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ABSTRACT

Because of stability constraints, most numerical schemes applied to hyperbolic systems of equa-
tions turn out to be costly when the flux term is multiplied by some very large scalar. This problem
emerges with theM1 system of equations in the field of radiotherapy when considering heterogeneous
media with very disparate densities. Additionally, the fluxterm of theM1 system is non-linear, and in
order for the model to be well-posed the numerical solution needs to fulfill conditions called realizabil-
ity. In this paper, we propose a numerical method that overcomes the stability constraint and preserves
the realizability property. For this purpose, we relax theM1 system to obtain a linear flux term. Then we
extend the stencil of the difference quotient to obtain stability. The scheme is applied to a radiotherapy
dose calculation example.

Key Words: Radiotherapy, Moments models, relaxation models, methodof characteristics

1 INTRODUCTION

The present work is devoted to the numerical solution of a moment system of equations, which
describes the transport of electrons in tissues. The model finds application in the field of radiother-
apy dose calculation when considering low density media ( [1]):

1

ρ(x)
∇x.ψ

1(x, ǫ) = ∂ǫ(S(ǫ)ψ
0)(x, ǫ), (1a)

1

ρ(x)
∇x.ψ

2(x, ǫ) = ∂ǫ(S(ǫ)ψ
1)(x, ǫ)− 2T (ǫ)ψ1(x, ǫ), (1b)

where the unknownsψ0 ∈ R, ψ1 ∈ R
3 andψ2 ∈ R

3×3 depend on energyǫ ∈ R
+ and

positionx ∈ R
3. The stopping powerS and the transport coefficientT are positive functions ofǫ
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characterizing the loss of energy and the deflection of the electrons during their transport. Finally,
ρ(x) > 0 is the density of the medium at pointx. This equation is solved by marching backward
in energy, i.e. we prescribeψ0(ǫmax, x) = 0 andψ1(ǫmax, x) = 0R3 at initial energyǫmax (which
means that electrons have bounded energy) and we solve (1) from ǫmax to 0.

1.1 M1 model

The system (1) is composed of 4 equations with 9 unknowns (scalar ψ0, vectorψ1 and sym-
metric matrix with known traceψ2). It is closed using the entropy minimization principle ( [2]):

We seek the functionψM ≥ 0 minimizing the Boltzmann entropyH(f) =
∫

S2 fln(f)dΩ

ψM = argmin
f∈F1

H(f) with F1 =

{

f ≥ 0 s.t.
∫

S2

fdΩ = f 0, and
∫

S2

ΩfdΩ = f 1

}

. (2)

We close the system(1) by fixingψ2 as the 2nd order moment ofψM

ψ2 =

∫

S2

ΩΩTψM(Ω). (3)

System (1) with this closure is calledM1 model. TheM1 model is closely related to some under-
lying kinetic model because the functionψM given by (2) is known to be the most probable kinetic
distribution function realizing the first two moments ( [3, 4]). This choice of closure provides
several desirable properties such as hyperbolicity of (1) and entropy dissipation ( [2]).

Moment models are a good compromise between full kinetic models, precise but numerically
costly, and diffusion models, not able to represent some physical phenomena.

TheM1 model is valid under a condition onψ0 andψ1. Indeed, theM1 closure exists only
if there exists such a non-negative functionψM . This requirement is called realizability condition.
A special attention is needed for this condition when developing numerical schemes for (1). We
define the setA1 of realizable moments by

(

ψ0, ψ1
)

∈ A1 ⇔ ∃f ≥ 0, s.t.
∫

S2

f(Ω)dΩ = ψ0,

∫

S2

Ωf(Ω)dΩ = ψ1. (4)

Note thatA1 is a convex cone. Numerical schemes applied to the system (1)need to preserve the
realizability property.

For theM1 model, the realizability property can be caracterized by ( [5])

A1 = {(0, 0R3)} ∪
{

(ψ0, ψ1) ∈ R
∗+ × R

3 s.t.
|ψ1|
ψ0

< 1

}

. (5)

If (ψ0, ψ1) ∈ A1 one can compute the closure. By geometrical considerations ([6]),

ψ2 = ψ0

(

3χ− 1

2

ψ1

|ψ1| ⊗
ψ1

|ψ1| +
1− χ

2
IdR3×3

)

, (6)

whereχ is the Eddington factor and depends only on|ψ1|/ψ0 ∈ [0, 1].

