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Abstract. Because of stability constraints, most numerical schemes applied to hyper-
bolic systems of equations turn out to be costly when the flux term is multiplied by
some very large scalar. This problem emerges with the M1 system of equations in
the field of radiotherapy when considering heterogeneous media with very disparate
densities. Additionally, the flux term of the M1 system is non-linear, and in order for
the model to be well-posed the numerical solution needs to fulfill conditions called
realizability. In this paper, we propose a numerical method that overcomes the stabil-
ity constraint and preserves the realizability property. For this purpose, we relax the
M1 system to obtain a linear flux term. Then we extend the stencil of the difference
quotient to obtain stability. The scheme is applied to a radiotherapy dose calculation
example.
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1 Introduction

The present work is devoted to the numerical solution of a moment system of equations,
which describes the transport of electrons in tissues. The model finds application in the
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field of radiotherapy dose calculation when considering low density media ( [11]):

1

ρ(x)
∇x.ψ

1(x,ǫ)=∂ǫ(S(ǫ)ψ
0)(x,ǫ), (1.1a)

1

ρ(x)
∇x.ψ

2(x,ǫ)=∂ǫ(S(ǫ)ψ
1)(x,ǫ)−2T(ǫ)ψ1(x,ǫ), (1.1b)

where the unknowns ψ0 ∈R, ψ1 ∈R
3 and ψ2 ∈R

3×3 depend on energy ǫ ∈R
+ and

position x∈R
3. The stopping power S>0 and the transport coefficient T≥0 are functions

of ǫ characterizing the loss of energy and the deflection of the electrons during their
transport. Finally, ρ(x)>0 is the density of the medium at point x. This equation is solved
by marching backward in energy, i.e. we prescribe ψ0(ǫmax,x)=0 and ψ1(ǫmax,x)=0R3 at
initial energy ǫmax (which means that electrons have bounded energy) and we solve (1.1)
from ǫmax to 0. This choice is motivated by two reasons. First, the system (1.1) is obtained
from the following kinetic equation [11]

Ω

ρ(x)
.∇xψ(x,ǫ,Ω)=∂ǫ(S(ǫ)ψ)(x,ǫ,Ω)+T(ǫ)∂µ

(

(1−µ2)∂µψ
)

(x,ǫ,Ω), (1.2)

by extracting moments (integrating over all Ω=(µ,
√

1−µ2cosφ,
√

1−µ2sinφ)∈S2 gives
(1.1a) andmultiplying (1.2) by Ω and integrating over all Ω∈S2 gives (1.1b)). One realizes
that the collision operator in (1.2) is backward parabolic in ǫ. Indeed it is ill-posed when
working in the direction of increasing ǫ. Second, this choice is also consistent with the
physics. Indeed the electrons only loses electrons in the medium. They are injected with
a maximum energy which progressively decreases. In order to be consistent with both
the underlying kinetic equation and the physics behind it, we always solve (1.1) from a
maximum energy ǫmax to 0.

1.1 M1 model

The system (1.1) is composed of 4 equations with 9 unknowns (scalar ψ0, vector ψ1 and
symmetric matrix with known trace ψ2). It is closed using the entropy minimization
principle ( [19]):

We seek the function ψM≥0 minimizing the Boltzmann entropy function

H( f )=
∫

S2
f (Ω)ln f (Ω)dΩ

under the constraint of realizing the moments of order 0 and 1, i.e.
∫

S2
f (Ω)dΩ=ψ0,

∫

S2
Ω f (Ω)dΩ=ψ1.

We close the system (1.1) by fixing ψ2 as the 2nd order moment of ψM

ψ2=
∫

S2
ΩΩTψM(Ω). (1.3)
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System (1.1) with this closure is called M1 model. The M1 model is closely related
to some underlying kinetic model because the function ψM minimizing the Boltzmann
entropy is known to be the most probable kinetic distribution function realizing the first
two moments ( [5, 15]). In the standard case of ρ= S= 1, this choice of closure provides
several desirable properties such as hyperbolicity of (1.1) and entropy dissipation ( [19]).

Other choices are possible to close system (1.1). The PN closure (for system of order
N, see e.g. [17, 24]) is defined by choosing ψM as a polynomial function of Ω realizing
the first moments. However, this choice does not guarantee the positivity of the under-
lying distribution function ψM (although the PN closure was modified in [14] to enforce
this property) and it is not as accurate as M1 when studying beam-like distributions of
particles.

Moment models are a good compromise between full kinetic models, precise but nu-
merically costly, and diffusion models, not able to represent some physical phenomena.
They are therefore often used in plasma physics (see e.g. [10, 20, 21] for application to
the Vlasov-Fokker-Planck and Landau-Fokker-Planck equations) and in radiative trans-
fer (see e.g. [9, 22]).

The M1 model is valid under a condition on ψ0 and ψ1. Indeed, the M1 closure exists
only if there exists such a non-negative function ψM. This requirement is called realizabil-
ity condition. A special attention is needed for this condition when developing numerical
schemes for (1.1). We define the set A1 of realizable moments by

(

ψ0,ψ1
)

∈A1 ⇔ ∃ f ≥0, s.t.
∫

S2
f (Ω)dΩ=ψ0, and

∫

S2
Ω f (Ω)dΩ=ψ1. (1.4)

Note that A1 is a convex cone. Numerical schemes applied to the system (1.1) need to
preserve the realizability property.

For the M1 model, the realizability property can be caracterized by ( [16])

A1={(0,0R3)}∪
{

(ψ0,ψ1)∈R
∗+×R

3 s.t.
|ψ1|
ψ0

<1

}

, (1.5)

where |.| denotes the Euclidean norm.
If (ψ0,ψ1)∈A1 one can compute the closure. By geometrical considerations ( [18]),

ψ2=ψ0

(

3χ−1

2

ψ1

|ψ1| ⊗
ψ1

|ψ1|+
1−χ

2
Id

)

, (1.6)

where χ is the Eddington factor and depends only on |ψ1|/ψ0∈ [0,1[.

