3

MeV.
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The iterative method of Algorithm 5.1 requires a criterium to stop. Either the
number of iterations kmax is fixed or the residual (5.66) is reached.

As a first test, the number of iterations kmax is fixed at different values, i.e. 10,
30, 50 and 70, and the residual rn,kmax is plotted as a function of the energy step
n on Fig. 5.15. As a second test, the maximum residual rmax is fixed at different
values, i.e. 0.1, 0.01, 0.001 and 0.0001, and the number of iterations k required to
reach this residual is plotted as a function of the energy step n on Fig. 5.16.
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Figure 5.15: Number of iterations k
as a function of the energy step n for
a given maximum residual rmax
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Figure 5.16: Final residual rn,kmax as
a function of the energy step n for a
given number of iterations kmax

During the first steps (up to n = 8), the values of ψ on the boundary (see (5.25))
is very low and the fluence ψ inside the medium is negligible. Therefore the values
of k and of rn,kmax are also very low.

In the first steps where the values of ψ is non-negligible, Algorithm 5.1 requires
a large number of iterations to converge. At those energy the energy derivative
∂ǫψ ≡ (ψn − ψn+1)/∆ǫn is large and the intialization ψn+1,(0) = ψn of Algorithm
5.1 is inaccurate which forces the algorithm to make more iterations to converge.

The convergence rate progressively raises, i.e. the final residual rn,kmax or the
number of itarations k reduce.

Finally, near the end of the simulation, the particles leave the system by reaching
an energy lower than threshold ǫmin. As the fluence ψ drops, the energy derivative
too and the algorithm requires less iterations to converge. This explains the final
drop in Fig. 5.15 and 5.16.

Convergence of the numerical scheme

Based on the construction of the implicit scheme (5.57), one may expect the trun-
cation error to be of order 1 in ∆x and in ∆ǫn.

The energy step size is fixed by the condition (5.68).
No analytical solution is known for equations (5.4). Therefore the solution obtain

with the implicit scheme with different grid sizes are compared to a reference that
was computed with this same scheme with a large number of cells, i.e. lmax = 9600.
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The number of spatial cells lmax is chosen to be 300, 600, 1200, 2400 and 4800
cells and for the reference solution 9600 cells.

The convergence rate of the numerical scheme is represented through the discrete
L2 error between the reference solution ψ computed with 9600 spatial cells and the
less refined results. This error is plotted on Fig. 5.17 as a function of ∆x. On this

0,001 0,01
 ∆x

1e+08

E
rr

or

Error of the implicit scheme
Error of order 1

Figure 5.17: Discrete L2 error compared to the most refined solution as a
function of ∆x.

test case, one obtains an experimental convergence rate in ∆x of 1.1046894.

5.8.2 Comparison with the explicit solver

This test case is identical to the 1D test case containing slabs of air of Subsection
5.6.1. The same parameters are used, i.e. 1200 spatial cells, the same beam (5.25),
and the energy step ∆ǫn is fixed either to ∆ǫnwater (5.54) or to ∆ǫnair (5.53).

The aim of this case is only to compare the explicit (5.51) and implicit (5.56)
numerical schemes. For this purpose, only the M1 results are shown.

The maximum residual (5.66) for the implicit scheme (5.56) is fixed at rmax = 103

and the maximum number of iterations is fixed kmax = 10000. Experimentally this
number of iterations was never reached, meaning that the maximum residual was
always reached.

The doses obtained with the M1 model with the explicit (5.51) and implicit
(5.56) numerical schemes are plotted on Fig. 5.18 and the computational times are
gathered in Table 5.8 and 5.9.
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Figure 5.18: Doses obtained with the M1 model with the explicit and implicit
schemes with fine and coarse energy steps ∆ǫn.

Numerical scheme Explicit with ∆ǫnair Implicit with ∆ǫnair
Computation times 63.592346 sec 118.435718 sec

Number of energy steps 632468 632468

Table 5.8: Computational times with the explicit (5.51) and implicit (5.56)
solver with a fine energy step size ∆ǫnair.

Numerical schemes Explicit with ∆ǫnwater Implicit with ∆ǫnwater
Computation times 0.073788 sec 1.409635 sec

Number of energy steps 634 634

Table 5.9: Computational times with the explicit (5.51) and implicit (5.56)
solver with a coarse energy step size ∆ǫnwater.

The difference between the dose results with the explicit and implicit schemes
with a fine energy steps is very small. This shows that both schemes converge to
the same results, which was expected.

As for the explicit scheme, the results with a larger energy step ∆ǫn = ∆ǫnwater
show good agreements with those with a fine ∆ǫn = ∆ǫnair.

The implicit and explicit schemes with coarse steps present an error of the same
order compared to the results with fine energy steps.
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The implicit scheme requires an interne loop to solve the scheme. It is more flexi-
ble (it can be used on equations without hyperbolic operators), however it introduces
additional computational costs and errrors that can be observed on this test case.
Remark that with the maximum residual chosen for this test case, i.e. rmax = 103,
the error introduced by the iterative method is small enough such that the dose
results are comparable to those of the explicit solver which does not introduce such
an error.

5.8.3 A 2D photon beam

For this test case, photons are injected in a 2D homogeneous water phantom instead
of electrons. The size of the medium is 2 cm × 10 cm, and a 0.5 cm large beam of
500 keV photons is injected on the left boundary. This is modeled by the boundary
condition

ψγ(X, ǫ,Ω) = 1010 exp
(

−αǫ (ǫ− ǫ0)2
)

exp
(

−αµ (Ω1 − 1)2
)

1B(X), ∀(X,Ω) ∈ Γ−,

B =

{

X = (x, y), x = 0, y ∈ [1 cm, 2 cm]

}

.

with ǫ0 = 500 keV, αǫ = 20000 and αµ = 10000 and for the moment models

ψn0,m = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(Ω) exp
(

−αµ (Ω1 − 1)2
)〉

1B(Xl,m),

ψnl,0 = ψnlmax,m = ψnl,mmax
= 0

RCard(m) .

First results

The dose obtained with the M1 and M2 model with the implicit scheme (5.58) are
compared to a reference Monte Carlo results on Fig. 5.19 and the computational
times are gathered on Table 5.10.

Solver Monte Carlo M1 solver M2 solver

Computation times 14 hours 49.78699 sec 215.0480 sec

Table 5.10: Computational times with the implicit solver with the Cartesian
direction of relaxation.

The doses along the axis y = 1 cm is plotted Fig. 5.20 and along the axes x = 2
cm and x = 8 cm on Fig. 5.21.

The total cross section for photons is much lower than the one for electrons.
This implies that the photons collide much less than electrons and therefore travel
longer distances without being deflected.

This can be observed on the Monte Carlo results on Fig. 5.19. However, the M1

and M2 results with the implicit scheme are almost identical and are very diffused
in the direction transverse to the beam contrarily to the Monte Carlo results. This
is due to the relaxation parameters chosen (5.39).
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Figure 5.19: Doses obtained with the Monte Carlo solver (top) and the ap-
proximated M1 (middle) and M2 (below) models.
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Figure 5.20: Dose obtained with the Monte Carlo solver and the approximated
M1 and M2 models along the axis y = 1 cm.

Transverse diffusion

In practice, the relaxation method can be used under the stability condition (5.28)
on the relaxation speeds. However, in 1D, the relaxation method is known to be
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Figure 5.21: Dose obtained with the Monte Carlo solver and the approximated
M1 and M2 models along the axes x = 2 cm and x = 8 cm.

overdiffusive when the relaxation speeds λj are too large compared to the eigenvalues
of the Jacobian of the flux ∂ψF(ψ).

Bounds of the eigenvalues of the Jacobian of the fluxes

The relaxation speeds were chosen to be of norm |λj | = 1/ρ which was enough to
satisfy (5.28) according to Lemma 5.1. However, when ψ is the moment vector of
an imperfect beam in the direction e1 modeled by

ψ =

∫

S2
m(Ω) exp(−αµ(Ω1 − 1))dΩ,

then the spectral radius of the Jacobian of the flux F2 transverse to the direction of
the beam is zero. Indeed, define

A := ∂ψF2(ψ),

B := ∂λF2(ψ) =

∫

S2
Ω2m(Ω) ⊗ m(Ω) exp(λTm(Ω))dΩ

=

∫

S2
Ω2m(Ω) ⊗ m(Ω) exp(−α2(Ω1 − 1))dΩ,

C := ∂λψ =

∫

S2
m(Ω) ⊗ m(Ω) exp(λTm(Ω))dΩ

=

∫

S2
m(Ω) ⊗ m(Ω) exp(−αµ(Ω1 − 1))dΩ.