Page 2 of 12



Relaxation schemes for theM1 model with space-dependent flux

1.2 Problem statement

In radiotherapy, the studied electrons may be transported through strongly heterogeneous me-
dia, e.g.ρ = 1 in water andρ = 10−3 in air. Standard numerical schemes applied to (1) require a
very small energy step∆ǫ to converge, which prevents these schemes from being usablefor prac-
tical application. To see this, consider a one dimensional problem. In slab geometry, (1) can be
reduced into

1

ρ(x)
∂xψ

1(x, ǫ) = ∂ǫ(S(ǫ)ψ
0)(x, ǫ), (7a)

1

ρ(x)
∂xψ

2(x, ǫ) = ∂ǫ(S(ǫ)ψ
1)(x, ǫ)− 2T (ǫ)ψ1(x, ǫ), (7b)

whereψi are now scalars andx ∈ R. The previous closure in 1D simply reads

ψ2 = ψ0χ(|ψ1|/ψ0). (8)

To shorten notation, 1D system (7) is rewritten

∂ǫ(S(ǫ)ψ̄)−
1

ρ(x)
∂xF̄ (x, ǫ) + T (ǫ)L.ψ̄ = 0, (9)

whereψ̄ = (ψ0, ψ1)T , F̄ = (ψ1, ψ2)T andL =

(

0 0
0 2

)

. The superscript̄. refers to vectors.

As a first approach, we use an HLL scheme ( [7]) to solve the 1D moment system (7).

Sn+1ψ̄n+1
l =

[

Snψ̄nl −
∆ǫn

ρl∆x

(

Ḡn
l+ 1

2

− Ḡn
l− 1

2

)

+ T nL.ψ̄nl

]

, (10)

with

Ḡn
l+ 1

2

=
1

2

(

F̄ n
l+1 + F̄ n

l − (ψ̄nl+1 − ψ̄nl )
)

. (11)

The subscriptl refers to the positionx andn to the energyǫ. This scheme is stable under a Courant
Friedrichs Lewy (CFL) condition

∆ǫn ≤ Sn
(

1
min(ρl)∆x

+ 2T n
)−1

. (12)

In practice, the densityρ is inhomogeneous and can have very strong variations. Thenmin(ρl)
might be very low, and the numerical scheme requires very small ∆ǫn.

This problem was investigated in [8] and solved by modifyingthe grid in one space dimen-
sion. The generalization to multi-dimensional (multi-D) problems was not straight-forward, but
introduced additional splitting errors. In the present paper, we propose a numerical approach en-
suring the realizability that does not constrain the energystep, independent of the grid, and which
works for multi-D problems. In Section 2, we describe the numerical approach which consists
of two parts. First, we use a relaxation model to obtain a linear flux term. Second, we construct
numerical schemes for linear hyperbolic equations with spatially varying flux that are uncondition-
nally stable. The last section is devoted to the validation of the numerical approach on a relevant
test case.
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2 NUMERICAL APPROACH

We write the multi-D system (1) in the form

∂ǫ(S(ǫ)ψ̄)−
1

ρ(x)
∇x.

¯̄F (x, ǫ) + T (ǫ)L.ψ̄ = 0, (13)

with L =

(

0 0R3

0T
R3 2IdR3×3

)

. Hereψ̄ = (ψ0, ψ1)T ∈ R
4 and ¯̄F = (ψ1, ψ2) ∈ R

3×4. The super-

script̄̄. refers to vectors of vectors, i.e. matrices. Note that the divergence operator∇x.(.) is applied
separately to each vector componentψ1 ∈ R

3 andψ2
i,: ∈ R

3 composing¯̄F = (ψ1, ψ2
1,:, ψ

2
2,:, ψ

2
3,:).

2.1 Relaxation schemes for moment equations

We use a relaxation approximation of the system (13) (afterward called AN after [9, 10])
described in [9, 11] for hyperbolic systems of equations andcompleted for parabolic systems in
[10,12]. Special focus will be put on the preservation of therealizability domain.

2.1.1 Principle

We recall the principle of AN relaxation. Let us chooseJ relaxation vectors(λ̄j)j=1,...,J ∈ R
3.