1.2 Problem statement

In radiotherapy, the studied electrons may be transported through strongly heteroge-
neous media, e.g. ρ=1 in water and ρ=10−3 in air. Standard numerical schemes applied
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to (1.1) require a number of iterations of the order of 1/min(ρ) (which can be very large),
which prevents these schemes from being usable for practical application. To see this,
consider a one dimensional problem. In slab geometry, (1.1) can be reduced into

1

ρ(x)
∂xψ1(x,ǫ)=∂ǫ(S(ǫ)ψ

0)(x,ǫ), (1.7a)

1

ρ(x)
∂xψ2(x,ǫ)=∂ǫ(S(ǫ)ψ

1)(x,ǫ)−2T(ǫ)ψ1(x,ǫ), (1.7b)

where ψi are now scalars and x∈R. The previous closure in 1D simply reads

ψ2=χ(|ψ1|/ψ0). (1.8)

To shorten notation, 1D system (1.7) is rewritten

∂ǫ(S(ǫ)ψ̄)=
1

ρ(x)
∂x F̄(x,ǫ)+T(ǫ)L.ψ̄, (1.9)

where ψ̄=(ψ0,ψ1)T, F̄=(ψ1,ψ2)T and L=

(

0 0
0 2

)

. The superscript .̄ refers to vectors.

As a first approach, we split the 1D system (1.7) and we use an HLL type scheme
( [7, 13, 26]) to solve the homogeneous equation

∂ǫ(S(ǫ)ψ̄)−
1

ρ(x)
∂x F̄(x,ǫ)=0. (1.10)

In the following, we describe the HLL scheme for (1.10) where the density ρ(x) = ρ is
constant. We extend afterward this approach for non-constant density. This numerical
scheme is known to preserve the realizability domain from one step to the next one (see
e.g. [3]). It is obtained by approximating the solution of the Riemann problem at each
interface xl+ 1

2
. In the following, the subscript l refers to the position x and n to the energy

ǫ.
First, we suppose ρ(x)= ρ constant and S(ǫ)=Sn constant over [ǫn+1= ǫn−∆ǫn,ǫn].

Now suppose ψ̄(x,ǫn)= ψ̄n
l and F̄(x,ǫn)= F̄n

l for x∈ [xl ,xl+ 1
2
], and ψ̄(x,ǫn)= ψ̄n

l+1 and

F̄(x,ǫn)= F̄n
l+1 for x∈ [xl+ 1

2
,xl+1]. The discontinuity in xl+ 1

2
produces waves that propa-

gate with velocities cj that are the eigenvalues of ∂Sψ̄ F̄/ρ. In the case of M1 system, the
velocities cj are of norm inferior to 1/ρSn (see computations in [3]). Let us define the cone
Cn
l+ 1

2

(see Fig. 1)

Cn
l+ 1

2
=

{

(x,ǫ)∈R×R
+, s.t. |x−xl+ 1

2
|≤ |ǫ−ǫn|

ρSn

}

.

We will approximate the value of ψ̄(x,ǫ) inside the cone Cn
l+ 1

2

by its average value

ψ̄∗
l+ 1

2
=

1

∆x

∫ x
l+ 1

2
+ ∆ǫn

ρSn

x
l+ 1

2
− ∆ǫn

ρSn

ψ̄(ǫn+1,x)dx.
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x

ǫ

ǫn+1

ǫn
xl− 1

2
xl+ 1

2

ψ̄n
lψ̄n

l−1 ψ̄n
l+1

ψ̄∗
l− 1

2

ψ̄∗
l+ 1

2

Figure 1: Configuration for the HLL solver.

Note that as the wave speeds cj are inferor to 1/ρSn, the values of ψ̄ out of the cone is
constant reapectively equal to ψ̄n

l on the left and to ψ̄n
l+1 on the right.

To compute this average value, we integrate (1.10) over [xl+ 1
2
−∆ǫn

ρSn ,xl+ 1
2
+∆ǫn

ρSn ]×[ǫn+1,ǫn]

(in red on Fig. 1)

0 =
2∆ǫn

Snρ

[

Sn

2
(ψ̄n

l +ψ̄n
l+1)−Sn+1ψ̄∗

l+ 1
2

]

+
∆ǫn

ρ
(F̄n

l+1− F̄n
l ),

which gives

Sn+1ψ̄∗
l+ 1

2
=

Sn

2
(ψ̄n

l +ψ̄n
l+1)+

Sn

2
(F̄n

l+1− F̄n
l ).

Now to compute the result of the splitted operator ψ̄n+ 1
2 at new energy step, we integrate

S(ǫn+1)ψ̄(x,ǫn+1) over [xl− 1
2
,xl+ 1

2
] (in green on Fig. 1). Using the previous computations,

this reads

Sn+1ψ̄
n+ 1

2

l =
1

∆x

(

∆ǫn

Snρ
(Sn+1ψ∗

l− 1
2
+Sn+1ψ∗

l+ 1
2
)+

(

∆x− 2∆ǫn

Snρ

)

Snψn
l

)

= Snψ̄n
l +

∆ǫn

ρ∆x

(

Ḡn
l+ 1

2
−Ḡn

l− 1
2

)

,

with

Ḡn
l+ 1

2
=

1

2

(

F̄n
l+1+ F̄n

l +(ψ̄n
l+1−ψ̄n

l )
)

. (1.11)

Note that we can use the previous calculation as long as the waves produced in xl− 1
2
and

xl+ 1
2
do not cross each other, i.e. under the Courant Friedrichs Lewy (CFL) condition

∆ǫn ≤Sn
(

1
ρ∆x

)−1
. (1.12)
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In our case, the density ρ is heterogeneous. We approximate the density by a function
ρ= ρl+ 1