Then the eigenvalues αi (associated to the eigenvector Vi) of the Jacobian of the
flux F2 can be bounded

BWi = αiCWi, Wi = C−1Vi,

BWi.Wi =

∫

S2
Ω2(m(Ω)TWi)

2 exp(−αµ(Ω1 − 1))dΩ = 0,

CWi.Wi =

∫

S2
(m(Ω)TWi)

2 exp(−αµ(Ω1 − 1))dΩ > 0.
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Therefore all the eigenvalues αi of the Jacobian of the transverse flux are zero.

In a more general way, those eigenvalues can be computed in the case of the M1

model. Consider that ψ1 is colinear to e1 (otherwise just use a rotation to work
in such a reference frame). Using the form (4.26) of the closure, the fluxes in the
direction e1 and in the transverse direction e2 read

ψ =
(

ψ0, ψ1
)

,

Fn(ψ) =

(

ψ1.n,
ψ0

2

[

(1 − χ2)n+ (3χ2 − 1)
(ψ1.n)ψ1

|ψ1|2

])

,

∂ψ (Fn(ψ)) =

(

0 V1

V2 M

)

, (5.69)

V1 = ∂ψ1(ψ1.n) = (n1, n2, n3) ,

V2 = ∂ψ0

(

ψ0

2

[

(1 − χ2)n+ (3χ2 − 1)
(ψ1.n)ψ1

|ψ1|2

])

,

=
1

2

[

(1 − χ2)n+ (3χ2 − 1)
(ψ1.n)ψ1

|ψ1|2

]

− |ψ1|
2ψ0

χ′
2

(

−n+ 3
(ψ1.n)ψ1

|ψ1|2

)

,

M = ∂ψ1

(

ψ0

2

[

(1 − χ2)n+ (3χ2 − 1)
(ψ1.n)ψ1

|ψ1|2

])

=
χ′

2

2

ψ1

|ψ1| ⊗
(

−n+ 3
(ψ1.n)ψ1

|ψ1|2

)

+
ψ0

2
(3χ2 − 1)

(

n⊗ ψ1

|ψ1|2 +
ψ1.n

|ψ1|2 Id− 2(ψ1.n)ψ1 ⊗ ψ1

|ψ1|4

)

.

Chose a reference frame such that ψ1 = ψ1
1e1 with ψ1

1 ≥ 0. In this reference
frame, the Jacobian of the flux F1 along the direction e1 reads

∂ψ (F1(ψ)) =









0 1 0 0
χ2 −N1

1χ
′
2 χ′

2 0 0

0 0 3χ2−1
2N1

1
0

0 0 0 3χ2−1
2N1

1









,

and so the spectrum of the Jacobian of the flux is

Sn(N1
1 ) = Sp (∂ψ (F(ψ)e1))

=

(
3χ2 − 1

2N1
1

,
3χ2 − 1

2N1
1

,

χ′
2 +

√

χ′2
2 + 4(χ2 −N1

1χ
′
2)

2
,
χ′

2 −
√

χ′2
2 + 4(χ2 −N1

1χ
′
2)

2



 .
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Now computing the Jacobian of the flux in a transverse direction, e.g. e2 reads

∂ψ (F2(ψ)) =









0 0 1 0

0 0
χ′

2
2 0

1−χ2+N1
1χ

′
2

2
3χ2−1
2N1

1
0 0

0 0 0 0









,

and so the spectrum of the Jacobian of the flux is

St(N
1
1 ) = Sp (∂ψ (F2(ψ)))

=







0, 0,

√
√
√
√

1 − χ2 +N1
1χ

′
2 − 3χ2−1

2N1
1
χ′

2

2
, −

√
√
√
√

1 − χ2 +N1
1χ

′
2 − 3χ2−1

2N1
1
χ′

2

2






.

Now, in order to come back to the computations in any reference frame, one can
simply use a rotation R such that Rψ1 = ψ1

1e1. One has

∂ψ (Fn(ψ)) = ∂(ψ0,Rψ1
1e1)

(

Fn(ψ0, Rψ1
1e1)

)

= R2∂ψFRTn

(

ψ0, |ψ1|e1

)

RT2 ,

R2 =

(

1 0R3

0R3 R

)

.

The spectrum of such a matrix can be bounded using the previous computations

Sp (∂ψ (Fn(ψ))) ⊂ [b−, b+], (5.70a)

b−(N1, n) = (1 − θ) minSt(|N1|) + θminSn(|N1|), (5.70b)

b+(N1, n) = (1 − θ) maxSt(|N1|) + θmaxSn(|N1|), (5.70c)

θ =
N1.n

|N1| .

Remark that those bounds b− and b+ are not the exact minimum and maximum
eigenvalues of the Jacobians of the flux, which could be computed analytically
through (5.69). Although computing numerically such eigenvalues using the an-
alytical formulae introduces errors which can be non-negligible, while computing
the bounds in (5.70) is easier. Furthermore, those bounds b− and b+ are sufficient
for the present applications. Indeed, one verifies that they are zero when considering
the flux of a perfect beam in the transverse direction of this beam.
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The modified relaxation parameters

Now one can propose new relaxation parameters by replacing those bounds in the
definition of the Cartesian parameter of relaxation, e.g.

Relaxation directions λ1 = (b1, 0) , λ2 = (b2, 0) , (5.71a)

λ3 = (0, b3) , λ4 = (0, b4) ,

Associated Maxwellians M1 =
|b1|ψ

2(|b1| + |b2|) +
Fλ1

|λ1|(|b1| + |b2|) , (5.71b)

M2 =
|b2|ψ

2(|b1| + |b2|) +
Fλ2

|λ2|(|b1| + |b2|) , (5.71c)

M3 =
|b3|ψ

2(|b3| + |b4|) +
Fλ3

|λ3|(|b3| + |b4|) , (5.71d)

M4 =
|b4|ψ

2(|b3| + |b4|) +
Fλ4

|λ4|(|b3| + |b4|) . (5.71e)

All the schemes based on the relaxation methods require that the Maxwellians
Mi ∈ Rm are realizable as long as ψ ∈ Rm. In practice, this implies that there is
an additional requirement on the bounds b1, b2, b3 and b4.

For the M1 model, those requirements can easily be computed using (3.41), it
reads

( |bi|
2

+N1.
λi
|λi|

)2

>

∣
∣
∣
∣

|bi|
2
N1 +N2 λi

|λi|

∣
∣
∣
∣

2

,

and therefore

|bi| > max

(

0, bmin

(

N1,
λi
|λi|

))

,

bmin(N1, n) :=
−β −

√

β2 − αγ

α
,

α =
1 − |N1|2

4
, β =

1

2

(

N1.n−N1.(N2n)
)

, γ = (N1.n)2 − |N2n|2.

This leads to fix the bounds

b1(ψ) = max
(

10−8, b+(N1, e1), bmin(N1, e1)
)

,

b2(ψ) = min
(

−10−8, b−(N1, e1), −bmin(N1,−e1)
)

,

b3(ψ) = max
(

10−8, b+(N1, e2), bmin(N1, e2)
)

,

b4(ψ) = min
(

−10−8, b−(N1, e2), −bmin(N1,−e2)
)

,

where the constants ±10−8 are chosen arbitrarily low to avoid divisions by zero.
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The new numerical scheme

Using the Maxwellians (5.71) leads to rewrite the fluxes

Fn+1
l+ 1

2
,m

=
1

|bn+1
1,l+ 1

2
,m

| + |bn+1
2,l+ 1

2
,m

|

[

|bn+1
2,l+ 1

2
,m

|F(ψn+1
l+1,m)e1 + |bn+1

1,l+ 1
2
,m

|F(ψn+1
l,m )e1

+|bn+1
1,l+ 1

2
,m
bn+1

2,l+ 1
2
,m

|(ψn+1
l+1,m −ψn+1

l,m )

]

,

Fn+1
l,m+ 1

2

=
1

|bn+1
3,l,m+ 1

2

| + |bn+1
4,l,m+ 1

2

|

[

|bn+1
4,l,m+ 1

2

|F(ψn+1
l,m+1)e2 + |bn+1

3,l,m+ 1
2

|F(ψn+1
l,m )e2

+|bn+1
3,l,m+ 1

2

bn+1
4,l,m+ 1

2

|(ψn+1
l,m+1 −ψn+1

l,m )

]

,

bn+1
1,l+ 1

2
,m

= max
(

b1(ψn+1
l,m ), b1(ψn+1

l+1,m)
)

, bn+1
2,l+ 1

2
,m

= min
(

b2(ψn+1
l,m ), b2(ψn+1

l+1,m)
)

,

bn+1
3,l,m+ 1

2

= max
(

b3(ψn+1
l,m ), b3(ψn+1

l+1,m)
)

, bn+1
4,l,m+ 1

2

= min
(

b4(ψn+1
l,m ), b4(ψn+1

l+1,m)
)

,

in the implicit numerical scheme (5.58) which turns into

Rn
l,m = −L1(ψn+1

l−1,m) − L2(ψn+1
l,m−1) +D(ψn+1

l,m ) (5.72)

