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ABSTRACT

Because of stability constraints, most numerical scherppleal to hyperbolic systems of equa-
tions turn out to be costly when the flux term is multiplied e very large scalar. This problem
emerges with thé/; system of equations in the field of radiotherapy when comsigéneterogeneous
media with very disparate densities. Additionally, the ftakm of theM; system is non-linear, and in
order for the model to be well-posed the numerical solutieeds to fulfill conditions called realizabil-
ity. In this paper, we propose a numerical method that oveesothe stability constraint and preserves
the realizability property. For this purpose, we relax iiesystem to obtain a linear flux term. Then we
extend the stencil of the difference quotient to obtainitgbThe scheme is applied to a radiotherapy
dose calculation example.

Key Words Radiotherapy, Moments models, relaxation models, mettictiaracteristics

1 INTRODUCTION

The present work is devoted to the numerical solution of a srdraystem of equations, which
describes the transport of electrons in tissues. The mautd &pplication in the field of radiother-
apy dose calculation when considering low density medi)( [1

! Yz, e) = ) (x, e
ﬁvzﬂﬁ(% €) = 0(S(e)")(z,€) — 2T (€)' (,€), (1b)

where the unknowng® € R, ¢! € R3 andy? € R3*3 depend on energy € R and
positionz € R3. The stopping powes and the transport coefficieft are positive functions of
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characterizing the loss of energy and the deflection of tbetins during their transport. Finally,
p(z) > 0 is the density of the medium at point This equation is solved by marching backward
in energy, i.e. we prescribg’ (€., z) = 0 andy! (eax, ©) = Ogs at initial energye,,., (Which
means that electrons have bounded energy) and we solve(} fr., to 0.

1.1 M, model

The system (1) is composed of 4 equations with 9 unknownsafsgd, vectory* and sym-
metric matrix with known trace?). It is closed using the entropy minimization principle [)[2

We seek the functiopy, > 0 minimizing the Boltzmann entrogy(f) = [g. fin(f)dQ

Uy = argminH(f)  with  F = {f >0 s.t. / fdQ = f°, and QfdQ = fl} (2)
fer 52 s2

We close the systefh) by fixing:? as the 2nd order moment of;;
v = [ 0T, ©)
S2

System (1) with this closure is calléd; model. The)M; model is closely related to some under-
lying kinetic model because the functign, given by (2) is known to be the most probable kinetic
distribution function realizing the first two moments ( [3).4 This choice of closure provides
several desirable properties such as hyperbolicity of iitl)entropy dissipation ( [2]).

Moment models are a good compromise between full kineticatspgrecise but numerically
costly, and diffusion models, not able to represent somsiphlyphenomena.

The M; model is valid under a condition an’ and+!. Indeed, thel/; closure exists only
if there exists such a non-negative functiory. This requirement is called realizability condition.
A special attention is needed for this condition when dgwelp numerical schemes for (1). We
define the set; of realizable moments by

(W, 0') e Ay & 3F >0, st. / f(Q)dQ = °, / Qf(Q)dQ = . (4)
5‘2 S2

Note thatA, is a convex cone. Numerical schemes applied to the systenmegb) to preserve the
realizability property.

For theM; model, the realizability property can be caracterized B [

Ay = {(0,088)} U {wO,wl) € R x R® sit. '1% < 1} . 5)

If (4°,4') € A; one can compute the closure. By geometrical consideratif@i} (
3y — 1 ! Pt 1 —y >
2 0
= ® + ]d 3x3 ; 6
v ¢( 2 Wl 2 " ©)
wherey is the Eddington factor and depends only|gh|/4° € [0, 1].
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1.2 Problem statement

In radiotherapy, the studied electrons may be transpont@digh strongly heterogeneous me-
dia, e.g.p = 1 in water andp = 1072 in air. Standard numerical schemes applied to (1) require a
very small energy stefAe to converge, which prevents these schemes from being uialpeac-
tical application. To see this, consider a one dimensiorablpm. In slab geometry, (1) can be
reduced into

1

S0 @) = (S() (@, ) (72)
O, = (). 0) ~ 2 o). (7b)
wherey)® are now scalars and € R. The previous closure in 1D simply reads
¥? = O ([0 /¢°). (8)
To shorten notation, 1D system (7) is rewritten
0.((6)6) =~ 50, F(r.€) + T()Lb = ©)

wherey = (0, )7, F = (¢',¢?*)T andL = ( 8 g ) The superscriptrefers to vectors.