2
constant over each interval [xl ,xl+1]. Then the previous computation with this

density ρ leads to write

Sn+1ψ̄
n+ 1

2

l = Snψ̄n
l +

∆ǫn

∆x





Ḡn
l+ 1

2

ρl+ 1
2

−
Ḡn
l− 1

2

ρl− 1
2



,

with the fluxes (1.11) and under the CFL condition

∆ǫn ≤Sn
(

1
2∆xmax

l

(

1
ρ
l+ 1

2

+ 1
ρ
l− 1

2

))−1

. (1.13)

Finally we add the influence of the source term. The scheme finally reads

Sn+1ψ̄n+1
l =



Snψ̄n
l +

∆ǫn

∆x





Ḡn
l+ 1

2

ρl+ 1
2

−
Ḡn
l− 1

2

ρl− 1
2



−∆ǫnTnL.ψ̄n
l



, (1.14)

which can be rewritten

Sn+1ψ0n+1

l =Snψ0n

l +
∆ǫn

2∆x

(

ψ0n
l+1

ρl+ 1
2

−ψ0n

l

(

1

ρl+ 1
2

+
1

ρl− 1
2

)

+
ψ0n

l−1

ρl− 1
2

)

+
∆ǫn

2∆x

(

ψ1n
l+1

ρl+ 1
2

+ψ1n

l

(

1

ρl+ 1
2

− 1

ρl− 1
2

)

−ψ1n
l−1

ρl− 1
2

)

,

Sn+1ψ1n+1

l =Snψ1n

l +
∆ǫn

2∆x

(

ψ1n
l+1

ρl+ 1
2

−ψ1n

l

(

1

ρl+ 1
2

+
1

ρl− 1
2

)

+
ψ1n

l−1

ρl− 1
2

)

−2∆ǫnTnψ1n

l

+
∆ǫn

2∆x

(

ψ2n
l+1

ρl+ 1
2

+ψ2n

l

(

1

ρl+ 1
2

− 1

ρl− 1
2

)

−ψ2n
l−1

ρl− 1
2

)

.

In the second equation, in order to assure that ψ1n+1
is defined using a positive com-

bination of ψ1n (which is a common stability requirement), we fix the following CFL
condition which is slightly more restrictive than (1.13) (due to the source term T(ǫ)L.ψ̄)

∆ǫn ≤Sn
(

1
min(ρ

l+ 1
2
)∆x

+2Tn

)−1

. (1.15)

In practice, the density ρ is inhomogeneous and can have very strong variations. Then
min(ρl+ 1

2
) might be very low, and the numerical scheme requires very small ∆ǫn.

This problem was investigated in [4] and solved by modifying the grid in one space
dimension. The generalization tomulti-dimensional (multi-D) problemswas not straight-
forward, and introduced additional splitting errors. In the present paper, we propose a
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numerical approach ensuring the realizability that does not constrain the energy step,
independent of the grid, and which works for multi-D problems. In Section 2, we de-
scribe the numerical approach which consists of two parts. First, we construct numerical
schemes for linear hyperbolic equations with spatially varying flux that are uncondition-
nally stable. Second, we use a relaxation model to approximate the M1 model on which
we can apply those schemes. The last section is devoted to the validation of the numerical
approach on relevant test cases.

2 Numerical approach

We write the multi-D system (1.1) in the form

∂ǫ(S(ǫ)ψ̄)=
1

ρ(x)
∇x. ¯̄F(x,ǫ)+T(ǫ)L.ψ̄, (2.1)

with L =

(

0 0R3

0T
R3 −2Id

)

. Here ψ̄ = (ψ0,ψ1)T ∈ R
4 and ¯̄F = (ψ1,ψ2) ∈ R

3×4. The su-

perscript ¯̄. refers to vectors of vectors, i.e. matrices. Note that the divergence operator
∇x.(.) is applied separately to each vector component ψ1 ∈R

3 and ψ2
i,: ∈R

3 composing
¯̄F=(ψ1,ψ2

1,:,ψ
2
2,:,ψ

2
3,:).

In a first part, we propose a numerical scheme for hyperbolic equations with space-
dependent fluxes not constrained by any CFL condition. In a second part, we present a
method to apply it to M1 system of equations using relaxation models.

2.1 Scheme for fast characteristics in 1D

As mentioned above, for a standard scheme the density ρ in front of the flux term might
lead to a severe CFL restriction. We overcome this problem by stencil extensions, which
rely on a re-interpretation of the basic upwind scheme. For the sake of simplicity we
describe this approach first for the linear advection equation. Consider

∂tu+
a

ρ(x)
∂xu=0, (2.2)

with a>0 (the case a<0 can be treated similarily). First let ρ be constant. In a basic Finite
Difference (FD) scheme, we write u0l := u(xl ,0) and we compute unl that approximates

u(xl ,t
n). A scheme is obtained by defining un+1

l as a convex combination C of some unl
such that this definition is consistent with (2.2).

Using themethod of characteristics, u is constant along the characteristic curveswhich
yields

un+1
l ≈u(xl ,t

n+1)=u(y(τ,tn+1,xl),τ) with y(τ,t,x)= x+
a

ρ
(τ−t). (2.3)
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2.1.1 Constant ρ, CFL : ∆t<
ρ
a∆x

The common approach is to impose that the characteristic curve starting at (xl ,t
n+∆t) is

in the cell [xl−1,xl ] at time tn (see Fig. 2), i.e.

xl≥y(tn,tn+∆t,xl)= xl+
a

ρ
(tn−(tn+∆t))> xl−1,

which is equivalent to the common CFL condition ∆t< a
ρ ∆x. Thus it seems natural to use

a convex combination C of the points unl−1 and unl as the characteristic curves falls down
between these two points at time tn. This corresponds to approximating u using a linear
reconstruction. Thus we obtain the standard upwind scheme

un+1
l =Cun=(1−α)unl +αunl−1, α=

a∆t

ρ∆x
∈ [0,1[.

x

t

xlxl−1

tn+∆t

tn

x
=
x l
+

a
ρ
(t
−(

tn
+

∆
t)
)

Figure 2: Characteristic curves when ∆t< a
ρ ∆x.