−R1(ψn+1
l−1,m) −R2(ψn+1

l,m−1), (5.73)

where the rest term reads

Rn
l,m =

(
n∑

n′=1

Bn′n+1
γ→γ ψγ

n′

l,m,
n∑

n′=1

Bn′n+1
e→e ψe

n′

l,m +Bn′n+1
γ→e ψγ

n′

l,m

)

,

the operators L1, L2, R1 and R2 read

L1(ψn+1
l−1,m) =

(

c1ψγ
n+1
l−1,m − a1F1

(

ψγ
n+1
l−1,m

)

, c1ψe
n+1
l−1,m − a1F1

(

ψe
n+1
l−1,m

))

,

L2(ψn+1
l,m−1) =

(

c2ψγ
n+1
l,m−1 − a2F2

(

ψγ
n+1
l,m−1

)

, c2ψe
n+1
l,m−1 − a2F2

(

ψe
n+1
l,m−1

))

,

R1(ψn+1
l+1,m) =

(

c3ψγ
n+1
l+1,m + a3F1

(

ψγ
n+1
l+1,m

)

, c3ψe
n+1
l+1,m + a3F1

(

ψe
n+1
l+1,m

))

,

R2(ψn+1
l,m+1) =

(

c4ψγ
n+1
l,m+1 + a4F2

(

ψγ
n+1
l,m+1

)

, c4ψe
n+1
l,m+1 + a4F2

(

ψe
n+1
l,m+1

))

.

With this particular choice of bounds bi, the operator D is not necessarily linear.
Indeed it reads

D(ψn+1
l,m ) =

((

An+1
γ→γ + (c1 + c2 + c3 + c4)Id

)

ψγ
n+1
l,m

+(a1 − a3)F2(ψγ
n+1
l,m ) + (a2 − a4)F2(ψγ

n+1
l,m ),

(

An+1
e→e + (c1 + c2 + c3 + c4)Id

)

ψe
n+1
l,m +An+1

γ→eψγ
n+1
l,m

+(a1 − a3)F1(ψe
n+1
l,m ) + (a2 − a4)F2(ψe

n+1
l,m )

)

,
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which is non-linear when a1 6= a3 or a2 6= a3. In those computations, the scalars ai
and ci read

a1 =
∆ǫn

ρl− 1
2
,m∆x

|bn+1
1,l− 1

2
,m

|

|bn+1
1,l− 1

2
,m

| + |bn+1
2,l− 1

2
,m

|
, c1 = a1|bn+1

2,l− 1
2
,m

|,

a2 =
∆ǫn

ρl,m− 1
2
∆y

|bn+1
3,l,m− 1

2

|

|bn+1
3,l,m− 1

2

| + |bn+1
4,l,m− 1

2

|
, c2 = a2|bn+1

4,l,m− 1
2

|,

a3 =
∆ǫn

ρl+ 1
2
,m∆x

|bn+1
2,l+ 1

2
,m

|

|bn+1
1,l+ 1

2
,m

| + |bn+1
2,l+ 1

2
,m

|
, c3 = a3|bn+1

1,l+ 1
2
,m

|,

a4 =
∆ǫn

ρl,m+ 1
2
∆y

|bn+1
4,l,m+ 1

2

|

|bn+1
3,l,m+ 1

2

| + |bn+1
4,l,m+ 1

2

|
, c4 = a4|bn+1

3,l,m+ 1
2

|.

The new operator D is non-linear and is therefore not trivial to inverse. In order
to use Algorithm 5.1 with those operators, D is decomposed into a linear and a
non-linear part under the form

D(ψ) = Di(ψ) −De(ψ), (5.74)

Di(ψ) =
((

An+1
γ→γ + (c1 + c2 + c3 + c4 + α)Id

)

ψγ ,
(

An+1
e→e + (c1 + c2 + c3 + c4 + α)Id

)

ψe +An+1
γ→eψγ

)

,

De(ψ) = (αψγ − (a1 − a3)F (ψγ)e1 − (a2 − a4)F (ψγ)e2,

αψe − (a1 − a3)F (ψe)e1 − (a2 − a4)F (ψe)e2) ,

where the coefficient α is chosen such that the operator De preserves the realizability.
In practice, the following coefficient α is chosen

α = |a1 − a3| + |a2 − a4|.

Finally, Algorithm 5.1 is rewritten by replacing (5.65) by

ψ
n+1,(k+1)
l,m = D−1

i

(

Rnl,m + L1(ψ
n+1,(k)
l−1,m ) + L2(ψ

n+1,(k)
l,m−1 )

+De(ψ
n+1,(k)
l,m ) +R1(ψ

n+1,(k)
l−1,m ) +R2(ψ

n+1,(k)
l,m−1

)

.

One verifies that this modified algorithm is still convergent and preserves realizabil-
ity.

Computing the eigenvalues of the Jacobian of the flux is more difficult, and this
method was only tested for the M1 model.

The dose results with the modified scheme

Using this modified algorithm on the 2D photon beam test case provides the dose
result on Fig. 5.22 with the computational times in Table 5.11.
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Figure 5.22: Doses obtained with the Monte Carlo solver (top) and the approx-
imated M1 model with the original Cartesian (middle) and modified (below)
relaxation parameters.

Solver Monte Carlo M1 solver modified M1 solver

Computation times 14 hours 49.78699 sec 204.1239 sec

Table 5.11: Computational times with the implicit solver with the Cartesian
parameters of relaxation and the modified ones.

The dose along the axis y = 1 cm is plotted on Fig. 5.23 and along the axes
x = 2 cm and x = 8 cm on Fig. 5.24.

The dose results with the modified relaxation parameters are much closer to the
reference Monte Carlo results. The dose is not diffused in the tranverse direction
which is the expected results. The plots along the transverse direction show that
the diffusion phenomenum is accurately modeled when using the modified relaxation
parameters.

Due to the noise in the Monte Carlo and the normalization by maxD, the M1

dose curves with the modified relaxation parameters are slightly above the Monte
Carlo reference.

Remark that the computational time is higher with the modified relaxation pa-
rameters. When dividing the operator D in two parts (5.74) in order to enforce
the preservation of the realizability, a parameter αId was artificially added on both
sides of (5.73). This method stabilizes the algorithm, but it reduces the convergence
rate which explains the difference of computational times. The computational times
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Figure 5.23: Doses obtained with the Monte Carlo solver and the approximated
M1 model with the Cartesian and the modified relaxation parameters along
the axis y = 1 cm.
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Figure 5.24: Doses obtained with the Monte Carlo solver and the approximated
M1 model with the Cartesian and the modified relaxation parameters along
the axes x = 2 cm and x = 8 cm.

with this method is still much lower than with the Monte Carlo reference.
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Chapter 6

Dose optimization

6.1 Introduction

The final objective of the present work is to provide a method to optimize the source
of particles such that the resulting dose is maximum in the tumor cells and minimum
in the rest of the medium.

New emerging techniques in external radiotherapy such as the adaptative ra-
diation therapy (ART, see e.g. [11]), the image guided radiation therapy (IGRT,
see e.g. [12]) or thecommon intensity modulated radiation therapy (IMRT, see e.g.
[4, 3, 13, 11]) require fast numerical optimization of pre-computed dose between two
irradiations.

In particular, several techniques of IMRT present optimization problems which fit
with the present framework. One technique of IMRT, called volumetic modulated arc
therapy (VMAT), consists in having the source of particles turn around the patient.
In this process, the intensity of the source is modulated using blades shading part
of the beam. This purpose of this modulation is to obtain a uniform maximum dose
deposited in the tumor and a dose below a certain threshold in the organs (see [5]
for the standard applied in France on the maximum dose deposited per organ).

The main objective of such an optimization procedure is to find one possible
source to irradiate the tumor without damaging the organs at risk (OAR). In prac-
tice, the optimal source is not always seeked because of time constraints but good
potential dose distributions are sufficient.

In this chapter, basic techniques of optimization (based on [17, 10] and applied
to dose optimization e.g. in [7, 9, 8, 1]) are presented and adapted to the present
radiotherapy problem. Such optimization algorithms typically consist in solving
iteratively the direct and the adjoint problem, the computational costs of which
may be significant. In order to reduce such computational costs, the optimization
procedure is typically based on a coarse spatial mesh. Then the dose with the
optimized source resulting of the optimization algorithm is recomputed on a finer
mesh. Finally, a physician accepts, or not, a posteriori the optimized dose to be
delivered.

For the sake of simplicity in the present work, the spectrum of the beam, i.e. the
energy distribution of the source, is assumed to be optimizable while the direction
of the source is fixed and directed to one point in the medium.
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6.2. Problem statement

The optimization method presented in this chapter is valid only when consider-
ing optimization problems under linear PDE constraints. The numerical approach
described in the previous chapter is based on the MN equations which are non-linear,
even if the original kinetic equations were linear. In the present chapter, the numer-
ical schemes developped in the previous chapter are used, but they are interpreted
here only as a numerical approach, assumed to be accurate enough, for solving linear
kinetic equations, and all the optimization procedure is written at the kinetic level,
that is an optimize-then-discretize method.

