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Model
Propagation of chaos

Neural network model
Limit system

Modeling in neuroscience

Neural activity = Set of spike times

= Point process (i.e. random set of R+)

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of N neurons :
ZN,i = set of spike times of neuron i

= point process with intensity f (XN,i
t− )

XN,i = potential of neuron i

XN,i solves an SDE directed by (ZN,j)1≤j≤N
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Propagation of chaos

Neural network model
Limit system

Mean field limit

N−neurons network :

dXN,i
t = b(XN,i

t )dt +
N∑
j=1

uji (t)dZN,j
t

ZN,j point process with intensity f (XN,j
t− )

Study the limit N →∞ =⇒ rescale the sum :

linear scaling N−1 (LLN) :
[Delattre et al. (2016)] (Hawkes process, uji (t) = 1),
[Chevallier et al. (2017)] (uji (t) = w(j , i))

diffusive scaling N−1/2 (CLT) :
[E. et al. (2019)] random and centered uji (s)
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Model
Propagation of chaos

Neural network model
Limit system

Linear scaling

dXN,i
t = −αXN,i

t dt +
1

N

N∑
j=1
j 6=i

dZN,j
t − XN,i

t− dZN,i
t

ZN,j point process with intensity f (XN,j
t− )

Intepretation :

drift : −αx models an exponantial loss of the potential

small jump of order N−1 : the effect of the spikes of one
neuron to the potential of the others

reset jump : the repolarization effect

[De Masi et al. (2015)] and [Fournier & Löcherbach (2016)]
Generalization to McKean-Vlasov frame [Andreis et al. (2018)]
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Model
Propagation of chaos

Neural network model
Limit system

Diffusive scaling

dXN,i
t = −αXN,i

t dt +
1√
N

N∑
j=1
j 6=i

U j(t)dZN,j
t − XN,i

t− dZN,i
t

ZN,i point process with intensity f (XN,i
t− )

U i (t) (1 ≤ j ≤ N, t ≥ 0) iid with distribution ν

ν probability measure on R centered with
∫
R |u|

3dν(u) <∞
σ2 =

∫
R u2dν(u)

Dynamic of XN,i :

XN,i
t = XN,i

s e−α(t−s) if the system does not jump in [s, t[

XN,i
t = XN,i

t− + U j (t)√
N

if a neuron j 6= i emits a spike at t

XN,i
t = 0 if neuron i emits a spike at t (→ repolarization)
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Model
Propagation of chaos

Neural network model
Limit system

Limit system : heuristic (1)

dXN,i
t = −αXN,i

t dt +
1√
N

N∑
j=1
j 6=i

U j(t)dZN,j
t − XN,i

t− dZN,i
t

MN
t := 1√

N

N∑
j=1

∫ t

0
U j(s)dZN,j

s

dX̄ i
t = −αX̄ i

t dt + dM̄t − X̄ i
t−dZ̄

i
t

with :

MN
t −→

N→∞
M̄t

Z̄ i point process with intensity f (X̄ i
t )
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Model
Propagation of chaos

Neural network model
Limit system

Limit system : heuristic (2)

MN
t := 1√

N

N∑
j=1

∫ t

0
U j(s)dZN,j

s

M̄ is an integral wrt a BM W

〈M̄〉t = lim
N
〈MN〉t = lim

N
σ2

∫ t

0

1

N

N∑
j=1

f (XN,j
s )ds

Then M̄ should satisfy

M̄t = σ

∫ t

0

√√√√lim
N

1

N

N∑
j=1

f (X̄ j
s )dWs = σ

∫ t

0

√
lim
N
µ̄Ns (f )dWs

with µ̄N := 1
N

∑N
j=1 δX̄ j
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Model
Propagation of chaos

Neural network model
Limit system

Limit system : heuristic (3)

M̄t = σ
∫ t

0

√
µs(f )dWs where µ = lim

N
µ̄N

dX̄ i
t = −αX̄ i

t dt + σ
√
µt(f )dWt − X̄ i

t−dZ̄
i
t

µ is the limit of empirical measures of (X̄ i )i≥1 exchangeable
by Proposition (7.20) of [Aldous (1983)] µ is the directing measure
of (X̄ i )i≥1 (conditionally on µ, X̄ i i.i.d.∼ µ)

Conditionally on W , the X̄ i (i ≥ 1) are i.i.d.
by Lemma (2.12) of [Aldous (1983)] µ = L(X̄ 1|W ) = L(X̄ i |W )
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Model
Propagation of chaos

Neural network model
Limit system

Discussion about the function f
Any lower-bounded f ∈ C 1

b (R,R+) satisfying
f ′(x) ≤ C (1 + |x |)−(1+ε) (ε > 0)

f (x) = c + d arctan(α + βx) satisfy the hypothesis

x0

”Neuron i active / inactive” ≈ ”XN,i > x0 / XN,i < x0”
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Limit system

Simulations of XN,1

N = 10 N = 1000
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Martingale problem
Convergence of (µN )N

