Conditional propagation of chaos for mean field system of interacting neurons

Xavier Erny¹ joint work with Eva Löcherbach² and Dasha Loukianova³

¹ Ecole Polytechnique (CMAP)

² Université Paris 1 (SAMM)

³ Université d'Evry (LaMMÉ)

Journées MAMOVI Ecole Polytechnique, 14 décembre 2021

- Introduction
 - Model
 - Discussion about the hypothesis

- 2 Limit system
 - Heuristics
 - Conditional propagation of chaos

Point process : definitions

Point process Z:

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- a random point measure on \mathbb{R}_+ : $Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

Point process : definitions

Point process Z:

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{\mathcal{T}_i}$

A process λ is the **stochastic intensity** of Z if :

$$\forall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_a\right] = \mathbb{E}\left[\left.\int_a^b \lambda_t dt\right|\mathcal{F}_a\right]$$

Point process : definitions

Point process Z:

- a random countable set of $\mathbb{R}_+: Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{\mathcal{T}_i}$

A process λ is the **stochastic intensity** of Z if :

$$\forall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_a\right] = \mathbb{E}\left[\int_a^b \lambda_t dt \middle| \mathcal{F}_a\right]$$

Marked point process $Z = \{(T_i, U_i) : i \in \mathbb{N}\}\ (U_i \text{ iid})$

Notation abuse $U_i =: U(T_i)$

Modeling in neuroscience

Neural activity = Set of spike times

Modeling in neuroscience

```
{\sf Neural\ activity} \quad = \quad {\sf Set\ of\ spike\ times}
```

= Point process (i.e. random set of \mathbb{R}_+)

Introduction Limit system

Modeling in neuroscience

```
Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)
```

Spike rate depends on the potential of the neuron

Modeling in neuroscience

```
Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)
```

Introduction

Limit system

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Modeling in neuroscience

```
Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)
```

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of *N* **neurons** :

```
Z^{N,i} = set of spike times of neuron i
= point process with intensity f(X_{t-}^{N,i})
X^{N,i} = potential of neuron i
```


$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

with:

- $Z^{N,j}$ = marked point processes with intensity $f(X_{t-}^{N,j})$
- $U^{j}(t) = \text{mark of } t \text{ (if } t \text{ atom of } Z^{N,j})$
- ν law of the marks $U^{j}(t)$
- ν is centered, $\int |u|^3 d\nu(u) < \infty$ and $\sigma^2 := \int u^2 d\nu(u)$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

with:

- $Z^{N,j}$ = marked point processes with intensity $f(X_{t-}^{N,j})$
- $U^{j}(t) = \text{mark of } t \text{ (if } t \text{ atom of } Z^{N,j})$
- ν law of the marks $U^{j}(t)$
- ν is centered, $\int |u|^3 d\nu(u) < \infty$ and $\sigma^2 := \int u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

with:

- $Z^{N,j}$ = marked point processes with intensity $f(X_{t-}^{N,j})$
- $U^{j}(t) = \text{mark of } t \text{ (if } t \text{ atom of } Z^{N,j})$
- ν law of the marks $U^{j}(t)$
- ν is centered, $\int |u|^3 d\nu(u) < \infty$ and $\sigma^2 := \int u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

• $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t[$\rightarrow \alpha = \text{leakage rate}$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

with:

- $Z^{N,j}$ = marked point processes with intensity $f(X_{t-}^{N,j})$
- $U^{j}(t) = \text{mark of } t \text{ (if } t \text{ atom of } Z^{N,j})$
- ν law of the marks $U^{j}(t)$
- ν is centered, $\int |u|^3 d\nu(u) < \infty$ and $\sigma^2 := \int u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t[$\rightarrow \alpha = \text{leakage rate}$
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{U^j(t)}{\sqrt{N}}$ if a neuron $j \neq i$ emits a spike at $t \to U^j(t)/\sqrt{N} = \text{synaptic weight}$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

with:

