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Introduction

The aim of this projet is to study the convergence of a particle system that modelizes a neural network, as the number of neurons goes to infinity. Before stating the formal model, let us
briefly explain its particularities. To begin with, the neural networks we consider are mean field systems, what means that the neurons of a given network have all the same characteristics.
In our model, it implies, for instance, that the spike rates of the neurons are identically distributed. The convergence we prove for this model can be called conditional propagation of chaos.
A classical propagation of chaos for particle system means that, in the limit system (i.e. when the number of particles is infinite) the particles are independent. In this model, we will see
that, in the limit system, our neurons will share a common noise, whence they will not be truly independent, but only independent conditionally to this common noise.

The N−neurons network

Let N be a positive integer. We consider a N− dimensional system of stochastic processes (XN,i)1≤i≤N where XN,i

represents the membrane potential of the i−th neuron of the network. The dynamics of the system can be described
informally by:
• the i−th neuron emits spike at rate f (XN,i

t− )

•while no neurons emit spike in a time interval [s, t], the evolution of XN,i is a (deterministic) negative exponential,
modeling the loss of potential to its rest value 0

XN,i
t = XN,i

s e−α(t−s)

• if a neuron i emits a spike at time t, the potential of the other neurons receive an additional contribution of the
form U(t)/

√
N (where U(t) is a centered random variable), and the potential of the neuron i jumps to the resting

value 0

XN,i
t =0

XN,j
t =XN,j

t− +
U(t)√
N

,∀j 6= i

Formally, this system satisfies the following stochastic differential equation

dXN,i
t =− αXN,i

t dt−XN,i
t−

∫ ∞
0

∫
R
1{z≤f(XN,i

t− )}π
i(dt, dz, du)

+
1√
N

N∑
j=1
j 6=i

∫ ∞
0

∫
R
u1{z≤f(XN,j

t− )}π
j(dt, dz, du)

where πi are independent Poisson measures on R2
+ × R with intensity dt · dz · dν(u) (where ν is the law of the

variables U(t) we introduced before)

Dynamic of XN,i

• : spike times of the i−th neuron
• : spike times of the other neurons

The limit network

Let us explain the form of the limit network with some
heuristics. Looking closely at the equation of XN,i, one
can note that the only term that does depend on N is the
term of the second line. Let us note MN

t this term (to sim-
plify we assume that the sum ranges over all 1 ≤ j ≤ N ,
including the index i)

MN
t :=

1√
N

N∑
j=1

∫ t

0

∫ ∞
0

∫
R
u1{z≤f(XN,j

s− )}π
j(ds, dz, du)

If we find M̄t the limit of MN
t , the limit equation would be

dX̄ i
t =− αX̄ i

tdt− X̄ i
t−

∫ ∞
0

∫
R
1{z≤f(X̄ i

t−)}π
i(dt, dz, du)

+ dM̄t

Let us discuss the form of M̄t : it is the limit of the pure-
jump local martingales MN

t , and the height of the jumps
of MN

t vanish as N goes to infinity. This implies that M̄t

can be written as a stochastic integral w.r.t. a Brownian

motion (Wt)t≥0. In order to find the explicit form of M̄t,
one has to find its quadratic variation, which is the limit
of the quadratic variations of MN

t

E
[[
MN

]
t

]
=

1

N

N∑
j=1

E
[∫ t

0

∫ ∞
0

∫
R
u21{z≤f(XN,j

s− )}dπ
j(s, z, u)

]

=
1

N

N∑
j=1

∫ t

0

∫
R
u2Ef

(
XN,j
s

)
dν(u)ds = σ2

∫ t

0

EµNs (f )ds

where σ2 :=
∫
R u

2dν(u) and µNt := N−1
∑N

j=1 δXN,j
t

is the

empirical measure of the system (XN,j
t )1≤j≤N . Then, de-

noting by µ̄Nt := N−1
∑N

j=1 δX̄j the empirical measure of

the limit system, and admitting that µ̄N converges to some
(random) measure µ, we know that Mt can be written as

Mt = σ
∫ t

0 µs(f )1/2dWs, whence the limit equation is

dX̄ i
t =− αX̄ i

tdt− X̄ i
t−

∫ ∞
0

∫
R
1{z≤f(X̄ i

t−)}π
i(dt, dz, du)

+ σµt(f )1/2dWt,

where W is a standard Brownian motion and µ is the limit
of the empirical measure of (X̄j)1≤j≤N .
The last thing to do is to guess the explicit form of µ. As
a limit of empirical measures of exchangeable systems, µ
is necessarily the directing measure of (X̄j)j≥1 : condition-
ally on µ, the variables X̄j are i.i.d. with law µ. But, one
can note that, conditionally on W, the variables X̄j are
i.i.d., and this implies that µt = L(X̄ i

t|W ). Hence, we can
rewrite the limit equation as

dX̄ i
t =− αX̄ i

tdt− X̄ i
t−

∫ ∞
0

∫
R
1{z≤f(X̄ i

t−)}π
i(dt, dz, du)

+ σE
[
f
(
X̄ i
t

)
|W
]1/2

dWt

Simulation of X10,1 Simulation of X100,1 Simulation of X1000,1

As there are N − 1 processes that can create jumps in each XN,j, it is necessary
to scale these jumps. A scaling N−1 would lead to a true propagation of chaos.
Here, the scaling N−1/2 leads to a common noise in the limit system, and to a
conditional propagation of chaos. Let us note that, it is because of this particular
scaling that we need to assume the random variables U(t) to be centered.


