Questions de cours possibles :

- inégalité de Cauchy-Schwarz
- déterminant de Vandermonde
- sur \mathbb{R}^3 , donner une base orthonormée de Vect((1,1,2),(2,-1,-3))

Soit $A = (1 - \delta_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$. Calculer le déterminant de A.

Soient $a_1, \ldots, a_n \in \mathbb{C}$, calculer la déterminant de $(a_{\min(i,j)})_{1 \le i,j \le n}$

Soient
$$a, b, \lambda_1, \dots, \lambda_n \in \mathbb{C}$$
 tels que $a \neq b$. Soit $A = \begin{pmatrix} \lambda_1 & b & \dots & b \\ a & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ a & \dots & a & \lambda_n \end{pmatrix}$

Soit $\Delta(x) = \det(A + xJ)$ où $J = (1)_{1 \le i,j \le n}$

Calculer le déterminant de A (hint : on pourra exploiter $\Delta \dots$)

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Soit $P(t) = \det(tA + B)$

Montrer que $\deg P \leq \operatorname{rg} A$

Calculer le déterminant de $\begin{pmatrix} i+j \\ j \end{pmatrix}_{0 \le i, j \le n}$

Soient f_1, \ldots, f_n des fonctions de \mathbb{R} dans \mathbb{R} .

Montrer que (f_1, \ldots, f_n) est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ si et seulement s'il existe $x_1, \ldots, x_n \in \mathbb{R}$ tels que det $\left((f_i(x_j))_{1 \le i, j \le n}\right) \ne 0$

Soit $A \in \mathcal{M}_n(\mathbb{R}_+)$ telle que $\forall i, \sum_{j=1}^n A_{ij} = 1$.

Montrer que $|\det A| \le 1$

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{C})$ tels que CD = DC

- (1) En supposant D inversible, calculer $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ (2) Montrer que $P(t) = \det (D tI_n)$ est un polynôme. (3) En déduire $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

Soit $A \in \mathcal{M}_n(\mathbb{Z})$. Montrer que A inversible dans $\mathcal{M}_n(\mathbb{Z})$ si et seulement si det A = 1 ou -1

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall i, A_{ii} = 0$ et $\forall i \neq j, A_{ij} = 1$ ou -1. Montrer que A est inversible

Montrer que $\langle A, B \rangle = \operatorname{tr}(AB)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$