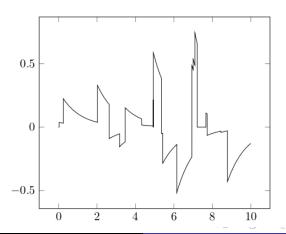
- $Z^{N,j}$ = marked point processes with intensity $f(X_{t-}^{N,j})$
- $U^{j}(t) = \text{mark of } t \text{ (if } t \text{ atom of } Z^{N,j})$
- ν law of the marks $U^{j}(t)$
- ν is centered, $\int |u|^3 d\nu(u) < \infty$ and $\sigma^2 := \int u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t[$\rightarrow \alpha =$ leakage rate
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{U^i(t)}{\sqrt{N}}$ if a neuron $j \neq i$ emits a spike at $t \to U^j(t)/\sqrt{N} = \text{synaptic weight}$
- $X_t^{N,i} = 0$ if neuron i emits a spike at t \rightarrow repolarization

N—neurons network dynamics

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$



Introduction

Need of the scaling : study the convergence of X^N as $N \to \infty$

Need of the scaling : study the convergence of X^N as $N \to \infty$

Why $N \to \infty$:

- $N \approx 86 \cdot 10^9$
- the limit system can be easier to simulate and study

Need of the scaling : study the convergence of X^N as $N \to \infty$

Why $N \to \infty$:

- $N \approx 86 \cdot 10^9$
- the limit system can be easier to simulate and study

Scaling N^{-1} or $N^{-1/2}$:

- N^{-1} (LLN) \Longrightarrow limit ODE
- $N^{-1/2}$ (CLT) \Longrightarrow limit SDE ([Barral, D Reyes (2016)])

Need of the scaling : study the convergence of X^N as $N \to \infty$

Why $N \to \infty$:

- $N \approx 86 \cdot 10^9$
- the limit system can be easier to simulate and study

Scaling N^{-1} or $N^{-1/2}$:

- N^{-1} (LLN) \Longrightarrow limit ODE
- $N^{-1/2}$ (CLT) \Longrightarrow limit SDE ([Barral, D Reyes (2016)])

```
Centered U^{j}(t): "balanced networks"
```

→ excitatory/inhibitory inputs are balanced

([Shu, Hasenstaub, McCormick (2003)], [Haider et al. (2006)])

 $\textbf{Assumption:} \ \mathsf{neural} \ \mathsf{network} = \mathsf{complete} \ \mathsf{graph}$

Assumption : neural network = complete graph Number of neurons (vertices) $\approx 10^{11}$ (whole brain) Number of synaptic connections (edges per vertice) $\lessapprox 10^5$

```
Assumption : neural network = complete graph Number of neurons (vertices) \approx 10^{11} (whole brain) Number of synaptic connections (edges per vertice) \lessapprox 10^5 \rightarrow model local part of the brain
```

```
Assumption : neural network = complete graph Number of neurons (vertices) \approx 10^{11} (whole brain) Number of synaptic connections (edges per vertice) \lesssim 10^5 \rightarrow model local part of the brain
```

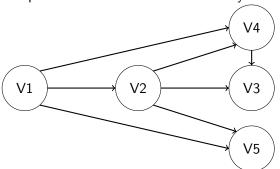
Multi-population model : network divided into K complete graphs

Assumption : neural network = complete graph Number of neurons (vertices) $\approx 10^{11}$ (whole brain) Number of synaptic connections (edges per vertice) $\lesssim 10^5$ \rightarrow model local part of the brain

Introduction

Limit system

Multi-population model : network divided into K complete graphs Example: visual cortex divided into 5 layers V1-V5 ([Hubel (1995)])



Limit system : heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\ i \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

Limit system : heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\i \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

Limit system : heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

Limit system: heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + d\bar{M}_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

with:

- $\bullet \ M_t^N \underset{N \to \infty}{\longrightarrow} \bar{M}_t$
- \bar{Z}^i point process with intensity $f(\bar{X}_t^i)$

Limit system : heuristic (2)

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{i=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

Limit system : heuristic (2)

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{i=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

 $ar{M}$ is an integral wrt a BM W

Limit system: heuristic (2)

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

 \bar{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

Limit system: heuristic (2)

