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Point process Z :
e a random countable set of R, : Z ={T; :i € N}

e a random point measureon Ry : Z =} . 0T,

A process )\ is the stochastic intensity of Z if :

Y0 < a < b,E[Z([a, b])|F] = E Uabxtdt‘ J-"a]

Marked point process Z = {(T;, U;) : i € N} (U; iid)
Notation abuse U; =: U(T;)
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Introduction Model
Discussion about the hypothesis

Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of R )

Spike rate depends on the potential of the neuron
Each spike modifies the potential of the neurons

Network of N neurons :

ZNi = set of spike times of neuron i
= point process with intensity f(XtN D!

)

XN:i = potential of neuron i
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Discussion about the hypothesis

N —neurons network model

dxM = —axV 'dt+— Z V(t)dzNd —xN gz

with : ﬁé' '
o ZNJ = marked point processes with intensity f(X,'¥)

U/(t) = mark of t (if t atom of ZNY)

v law of the marks U/(t)

v is centered, [ |u]*dv(u) < oo and 02 := [ u?dv(u)
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Introduction Model
Discussion about the hypothesis

N —neurons network model

N
. . 1 , . . .
dXM = —axMNidte+—— N () dzN XN azN
t t \/N le ( ) t t t
with : ua '
o 7N = marked point processes with intensity £(X.'¥)
U/(t) = mark of t (if t atom of ZNY)
v law of the marks U/(t)

v is centered, [ |u]*dv(u) < oo and 02 := [ u?dv(u)

Dynamic of XNji :
o XN = x[Nie—olt=5) if the system does not jump in [s, ¢
— « = leakage rate

° XtN’i = th\i’i + U\;(Nt) if a neuron j # i emits a spike at t

— Ui(t)/V/N = synaptic weight
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Introduction Model
Discussion about the hypothesis

N —neurons network model

dxM = —axV 'dt+— Z V(t)dzNd —xN gz

with : ﬁé' '
o ZNJ = marked point processes with intensity f(X,'¥)

U/(t) = mark of t (if t atom of ZNY)

v law of the marks U/(t)

v is centered, [ |u]*dv(u) < oo and 02 := [ u?dv(u)

Dynamic of XNji :
o XN = x[Nie—olt=5) if the system does not jump in [s, ¢
— « = leakage rate

° XN’i = XN’i U\j(Ft) if a neuron j #£ i emits a spike at t

—> UJ(t)/\F = synaptic weight
° X = 0 if neuron i emits a spike at t
— repolarization
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Introduction Model
Discussion about the hypothesis

N—neurons network dynamics

N
. o1 ; i i i
R = xS g ezt
j=1
J#i
T T
0.5 _
0
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Introduction Model
Discussion about the hypothesis

The form of the synaptic weights U/(t)/v/N

Need of the scaling : study the convergence of XV as N — oo

Why N — oo :
o N=~86-10°

e the limit system can be easier to simulate and study

Scaling N~ or N~1/2 :
e N7! (LLN) = limit ODE
e N~1/2 (CLT) = limit SDE ([Barral, D Reyes (2016)])

Centered U/(t) : "balanced networks"
— excitatory/inhibitory inputs are balanced
([Shu, Hasenstaub, McCormick (2003)], [Haider et al. (2006)])
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Introduction Model
Discussion about the hypothesis

Structure of the network

Assumption : neural network = complete graph

Number of neurons (vertices) ~ 10! (whole brain)
Number of synaptic connections (edges per vertice) < 10°
— model local part of the brain

Multi-population model : network divided into K complete graphs
Example : visual cortex divided into 5 layers V1-V5 ([Hubel (1995)])

() @‘
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Heuristics
Limit system Conditional propagation of chaos

Limit system : heuristic (1)

N
) : 1 i j ' '
dxXMi = _axMide 1 ﬁ} V(t)dzM — xNiaz]
j=1

J#i
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Heuristics
Limit system Conditional propagation of chaos

Limit system : heuristic (1)