We associate to each of them a set of moments
(

f̄ τj
)

j=1,...,J
∈ R

4 depending on a relaxation pa-

rameterτ and a set of Maxwellians
(

M̄ τ
j

)

j=1,...,J
∈ R

4. Each set̄f τj or M̄ τ
j correspond to a set of

momentsψ̄ = (ψ0, ψ1) ∈ R
4. The Maxwellians are linked to the original moments (13) through

the consistency conditions

∑

j

M̄ τ
j = ψ̄ and

∑

j

λ̄j ⊗ M̄ τ
j = ¯̄F (ψ̄), (14)

where⊗ is the tensor product. In this study, we choose realizable Maxwellians, i.e.

∀j = {1, J}, M̄ τ
j (ψ̄) ∈ A1 wheneverψ̄ ∈ A1. (15)

The following system of equations is a relaxation system for(13)

ρ∂ǫ(Sf̄
τ
j )− λ̄j.∇xf̄

τ
j + ρL.f̄ τj =

1

τ

(

M̄ τ
j (
∑

k

f̄ τk )− f̄ τj

)

, 1 ≤ j ≤ J. (16)

The solutions̄f 0
j of the limit problem (τ → 0) correspond to the desired solution of the original

system (13). Formally, multiplying (16) byτ andτ → 0 leads to

M̄0
j (
∑

k

f̄ 0
k ) = f̄ 0

j .
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Then replacinḡf 0
j by M̄0

j in (16) and summing the equations reads

ρ∂ǫ(S
∑

j

M̄0
j )−∇x.(

∑

j

λ̄j ⊗ M̄0
j ) + ρL.(

∑

j

M̄0
j ) = 0,

which is exactly (13).

As we only want to solve the limit system forτ → 0, the indexτ is removed in the rest of this
paper. The upper indexn now refers to energy stepǫn, first lower indexj to relaxation speed̄λj
and second lower indexl to positionxl. Note that the spatial fluxes of the relaxed system are linear
even if the ones from the original system are not.

In 1D, it is a well-known stability requirement ( [10, 11, 13]) that all eigenvalues of∂ψ̄F̄ (ψ̄)
have to be bounded by the extremal relaxation speed. For our problem, this condition can be
written

Spectrum
(

∂ψ̄(
¯̄F (ψ̄).ei)

)

⊂ [min
j
λ̄j.ei,max

j
λ̄j.ei]. (17)

Note that we can rewrite

∂ψ̄(
¯̄F (ψ̄).ei) =

∂(ψ1
i , ψ

2
i,1, ψ

2
i,2, ψ

2
i,3)

∂(ψ0, ψ1
1, ψ

1
2, ψ

1
3)

.

Simple computations (see e.g. [14]) leads to write Spectrum
(

∂ψ̄(
¯̄F (ψ̄).ei)

)

⊂ [−1, 1] for i ∈
{1, 3}.

In practice, the solution of (13) is obtained as follow:

• We initialize f̄ 0
j := M̄0

j (ψ̄
0) at the energy stepǫ0.

• We define intermediate states̄fj
n+ 1

2 by solving the homogeneous equations

∂ǫ(Sf̄j)−
λ̄j
ρ
.∇xf̄j + L.f̄j = 0, 1 ≤ j ≤ 2. (18)

We discretize the termL.f̄j implicitly (this choice is explained in the following). Thespatial
derivative is approximated by some finite difference formula (to be specified later) which
leads to

Sn+1f̄j
n+ 1

2

l
= Sn(Cj f̄j

n
)l +∆ǫnT n+1L.f̄j

n+ 1

2

l
, (19)

whereCj f̄j
n

is a convex combination of values off̄j
n

(see below remark 2).

• Then the solution is corrected by solving the rest of the equation, which, forτ → 0, corre-

sponds to takingM̄n+1
j := f̄

n+ 1

2

j .

• The solution at new energy is computed as

ψ̄n+1 :=
∑

j

M̄n+1
j . (20)
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2.1.2 Realizability

This method preserves the realizability property from an energy step to the next one:

Proposition 1. If for all l, we haveψ̄nl ∈ A1 at energy stepǫn then the solution̄ψn+1
l obtained by

solving the relaxed system(16)with the scheme(19) is also inA1 at energy stepǫn+1 for all l.

Proof. The realizability ofψ̄n+1 is obtained via (20) through the realizability of̄Mn+1
j . First, we

initialize f̄nj at energyǫn such that. Second, we show by induction thatf̄
n+ 1

2

j is realizable at the
new energy step. Finally we conclude the realizability ofψ̄n+1.