2.1.2 Constant ρ, CFL : ∆t<2
ρ
a∆x

Now instead of the commonCFL condition ∆t<
ρ
a∆x, let us impose the condition ∆t<2

ρ
a∆x.

The characteristic curves can now cross into the next cell (see Fig. 3). Using again the
method of characteristics, the foot of the characteristic curve is found between the points
unl−1 and unl−2. Then we define C by

un+1
l =Cun=(1−α)unl−1+αunl−2, α=

a

ρ

∆t

∆x
−1∈ [0,1[.

2.1.3 Constant ρ, no CFL

We can generalize this to a time step ∆t which is independent of ∆x. Then the charac-
teristic curves cross a certain number of cells k depending on ∆t, ∆x, a and ρ (see Fig. 4).
More precisely, k is the only integer in the interval ] ρ

a
∆t
∆x ,1+

ρ
a

∆t
∆x ].



9

x

t

xlxl−1xl−2

tn+∆t

tn

x=
x l+

a
ρ
(t−

(t
n +∆t

))

Figure 3: Characteristic curves when ∆t<2 a
ρ ∆x.

x

t

xlxl−1xl−2xl−k xl−k+1

tn+∆t

tn

x=
x l+

a
ρ
(t−

(t
n +∆t

))

Figure 4: Characteristic curves when ∆t is independent of ∆x.

Then we define C as a convex combination of unl−k+1 and unl−k and the scheme reads

un+1
l =Cun=(1−α)unl−k+1+αunl−k, α=

a

ρ

∆t

∆x
−(k−1)∈ [0,1[. (2.4)

Remark 2.1. In the case of ρ uniform, integrating (2.2) over [xl− 1
2
,xl+ 1

2
]×[tn,tn+∆t] and

approximating the solution u by a function constant in each cell [xl− 1
2
,xl+ 1

2
] at time tn

leads to

0 =
un+1
l −unl

∆t
+

a

ρ

ul+ 1
2
−ul− 1

2

∆x
,

with

ul+ 1
2

=
1

∆t

∫ tn+∆t

tn
u(xl+ 1

2
,τ)dτ, unl =

1

∆x

∫ x
l+ 1

2

x
l− 1

2

u(y,tn)dy.
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Then using the method of characteristics to compute the fluxes un
l+ 1

2

leads to

ul+ 1
2
=

ρ∆x

a∆t

k−2

∑
i=0

uni +

(

1−(k−1)
ρ∆x

a∆t

)

unl−k+1.

And the obtained numerical scheme is equivalent to (2.4). This means that the Finite
Difference scheme (2.4) can also be interpreted as a Finite Volume scheme. This is not
true when ρ is not constant.

2.1.4 Non-constant ρ, no CFL

Now we allow ρ to depend on x. We approximate ρ by a constant ρl+ 1
2
in each interval

[xl ,xl+1]. In that case, we need to compute the point xc which the characteristic that goes
through (xl ,t

n+∆t) reaches at time tn (see Fig. 5). Similar to above, one finds the number
of crossed cells kl by using the conditions

kl−1

∑
i=1

ρl+ 1
2−i

a
∆x≤∆t≤

kl

∑
i=1

ρl+ 1
2−i

a
∆x. (2.5)

Then

xc= xl−kl+1−c, where c=d
a

ρl+ 1
2−kl

, d=∆t−
kl−1

∑
i=1

∆xρl+ 1
2−i

a
.

x

t

xl−kl+1 xl−1xl−kl xl

xc

ρl− 1
2

ρl− 3
2

ρl− 5
2

tn+∆t

tn
c

d

Figure 5: Configuration for CFL-free Finite Difference schemes for kl=3

Finally we can compute un+1
l by interpolation to obtain the following FD scheme

un+1
l =(1−α)unl−kl+1+αunl−kl

, (2.6a)
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where

α=
c

∆x
=

∆t

∆x
−

kl

∑
i=1

ρl+ 1
2−i

a
∈ [0,1[. (2.6b)

Remark 2.2 (Properties of the scheme).

• If the characteristic curves do not cross more than one cell, this scheme is equivalent
to the original upwind scheme with the common CFL condition.

• The consistency error is O(∆x). So it is of order 1 in space and time.

• The FD scheme is linear with positive coefficients and whose sum is equal to 1. So
it is monotone and therefore Total Variation (TV) stable.

• There are no stability restrictions on the scheme, so it is more stable than the com-
mon upwind scheme. This allows us to use a bigger time step. But one should keep
in mind that the precision obtained when extending the stencil is lower as the one
obtained using the common CFL restriction.

Remark 2.3. This method is closely related to the semi-lagrangian approach (see e.g.
[12, 25]). With this method, one would compute the value of un+1

l by solving a transport
equation in a Lagrangian framework. Then the obtained solution is projected on the
Eulerian grid by using polynomial reconstruction. This correspond in our framework
to following the characteristic curves. In the semi-lagrangian framework, ENO-WENO
reconstruction are often used to improve the order of accuracy of the numerical scheme.
Similar methods could also be used with our relaxation approach.

2.2 Extension to multi-D

We study the linear advection equation

∂tu+
1

ρ(x)
a.∇xu=0, (2.7)

where a∈R
n is a vector and u depends on x∈R

n and t∈R
+.

For our purposes and in order to simplify the notations, we focus on the two dimen-
sional problem but the method can easily be extended to higher dimensional problems.

Given a cell center Xlm, it is straightforward to find the origin Xc of the characteristic
which passes through Xlm at time tn+∆t (cf. Fig. 6). We can then define a Finite Difference
scheme by approximating the value of uh(Xc,t

n) using the values uh(.,t
n) at the nearest

cell centers Xl′,m′ around Xc=(X,Y)

un+1
l,m = uh(Xl,m,t

n+∆t)=uh(Xc,t
n)

≈
1

∑
i=0

1

∑
j=0

|X−xl′+i|
|xl′+1−xl′ |

|Y−ym′+j|
|ym′+1−ym′ |u

n
l′+i,m′+j, (2.8)
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Xl,m

Xc

xl′ xl′+1

ym′

ym′+1

Figure 6: Characteristic for Finite Difference scheme in two dimensions.

if Xc∈ [xl′ ,xl′+1]×[ym′ ,ym′+1].