6.2 Problem statement

The particle motion is governed by the kinetic equation (1.11) with a LBCSD colli-
sion operator (1.34) modelling the electron collisions. For writing purposes, this is
rewritten under the form







Aψ −Qψ = 0 in the interior [ǫmin, ǫmax] × Z × S2,
ψ = ψb on the boundary [ǫmin, ǫmax] × Γ−,

ψ(ǫmax, x,Ω) = 0 in Z × S2,
(6.1a)

where ψ = (ψe, ψγ)T and ψb = (ψbe, ψ
b
γ)T and the operators A and Q are given by

Aψ =
(
Ω.∇xψγ , Ω.∇xψe

)T
, (6.1b)

Qψ =
(
ρ(Gγ→γ − Pγ)(ψγ), ρ(QLBCSD(ψe) +Gγ→e(ψγ))

)T
, (6.1c)

and the operator QLBCSD, Gα→β and Pα are recalled here

QLBCSD(ψe) = ∂ǫ(Sψe) + (Ge→e − Pe)(ψe), (6.1d)

Gα→β(ψα) =

∫ ǫmax

ǫ

∫

S2
σα→β(ǫ′, ǫ,Ω′Ω)ψα(ǫ′, x,Ω′)dΩ′dǫ′, (6.1e)

Pα(ψα) = σT,αψα. (6.1f)

The aim of this chapter is to define a theoretical framework for optimization
and to propose a numerical method to optimize a source ψb such that the resulting
dose is as close as possible to an optimal dose D̄ ∈ L2(Z) a priori given. More bio-
logically relevant objectives are available. For instance, the linear-quadratic model
[15] describes the impact of radiations on cells through the fraction of cells surviv-
ing to the treatement. An meaningful objective consists in maximizing the fraction
of tumor cells killed while minimizing the fraction of healthy tissue damaged, this
optimization problem is studied in [1].

The objective functional J is the function to minimize. It is chosen to be the
L2(Z) distance to the optimal dose D̄ with an additional regularization term. It has
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6. Dose optimization

the form

J(ψ,ψb) =

∫

Z

cD(x)

2

(

D(ψ) − D̄
)2

(x)dx (6.2)

+

∫ ǫmax

ǫmin

∫

Γ−

Ω.n(x)

2

(

cbγ(x, ǫ,Ω)(ψbγ)2(ǫ, x,Ω)2

+cbe(x, ǫ,Ω)(ψbe)
2(ǫ, x,Ω)

)

dΩdxdǫ,

where the dose is written D(ψ) as a function of ψ and it is defined in (1.64). The
coefficients cD > 0 and cbα > 0 (for α = γ, e) are positive scalars chosen according
to the problem to solve and will be defined later.

The optimization method presented in this chapter is written in a general frame-
work where several parameters are left free and optimizable. However, for practical
applications, there are commonly more constraints on the sources. One may easily
reproduce the computations and the techniques presented here with different con-
straints on the source ψb. In the numerical experiments of Section 6.5, the sources
are chosen to be always directed to one point P inside the medium, and to be com-
posed only of electrons (it is fixed at ψb = (0, ψbe)) or only of photons (it is fixed
at ψb = (ψbγ , 0)). This can be interpreted either by a particular choice of the op-
timization parameter or by a straightforward adaptation of the method presented
here.

6.3 Preliminaries

First, some notations are defined. Then the control-to-state operator sending a
source ψb onto the solution ψ of (6.1) is studied, and a first existence result of a
solution to the optimization problem is provided.

6.3.1 Notations

The following inner products defined in Chapter 1 are recalled

(ψα, λα)i =

∫ ǫmax

ǫmin

∫

Z

∫

S2
ψα(ǫ, x,Ω)λα(ǫ, x,Ω)dΩdxdǫ,

(ψbα, λ
b
α)b−

=

∫ ǫmax

ǫmin

∫

Γ−
|Ω.n(x)|ψbα(ǫ, x,Ω)λbα(ǫ, x,Ω)dΩdxdǫ,

(ψbα, λ
b
α)b+ =

∫ ǫmax

ǫmin

∫

Γ+
|Ω.n(x)|ψbα(ǫ, x,Ω)λbα(ǫ, x,Ω)dΩdxdǫ,

and by extension the following inner products and norms are defined

(ψ, λ)I = (ψγ , λγ)i + (ψe, λe)i, (ψb, λb)B− = (ψbγ , λ
b
γ)b−

+ (ψbe, λ
b
e)b−

,

(ψb, λb)B+ = (ψbγ , λ
b
γ)b+ + (ψbe, λ

b
e)b+ ,

‖ψα‖i =
√

(ψα, ψα)i, ‖ψbα‖b−
=
√

(ψbα, ψ
b
α)b−

, ‖ψbα‖b+ =
√

(ψbα, ψ
b
α)b+ ,

‖ψ‖I =
√

(ψ,ψ)I , ‖ψb‖B− =
√

(ψ,ψ)B− , ‖ψb‖B+ =
√

(ψ,ψ)B+ .
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6.3. Preliminaries

The well-posedness of the problem (6.1) was shown in Theorem 1.3 under condi-
tions on the the physical parameters S, σT,γ , σT,e, σγ→γ , σγ→e and σe→e.

Assumption 6.1 In all this chapter, the density ρ, the stopping power S and
the cross sections σγ→γ, σγ→e, σT,γ, σe→e and σT,e are assumed to satisfy the
requirements for the problem (6.1) to be well-posed.

Furthermore, the solution ψ of (6.1) is assumed to be non-negative (ψγ ≥ 0
and ψe ≥ 0) as long as the source ψb is non-negative (ψbγ ≥ 0 and ψbe ≥ 0).

6.3.2 The control-to-state mapping

For writing purposes, the following operator is defined.

Notation 6.1 The operator Ξ, afterward called control-to-state mapping, is the
operator sending a source ψb onto the solution ψ of (6.1)

Ξ :=

{

(L2([ǫmin, ǫmax] × Γ−))2 → (L2([ǫmin, ǫmax] × Z × S2))2,
ψb 7→ ψ.

(6.3)

Remark that in practice, the image set of Ξ, i.e. the set of solutions ψ of (6.1) is a
subset of (L2([ǫmin, ǫmax] × Z × S2))2 as each solution ψ of (6.1) satisfy

ψ ≥ 0, ‖(A−Q)(ψ)‖I = 0, ‖ψ‖B < ∞ and ψ(ǫmax, x,Ω) = 0.

The following properties of the control-to-state mapping Ξ are required in order
to prove the existence of a unique optimal source.

Proposition 6.1 The operator Ξ is continuous linear and bounded.

Proof This was proven through Theorem 1.3 under the conditions (1.47), (1.57a)
and (1.57b) on the stopping power S and the cross sections σT,γ , σT,e, σγ→γ ,
σγ→e and σe→e. See also [6, 7, 16]. �

On can rewrite the objective functional using this operator.

Notation 6.2 The minimization of J is studied only under the constraints
(6.1). Thus, the function to minimize is the reduced objective functional j

j(ψb) := J
(

Ξ(ψb), ψb
)

.

6.3.3 Existence and uniqueness of a minimizer

Standard techniques of the litterature (see e.g. [17, 10]) provide the existence of a
unique optimal solution to the problem (6.1).
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Define two positive functions Uγ > 0 and Ue > 0 over [ǫmin, ǫmax] × Γ− and
denote

(L2([ǫmin, ǫmax] × Γ−))2
ad =

{

ψb ∈ (L2([ǫmin, ǫmax] × Γ−))2,

s.t. for α = γ, e, 0 ≤ ψbα ≤ Uα on ∈ [ǫmin, ǫmax] × Γ−
}

.

The following existence result provides the existence of a solution to the opti-
mization problem.

Theorem 6.1 [17] The functional j has a unique minimizer in the admissible
set (L2([ǫmin, ǫmax] × Γ−))2

ad.

Proof The operator Ξ is continuous linear and bounded (according to Proposi-
tion 6.1) and the reduced objective functional j is convex and coercive (quadratic)
over the non-empty closed convex subset (L2([ǫmin, ǫmax]×Γ−))2

ad of the Hilbert
space (L2([ǫmin, ǫmax] × Γ−))2. Then the result follows from Theorem 2.14 of
[17]. �

6.4 Computing the optimal solution

A method to compute the optimal source ψb ∈ (L2([ǫmin, ǫmax] × Γ−))2
ad minimizing

the convex functional j under the PDE constraint (6.1) is seeked. Numerical method
to optimize such a source typically requires the computation of the Fréchet derivative
of the objective functional j. For this purpose, the Lagrange multiplier method is
used. Define the Lagrangian

L(ψ,ψb, λ, λb) = J(ψ,ψb) + ((A−Q)(ψ), λ)I +
(

ψ − ψb, λb
)

B−

, (6.4)

associated to the problem of minimizing J under the constraint (6.1).
In order to find the optimal solution ψ̄b, one typically computes the Fréchet

derivative of L according to each of its variables ψ, ψb, λ and λb, obtains the deriva-
tive of j after those computations and then finds a descent direction.