1. We initializef̄nj := M̄0
j (ψ̄

n). Using the realizability condition (15), we havēfnj ∈ A1.

2. Now let us prove that if for alll, f̄j
n

l
∈ A1 thenf̄j

n+ 1

2

l
∈ A1. We solve (16) by splitting as

described above. In the implicit energy step for the homogeneous system we need to solve

A.f̄j
n+ 1

2

l
= Sn(Cj f̄j

n
)l, (21)

where

A =

(

Sn+1 0R3

0T
R3 (Sn+1 + 2∆ǫnTn+1)IdR3×3

)

andA−1 =

(

1/Sn+1 0R3

0T
R3 1/(Sn+1 + 2∆ǫnTn+1)IdR3×3

)

.

The right hand side of (21) is realizable, becauseCj f̄nj is a convex combination of realizable moments. This
means that the norm of the second component ofCj f̄nj is bounded by the first component (see (5)). Since
A−1 divides the second component by a bigger value than the first component, this remains true for the vector

f̄1
n+ 1

2

l , which is therefore realizable (according to the caracterization (5)).

ThenM̄j
n+1

l
:= f̄j

n+ 1

2

l
∈ A1 . We eventually obtain̄ψn+1

l ∈ A1 by (20).

2.2 Scheme for fast characteristics in 1D

As mentioned above, for a standard scheme the densityρ in front of the flux term might lead
to a severe CFL restriction. We overcome this problem by stencil extensions, which rely on a
re-interpretation of the basic upwind scheme. For the sake of simplicity we describe this approach
first for the 1D linear advection equation. Consider

∂tu+
a

ρ(x)
∂xu = 0, (22)

with a > 0 (the casea < 0 can be treated similarily).

We consider a fixed mesh. And the time step∆t is a priori independent of mesh size∆x (i.e.
not constraint by a CFL condition).
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In a basic Finite Difference (FD) framework, we writeunl = u(xl, t
n). And we consider

ρ = ρl constant in each cellCl = [xl− 1

2

, xl+ 1

2

]. A scheme is obtained by definingun+1
l as a convex

combinationC of someunl such that this definition is consitstent with (22).

Using the method of characteristics,u is constant along the characteristic curves. In each cell
Cl, this yieldsun+1

l = u(xl, t
n+1) = u(y(τ, tn+1, xl), τ) with

y(τ, t, x) = x+
a

ρl
(τ − t) when x ∈ Cl. (23)

Now, let us compute the positionxc which the characteristic that goes through(xl, t
n + ∆t)

reaches at timetn (see Fig. 1). After computations, one finds

xc = xl−kl+ 1

2

− c,

where

c = d
a

ρl−kl
, d = ∆t− ∆xρl

2a
−

kl−1
∑

i=1

∆xρl−i
a

,

andkl is the number of cell crossed by the caracteristic curve.kl is the only integer verifying

ρl∆x

2a
+

kl−1
∑

i=1

ρl−i
a

∆x ≤ ∆t ≤ ρl∆x

2a
+

kl
∑

i=1

ρl−i
a

∆x. (24)

This configuration is depicted on figure 1.

x

t

xl−kl+ 1

2

xl− 1

2

xl−kl− 1

2

xl+ 1

2

xc

ρlρl−1ρl−2ρl−3

xlxl−1xl−kl+1xl−kl

t+∆t

t c

d

Figure 1. Configuration for CFL-free Finite Difference scheme for kl = 3.

Finally we can computeun+1
l by interpolation to obtain the following FD scheme

un+1
l = (1− α)unl−kl+1 + αunl−kl if xl−kl − xc ≥ 0, (25a)

un+1
l = αunl−kl + (1− α)unl−kl−1 if xl−kl − xc < 0, (25b)
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where

α =

∣

∣

∣

∣

xl−kl − xc
∆x

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a∆t

ρl−kl∆x
− ρl

2ρl−kl
−

kl−1
∑

i=1

ρl−i
ρl−kl

∣

∣

∣

∣

∣

∈ [0, 1[. (25c)

Remark 1 (Properties of the scheme). • If the characteristic curves do not cross more than
one cell, this scheme is equivalent to the original upwind scheme with the common CFL
condition.

• The consistency error isO(∆x). So it is of order 1 in space and time.

• The FD scheme is linear with positive coefficients and whose sumis equal to 1. So it is
monotone and therefore Total Variation (TV) stable.