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_0^t U^j(s) dZ_s^{N,j}$$

 \bar{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

Then \bar{M} should satisfy

$$\bar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s = \sigma \int_0^t \sqrt{\lim_N \bar{\mu}_s^N(f)} dW_s$$

with
$$ar{\mu}^{N}:=rac{1}{N}\sum_{j=1}^{N}\delta_{ar{X}^{j}}$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = \lim_N ar{\mu}^N$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = \lim_N ar{\mu}^N$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = \lim_N ar{\mu}^N$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

For any $g \in C_b$,

$$\bar{\mu}_t(g) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} g(\bar{X}_t^j)$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = \lim_N ar{\mu}^N$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

For any $g \in C_b$,

$$\bar{\mu}_t(g) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N g(\bar{X}_t^j)$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = \lim_N ar{\mu}^N$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

For any $g \in C_b$,

$$egin{aligned} ar{\mu}_t(g) = & \lim_{N o \infty} rac{1}{N} \sum_{j=1}^N g(ar{X}_t^j) \ = & \mathbb{E}\left[g(ar{X}_t^i) | \sigma(W)
ight] \end{aligned}$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{ar{\mu}_s(f)} dW_s$$
 where $ar{\mu} = {\displaystyle \lim_N} ar{\mu}^N$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

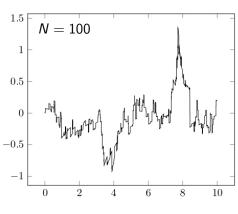
For any $g \in C_b$,

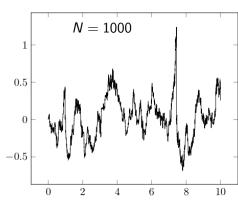
$$egin{aligned} ar{\mu}_t(g) = & \lim_{N o \infty} rac{1}{N} \sum_{j=1}^N g(ar{X}_t^j) \ = & \mathbb{E}\left[g(ar{X}_t^i) | \sigma(W)
ight] \end{aligned}$$

$$\bar{\mu}_t = \mathcal{L}(\bar{X}_t^i | \sigma(W))$$

$$d\bar{X}_{t}^{i} = -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_{t}^{i})|\sigma(W)\right]} dW_{t} - \bar{X}_{t-}^{i} d\bar{Z}_{t}^{i}$$

Simulations of $X^{N,1}$





$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^j(t) dZ_t^{N,j} - X_{t-}^{N,i} dZ_t^{N,i}$$
$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^j(t) dZ_t^{N,j} - X_{t-}^{N,i} dZ_t^{N,i}$$
$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Result [E., Löcherbach, Loukianova (2021a)]

 $(X^{N,i})_{1 \leq i \leq N}$ converges to $(\bar{X}^i)_{i \geq 1}$ in $D^{\mathbb{N}^*}$ in law

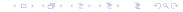
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^j(t) dZ_t^{N,j} - X_{t-}^{N,i} dZ_t^{N,i}$$
$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Result [E., Löcherbach, Loukianova (2021a)]

 $(X^{N,i})_{1 \leq i \leq N}$ converges to $(\bar{X}^i)_{i \geq 1}$ in $D^{\mathbb{N}^*}$ in law

Result [E., Löcherbach, Loukianova (2021b)]

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\left|X_s^{N,1}-\bar{X}_s^1\right|\right]\leq C_t\frac{(\ln N)^{1/5}}{N^{1/10}}$$



$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^j(t) dZ_t^{N,j} - X_{t-}^{N,i} dZ_t^{N,i}$$
$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Result [E., Löcherbach, Loukianova (2021a)]

 $(X^{N,i})_{1 \leq i \leq N}$ converges to $(\bar{X}^i)_{i \geq 1}$ in $D^{\mathbb{N}^*}$ in law

NSC: $\mu^N := \sum_{j=1}^N \delta_{X^{N,j}}$ converges to $\bar{\mu} := \mathcal{L}(\bar{X}^1|W)$ in $\mathcal{P}(D)$

Result [E., Löcherbach, Loukianova (2021b)]

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\left|X_s^{N,1}-\bar{X}_s^1\right|\right]\leq C_t\frac{(\ln N)^{1/5}}{N^{1/10}}$$