6.4.1 The adjoint equation

In order to compute the Fréchet derivative of L, the adjoint of the operator A and
Q are computed.

The adjoint of the advection operator

Computing the adjoint of the operator A reads

(Aψ, λ)I = (ψ,ATλ)I − (ψ, λ)B− + (ψ, λ)B+ ,

where the operator AT is given by

ATλ =
(

− Ω.∇xλγ , −Ω.∇xλe
)T
.
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The adjoint of the collision operator

Computing the adjoint of Q reads

(Qψ, λ)I = (ψ,QTλ)I −
∫

Z

∫

S2
S(ǫmin)ψe(ǫmin, x,Ω)λe(ǫmin, x,Ω)dΩdx,

where the operator QT is given by

QTλ =
(
ρ(GTγ→γ − P Tγ )(λγ) + ρGTγ→e(λe), ρQTLBCSD(λe)

)T
,

and the operators QTLBCSD, GTα→β and P Tα read

QTLBCSD(λe)(ǫ, x,Ω) = −S(ǫ)∂ǫλe(ǫ, x,Ω) + (GTe→e − P Te )(λe)(ǫ, x,Ω),

GTα→β(λβ)(ǫ, x,Ω) =

∫ ǫ

ǫmin

∫

S2
σ(ǫ, ǫ′,Ω.Ω′)λβ(ǫ′, x,Ω′)dΩ′dǫ′,

P Tα (λα)(ǫ, x,Ω) = Pα(λα)(ǫ, x,Ω).

The adjoint equation

Define the following problem






ATλ−QTλ = q in the interior [ǫmin, ǫmax] × Z × S2,
λ = 0 on the boundary [ǫmin, ǫmax] × Γ+,

λ(ǫmin, x,Ω) = 0 for (x,Ω) ∈ Z × S2.
(6.5)

Similarily to Theorem 1.3, one can prove the following.

Theorem 6.2 Suppose that the source q satisfies

q ∈ (L2([ǫmin, ǫmax] × Z × S2))2,

and that Assumption 6.1 is valid.
Then the problem (6.5) has a unique solution λ satisfying

λ ∈ (L2([ǫmin, ǫmax] × Z × S2))2,

(AT −QT )(λ) ∈ (L2([ǫmin, ǫmax] × Z × S2))2,

λ|[ǫmin,ǫmax]×Γ− ∈ (L2([ǫmin, ǫmax] × Γ−))2,

λe(ǫmax, ., .) ∈ L2(Z × S2).

Proof This can be proven by adaptating the proof of Theorem 1.3. See also
[6] and applications to radiotherapy problems in [7, 16]. �

For writing purposes, the following operators are defined.

Notation 6.3 Similarily to the control-to-state mapping, define the operator E
that sends a source q ∈ (L2([ǫmin, ǫmax] ×Z ×S2))2 onto the solution λ of (6.5)

E :=

{

(L2([ǫmin, ǫmax] × Z × S2))2 → (L2([ǫmin, ǫmax] × Z × S2))2,
q 7→ λ,

(6.6)
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and the operator Ξ∗ adjoint to Ξ

Ξ∗ :=

{

(L2([ǫmin, ǫmax] × Z × S2))2 → (L2([ǫmin, ǫmax] × Γ−),
q 7→ λ|[ǫmin,ǫmax]×Γ−)2.

(6.7)

According to their definitions, the operators Ξ∗ and E are related to each other
through

∀q ∈ (L2([ǫmin, ǫmax] × Z × S2))2, Ξ∗(q) = E(q)|[ǫmin,ǫmax]×Γ− .

See further study of the trace operator e.g. in [16].

6.4.2 Computing the derivative of j

The Lagrange multiplier method provides a method to compute the Fréchet deriva-
tive of j. In the following, dX denotes the Fréchet derivative according to X.

Fréchet derivating the Lagrangian (6.4) according to λ, λb, ψ and ψb read

dλL(ψ,ψb, λ, λb)(h) = ((A−Q)(ψ), h)I ,

dλbL(ψ,ψb, λ, λb)(h) =
(

ψ − ψb, h
)

B−

,

dψL(ψ,ψb, λ, λb)(h) =
(

(AT −QT )(λ) + cDcǫ(D(ψ) − D̄), h
)

I
− (λ− λb, h)B−

+(λ, h)B+ −
∫

Z

∫

S2
S(ǫmin)h(ǫmin, x,Ω)λ(ǫmin, x,Ω)dΩdx,

dψbL(ψ,ψb, λ, λb)(h) = (cbψb − λb, h)B− ,

where

cb =

(

cbγ 0

0 cbe

)

and the coefficient cǫ is computed by derivating the dose (1.64) according to ψ, and
using (1.31) leads to

cǫ(ǫ) =

(∫ ǫ

ǫB

∫

S2
(ǫ− ǫ′)σC,γ(ǫ, ǫ′,Ω.Ω′) + ǫ′σC,e(ǫ, ǫ

′,Ω.Ω′)dΩ′dǫ′,

S(ǫ) +

∫ ǫ

ǫB

∫

S2
ǫ′σM,2(ǫ, ǫ′,Ω.Ω′)dΩ′dǫ

)

.

Fixing dλL = 0 and dλbL = 0 means imposing the constraints (6.1), that is
ψ = Ξ(ψb).

The remaining terms leads to the computation of the derivative of j. Computing
the derivative of L according to ψ and ψb read

dψL(ψ,ψb, λ, λb)(h) = dψJ(Ξ(ψb), ψb)(h),

dψbL(ψ,ψb, λ, λb)(h) = dψbJ(Ξ(ψb), ψb)(h),

and computing the derivative of j read

dψbj(ψb)(h) = dψbJ(Ξ(ψb), ψb)(h) + dψJ(Ξ(ψb), ψb) dψbΞ(ψb)(h). (6.8)
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In order to compute the derivative dψbj(ψb), compute ψ, λ and λb such that

dλL(ψ,ψb, λ, λb) = 0, dλbL(ψ,ψb, λ, λb) = 0, dψL(ψ,ψb, λ, λb) = 0, (6.9)

then (6.8) can be rewritten

dψbj(ψb)(h) = dψbL(ψ,ψb, λ, λb)(h) = (cbψb − λb, h)B− . (6.10)

The optimal source ψb is characterized by the following theorem.

Theorem 6.3 The unique admissible source ψ̄b ∈ (L2([ǫmin, ǫmax] × Γ−))2
ad

minimizing j satisfies

∀ψb ∈ (L2([ǫmin, ǫmax] × Γ−))2
ad, dψbj(ψ̄b)(ψ̄b − ψb) ≤ 0. (6.11)

Proof This theorem is Lemma 2.21 in [17] reformulated for the present radio-
therapy problem. See also [2, 10]. �

The equations (6.9) and (6.11) form the so-called first order necessary optimality
conditions. They can be rewritten under the following form







(A−Q)(ψ̄)(ǫ, x,Ω) = 0 for (ǫ, x,Ω) ∈ [ǫmin, ǫmax] × Z × S2,

ψ̄(ǫ, x,Ω) = ψ̄b(ǫ, x,Ω) for (ǫ, x,Ω) ∈ [ǫmin, ǫmax] × Γ−,

ψ̄(ǫmax, x,Ω) = 0 for (x,Ω) ∈ Z × S2,

(6.12a)






(AT −QT )(λ̄)(ǫ, x,Ω) = cD(x)cǫ(ǫ)
(

D̄ −D(ψ̄)
)

(x)

for (ǫ, x,Ω) ∈ [ǫmin, ǫmax] × Z × S2,

λ̄(ǫ, x,Ω) = 0 for (ǫ, x,Ω) ∈ [ǫmin, ǫmax] × Γ+,

λ̄(ǫmin, x,Ω) = 0 for (x,Ω) ∈ Z × S2,

(6.12b)

λ̄b = λ̄|[ǫmin,ǫmax]×Γ− , (6.12c)

∀ψb ∈ (L2([ǫmin, ǫmax] × Γ−))2
ad, (cbψ̄b − λ̄b, ψ̄b − ψb)B− ≤ 0. (6.12d)

6.4.3 A projected gradient method

The numerical approach is based on an iterative method. At each iteration, a descent
direction is seeked.

Definition 6.1 The direction g defined by

g := −(cbψb − λb)

is called the steepest descent direction.
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Using (6.10), one observes that this direction satisfies

dψbj(ψb)(g) = −‖g‖2
I ≤ 0.