2.3 Relaxation schemes for moment equations

The method presented in the last section cannot be directly applied to our problem as
the equation (2.1) has a non-linear flux. In order to use the previous method, we use
a relaxation approximation of the 1D system (1.7) (afterward called AN after Aregba-
Driollet and Natalini [1, 2]) described in [23,1] for hyperbolic systems of equations and
completed for parabolic systems in [8,2]. Special focus will be put on the preservation of
the realizability domain. The extension to multi-D afterwards is straightforward.

2.3.1 Principle

We recall the principle of AN relaxation for 1D problems. Let us choose J speeds (λj)j=1,...,J∈R
J .

We associate to them a set of J moment vectors ¯̄f τ =
(

f̄ τ
j

)

j=1,...,J
∈R

J×2 depending on a re-

laxation parameter τ and a set ofMaxwellians ¯̄Mτ =
(

M̄τ
j

)

j=1,...,J
∈R

J×2. TheMaxwellians

are linked to the original moment vectors using a linear form P from R
J×2 to R

2 so that

P. ¯̄Mτ = ψ̄ and P.Λ. ¯̄Mτ =F(ψ̄) (2.9)

with Λ=Diag(λj IdR2×2).
The following system of equations is a relaxation system for (1.9)

ρ∂ǫ(S f̄
τ
j )−λj∂x f̄

τ
j +ρTL. f̄ τ

j =
1

τ

(

M̄τ
j (P.

¯̄f τ)− f̄ τ
j

)

, 1≤ j≤ J. (2.10)

The solution ¯̄f 0 of the limit problem (τ→0) corresponds to the desired solution of the
original system (1.9). Formally, multiplying (2.10) by τ and τ→0 leads to

M̄0
j (P.

¯̄f 0)= f̄ 0j .
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Then replacing f̄ 0j by M̄0
j in (2.10) and multiplying it on the left by P yields

ρ∂ǫ(SP. ¯̄M
0)−∂x(P.Λ. ¯̄M0)+ρTL.(P. ¯̄M0)=0,

which is exactly (1.9).

As we only want to solve the limit system for τ → 0, the index τ is removed in the
rest of this paper. The upper index n now refers to energy step ǫn, first lower index j to
relaxation speed λj and second lower index l to position xl . Note that the spatial fluxes
of the relaxed system are linear even if the ones from the original system are not.

It is a well-known stability requirement ([23,6,2]) that all eigenvalues of ∂Sψ̄ F̄(ψ̄)/ρ
have to be bounded by the extremal relaxation speed, i.e.

Spectrum

(

∂Sψ̄
F̄(ψ̄)

ρ

)

⊂ [min
j

λj

Sρ
,max

j

λj

Sρ
]. (2.11)

In the 1D case, we choose two directions of relaxation (J= 2) such that −λ1=λ2=λ
and we fix P=(1,1). As the absolute values of the eigenvalues of ∂Sψ̄ F̄(ψ̄)/ρ are less than
1/Sρ (see computations in [3]), we choose λ=1. This choice of speeds Λ and of P leads
to write the Maxwellians

M̄1=
ψ̄− F̄(ψ̄)

2
, M̄2=

ψ̄+ F̄(ψ̄)

2
.

Note that applying the upwind discretization (with the CFL condition (1.15)) to the re-
laxed system (2.10) with this choice of parameters is equivalent to the HLL type scheme
(1.14,1.11) (see e.g. [7]). In practice, the solution of (1.9) is obtained by initializing f̄ 01 :=M̄0

1
and f̄ 02 := M̄0

2 at the energy step ǫ0, and then the relaxed system is solved using a splitting
method:

• We define intermediate states f
n+ 1

2
j by solving the equations without the relaxation

terms

∂ǫ(S f̄ j)−
λj

ρ
∂x f̄ j+TL. f̄ j=0, 1≤ j≤2. (2.12)

We discretize the term L. f̄ j implicitly (this choice is explained in the following). The
spatial derivative is approximated by the finite difference formula (2.6) which leads
to

Sn+1 f̄1
n+ 1

2

l =Sn(C1 f̄1
n
)l+∆ǫnTn+1L. f̄1

n+ 1
2

l , (2.13a)

Sn+1 f̄2
n+ 1

2

l =Sn(C2 f̄2
n
)l+∆ǫnTn+1L. f̄2

n+ 1
2

l , (2.13b)

where Cj f̄ j
n
is a convex combination of values of f̄ j

n
(see remarks 2.5 and 2.8).
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• Then the solution is corrected by solving the rest of the equation, which, for τ→0,

corresponds to taking M̄n+1
1 := f̄

n+ 1
2

1 and M̄n+1
2 := f̄

n+ 1
2

2 .

• The solution at new energy is computed as

ψ̄n+1 := M̄n+1
1 +M̄n+1

2 , (2.14)

as prescribed by the consistency condition (2.9) and considering M̄n+1
1 and M̄n+1

2 at
new energy step.

Remark 2.4 (Properties of the approach).

• The advantage of solving the relaxed system (2.10) instead of the original one (1.7) is
that the relaxed system has a linear spatial flux λ

ρ ∂x f̄
τ
j . So we can apply the scheme

presented in the previous section to it.

• The drawback of this is that we need to solve twice more equations (or J times more
equations if we choose J speeds).

2.3.2 Realizability

This method preserves the realizability property from an energy step to the next one:

Proposition 2.1. If for all l, we have ψ̄n
l ∈A1 at energy step ǫn then the solution ψ̄n+1

l
obtained by solving the relaxed system (2.10) with the scheme (2.13) is also in A1 at
energy step ǫn+1 for all l.