Outline of the proof

Step 1. $(\mu^N)_N$ is tight on $\mathcal{P}(D)$ (i.e. $(\mathcal{L}(\mu^N))_N$ is relatively compact)

Equivalent condition : $(X^{N,1})_N$ is tight on D

Proof: Aldous' criterion

Step 2. Identifying the limit distribution of $(\mu^N)_N$

Proof : any limit of μ^N is solution of a martingale problem

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Canonical space $\Omega:=\mathcal{P}(D)\times D^2$ with $\omega=(\bar{\mu},(\bar{X}^1,\bar{X}^2))$:

Meaning : conditionally on $\bar{\mu},$ (\bar{X}^1,\bar{X}^2) are iid $\bar{\mu}-$ distributed

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Canonical space
$$\Omega:=\mathcal{P}(D)\times D^2$$
 with $\omega=(\bar{\mu},(\bar{X}^1,\bar{X}^2))$:

Meaning : conditionally on $\bar{\mu}$, (\bar{X}^1, \bar{X}^2) are iid $\bar{\mu}$ -distributed

$$P(A \times B) := \int_{\mathcal{P}(D)} \mathbb{1}_A(m) m \otimes m(B) dQ(m)$$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Canonical space $\Omega:=\mathcal{P}(D)\times D^2$ with $\omega=(\bar{\mu},(\bar{X}^1,\bar{X}^2))$:

Meaning : conditionally on $\bar{\mu},$ (\bar{X}^1,\bar{X}^2) are iid $\bar{\mu}-$ distributed

$$P(A \times B) := \int_{\mathcal{P}(D)} \mathbb{1}_A(m) m \otimes m(B) dQ(m)$$

Q is solution of (\mathcal{M}) if for all $g \in C_b^2(\mathbb{R}^2)$, $g(\bar{X}_t^1, \bar{X}_t^2) - g(\bar{X}_0^1, \bar{X}_0^2) - \int_0^t \bar{L}g(\bar{\mu}_s, \bar{X}_s^1, \bar{X}_s^2)ds \text{ is a martingale}$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Canonical space $\Omega := \mathcal{P}(D) \times D^2$ with $\omega = (\bar{\mu}, (\bar{X}^1, \bar{X}^2))$:

Meaning : conditionally on $\bar{\mu},$ (\bar{X}^1,\bar{X}^2) are iid $\bar{\mu}-$ distributed

$$P(A \times B) := \int_{\mathcal{P}(D)} \mathbb{1}_A(m) m \otimes m(B) dQ(m)$$

Q is solution of (\mathcal{M}) if for all $g \in C_b^2(\mathbb{R}^2)$,

$$g(\bar{X}_t^1, \bar{X}_t^2) - g(\bar{X}_0^1, \bar{X}_0^2) - \int_0^t \bar{L}g(\bar{\mu}_s, \bar{X}_s^1, \bar{X}_s^2)ds$$
 is a martingale

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\bar{\mu}))$

Canonical space
$$\Omega := \mathcal{P}(D) \times D^2$$
 with $\omega = (\bar{\mu}, (\bar{X}^1, \bar{X}^2))$:

Meaning : conditionally on $\bar{\mu}$, (\bar{X}^1, \bar{X}^2) are iid $\bar{\mu}$ -distributed

$$P(A \times B) := \int_{\mathcal{P}(D)} \mathbb{1}_A(m) m \otimes m(B) dQ(m)$$

Q is solution of (\mathcal{M}) if for all $g \in C^2_b(\mathbb{R}^2)$,

$$g(\bar{X}_t^1, \bar{X}_t^2) - g(\bar{X}_0^1, \bar{X}_0^2) - \int_0^t \bar{L}g(\bar{\mu}_s, \bar{X}_s^1, \bar{X}_s^2) ds$$
 is a martingale