Convergence of (XN,i)1≤i≤N

dXN,i
t =− αXN,i

t dt +
1√
N

N∑
j=1
j 6=i

U j(t)dZN,j
t − XN,i

t− dZN,i
t

dX̄ i
t =− αX̄ i

t dt + σ
√
µt(f )dWt − X̄ i

t−dZ̄
i
t

with :

ZN,i point process with intensity f (XN,i
t− )

Z̄ i point process with intensity f (X̄ i
t−)

Result

(XN,i )1≤i≤N converges to (X̄ i )i≥1 in DN∗

NS condition (Proposition (7.20) of [Aldous (1983)]) :
µN :=

∑N
j=1 δXN,j converges to µ := L(X̄ 1|W ) in P(D)
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Martingale problem
Convergence of (µN )N

Outline of the proof

Step 1. (µN)N is tight on P(D)
Equivalent condition : (XN,1)N is tight on D
Proof : Aldous’ criterion

Step 2. Identifying the limit distribution of (µN)N
Proof : any limit of µN is solution of a martingale problem
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Martingale problem
Convergence of (µN )N

Martingale problem
Given Q ∈ P(P(D)) (Q = L(µ))

Canonical space Ω := P(D)× D2 with ω = (µ, (Y 1,Y 2)) :

Meaning : (Y 1,Y 2) mixture of iid directed by µ

P(A× B) :=

∫
P(D)

1A(m)m ⊗m(B)dQ(m)

Q is solution of (M) if for all g ∈ C 2
b (R2),

g(Y 1
t ,Y

2
t )− g(Y 1

0 ,Y
2
0 )−

∫ t
0 Lg(µs ,Y

1
s ,Y

2
s )ds is a martingale

dX̄ i
t = −αX̄ i

t dt+σ
√
µt(f )dWt−X̄ i

t−dZ̄
i
t

Lg(m, x1, x2) =−αx1∂1g(x)− αx2∂2g(x)+
σ2

2
m(f )

2∑
i ,j=1

∂2
i ,jg(x)

+f (x1)(g(0, x2)− g(x)) + f (x2)(g(x1, 0)− g(x))
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Martingale problem
Convergence of (µN )N

Convergence of µN to the solution of (M)

Let µ be the limit of (a subsequence of) µN

L(µ) is solution of (M) if

E [F (µ)] = 0

for any F of the form

F (m) :=

∫
D2

m ⊗m(dγ)φ1(γs1)...φk(γsk )
[
φ(γt)− φ(γs)

−
∫ t

s
Lφ(mr , γr )dr

]

−
∫ t

s
f (γ1

r )(φ(0, γ2
r )− φ(γr ))dr −

∫ t

s
f (γ2

r )(φ(γ1
r , 0)− φ(γr ))dr

−σ
2

2

∫ t

s
mr (f )

2∑
i1,i2=1

∂2
i1,i2φ(γr )dr

]
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Martingale problem
Convergence of (µN )N

The expression of F (µN)

F (µN) :=∫
D2

µN ⊗ µN(dγ)φ1(γs1)...φk(γsk )
[
φ(γt)− φ(γs)

+ α

∫ t

s
γ1
r ∂1φ(γr )dr + α

∫ t

s
γ2
r ∂2φ(γr )dr

−
∫ t

s
f (γ1

r )(φ(0, γ2
r )− φ(γr ))dr∫ t

s
f (γ2

r )(φ(γ1
r , 0)− φ(γr ))dr

− σ2

2

∫ t

s
µNr (f )

2∑
i1,i2=1

∂2
i1,i2φ(γr )dr

]
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The expression of F (µN)

F (µN) :=

1

N2

N∑
i ,j=1

φ1(XN,i
s1
,XN,j
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)...φk(XN,i

sk
,XN,j

sk
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φ(XN,i

t ,XN,j
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s ,XN,j
s )

+α
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s
XN,i
r ∂1φ(XN,i

r ,XN,j
r )dr + α

∫ t

s
XN,j
r ∂2φ(XN,i

r ,XN,j
r )dr
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∫ t

s
f (XN,i
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Martingale problem
Convergence of (µN )N

Convergence of (µN)N

dXN,i
t =− αXN,i

t dt +
1√
N

N∑
j=1
j 6=i

U j(t)dZN,j
t − XN,i

t− dZN,i
t

dX̄ i
t =− αX̄ i

t dt + σ
√
µt(f )dWt − X̄ i

t−dZ̄
i
t

(µN)N is tight on P(D)

let µ be the limit of a converging subsequence

L(µ) is (the unique) solution of (M)

µ = L(X̄ 1|W ) is the only limit of (µN)N
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Chevallier, Duarte, Löcherbach, Ost (2019). Mean field limits for
nonlinear spatially extended Hawkes processes with exponential
memory kernels. Stochastic Processes and their Applications.
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Andreis, Dai Pra, Fischer (2018). McKean-Vlasov limit for
interacting systems with simultaneous jumps. Stochastic analysis and
applications.

Xavier ERNY Conditonal propagation of chaos 19 / 20



Model
Propagation of chaos

Thank you for your attention !

Questions ?
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