Proof. The realizability of ψ̄n+1 is obtained via (2.14) through the realizability of M̄n+1
1 ,

M̄n+1
2 . In the first step, we show that f̄ 01 and f̄ 02 are realizable at initial energy ǫ0. Second,

we show by induction that f̄
n+ 1

2
1 and f̄

n+ 1
2

2 are realizable at the new energy step. Finally
we conclude the realizability of ψ̄n+1.

1. We initialize f̄ 01=M̄0
1=(ψ̄0+ F̄(ψ̄)0)/2 (respectively f̄ 02=M̄0

2=(ψ̄0− F̄(ψ̄)0)/2). Now
suppose that ψ̄0∈A1, which means

∃g≥0 s.t.
∫ +1

−1
(1,µ)Tgdµ= ψ̄0.

Since µ∈ [−1,+1], we have (1±µ)g≥0. We compute the moments of this function

∫ +1

−1
(1,µ)T

(1±µ)g

2
dµ=

ψ̄0± F̄(ψ̄)0

2
,

so f̄1
0
=(ψ̄0+ F̄(ψ̄)0)/2∈A1 and analogously f̄2

0∈A1.
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2. Now let us prove that if for all l, f̄1
n
l ∈A1 then f̄1

n+ 1
2

l ∈A1. Based on ψ̄n ∈A1, we
construct a realizable vector f̄ n1 = M̄n

1=(ψ̄n+ F̄(ψ̄)n)/2∈A1 as in the first part of the
proof. We solve (2.10) by splitting as described above. In the implicit energy step
for the system without relaxations terms we need to solve

A. f̄1
n+ 1

2

l =Sn(C1 f̄1
n
)l , (2.15)

where

A=

(

Sn+1 0
0 Sn+1+2∆ǫnTn+1

)

and A−1=

(

1/Sn+1 0
0 1/(Sn+1+2∆ǫnTn+1)

)

.

The right hand side of (2.15) is realizable, because SnC1 f̄
n
1 is a positive combina-

tion of realizable moments. Remark that the operator C1 is related to the spatial
component, i.e. it sums over several l, while the matrix A is related to the moment
order, it impacts seperately the zero-th and first oder moments of a moment vec-

tor f̄1
n
l =( f1

n
l
0
, f1

n
l
1). Obviously those operators are independent and commute. To

simplify the notations in the rest of the proof, we write

ḡ=Sn(C1 f̄
n
1 )l∈A1.

Then ḡ=(g0,g1), where g0=Sn(C1 f̄
n
1 )

0
l and g1=Sn(C1 f̄

n
1 )

1
l correspond to a zero-th

and first order moment. Using the caracterization (1.5), ḡ∈A1 means that
∣

∣

∣
g1
∣

∣

∣
≤ g0.

Since 1/Sn+1≥1/(Sn+1+2∆ǫnTn+1), then

∣

∣

∣(A−1.g)
1
∣

∣

∣=

∣

∣

∣

∣

g1

Sn+1+2∆ǫnTn+1

∣

∣

∣

∣

≤ g0

Sn
=(A−1.g)

0
.

Therefore, according to the caracterization (1.5), f̄1
n+ 1

2

l =A−1.ḡ=Sn(A−1.C1 f̄
n
1 )l∈A1,

then M̄1
n+1
l := f̄1

n+ 1
2

l ∈A1. And the result follows by (2.14).

The same result is true for f̄2. Then M̄1
n+1
l = f̄1

n+ 1
2

l ∈A1 and M̄2
n+1
l = f̄2

n+ 1
2

l ∈A1.

We eventually obtain ψ̄n+1
l ∈A1 by (2.14).

2.3.3 Multi-dimensional case

As in 1D, we choose {λ̄j}{j=1,...,J} ∈R
3 (in 3D), which in this case are vectors instead of

scalars. The 1D method (and also the proposition 2.1) did not use any 1D argument. One
can rewrite the previous method with vectors λ̄j instead of scalars. Then the method for
solving the system (1.1) reads:
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• At each energy step, we initialize f̄ j
n
:= M̄j

n
, where M̄j

n
solves

J

∑
j=1

M̄j
n
= ψ̄n∈R

4,
J

∑
j=1

λ̄j⊗M̄j
n
= ¯̄Fn∈R

3×4. (2.16)

where ⊗ denotes tensorial product.

• Thenwe compute f̄ j
n+ 1

2 for each 1≤j≤ J by solving the equations without relaxation
terms

∂ǫ(S f̄ j)−
λj

ρ
.∇x f̄ j+L. f̄ j=0, 1≤ j≤ J. (2.17)

using the numerical scheme

Sn+1 f̄ j
n+ 1

2

l
=SnCj f̄ j

n
+∆ǫnρL. f̄

n+ 1
2

j , (2.18)

where Cj f̄ j
n
is a convex combination (2.8) of some f̄ j

n

l
.

• We update M̄j
n+1

:= f̄ j
n+ 1

2 and finally ψ̄n+1 :=
J

∑
j=1

M̄j
n+1

.

Similarily the proposition 2.1 can be generalized to higher dimensions:

Proposition 2.2. If for all l, we have ψ̄n
l ∈A1 at energy step ǫn then the solution ψ̄n+1

l
obtained by solving the relaxed system using the scheme (2.18) is also in A1 at energy
step ǫn+1 for all l.