As a first approach, we use an HLL scheme ( [7]) to solve the 1bhemt system (7).

_ _ Ae™ /- -~ -
n+1,7n+1 __ m, | n n n n n
St —{Swz—pl—m(c’ug— z—Q*”’M’ (10)
with .
Gyy = 5 (Pt + B = (Wi = 7). ay

The subscript refers to the positiom andn to the energy. This scheme is stable under a Courant
Friedrichs Lewy (CFL) condition

-1
n n 1 n
A <5 (dym +2T7) (12)
In practice, the density is inhomogeneous and can have very strong variations. Ttiefy;)

might be very low, and the numerical scheme requires veryl sivé.

This problem was investigated in [8] and solved by modifyihg grid in one space dimen-
sion. The generalization to multi-dimensional (multi-Dpplems was not straight-forward, but
introduced additional splitting errors. In the presentgragve propose a numerical approach en-
suring the realizability that does not constrain the enstgp, independent of the grid, and which
works for multi-D problems. In Section 2, we describe the pupal approach which consists
of two parts. First, we use a relaxation model to obtain aalirfix term. Second, we construct
numerical schemes for linear hyperbolic equations withialiavarying flux that are uncondition-
nally stable. The last section is devoted to the validatibtihe numerical approach on a relevant
test case.
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2 NUMERICAL APPROACH

We write the multi-D system (1) in the form

_ 1 _ _
e (S(e)) — mvm.F(x, €)+T(e)L.ayp =0, (13)
with L = ( 0‘; QI(C)ZRS ) Herey = (¢°, )7 € R* andF = (¢!, ¢?) € R34, The super-
R3 R3x3
script. refers to vectors of vectors, i.e. matrices. Note that therdence operatdv ,..(.) is applied
separately to each vector componghte R? andy?, € R® composingF’ = (¢!, 47, ¢3 ., v3.).

2.1 Relaxation schemes for moment equations

We use a relaxation approximation of the system (13) (afiedvcalled AN after [9, 10])
described in [9, 11] for hyperbolic systems of equations emipleted for parabolic systems in
[10, 12]. Special focus will be put on the preservation ofraizability domain.

2.1.1 Principle

.....

77777

rameterr and a set of MaxwelliangM/7) .|

momentsy = (¢°, ') € R%. The Maxwellians are linked to the original moments (13ptigh
the consistency conditions

ZM]T:& and ZX]@M}:F(@, (14)
i i

where® is the tensor product. In this study, we choose realizableviédians, i.e.

Vj={1,J}, M](¢) € A whenevery € A,. (15)

The following system of equations is a relaxation systen(18)

pO(STT) = Np.Nof] + pL.fT = % (M;(Z - f;) . 1<j< (16)
k

The solutionsf_;.’ of the limit problem ¢ — 0) correspond to the desired solution of the original
system (13). Formally, multiplying (16) byandr — 0 leads to

MY ) = -
k
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Then replacingfjo by 1\7[]‘? in (16) and summing the equations reads
pO(SY M) =V, (> XN @ M)+ pL.(Y M) =0,
j j j
which is exactly (13).

As we only want to solve the limit system for— 0, the indexr is removed in the rest of this
paper. The upper index now refers to energy ste3, first lower index; to relaxation speed;
and second lower indgxo positionz;. Note that the spatial fluxes of the relaxed system are linear
even if the ones from the original system are not.

In 1D, it is a well-known stability requirement ( [10, 11, }3hat all eigenvalues oiz,F(@Z)
have to be bounded by the extremal relaxation speed. Forrobtgm, this condition can be
written

Spectrunr(@w (F(¢ )> C [min \j.e;, max \j.e;]. (17)
j

J
Note that we can rewrite

n 8( i17 i2,17 i2,27 12,3)

Dp(F().e;) = A0, L, 3, 3)

Simple computations (see e.g. [14]) leads to write Spec(r@g@ﬁ(zﬁ).ei)) C [-1,1] fori €
{1, 3}.