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

$$\bar{L}g(m,x^1,x^2) = -\alpha x^1 \partial_1 g(x) - \alpha x^2 \partial_2 g(x) + \frac{\sigma^2}{2} m(f) \sum_{i,j=1}^2 \partial_{i,j}^2 g(x)$$

$$+f(x^{1})(g(0,x^{2})-g(x))+f(x^{2})(g(x^{1},0)-g(x))$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\ i \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i} \\ L^{N}g(m,x^{1},x^{2}) &= -\alpha x^{1} \partial_{1}g(x) - \alpha x^{2} \partial_{2}g(x) \\ &+ N \cdot m(f) \int \left[g(x^{1} + u \cdot N^{-1/2}, x^{2} + u \cdot N^{-1/2}) - g(x) \right] d\nu(u) \\ &+ f(x^{1}) \int (g(0,x^{2} + u \cdot N^{-1/2}) - g(x)) d\nu(u) \\ &+ f(x^{2}) \int (g(x^{1} + u \cdot N^{-1/2}, 0) - g(x)) d\nu(u) \end{split}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

$$L^{N}g(m, x^{1}, x^{2}) = -\alpha x^{1} \partial_{1}g(x) - \alpha x^{2} \partial_{2}g(x)$$

$$+ N \cdot m(f) \int \left[g(x^{1} + u \cdot N^{-1/2}, x^{2} + u \cdot N^{-1/2}) - g(x) \right] d\nu(u)$$

$$+ f(x^{1}) \int (g(0, x^{2} + u \cdot N^{-1/2}) - g(x)) d\nu(u)$$

$$+ f(x^{2}) \int (g(x^{1} + u \cdot N^{-1/2}, 0) - g(x)) d\nu(u)$$

$$\left| \mathbb{E} \left[\int \mu^{N} \otimes \mu^{N}(dx) \bar{L} g(\mu_{t}^{N}, x_{t}^{1}, x_{t}^{2}) - \int \mu^{N} \otimes \mu^{N}(dx) L^{N} g(\mu_{t}^{N}, x_{t}^{1}, x_{t}^{2}) \right] \right|$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i} \\ L^{N}g(m,x^{1},x^{2}) &= -\alpha x^{1} \partial_{1}g(x) - \alpha x^{2} \partial_{2}g(x) \\ &+ N \cdot m(f) \int \left[g(x^{1} + u \cdot N^{-1/2}, x^{2} + u \cdot N^{-1/2}) - g(x) \right] d\nu(u) \\ &+ f(x^{1}) \int (g(0,x^{2} + u \cdot N^{-1/2}) - g(x)) d\nu(u) \\ &+ f(x^{2}) \int (g(x^{1} + u \cdot N^{-1/2}, 0) - g(x)) d\nu(u) \end{split}$$

Taylor-Lagrange's inequality:

$$\left| \mathbb{E} \left[\int \mu^{N} \otimes \mu^{N}(dx) \bar{L}g(\mu_{t}^{N}, x_{t}^{1}, x_{t}^{2}) - \int \mu^{N} \otimes \mu^{N}(dx) L^{N}g(\mu_{t}^{N}, x_{t}^{1}, x_{t}^{2}) \right] \right|$$

$$\leq C_{t} \cdot N^{-1/2} \xrightarrow{N \to \infty} 0$$

Convergence of $(\mu^N)_N$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} U^j(t) dZ_t^{N,j} - X_{t-}^{N,i} dZ_t^{N,i}$$
$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\bar{\mu}_t(f)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Main steps of the proof:

- $(\mathcal{L}(\mu^N))_N$ relatively compact
- the only limit is (the unique) solution of (\mathcal{M})
- ullet \Rightarrow $(\mu^N)_N$ converges (in law) to $\mathcal{L}(ar{X}^1|W)$

References

- E., Löcherbach, Loukianova (2021a). Conditional propagation of chaos for mean field systems of interacting neurons. EJP.
- E., Löcherbach, Loukianova (2021b). Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling. *ArXiv*, *HAL*.
- Barral, D Reyes (2016). Synaptic scaling rule preserves excitatory-inhibitory balance and salient neuronal network dynamics. Nature neuroscience.
- Shu, Hasenstaub, McCormick (2003). Turning on and off recurrent balanced cortical activity. Nature.
- Haider, Duque, Hasenstaub, McCormick (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. *Journal of neuroscience*.
- Hubel (1995). Eye, Brain and Vision. Scientific american library.

Thank you for your attention!

Questions?