2.4 Application to M1 equations

Applying the FD scheme to the relaxed system (2.10) gives

C1 f̄1
n
l =α+

l f̄1
n
l−k+l

+(1−α+
l ) f̄1

n
l−k+l +1, (2.19a)

C2 f̄2
n
l =α−

l f̄2
n
l+k−l

+(1−α−
l ) f̄2

n
l+k−l −1, (2.19b)

with

α+
l =

∆ǫn

Snρl−k+l +
1
2
∆x

−
k+l −1

∑
i=1

ρl−i+ 1
2

ρl−k+l +
1
2

, (2.20a)

α−
l =

∆ǫn

Snρl+k−l − 1
2
∆x

−
k−l −1

∑
i=1

ρl+i− 1
2

ρl+k−l − 1
2

, (2.20b)
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and k±
l+ 1

2

defined by

k+l −1

∑
i=1

ρl−i+ 1
2
Sn∆x≤∆ǫn≤

k+l

∑
i=1

ρl−i+ 1
2
Sn∆x, (2.21a)

k−l −1

∑
i=1

ρl+i− 1
2
Sn∆x≤∆ǫn≤

k−l

∑
i=1

ρl+i− 1
2
Sn∆x. (2.21b)

Remark 2.5. Using (2.21) in (2.20) leads to α±
l ∈ [0,1[. Then C1 and C2 are indeed convex

combinations.

Remark 2.6. If we restrict the energy step ∆ǫ using the CFL condition (1.15) then our ap-
proach is equivalent to the HLL type scheme (1.14,1.11). Indeed we found in section 2.1
that if the characteristic curves did not cross more than one cell the scheme (2.6) was up-
wind scheme. And solving the relaxed problem (2.10) with an upwind scheme is equiva-
lent to solving the original problem with the HLL type scheme (1.14,1.11). Our approach
generalizes HLL scheme to the case of large ∆ǫ.

For the multi-D problem, we relax (2.1) in three different ways. We first choose the di-
rections of relaxations λ̄j. From those, we propose a simple definition of the Maxwellians

M̄τ
j that satisfy the consistency condition (2.16). Note that the proposition (2.2) requires

realizable Maxwellians. As we know that f̄+ ¯̄F.V is realizable for any V∈S2, we simply

choose the Maxwellians proportional to f̄+ ¯̄F.
λ̄j

|λj| . Finally we choose the norm of the ve-

locities |λ̄j| so that the defined Maxwellians satisfy the consistency condition (2.16). We
simply choose

• ”Cartesian relaxation”

Relaxation directions λ̄1=(2,0), λ̄2=(−2,0), λ̄3=(0,2), λ̄4=(0,−2), (2.22a)

Associated Maxwellians M̄i=
1

4

(

ψ̄+
λ̄i

|λ̄i|
. ¯̄F

)

, (2.22b)

• ”Diagonal relaxation”

Relaxation directions λ̄1=
1√
2
(2,2), λ̄2=

1√
2
(−2,2),

λ̄3=
1√
2
(−2,−2), λ̄4=

1√
2
(2,−2), (2.23a)

Associated Maxwellians M̄i=
1

4

(

ψ̄+
λ̄i

|λ̄i|
. ¯̄F

)

, (2.23b)
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• ”Star relaxation”

Relaxation directions λ̄1=(4,0), λ̄2=(0,4), λ̄3=(−4,0), λ̄4=(0,−4),

λ̄5=
1√
2
(4,4), λ̄6=

1√
2
(−4,4), (2.24a)

λ̄7=
1√
2
(−4,−4), λ̄8=

1√
2
(4,−4),

Associated Maxwellians M̄i=
1

8

(

ψ̄+
λ̄i

|λ̄i|
. ¯̄F

)

. (2.24b)

Simple computation leads to show that the Maxwellians are realizable and that they satisfy
the consistency condition (2.9).

Remark 2.7. When the number of directions J is equal to the number of unknowns (in 2D ψ̄ is
composed of 3 components), andwhen the directions are fixed, then theMaxwellians are uniquely

defined as a function of ψ̄, ¯̄F and of the λ̄i. Here, there are more directions in each set (4 in the
cartesian and diagonal sets and 8 in the star set) than unknowns, so other choices of Maxwellians
may be used.

Remark 2.8. All of these schemes are defined using convex combinations. So Propositions 2.1
and 2.2 hold.

3 Numerical results

We study several test cases from radiotherapy dose calculation. We use physical values for stop-
ping power and transport coefficient for electrons as described in [11]. The function of interest is
the dose defined by

D(x)=
∫ +∞

0
S(ǫ)ψ0(x,ǫ)dǫ. (3.1)

In the test cases, the dose is normalized by the maximum dose. This normalized dose, called
percentage depth dose (PDD) in the field of medical physics, is independent of the quantity of
particles transported (which is arbitrary here), it depends only on their distribution.

3.1 1D heterogeneous medium

The spatial domain is 12 cm long, uniformly meshed with 1200 cells. It is composed of 2 cm wide
slabs of homogeneous media, alternatively air (ρair = 10−3) and water (ρwater = 1), the first slab
being air.

Incoming beams are prescribed as boundary conditions. The injected electrons are modeled
as Gaussians in energy ǫ centered around the energy of the electron beam ǫ0=10MeV

(ψ0,ψ1)(xb,ǫ) = (δ,0) if no beam enters in the medium from the end xb,

(ψ0,ψ1)(xb,ǫ) = Kαµexp

(

−1

2

(

ǫ0−ǫ

αǫǫ0

)2
)

, otherwise,
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where K is a numerical constant fixed at 1010 and δ = 10−20 is a small numerical constant used
to avoid divisions by 0. When applying the ψ0= δ condition, we make sure that the beam from
the other end is entirely dissipated in the medium. The initial distribution at ǫmax=1.5ǫ0 is zero.

And αµ =(1, ψ1

ψ0 )=(1,0.98). Note that
ψ1

ψ0 characterizes the ”peakedness” of the beam (
ψ1

ψ0 =±1 for

a Dirac distribution in angle and
ψ1

ψ0 =0 for an isotropic distribution). We fix αǫ =0.05. With those

parameters, the prescribed moment vector on the boundary is realizable.
First, we use a fine energy steps

∆ǫnHLL=0.95Sn
(

1

ρair∆x
+2Tn

)−1

. (3.2)

With these parameters, the scheme presented in the previous section is equivalent to the HLL
scheme (1.14, 1.11, 1.15). Second, we use a coarse energy step

∆ǫnFD=0.95Sn
(

1

ρwater∆x
+2Tn

)−1

. (3.3)

With these parameters, the stencils are extended only in air. The results obtained with the fine
energy steps are expected to be more precise and are therefore considered as reference results.
The dose results obtained with the numerical schemes described in section 2.1 are plotted in Fig.
7.