• There are no stability restrictions on the scheme, so it is more stable than the common upwind
scheme. This allows us to use a bigger time step. But one shouldkeep in mind that the
precision obtained when extending the stencil is lower as the one obtained using the common
CFL restriction.

2.3 Extension to multi-D

We study the linear advection equation

∂tu+
1

ρ(x)
a.∇xu = 0, (26)

wherea ∈ R
n is a vector andu depends onx ∈ R

n and
t ∈ R

+.
For our purposes and in order to simplify the notations, we
focus on the two dimensional problem but the method can
easily be extended to higher dimensional problems.

Xl,m

Xc

xl′ xl′+1

ym′

ym′+1

Figure 2. Characteristic for Finite Difference
scheme in two dimensions.

Given a cell centerXlm, it is straight-forward to find the originXc of the characteristic which
passes throughXlm at timetn+∆t (cf. Fig. 2). We can then define a Finite Difference scheme by
approximating the value ofuh(Xc, t

n) using the valuesuh(., tn) at the nearest cell centersXl′,m′

aroundXc = (X, Y )

un+1
l,m = uh(Xl,m, t

n +∆t) = uh(Xc, t
n) ≈

1
∑

i=0

1
∑

j=0

|X − xl′+i|
|xl′+1 − xl′ |

|Y − ym′+j|
|ym′+1 − ym′ |u

n
l′+i,m′+j, (27)

if Xc ∈ [xl′ , xl′+1] × [ym′ , ym′+1]. Coming back to the moment problem, we relax (13) in three

Page 8 of 12



Relaxation schemes for theM1 model with space-dependent flux

different ways

"Cartesian relaxation" : directions λ̄1 = (1, 0), λ̄2 = (−1, 0), λ̄3 = (0, 1), λ̄4 = (0,−1),

(28a)

Associated Maxwellians M̄i =
1

4

(

ψ̄ − λ̄i.
¯̄F
)

, for i = {1, 4} , (28b)

Relaxed system ∂ǫ(S(ǫ)f̄i)−
2

ρ(x)
λ̄i.∇xf̄i(x, ǫ) + T (ǫ)L.f̄i =

M̄i(ψ̄)− f̄i
τ

for i = {1, 4} ,

(28c)

"Diagonal relaxation": directions λ̄1 =
1√
2
(1, 1), λ̄2 =

1√
2
(−1, 1), (29a)

λ̄3 =
1√
2
(−1,−1), λ̄4 =

1√
2
(1,−1),

Associated Maxwellians M̄i =
1

4

(

ψ̄ − λ̄i.
¯̄F
)

for i = {1, 4} , (29b)

Relaxed system ∂ǫ(S(ǫ)f̄i)−
2

ρ(x)
λ̄i.∇xf̄i(x, ǫ) + T (ǫ)L.f̄i =

M̄i(ψ̄)− f̄i
τ

for i = {1, 4} ,

(29c)

"Star relaxation": directions λ̄1 = (1, 0), λ̄2 = (0, 1), λ̄3 = (−1, 0), λ̄4 = (0,−1),

(30a)

λ̄5 =
1√
2
(1, 1), λ̄6 =

1√
2
(−1, 1), λ̄7 =

1√
2
(−1,−1), λ̄8 =

1√
2
(1,−1),

Associated Maxwellians M̄i =
1

8

(

ψ̄ + λ̄i.
¯̄F
)

for i = {1, 8} , (30b)

Relaxed system ∂ǫ(S(ǫ)f̄i)−
4

ρ(x)
λ̄i.∇xf̄i(x, ǫ) + T (ǫ)L.f̄i =

M̄i(ψ̄)− f̄i
τ

for i = {1, 8} .

(30c)

Remark 2. • We defined the relaxation directions̄λi, the MaxwelliansM̄i and the relaxed
equations so that the stability condition(17), the realizability condition(15) and the consis-
tency condition(14)hold for each set of relaxation parameter.

• When the number of directionsJ is equal to the number of unknowns (in 2D̄ψ is composed
of 3 components), and when the directions are fixed, then the Maxwellians are uniquely
defined as a function of̄ψ, ¯̄F and of theλ̄i. Here, there are more directions in each set (4
in the cartesian and diagonal sets and 8 in the star set) than unknowns, so other choices of
Maxwellians may be used.