In practice, the solution of (13) is obtained as follow:

e We initialize f{ := M?(¢°) at the energy steg.
¢ We define intermediate staté;%”% by solving the homogeneous equations
_ \: _ _
0US;) = Vuf;+ Lfj =0, 1 <2, (18)

We discretize the tern. f; implicitly (this choice is explained in the following). Ttepatial
derivative is approximated by some finite difference foran(ib be specified later) which
leads to

Sn—H n+2 Sn(C f] )l + AE”T”+1L f]n+27 (19)
whereC; f;" is a convex combination of values gf' (see below remark 2).

e Then the solution is corrected by solving the rest of the g#gunawhich, forr — 0, corre-
_ L
sponds to taking//+! .= f2.

e The solution at new energy is computed as

=y Mt (20)

Page 5 of 12



Authors’ names, use et al. if more than 3

2.1.2 Realizability

This method preserves the realizability property from agrgy step to the next one:

Proposition 1. If for all [, we have)!* € A, at energy step” then the solution)"*! obtained by
solving the relaxed syste(h6) with the schemél19)is also inA; at energy step™*! for all 1.

Proof. The realizability ofy™*! is obtained via (20) through the realizability M}“. First, we

= gl .
initialize fI' at energye™ such that. Second, we show by induction tﬁﬁ? is realizable at the
new energy step. Finally we conclude the realizability/6f .

1. We initialize fI" := M?(¢™). Using the realizability condition (15), we hayé € A,.

2. Now let us prove that if for all, f;;' € A; thenfj;”% € A;. We solve (16) by splitting as
described above. In the implicit energy step for the homegaa system we need to solve

T n+l Tn
Afs 2 =S"Cifi (21)
where
(St Ogs 1 [1/8mH Os
A= ( 0L (S"F+ 2A6"T"+1)1dRsx3) andA™" = 0L, 1/(S™! 4 2Ae" T ) Idgsxs )

The right hand side of (21) is realizable, becaagé} is a convex combination of realizable moments. This
means that the norm of the second componer(fyqf;?Z is bounded by the first component (see (5)). Since
A~ divides the second component by a bigger value than the éinsponent, this remains true for the vector

flz”r%, which is therefore realizable (according to the carazagion (5)).

ThenZ\Zj;”rl = fj;ﬁ% € A; . We eventually obtai;t* € A, by (20).

2.2 Scheme for fast characteristics in 1D

As mentioned above, for a standard scheme the dengityront of the flux term might lead
to a severe CFL restriction. We overcome this problem by dtemtensions, which rely on a
re-interpretation of the basic upwind scheme. For the sakarplicity we describe this approach
first for the 1D linear advection equation. Consider

Bt + ——Dyu = 0, (22)
p(z)

with a > 0 (the case: < 0 can be treated similarily).

We consider a fixed mesh. And the time st&pis a priori independent of mesh sizer (i.e.
not constraint by a CFL condition).
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In a basic Finite Difference (FD) framework, we writ¢ = u(z;,t"). And we consider
p = p constant in each cell; = [xl_%, z,,1]. A scheme is obtained by defining™" as a convex
combinationC' of someu;* such that this definition is consitstent with (22).

Using the method of characteristiesis constant along the characteristic curves. In each cell
C, this yieldsu)t" = u(xy, ") = u(y(r, "+, 2;), 7) with

y(r,t,x) =x + ﬁ(T —t) whenz € (). (23)
P

Now, let us compute the position. which the characteristic that goes through, t* + At)
reaches at timé" (see Fig. 1). After computations, one finds

Te = xl*krf»% — G

where
k—1

A Axp_;
cmd e, o an B Ao
Pl—k, 2a a

1=

andk; is the number of cell crossed by the caracteristic cukyés the only integer verifying

PAT | " pr PAT N o
+ —Ax < At < + —Az. 24
2a Z a - - 2a Z a (24)
i=1 i=1
This configuration is depicted on figure 1.
Pi-3 Pi1—2 Pi—1 t Pl
t+ At
X,
t x,_J -1 c Lj_p,+1 ZTp_1 Ty 1 z
bty Ti—k, R R | t2 T

Figure 1. Configuration for CFL-free Finite Difference schene for &k, = 3.