Table 1 gathers the computation times using the different schemes.

energy step ∆ǫn computation times number of energy steps

fine ∆ǫnHLL defined by (3.2) 17 sec 681 991
coarse ∆ǫnFD defined by (3.3) 0.02 sec 634

Table 1: Computation times for the 1D heterogeneous case with the different schemes .

The FD scheme with a woarse ∆ǫnFD shows good agreement with the one with a fine ∆ǫnHLL
(i.e. with HLL scheme). One can only see a small error appearing at the end of the medium. This
error is due to the number of discontinuities of densities. This error reduces when working on
media with less discontinuities. All the voxels are within 3% or 3mm distance-to-agreement, i.e.
at each point xl , whether the error is lower than 3% of the maximum dose or the dose obtained
with a coarse ∆ǫnFD is also obtained with a fine ∆ǫnHLL in a radius of less than 3mm around the
position xl . As expected, the FD scheme with a coarse mesh is much faster than the one with a
fine one (between 2 and 3 orders of magnitude faster). This corresponds to the different orders of
magnitude between the energy step ∆ǫn when using HLL scheme or FD scheme. Indeed the ratio
of the different ∆ǫn is ∆ǫnHLL/∆ǫnFD≈ρwater/ρair=1000.

3.2 2D heterogeneous medium

The following test case was used in [11] to compare the HLL scheme with a Monte Carlo simula-
tion. We consider a domain of size Lx=22.3cm × Ly=29.5cm, meshed with 223×295 cells. The
density in this medium corresponds to a 2D cut of a human chest.
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Figure 7: Dose with M1 model for the simple beam test case in 1D heterogeneous medium with fine (equivals
to HLL scheme) and coarse ∆ǫ (using FD schemes).

We apply a beam modeled by the following boundary conditions

(ψ0,ψ1)(x=22.3cm,y,Ω,ǫ) = 1010exp

(

−1

2

(

ǫ0−ǫ

0.05ǫ0

)2
)

exp

(

−100

(

y− Ly

2

)2
)

αµ.

Here αµ =(1,ψ1/ψ0). We choose ψ1/ψ0=(−0.98,0), it corresponds to an irradiation of the spinal

cord. For this test case, ǫ0=15MeV/mec
2. We fix the initial data and the other boundary values

with
(ψ0,ψ1)=(10−20,0,0).

We compare the solution using a fine energy step (HLL scheme) and and a coarse one

∆ǫnHLL=0.95Sn
(

1

ρair∆x
+2Tn

)−1

, ∆ǫnFD=0.95Sn
(

1

ρwater∆x
+2Tn

)−1

using cartesian (2.22), diagonal (2.23) and star (2.24) directions of relaxation. The isodose curves
obtained are represented on Fig. 8 in colour over the chest density (grayscale).

The isocurves of absolute error induced by the extension of the stencil normalized by the
maximum dose are shown on Fig. 9.

The shape of the dose obtained with the different relaxation parameters with a coarse ∆ǫnFD
are very close to the one obtained with the cartesian relaxation parameters and a fine ∆ǫnHLL (HLL
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Figure 8: Isodose curves in a chest at 5% (red), 10% (orange), 25% (yellow), 50% (light blue), 70% (dark blue)
and 80% (violet) of the maximum dose with a fine ∆ǫn (top left) and a coarse ∆ǫn using cartesian (top right),
diagonal (below left) and star (below right) directions of relaxation.

Figure 9: Isocurves of the absolute error between the doses obtained using a fine and a coarse energy step with
cartesian (left), diagonal (middle) and star (right) directions of relaxation at 1% (red), 0.5% (light blue) and
0.2% (yellow) of the maximum dose.



22

scheme). The absolute error is smaller than 1.1% of the maximum dose when using the carte-
sian set, smaller than 4.3% with the diagonal set, and smaller than 2.1% with the star set. The
maximum errors are located in the middle of the medium at about 2 cm and 6 cm depth. All
the voxels are within 3% or 3mm distance-to-agreement for each choice of relaxation parameters.
When using the diagonal directions of relaxation, the information is transported in diagonal di-
rection. Then, when transporting particles along the x-axis, the scheme does not transport them
from one cell to its neighboor. This results in some irregularities which can be seen in Fig. 9. The
relaxed models are better when the directions of relaxation are collinear to the mesh directions
(i.e. cartesian directions).

The computation times for this test case are gathered in table 2.

numerical approach computation time number of iterations

Fine ∆ǫnHLL with cartesian relaxation ≈ 50 min 146 224
Coarse ∆ǫnFD with cartesian relaxation 6.69 sec 460
Coarse ∆ǫnFD with diagonal relaxation 7.35 sec 460

Coarse ∆ǫnFD with star relaxation 19.72 sec 919

Table 2: Computation times for the 2D case with the different schemes .

The numerical schemes presented in this paper are significantly faster than the standart method
and gives precise results.

4 Conclusion and perspective

We have proposed a numerical method for solving the M1 system of equations applied to radio-
therapy dose calculation, which is not constrained by stability restrictions. Using the method of
characteristics, we proposed an inconditionnally stable numerical scheme for hyperbolic systems.
Then, we relax the M1 system, which leads to a hyperbolic system of equations with linear flux
terms on which we can apply the inconditionnally stable numerical scheme. This method has
been tested on relevant test cases and provides good results compared to the ones with the HLL
scheme, and with a much smaller computational time, as we do not need to impose small energy
steps.

We proposed simple sets of relaxation parameters that equivals the HLL scheme in the stan-
dard case (i.e. using the mesh directions as relaxation directions and with a common CFL condi-
tion), although a general strategy to choose those parameters needs to be found.
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