Therefore, using the definition of the derivative of j, one obtains

∃δ > 0 s.t.
j(ψb + δg) − j(ψb)

δ
≤ 0,

and in particular the value of j at the point ψb + δg is lower than at the point ψb.
For writing purposes, the following notation is defined.

Notation 6.4 The projection of a function ψb ∈ (L2([ǫmin, ǫmax] × γ−))2 into
the admissible set (L2([ǫmin, ǫmax] × Γ−))2

ad is denoted

proj
ad

ψb(ǫ, x,Ω) =

(

proj
[0,Uγ(ǫ,x,Ω)]

ψbγ(ǫ, x,Ω), proj
[0,Ue(ǫ,x,Ω)]

ψbe(ǫ, x,Ω)

)

,

for all (ǫ, x,Ω) in [ǫmin, ǫmax] × Γ−, and where proj
[a,b]

c denotes the projection of

c onto the interval [a, b]

proj
[a,b]

c =







a if c < a,
c if c ∈ [a, b],
b if c > b.

The following algorithm was proven to converge to the desired optimal solution
in [17, 10, 2].

Algorithm 6.1 (Projected gradient, [2])
Initialization: Provide an initial source (ψb)(0).

Iteration: Iterate the following steps 1 to 6 until the following residual r
(k)
opt

reaches a desired value

r
(k)
opt =

∥
∥
∥cb(ψb)(k) − λ(k)

∥
∥
∥
B−

≤ ropt,max,

or until k reaches a maximum value kopt,max.

1. Compute the fluence

ψ(k+1) = Ξ
(

(ψb)(k)
)

(6.13)

by solving (6.12a).

2. Compute the dose

D(k+1) = D
(

ψ(k+1)
)

.
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3. Compute the ajoint

λ(k+1) = E
(

cǫcD
(

D̄ −D(k+1)
))

, (6.14a)

by solving (6.12b).

4. Compute the steepest descent direction

g(k+1) = −
(

cb(ψb)(k) − λ(k+1)
)

.

5. Find the optimal step size s(k+1), i.e. the scalar in ]0, 1] such that

s(k+1) = argmin
s∈]0,1]

j(k+1)(s),

j(k+1)(s) := j

(

proj
ad

(

(ψb)(k) + sg(k+1)
))

.

6. Compute the new source

(ψb)(k+1) = proj
ad

(ψb)(k) + s(k+1)g(k+1).

In practice, Step 5 of algorithm 6.1 requires some more computations because
computing the optimal step size is non trivial. For simplicity here, a bisection
algorithm is used.

Algorithm 6.2 (Bisection)
Initialization: Set

s(k+1,0) = 0, s(k+1,1) =
1

2
.

Iteration: Iterate

s(k+1,n+1) =

{

s(k+1,n) + 1
2n+1 if j(k+1)

(

s(k+1,n−1)
)

> j(k+1)
(

s(k+1,n)
)

s(k+1,n) − 1
2n+1 otherwise

until the number of iterations n reaches a maximum value nbis,max or until the
following residual

r
(n)
bis =

∣
∣
∣j(k+1)

(

s(k+1,n+1)
)

− j(k+1)
(

s(k+1,n)
)∣
∣
∣

reaches a threshold rbis,max.

6.4.4 Numerical approximations

The MN models presented in Chapter 4 and the numerical schemes of Chapter 5
require several approximations to be applied to the present optimization problem.
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Solving the direct and adjoint equations

At each iteration of Algorithm 6.1, the direct equation (6.1) is solved, i.e. Ξ(ψb) is
computed for some source ψb ∈ (L2([ǫmin, ǫmax] × Γ−))2

ad, and the adjoint equation
(6.5) is solved, i.e. E(q) is computed for some source q ∈ (L2([ǫmin, ǫmax]×Z×S2))2.

The adjoint equation (6.5) has a similar form as the direct equation (6.1) and one
easily adapts the schemes presented in Chapter 5 to the adjoint equation. However,
one remarks that the source term cǫcD

(

D̄ −D(k+1)
)

in the adjoint equation (6.5)
is non-signed. The M1 and M2 models described in Chapter 4 are only valid under
realizability condition which equivals to requiring the positivity of the solution to
the kinetic equation. In order to use the MN models on the adjoint equation, such
equation is solved separately for the positive and negative part of the source in (6.5),
i.e.

λ = λ+ − λ−, (6.15a)

λ+ = E
(

cǫcD max
(

0, D̄ −D(k+1)
))

, (6.15b)

λ+ = E
(

cǫcD max
(

0,−(D̄ −D(k+1))
))

. (6.15c)

The scheme (5.58) is used to solve (6.1) and an adaptation of this scheme is also
used to solve the adjoint equation under the form (6.15).

In practice, the M1 or the M2 equations are solved instead of the kinetic equa-
tions. The MN equations are non-linear while the kinetic equations are linear and
the optimization process described in the present chapter requires linear PDE con-
straints. Thus, the moment method and the discretization (5.58) are used here only
as a numerical approximation of the operators Ξ and E. In practice, the present
method using the MN model can not converge to the desired solution. However,
these approximations are assumed to be sufficiently accurate approximations of the
kinetic solution for the desired accuracy of the optimal source ψb to be attainable.

The boundary conditions

In practice, it is difficult to relate directly the kinetic boundary conditions to the
moment ones (see discussion in Subsection 2.5.2).

For simplicity, at the discrete level, the boundary conditions

ψ = ψb on [ǫmin, ǫmax] × Γ−, λ = 0 on [ǫmin, ǫmax] × Γ+

are replaced by

ψnl,m =

∫

S2
m(Ω)ψ̃b(ǫn, Xl,m,Ω)dΩ, λnl,m = 0

RCard(m) , for Xl,m ∈ ∂Z,

where

ψ̃b(ǫ, x,Ω) =

{

ψb(ǫ, x,Ω) on [ǫmin, ǫmax] × Γ−,
0 on [ǫmin, ǫmax] × Γ+,

These approximations are assumed to be accurate enough for the present applica-
tions.
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6.5 Numerical experiments

Two test cases are studied. The first one is a 1D test where a source of electrons
alone (without photons) is optimized in a 1D medium composed of water (ρ = 1).
In the second test, a source of photons alone (without electrons) is optimized in a
2D medium.

The coefficients cbα used in the regularization term of the objective functional
(6.2) are fixed at cbα = 10−3 (for α = γ, e) in the whole domain. In order to simulate
more practical problems, three types of media are differentiated which lead to fix
the coefficient cD and the optimal dose D̄:

• the tumor (T) regions : cD(x) = cD,T = 20 D̄(x) = 1010,

• the organs at risk (OAR) : cD(x) = cD,OAR = 100 D̄(x) = 0,

• the healthy (H) tissues : cD(x) = cD,H = 1 D̄(x) = 0.

The constraints U are chosen such that all the beams on the boundary of the
medium target a chosen point P in the medium. In practice, this corresponds to
choosing the following projection

proj
ad

(ψb)(x, ǫ,Ω) = (ψbγ , ψ
b
e)(x, ǫ,Ω)δ (Ω − d) ,

d =
P − x

‖P − x‖ , (6.16)

which can be interpreted at the moment level by imposing the following projection
on the moment (ψbα)i of order i of ψbα

proj
RUα

m

(ψbα)i =

{

((ψbα)1.d)d⊗i if ((ψbα)1.d) > 0,
0 otherwise

In Subsection 4.5.2, artificial effects caused by the MN models when multiple
beams cross each others were exhibited. This problem emerging with the non-linear
MN models was addressed in Subsections 4.5.2, 5.3.2 and 5.3.4 by solving (6.13) for
each source of particles and then sum their influences together. The same method
can be used here. Once the source (ψb)(k) is computed, one can solve (6.13) for each
source seperately. In 1D, this corresponds to computing the doses obtained with the
sources at each end separately, as in Subsection 5.3.2. In 2D, the boundary is splitted
into the four sides of the medium, and the dose obtained with the source on each
side of the medium is computed seperately. Remark that several sources emerging
from the same side still cross each other in the same point, so this method does
not solve the multi-beam problem, but this only reduces its effect. This method
is afterward referred to as multi-MN model. One may decompose the boundary
differently depending on the expectations on the optimal sources.
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6.5.1 1D electron source optimization

A 10 cm long 1D medium composed of uniform water (ρ = 1) is meshed with 80
cells. The energy bounds are fixed at ǫmax = 12 MeV and ǫmin = 10−3 MeV, and
the energy interval [ǫmin, ǫmax] is meshed such that

ǫ0 = ǫmax, ǫn+1 = ǫn − S(ǫn)∆x.

The target point P is located inside the medium, which means that the sources
at both ends are always directed inside the medium.