Finally we can compute]'t! by interpolation to obtain the following FD scheme
ut =1 =) g Fouty, iz, — 2. >0, (25a)

u?+1 = aup ,, + (1-— a)u?_kl_l if T, — Te <0, (25b)
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where
k—1
Ty, — Te alt pI Pi—i

Az

pwAT 2y, — Pi-ky

€ [0, 1]. (25c)

Remark 1 (Properties of the scheme) e If the characteristic curves do not cross more than
one cell, this scheme is equivalent to the original upwinceseh with the common CFL
condition.

e The consistency error ©(Az). Soitis of order 1 in space and time,

e The FD scheme is linear with positive coefficients and whoseiswqgual to 1. So it is
monotone and therefore Total Variation (TV) stable.

e There are no stability restrictions on the scheme, so it isxstable than the common upwind
scheme. This allows us to use a bigger time step. But one skeafulin mind that the
precision obtained when extending the stencil is lower as tieeobtained using the common
CFL restriction.

2.3 Extension to multi-D

We study the linear advection equation ,

oyu + a.Vau =0, (26)

1
p()
wherea € R" is a vector and: depends on: € R and ¥m/'+1| ¢
te R, ‘

For our purposes and in order to simplify the notations, wém»' | *--|--
focus on the two dimensional problem but the method can ' %1 " Tr+1
easily be extended to higher dimensional problems.

Figure 2. Characteristic for Finite Difference
scheme in two dimensions.

Given a cell centeX,,, it is straight-forward to find the origiX,. of the characteristic which
passes through;,,, at timet™ + At (cf. Fig. 2). We can then define a Finite Difference scheme by
approximating the value af,(X,,t") using the values,,(.,t") at the nearest cell cente?§,
aroundX, = (X,Y)

1 1
il Y = Y
U = up(Xy, 1"+ A) = Xc,t”zZZ‘ Zrvsl V=gl o)

i=0 j= |xl’+1 - l’lfl ‘ym ‘1 = Ym! ’ sl

if X. € [z, 2r41] X [Ymr, Ymr+1]. COming back to the moment problem, we relax (13) in three
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different ways

"Cartesian relaxation" : directions \; = (1,0), Xy = (—1,0), A3 =(0,1), Ay = (0, 1),

(28a)
Associated Maxwellians M; = i (zZ — XZ».}:W) . fori={1,4}, (28b)
Relaxed system 0.(S(e)f;) — %Xi.vxﬁ(a;,e) +T(e)L.f; = M) = fi fori = {1,4},
plx T
(28c)
"Diagonal relaxation": directions ), = i(1 1), do= i(—1 1) (29a)
g . 1 — \/5 ) 9 2 — \/é ) )
_ 1 _ 1
Xo = ——(—1,-1), Ny = —(1,—1),
1= (LD, K= (L)
Associated Maxwellians M; = zll b — N ﬁ) fori = {1,4}, (29b)
Relaxed system 0.(S(¢)fi) — %X,-.Vzﬁ-(x, €) +T(e)L.fi = MY) = Ji fori = {1,4},
plx T
(29c¢)
"Star relaxation™: directions A, = (1,0), Ay = (0,1), A3 = (—1,0), Ay = (0,—1),
(30a)
- 1 1 — 1 - 1
M= —(1,1), = —=(—1,1), Ny=—=(—1,-1), Ag= ——(1,—1),
5 \/5( ) 6 2( ) 7 \/5( ) 8 \/5( )
Associated Maxwellians M; = é (15 + Xif) fori = {1,8}, (30b)
Relaxed system 0.(S(¢)fi) — %Ai.vxﬁ(mx €)+T(e)L.fi = M) = i fori = {1,8}.
T
(30c)

Remark 2. e We defined the relaxation directions, the Maxwellians)/; and the relaxed
equations so that the stability conditi¢h7), the realizability conditior{15) and the consis-
tency conditior(14) hold for each set of relaxation parameter.

e When the number of directionsis equal to the number of unknowns (in 20Ds composed
of 3 components), and when the directions are fixed, then therslaans are uniquely
defined as a function af, F and of the);. Here, there are more directions in each set (4
in the cartesian and diagonal sets and 8 in the star set) thdmawns, so other choices of
Maxwellians may be used.

o All of these schemes are defined using convex combinatiorfaofositions 1 hold.
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3 NUMERICAL RESULTS

We study several test cases from radiotherapy dose catmuldtVe use physical values for
stopping power and transport coefficient for electrons asrilged in [1]. The function of interest
is the dose defined by

+oo
D(z) = /0 S(e)Y°(z, €)de. (31)

In the test case, the dose is normalized by the maximum dosés ribrmalized dose, called
percentage depth dose (PDD) in the field of medical phys&cgdependent of the quantity of
particles transported (which is arbitrary here), it deeowly on their distribution.