N
) : 1 i j ' '
dxXMi = _axMide 1 ﬁ} V(t)dzM — xNiazlN
j=1

J#i

N ot
MY = \%NZ/O Ui(s)dzM
j=1

dX} = —aX{dt + di, — K|_dZ]
with :
° MtN — Mt
N—oo
e Z' point process with intensity f(X/)
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Limit system : heuristic (2)
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Limit system : heuristic (2)

N t . .
MN = ﬁz/o W (s)dzN
j=1

M is an integral wrt a BM W

(M), = lim (MNY, = lim 02/0 N > F(xM)ds
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Heuristics
Limit system Conditional propagation of chaos

Limit system : heuristic (2)

N t . .
MN = ﬁz/o W (s)dzN
j=1

M is an integral wrt a BM W
t
VIV Ny —im a2 [ 2 N,j
(M)e = lim (MY}, = lim o /0 NZf(XS )ds

Then M should satisfy

Mt:a/o Z dW—a/\/i

=1

. - N
with N = % =1 0%
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Limit system : heuristic (3)
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Limit system : heuristic (3)

Me = o [} /lis(f)dWs where fi = Ii,r\F/]N

dX! = —aX!dt + o/ (F)dW; — X|_dZ!

Conditionally on W, the X' are i.i.d.

For any g € Cp,
N
i = li
,U, Ninoo Z

=E [g(X{)lo(W)]
fie = L(X{|o(W))

dXi = —aXidt + o\[E [f(X])o(W)]dW; — X{_dZ
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Heuristics
Limit system Conditional propagation of chaos

Simulations of XN:!
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Heuristics
Limit system Conditional propagation of chaos

Convergence of (XV'7)<i<n

1

NG Vi(t)dzNd — xNiazNi

N
dxM = — axMidt +

dX! = — aX!dt + o/fi(F)dW; — X/_dZ!
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Convergence of (XV'7)<i<n

1

Vi(t)dzNd — xNiazNi
VN &

N
dxM = — axMidt +

dX! = — aX!dt + o/fi(F)dW; — X/_dZ!

Result [E., Locherbach, Loukianova (2021a)]

(XN’i)lgigN converges to ()?i);zl in DN in law
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Convergence of (XV'7)<i<n

dxN' = — axV dt+TZUJ tydzM — XN azN

dX! = — aX!dt + o/fi(F)dW; — X/_dZ!

Result [E., Locherbach, Loukianova (2021a)]

(XN’i)lgigN converges to ()?i);zl in DN in law

Result [E., Locherbach, Loukianova (2021b)]

(In N)1/5

N1 _ ¢l
Xsm =X N1/10

E[sup

0<s<t

:|§Ct
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Convergence of (XV'7)<i<n

dxN' = — axV dt+TZUJ tydzM — XN azN

dX! = — aX!dt + o/fi(F)dW; — X/_dZ!

Result [E., Locherbach, Loukianova (2021a)]

(XN’i)lgigN converges to ()?i);zl in DN in law
NSC : uN = ZJN:1 Sxn. converges to Ji := L(X|W) in P(D)

Result [E., Locherbach, Loukianova (2021b)]

(In N)1/5

N1 _ ¢l
Xsm =X N1/10

E[sup

0<s<t

:|§Ct
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Heuristics
Limit system Conditional propagation of chaos

Outline of the proof

Step 1. (uN)y is tight on P(D) (i.e. (L(uN))n is relatively compact)
Equivalent condition : (XV'1)y is tight on D

Proof : Aldous' criterion

Step 2. Identifying the limit distribution of (uN)y

Proof : any limit of " is solution of a martingale problem
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Heuristics
Limit system Conditional propagation of chaos

Martingale problem
Given @ € P(P(D)) (Q = L(R))
Canonical space Q := P(D) x D? with w = (fI, (X}, X?)) :
Meaning : conditionally on /i, (X, X?) are iid fi—distributed
P(Ax B) := / Ta(m)ym ® m(B)dQ(m)
P(D)

Q is solution of (M) if for all g € C2(R?),
g()?tl,)_(tz) — g()_(ol,)_(g) — fot [g(ﬁs,)_(sl,)_(f)ds is a martingale