The tumors are located in the slabs [1 cm, 2 cm] and [8 cm, 9 cm], an organ at
risk is located in the middle of the medium [4.5 cm, 5.5 cm] and the rest of the
medium is composed of healthy tissues.

Only electrons are used in this test case, the source of photons is always fixed at
0. The initial boundary conditions for electrons are given by

(ψb)n0 = 1010 exp
(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ− 1)2
)〉

,

(ψb)nlmax
= 1010 exp

(

−αǫ (ǫn − ǫ0)2
) 〈

m(µ) exp
(

−αµ (µ+ 1)2
)〉

.

with ǫ0 = 10 MeV, αµ = 1000 and αǫ = 200. It models two opposite beams of 10
MeV crossing each other.

The maximum residual for the implicit solver (5.58) is fixed at rmax = 105 and the
maximum number of iterations is fixed at kmax = 500. The residual for the bisection
algorithm 6.2 is fixed at rbis,max = 105 and the maximum number of iterations at
nbis,max = 30. Finally the residual for the optimization algorithm 6.1 is fixed at
ropt,max = 5.105 and a maximum number of iterations kopt,max = 20.

The doses obtained in the end of this optimization process with the multi-M1

and the multi-M2 model are represented on Fig. 6.1. The computational times to
obtain those results and the total number of times the equations (6.13) and (6.14)
were solved numerically are gathered in Table 6.1. The spectra (energy distribution)
of the optimized sources with the two methods are represented on Fig. 6.2.

Models multi-M1 multi-M2

Computation times 23.280 sec 68.424 sec
Total number of equation solved 611 537

Table 6.1: Computational times to obtain the optimized doses with the ap-
proximated multi-M1 and multi-M2 models.

The optimized doses obtained with the multi-M1 and the multi-M2 models have
very similar shapes. The highest values of the dose are located in the middle of the
two tumors, while the minimum is in the middle of the medium, in the organ at risk.
The value of the dose in the organ at risk is around 30% of the maximum dose. It
is therefore non-zero but at the minimum value of the dose in the medium.

The spectra of the optimized sources with the two models also have very similar
shapes. Contrarily to the different sources used in the test cases of Chapter 5,
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Figure 6.1: Optimized doses obtained with the approximated multi-M1 and
multi-M2 models.

the optimized sources have very smooth spectra which are minimum in 0 MeV and
maximum around 11 MeV. Therefore most of the electrons are injected with a high
energy, but the quantity of electrons of lower energy injected and their impact on
the dose are non-negligible.

In Subsection 5.3.2, the doses obtained with the M1 and M2 models were found
to be different when the sources for the two models were identical and modelling
a beam of 10 MeV electrons. Further experiments showed that such discrepancies
vanish when considering sources of lower energy. This explains the similarities in
the doses with the two models on Fig. 6.1 when considering the diffused optimized
sources.

6.5.2 2D photon source optimization

The following test case is inspired of one proposed e.g. in [14, 1].
A 40 cm × 40 cm 2D medium composed of uniform water (ρ = 1) is meshed

with 40 × 40 cells. The energy bounds are fixed at ǫmax = 1.2 MeV and ǫmin = 10−3

MeV, and the energy interval [ǫmin, ǫmax] is meshed such that

ǫ0 = ǫmax, ǫn+1 = ǫn − 0.01S(ǫn)∆x.

The medium contains a C-shaped tumor, an organ at risk enveloped in the C-
shaped tumor and the rest of the medium is composed of healthy tissues. The
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Figure 6.2: Spectra of the optimized sources obtained with the approximated
multi-M1 and multi-M2 models.

medium is represented on Fig. 6.3, the light blue region corresponds to the tumor,
the red region to the organ at risk and the dark blue region to the healthy tissues.
The point P targeted by the source is located at (10 cm, 20 cm), i.e. in the center
region of the tumor. It is indicated with a black plus on Fig. 6.3.

For this test case, the source of electrons ψbe is fixed at zero. The sources of
photons provided at the initial step of the optimization algorithm are chosen to be
given by

(ψbγ)nl,m = 1010 exp
(

−αǫ(ǫn − ǫ0)2
) 〈

m exp
(

−αµ(1 − Ω.d(Xl,m))2
)〉 4∑

i=1

1Bi
(Xl,m),

B1 =
{

X ∈ R
2, s.t. x ∈ [5 cm, 15 cm], y = 0 cm

}

,

B2 =
{

X ∈ R
2, s.t. x ∈ [5 cm, 15 cm], y = 40 cm

}

,

B3 =
{

X ∈ R
2, s.t. x = 40 cm, y ∈ [0 cm, 5 cm]

}

,

B4 =
{

X ∈ R
2, s.t. x = 40 cm, y ∈ [35 cm, 40 cm]

}

,

where ǫ0 = 1 MeV, αµ = 1000, αǫ = 200 and the direction d(X) is given in
(6.16). This boundary condition corresponds to four beams targeting either the
two branches of the C-shaped tumor or the center of the tumor.

The residual for the solution of the implicit solver (5.58) is fixed at rmax = 103

and the maximum number of iterations is fixed at kmax = 1000. The residual for
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Figure 6.3: Representation of the 2D domain for the optimization test case:
in light blue the tumors, in red the organ at risk and in dark blue the healthy
tissue.

the bisection algorithm 6.2 is fixed at rbis,max = 105 and the maximum number of
iteration at kbis,max = 10. Finally the residual for the optimization algorithm 6.1 is
fixed at ropt,max = 5.105 and a maximum number of iteration kopt,max = 10.

The doses obtained in the end of this optimization process with the multi-M1

and the multi-M2 models are represented on Fig. 6.4. The computational times to
obtain those results and the total number of times the equations (6.13) and (6.14)
were solved numerically are gathered in Table 6.2.

Models multi-M1 multi-M2

Computation times 2h 52min 9sec 10h 5min 13sec
Total number of equation solved 1009 235

Table 6.2: Computational times to obtain the optimized doses with the ap-
proximated multi-M1 and multi-M2 models.

This test case is extreme as the organ at risk is enveloped in the tumor region.
Therefore, finding a position for source such that it irradiates not the organ at risk
is complicated.

The optimized doses with the multi-M1 and multi-M2 models have similar shapes.
As all the sources on the boundary target the point P , the dose around this point is
very high. In the organ at risk, the dose is lower but non-zero. The maximum value
of the dose in the organ at risk is located in the region the closest to the point P .
It reaches 65% of the maximum dose.

The largest discrepancies in the dose between the two models are away from
the maximum point P . The dose inside the organ at risk decreases faster away
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Figure 6.4: Isocurves of optimized dose obtained with the approximated multi-
M1 (left) and multi-M2 (right) models at 25% (green), 50% (light blue), 60%
(dark blue), 70% (purple), 80% (pink), 90% (red) of the maximum dose, over
a representation of the domain in gray scale, in white the organ at risk, in gray
the tumor and in black the healthy tissues.

from P when using the multi-M2 model than when using the multi-M1 model. At
the contrary, in the two branches of the C-shaped tumor the dose is higher with
multi-M2 model than with the multi-M1 model.

As in the 1D case, the source on the boundary is diffused in energy and, here in
2D, also in space. The M1 and M2 models were shown to provide similar dose results
when considering a photon beam in 2D in Subsection 5.8.3. The (small) differences
in Fig. 6.4 are therefore due to the non-linear effects emerging when multiple beams
cross each other.

6.6 Discussion

The MN approximations present several drawbacks that makes their use for op-
timization problems difficult. The major drawback of those models is their non-
linearity which creates parasite effects polluting both the accuracy and the stability
of Algorithm 6.1.

The use of the method of moments for optimization is although possible when
using methods circumvented such issues at the numerical level. In the present case,
splitting the computations in several parts was found to provide senseful results.
Such methods make the computation possible, but their accuracy remain discussable
as it does not remove entirely the artifical non-linear effects, especially for the M1
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model which is more sensitive to such effects.
The PN closures presented in Subsection 4.7.1 are linear and they represent a

viable alternative to MN closures for applications to optimization problems (see e.g.
[8] for application of the PN models to dose optimization). However, in order to
obtain an acceptable accuracy on the dose results with those models, the number
of moments N needs to be larger than when using MN models which considerably
raises the computational costs.

Algorithm 6.1 is a basic optimization technique. The convergence rate, the
stability or the computational cost of this algorithm can be improved. For instance,
quasi-Newton methods (see e.g [10]) typically have a better convergencce rate than
gradient methods.

The optimization algorithm presented in this chapter is not sufficient for practical
applications with medical purposes. In practice, the dose is required to be more
homogeneous in the tumor and there are more constraints on the dose in the organs
at risk. For instance, for non small cell lung cancer, one requires that every part of
the heart receives at most 35 Gy (the gray is the unit of the dose given by 1 Gy =
1 J.kg−1 = 6.24.1012 MeV.kg−1) and the total dose deposited in the heart is below
40 Gy. This type of refinement of the present method can be adressed by modifying
the objective functional j. However, such modifications lead to complications in the
optimization process.