• All of these schemes are defined using convex combinations. So Propositions 1 hold.
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3 NUMERICAL RESULTS

We study several test cases from radiotherapy dose calculation. We use physical values for
stopping power and transport coefficient for electrons as described in [1]. The function of interest
is the dose defined by

D(x) =

∫ +∞

0

S(ǫ)ψ0(x, ǫ)dǫ. (31)

In the test case, the dose is normalized by the maximum dose. This normalized dose, called
percentage depth dose (PDD) in the field of medical physics, is independent of the quantity of
particles transported (which is arbitrary here), it depends only on their distribution.

The following test case was used in [1] to compare the HLL scheme with a Monte Carlo
simulation. We consider a domain of sizeLx = 22.3cm× Ly = 29.5cm, meshed with 223×295
cells. The density in this medium corresponds to a 2D cut of a human chest. We apply a beam
modeled by the following boundary conditions

(ψ0, ψ1) (x = 22.3cm, y,Ω, ǫ) = 1010 exp

(

−1

2

(

ǫ0 − ǫ

0.05ǫ0

)2
)

exp

(

−100

(

y − Ly
2

)2
)

αµ.

Hereαµ = (1, ψ1/ψ0). We chooseψ1/ψ0 = (−0.98, 0), it corresponds to an irradiation of the
spinal cord. For this test case,ǫ0 = 15MeV/mec

2. We fix the initial data and the other boundary
values with

(ψ0, ψ1) = (10−20, 0, 0).

We compare the solution using a fine energy step∆ǫn = 0.95Sn
(

1
ρlow∆x

+ 2T n
)−1

(HLL scheme)

and a coarse one∆ǫn = 0.95Sn
(

1
ρwater∆x

+ 2T n
)−1

using cartesian (28), diagonal (29) and star

(30) directions of relaxation. The isodose curves obtainedare represented on Fig. 3 in colour
over the chest density (grayscale). The isocurves of absolute error induced by the extension of the

Figure 3. Isodose curves in a chest at 5% (red), 10% (orange),25% (yellow), 50% (light
blue), 70% (dark blue) and 80% (violet) of the maximum dose with a fine ∆ǫn (left) and a
coarse∆ǫn using cartesian (middle left), diagonal (middle right) andstar (right) directions
of relaxation.

stencil normalized by the maximum dose are shown on Fig. 4. The shape of the dose obtained with
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Figure 4. Isocurves of the absolute error between the doses obtained using a fine and a coarse
energy step with cartesian (left), diagonal (middle) and star (right) directions of relaxation at
1% (red), 0.5% (light blue) and 0.2% (yellow) of the maximum dose.

the relaxed schemes are very close to the one obtained with the HLL scheme. The absolute error
is smaller than 1.1% of the maximum dose when using the cartesian set, smaller than 4.3% with
the diagonal set, and smaller than 2.1% with the star set. Themaximum errors are located in the
middle of the medium at about 2 cm and 6 cm depth. All the voxelsare within 3% or 3mm distance-
to-agreement for each choice of relaxation parameters. Whenusing the diagonal directions of
relaxation, the information is transported in diagonal direction. Then, when trasporting particles
along the x-axis, the scheme does not transport them from onecell to its neighboor. This results in
some irregularities which can be seen in Fig. 4. The relaxed models are better when the directions
of relaxation are collinear to the mesh directions (i.e. cartesian directions).

The computation times for this test case are gathered in table I. The numerical schemes pre-

numerical scheme computation time number of energy steps

HLL scheme (fine∆ǫn) ≈ 50 min 146 224
Coarse∆ǫn with cartesian set of directions 6.69 sec 460
Coarse∆ǫn with diagonal set of directions 7.35 sec 460

Coarse∆ǫn with star set of directions 19.72 sec 919

Table I. Computation times for the 2D case with the differentschemes .

sented in this paper are significantly faster than the original HLL scheme and gives precise results.

4 CONCLUSION

We have proposed a numerical method for solving theM1 system of equations applied to
radiotherapy dose calculation, which is not constrained bystability restrictions. First, we relax
theM1 system, which leads to a hyperbolic system of equations withlinear flux terms. Then,
using the method of characteristics, we proposed an inconditionnally stable numerical scheme for
hyperbolic systems. This numerical method is equivalent tothe HLL scheme when imposing the
standard CFL condition. This method was tested on a relevant test case and provides good results
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compared to the ones with the HLL scheme, and with a much smaller computational time, as we
do not need to impose small energy steps.
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