Xavier ERNY Mean field neural network 15/19



Heuristics
Limit system Conditional propagation of chaos

Martingale problem
Given Q € P(P(D)) (@ = L(1))

Canonical space Q := P(D) x D? with w = (fI, (X}, X?)) :

Meaning : conditionally on /i, (X, X?) are iid fi—distributed

P(Ax B) := /P(D) Ta(m)ym ® m(B)dQ(m)

Q is solution of (M) if for all g € C2(R?),
g()?tl,)_(tz) — g()_(ol,)_(g) — fot [g(ﬁs,)_(sl,)_(f)ds is a martingale

dX! = —aX!dt+o\/f(F)dW,—X!_dZ!
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Limit system Conditional propagation of chaos

Martingale problem
Given Q € P(P(D)) (@ = L(1))

Canonical space Q := P(D) x D? with w = (fI, (X}, X?)) :
Meaning : conditionally on /i, (X, X?) are iid fi—distributed

P(Ax B) := /P(D) Ta(m)ym ® m(B)dQ(m)

Q is solution of (M) if for all g € C2(R?),
g()?tl,)_(tz) — g()_(ol,)_(g) — fot [g(ﬁs,)?sl,)_(f)ds is a martingale

dX! = —aX!dt+o\/fi(f )th—>‘<" dzZi

Lg(m,x', x?) =—ax'01g(x) — ax’dg(x) Z 9?,8(x)
ij=1

+(x")(g(0,x%) — g(x)) + 7f(><2)(g(><l= 0) —&(x))
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Heuristics
Limit system Conditional propagation of chaos

Convergence of p" to the solution of (M)

dXtN,i _ XNI+7 Z UJ dZNJ XNleN/

J#I
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Convergence of p" to the solution of (M)

dXtN,i o XN I+7 Z UJ dZNJ XN leN/

7&
[Ng(m,xt, x?) = —ax 81g(x)J — ax?drg(x)
+N - m(f)/ {g(x1 +u- N2 2 4y NTY?) — g(x)| du(u)
+f(x) /(g(O,x2 +u- N7Y2) — g(x))dv(u)
+07) [ (g0t + 0 N12,0) — g())du()
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Heuristics
Limit system Conditional propagation of chaos

Convergence of p" to the solution of (M)

dXtN,i o XN I+7 Z UJ dZNJ XN leN/

N 1.2y _ J’i .
Ng(m,x*, x?) = —ax'd1g(x) — ax?drg(x)

+N - m(f) / {g(x1 +u- N2 2 4y NTY?) — g(x)| du(u)
+f(xh) /(g(O,x2 +u- N7Y2) — g(x))dv(u)
+07) [ (g0t + 0 N12,0) — g())du()

‘E [/u"’@@u”(dX)Zg(ﬂ?’,x},X?) —/MN®MN(dX)LNg(u?’,X3,X3)]‘
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Heuristics
Limit system Conditional propagation of chaos

Convergence of p" to the solution of (M)

dXtN,i o XN I+7 Z UJ dZNJ XN leN/

J#
[Ng(m,xt, x?) = —ax'01g(x) — ax?dag(x)
+N - m(f)/ {g(x1 +u- N2 2 4y NTY?) — g(x)| du(u)
4103 [(g0. + - N72) — g(x)dv(w)
+02) [(g6 + - N72,0) — g())d()
Taylor-Lagrange's inequality :
‘E [/ p @ N (dx)Lg(pl, xt x7) — /MN ®MN(dX)LNg(u?’,X3,X3)H

<C-NY2 0
N—o0
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Heuristics
Limit system Conditional propagation of chaos

Convergence of (uN)y

N
. . 1 , ; ; ;
dX}" = —axMdt + == " Ui(t)dz}"Y — x[" dz}"
t t /TV = ( ) t t t

J#i
dX! = — aX!dt + o/[i(F)dW; — X]_dZ!

Main steps of the proof :
o (L(uM)) relatively compact
e the only limit is (the unique) solution of (M)
e = (uM)n converges (in law) to £(X1|W)
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Thank you for your attention !

Questions ?
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