Furthermore, in practice, the point P targeted by the beams is also optimizable,
and in certain cases with heterogeneous densities, this point may not be located
inside a tumor.

The present (basic) optimization technique already provides senseful results but
those techniques needs to be extended and improved to be applied to more practical
problems.

208 T. Pichard



Bibliography

[1] R. Barnard, M. Frank, and M. Herty. Optimal radiotherapy treatment planning
using minimum entropy models. Appl. Math. Comput., 219(5):2668 – 2679,
2012.

[2] P. H. Calamai and J. J. Moré. Projected gradient methods for linearly con-
strained problems. Math. Program., 39(1):93–116, 1987.

[3] Memorial Sloan-Kettering Cancer Center. A practical guide to intensity-
modulated radiation therapy. Medical Physics Publishing, 2003.

[4] International commission on radiation units and measurements. Prescribing,
recording, and reporting photon-beam intensity-modulated radiationtherapy
(IMRT). Technical Report 1, 2010.

[5] A. Costa and J.-P. Gerard, editors. Guide des procédures de radiothérapie
externe. Société française de radiothérapie oncologie, 2007.

[6] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for
science and technology: Volume 6, Evolution problems II. Springer, 2000.

[7] M. Frank, M. Herty, and A. N. Sandjo. Optimal radiotherapy treatment plan-
ning governed by kinetic equations. Math. Mod. Meth. Appl. S., 20(04):661–678,
2010.

[8] M. Frank, M. Herty, and M. Schäfer. Optimal treatment planning in radiother-
apy based on Boltzmann transport calculations. Math. Mod. Meth. Appl. S.,
18(04):573–592, 2008.

[9] M. Herty and A. N. Sandjo. On optimal treatment planning in radiotherapy
governed by transport equations. Math. Mod. Meth. Appl. S., 21(02):345–359,
2011.

[10] C. T. Kelley. Iterative methods for optimization. SIAM, 1999.

[11] X. Allen Li. Adaptative radiation therapy. CRC press, 2011.

209



BIBLIOGRAPHY

[12] T. R. Mackie, J. Kapatoes, K. Ruchala, G. Olivera W. Lu, C. Wu, L. Forrest,
W. Tome, J. Welsh, R. Jeraj, P. Harari, P. Reckwerdt, B. Paliwal, M. Ritter,
H. Keller, J. Fowler, and M. Mehta. Image guidance for precise conformal
radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 56(1):89–105, 2003.

[13] P. Mayles, A. Nahum, and J.C. Rosenwald, editors. Handbook of radiotherapy
physics: Theory and practice. Taylor & Francis, 2007.

[14] D. M. Shepard, M. C. Ferris, G. H. Olivera, and T. Rockwell Mackie. Optimiz-
ing the delivery of radiation therapy to cancer patients. SIAM Rev., 41(4):721–
744, 1999.

[15] C. P. South, M. Partridge, and P. M. Evans. A theoretical framework for
prescribing radiotherapy dose distributions using patient-specific biological in-
formation. Med. Phys., 35(10):4599–4611, 2008.

[16] J. Tervo, P. Kokkonen, M. Frank, and M. Herty. On existence of L2-solutions of
coupled Boltzmann continuous slowing down transport equation system. arX-
ive, 2016.

[17] F. Tröltzsch. Optimal control of partial differential equations: Theory, methods
and applications. American Mathematical Society, 2005.

210 T. Pichard



Conclusion and perspectives

Conclusion

The present thesis aims to propose numerical approaches for dose computation and
optimization in the field of radiotherapy that are competitive in terms of accuracy
and numerical costs compared to reference methods such as [6, 14].

The present work is based on linear transport models for photons and electrons.
Studying the physics of the predominant interactions lead to constructing collision
operators for a kinetic model. Then, the well-posedness of the resulting equations
was studied.

Numerical methods obtained by discretizing directly such kinetic equations re-
quire considerable numerical costs. Those computational costs were reduced by
using the method of moments. However, several difficulties emerge when using this
method. The moment equations have more unknowns than equations and therefore
require an additional closure equation. The entropy-based closures, so-called MN

closures, was preferred in this manuscript. One of the novelties presented in this
manuscript was the construction of an approximation of the entropy-based closure
for the second order moment equations, i.e. the M2 closure, in three dimensions of
space. This approximation is based on the study the domain of definition of the MN

closure, so-called realizability domain. The main characteristics of the MN models,
i.e. the realizability and the hyperbolicity were focused on during the construction
of this approximation.

Standard numerical schemes applied to such moment equations present stiff
terms which may considerably slow down the computations when the considered
medium contains low density regions. Numerical methods for dose computation
adapted to the entropy-based moment models were constructed, with a special focus
on the preservation of the realizability property, and efficient even when considering
low-density media.

Finally, a numerical approach was proposed to optimize a source of radiations,
i.e. such that the dose is as clase as possible to a desired dose. Those numerical
methods, both dose computation and optimization, were tested on practical test
cases and showed good agreement with reference results.
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Perspectives

The following points were introduced in this manuscript. A deeper understanding
of these problems would lead to improving the numerical techniques of dose compu-
tation and optimization described in Part III.

Realizability and "Generalized moment problem"

The moment models with entropy-based closures are only valid under realizability
constraints. This means that all the moments need to be weighted integrals of the
same positive function. There exist practical characterizations of the realizability
property in 1D (see Section 3.3.2), and such characterizations lead to constructing
a new type of realizable closure for high order moment equations (see [8, 9, 11, 10]
and Subsection 4.7.2). In the general case of arbitrary order moments on the unit
sphere, there is no practical characterizations of the realizability property, and only
few results are known. Practical realizability conditions exist for moments up to or-
der two. Some criteria exist for moments of higher order, although they are technical
and difficult to use and they are a priori not applicable in the whole realizability
domain.

Perspectives:

• Define a practical criteria of realizability for moments on the unit sphere of
higher order than two.

• Define a realizable and hyperbolic closure for high order angular moment
models for multi-dimensional problems that is easy to compute numerically.

Boundary conditions for the moment models

The boundary conditions for kinetic equations are typically chosen by fixing the flux
of particles entering inside the medium. Angular moments are obtained by integrat-
ing a kinetic equation over all directions of flight Ω. Prescribing the incoming flux on
the boundary for the kinetic model is not enough to construct a flux for the moment
equations. As the moment equations are hyperbolic, one typically choose boundary
conditions for the moment equations based on the theory of hyperbolic equations
(see e.g. [4, 1, 5]).However, those conditions are not directly related to the underly-
ing kinetic boundary conditions. Furthermore, kinetic effects may appear near the
boundary (see e.g. [3, 7, 2]) and they are not well modeled with standard moment
boundary conditions in particular cases.

Perspective: Define practical boundary conditions for moment equations with an
entropy-based closure based on underlying kinetic boundary conditions.
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Dose optimization using the entropy-based moment mod-
els

Typically, dose optimization algorithms are obtained through a variational approach
at the kinetic level. The moment approach is only seen as a numerical method to
solve a kinetic equation. The existence and uniqueness of a minimizer were proven
at a kinetic level. However, no such results are known at the moments level, except
for the linear PN models.
The method based on the non-linear M1 and M2 models showed good experimental
results on simple test cases.

Perspectives:

• Improve the dose optimization algorithm based on moment models with entropy-
based closure.

• Adapt this method to more practical problems.

Numerical methods for the moment equations

The numerical schemes presented in this manuscript are of order 1. Higher order
numerical schemes can be developed based on the present approaches. Furthermore,
the numerical scheme (5.57) applicable to the transport of photons and electrons
together is based on an iterative algorithm. This method was solved directly using
basic techniques which introduce both numerical errors and numerical costs.

Perspective:

• Complete the numerical approach to apply it to more realistic models.

• Construct higher order numerical schemes for the radiotherapy equations.

• Improve the numerical method to raise the convergence rate of Algorithm 5.1.

Biological effects

As a first approach, the effects of the radiations on the tissues is often assumed
to be a function of the dose, e.g. the linear-quadratic model ([12]) states that the
proportion of cells surviving to the radiations is of the form exp(−αD−βD2). This
approach is simple to use and one needs not to compute the whole fluences (ψγ , ψe),
because only the dose is required. This model is empirical, however in practice, the
biological effects of the radiations on the cells follow a more complicated model.

Furthermore, other effects neglected by this empirical approach are non-negligible
in particular cases, e.g. the bystander effect ([13]) is non-local because it affects the
cells neighboring those receiving the radiations.

In the present framework, a better understanding of those effects would lead to
proposing a radiobiology-based objective functional J in the optimization algorithms
of Chapter 6.
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Perspectives

Perspective: Complete the present model to include the biological effects of the
radiations on the cells.
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