The following test case was used in [1] to compare the HLL s@hevith a Monte Carlo
simulation. We consider a domain of sizg = 22.3cm x L, = 29.5cm, meshed with 223295
cells. The density in this medium corresponds to a 2D cut afirmadn chest. We apply a beam
modeled by the following boundary conditions

1/e—¢)° L\’
(W0, ") (z = 22.3cm,y,Q,¢) = 10" exp (—5 (8(.)05;) ) exp (—100 (y — 711) > Q.

Herea, = (1,9'/¢°). We choose)!/y? = (—0.98,0), it corresponds to an irradiation of the
spinal cord. For this test casg, = 15MeV/m.c*. We fix the initial data and the other boundary
values with

(v°,9") = (107%°,0,0).
-1
We compare the solution using a fine energy giep = 0.955™ ( i+ 2T"> (HLL scheme)

PlowAT
—1

pwate'rAx
(30) directions of relaxation. The isodose curves obtamexrepresented on Fig. 3 in colour

over the chest density (grayscale). The isocurves of ateselwor induced by the extension of the

Y.

and a coarse onAe™ = (0.955" ( L 4 orm using cartesian (28), diagonal (29) and star

,,,,,

Figure 3. Isodose curves in a chest at 5% (red), 10% (orange5% (yellow), 50% (light
blue), 70% (dark blue) and 80% (violet) of the maximum dose wih a fine Ac" (left) and a
coarseAc™ using cartesian (middle left), diagonal (middle right) andstar (right) directions
of relaxation.

stencil normalized by the maximum dose are shown on Fig. é.shape of the dose obtained with
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xxxxxxxxxx

Figure 4. Isocurves of the absolute error between the dosebtined using a fine and a coarse
energy step with cartesian (left), diagonal (middle) and str (right) directions of relaxation at
1% (red), 0.5% (light blue) and 0.2% (yellow) of the maximum dose.

the relaxed schemes are very close to the one obtained witHlth scheme. The absolute error
is smaller than 1.1% of the maximum dose when using the cantasgt, smaller than 4.3% with

the diagonal set, and smaller than 2.1% with the star set.nida@mum errors are located in the
middle of the medium at about 2 cm and 6 cm depth. All the voardawvithin 3% or 3mm distance-

to-agreement for each choice of relaxation parameters. Wheng the diagonal directions of

relaxation, the information is transported in diagonaédiion. Then, when trasporting particles
along the x-axis, the scheme does not transport them frons@ht® its neighboor. This results in

some irregularities which can be seen in Fig. 4. The relaxedats are better when the directions
of relaxation are collinear to the mesh directions (i.etesaan directions).

The computation times for this test case are gathered ie tafilhe numerical schemes pre-

| numerical scheme | computation timg number of energy steps
HLL scheme (fineAe™) ~ 50 min 146 224
CoarseAe™ with cartesian set of directions 6.69 sec 460
CoarseAe™ with diagonal set of direction 7.35 sec 460
CoarseAe™ with star set of directions 19.72 sec 919

Table I. Computation times for the 2D case with the differentschemes .

sented in this paper are significantly faster than the aaigii.L scheme and gives precise results.

4 CONCLUSION

We have proposed a numerical method for solving Alhe system of equations applied to
radiotherapy dose calculation, which is not constrainectapility restrictions. First, we relax
the M; system, which leads to a hyperbolic system of equations lwigar flux terms. Then,
using the method of characteristics, we proposed an intiondally stable numerical scheme for
hyperbolic systems. This numerical method is equivaletihéoHLL scheme when imposing the
standard CFL condition. This method was tested on a relegahtase and provides good results
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compared to the ones with the HLL scheme, and with a much smadimputational time, as we
do not need to impose small energy steps.
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