Strong error bounds for the conditional propagation of chaos of mean field systems of neurons

Xavier Erny ¹

Joint work with: Eva Löcherbach ² and Dasha Loukianova ³

¹Ecole Polytechnique (CMAP) ²Université Paris 1 Panthéon-Sorbonne (SAMM) ³Université d'Evry (LaMME)

Séminaire de probabilités de l'IRMAR, 4 avril 2022

- Introduction
 - Point processes
 - Thinning
- 2 Model
 - Neural networks model
 - Definitions of the systems
 - Limit system
- Propagation of chaos
 - Conditional propagation of chaos
 - First attempt of coupling
 - Formal proof

Point process : definitions

Point process (or counting process) Z:

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

Point process : definitions

Point process (or counting process) Z:

- a random countable set of $\mathbb{R}_+: Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{\mathcal{T}_i}$

A process λ is the **stochastic intensity** of Z if :

$$\forall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_a\right] = \mathbb{E}\left[\left.\int_a^b \lambda_t dt\right|\mathcal{F}_a\right]$$

Point process : definitions

Point process (or counting process) Z:

- a random countable set of $\mathbb{R}_+: Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{\mathcal{T}_i}$

A process λ is the **stochastic intensity** of Z if :

$$\forall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_a\right] = \mathbb{E}\left[\left.\int_a^b \lambda_t dt\right|\mathcal{F}_a\right]$$

Marked point process $Z = \{(T_i, U_i) : i \in \mathbb{N}\}\ (U_i \text{ iid})$

Notation abuse $U_i =: U(T_i)$

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity $\mathit{dt.dz}$

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity dt.dz

 $\boldsymbol{\lambda}$ predictable and positive process

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity dt.dz

 λ predictable and positive process

$$Z(A) = \int_{A \times \mathbb{R}_+} \mathbb{1}_{\{z \le \lambda(t)\}} d\pi(t, z)$$

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity dt.dz

 λ predictable and positive process

$$Z(A) = \int_{A \times \mathbb{R}_+} \mathbb{1}_{\{z \le \lambda(t)\}} d\pi(t, z)$$

Then : λ is the stochastic intensity of Z

Neural activity = Set of spike times

 ${\sf Neural\ activity} \quad = \quad {\sf Set\ of\ spike\ times}$

= Point process

Neural activity = Set of spike times

= Point process

Spike rate depends on the potential of the neuron

Neural activity = Set of spike times

= Point process

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

```
Neural activity = Set of spike times
= Point process
```

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of *N* **neurons** :

```
Z_t^{N,i} = number of spikes of neuron i emitted in [0,t] = point process with intensity f(X_{t-}^{N,i})
```

• $X^{N,i}$ = potential of neuron i

```
Neural activity = Set of spike times
= Point process
```

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of *N* **neurons** :

- $Z_t^{N,i} = \text{ number of spikes of neuron } i \text{ emitted in } [0,t]$ $= \text{ point process with intensity } f(X_{t-}^{N,i})$
- $X^{N,i}$ = potential of neuron i

Here, $X^{N,i}$ solves an SDE directed by $(Z^{N,j})_{1 \le j \le N}$

N-particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty \mathbb{1}_{\{z \le f(X_{s-}^{N,i})\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^N \int_0^\infty u^{ji}(t) \mathbb{1}_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

N—particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty \mathbb{1}_{\{z \le f(X_{s-}^{N,i})\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^{N} \int_0^{\infty} u^{ji}(t) \mathbb{1}_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

N—particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty \mathbb{1}_{\{z \le f(X_{s-}^{N,i})\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^N \int_0^\infty u^{ji}(t) \mathbb{1}_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

• linear scaling N^{-1} (LLN): [Delattre et al. (2016)] (Hawkes process, $u^{ji}(t) = 1$), [Chevallier et al. (2019)] ($u^{ji}(t) = w(j, i)$)

N—particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty \mathbb{1}_{\{z \le f(X_{s-}^{N,i})\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^N \int_0^\infty u^{ji}(t) \mathbb{1}_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

- linear scaling N^{-1} (LLN): [Delattre et al. (2016)] (Hawkes process, $u^{ji}(t) = 1$), [Chevallier et al. (2019)] ($u^{ji}(t) = w(j,i)$)
- diffusive scaling $N^{-1/2}$ (CLT) : [E. et al. (2022)] random and centered $u^{ji}(s)$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^N \int_0^\infty \int_{\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^j(t,z,u)$$

$$- \int_0^\infty \int_{\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^i(t,z,u)$$

$$\pi^j \text{ iid Poisson measures with intensity } dt \cdot dz \cdot d\nu(u)$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

• $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t]

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t]
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{U}{\sqrt{N}}$ if a neuron $j \neq i$ emits a spike at t

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$

$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t]
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{U}{\sqrt{N}}$ if a neuron $j \neq i$ emits a spike at t
- $X_t^{N,i} = 0$ if neuron i emits a spike at t

N—neurons network dynamics

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} U^{j}(t) dZ_{t}^{N,j} - X_{t-}^{N,i} dZ_{t}^{N,i}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{\mathbb{R}_{+}\times\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$-X_{t-}^{N,i} \int_{\mathbb{R}_{+}\times\mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{\mathbb{R}_{+}\times\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$-X_{t-}^{N,i} \int_{\mathbb{R}_{+}\times\mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ M_{t}^{N} &:= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \end{split}$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ M_{t}^{N} &:= \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \\ &d\bar{X}_{t}^{i} = -\alpha \bar{X}_{t}^{i} dt + d\bar{M}_{t} \\ &- \bar{X}_{t-}^{i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\pi^{i}(t,z,u) \end{split}$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 $ar{M}$ is an integral wrt a BM W

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 \bar{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 \overline{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

Then \bar{M} should satisfy

$$\bar{M}_t = \sigma \int_0^t \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$ar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$\bar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_s^j) dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i}$$

$$\bar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_s^j)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

$$\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{j}) =$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_s^j)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

$$\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{j}) =$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_s^j)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

$$\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{j}) = \mathbb{E} \left[f(\bar{X}_{t}^{j}) | \sigma(W) \right]$$

Limit system : heuristic (3)

$$ar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s$$

$$d\bar{X}_t^i = -\alpha \bar{X}_t^i dt + \sigma \sqrt{\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_s^j)} dW_t - \bar{X}_{t-}^i d\bar{Z}_t^i$$

Conditionally on W, the \bar{X}^i are i.i.d.

$$\lim_{N} \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{j}) = \mathbb{E} \left[f(\bar{X}_{t}^{i}) | \sigma(W) \right]$$

$$d\bar{X}_{t}^{i} = -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_{t}^{i})|\sigma(W)\right]} dW_{t} - \bar{X}_{t-}^{i} d\bar{Z}_{t}^{i}$$

- for all $x \in \mathbb{R}$, $0 < \inf f \le f(x) \le ||f||_{\infty} < \infty$
- $x \mapsto xf(x)$ and $x \mapsto f(x)$ is Lipschitz

- for all $x \in \mathbb{R}$, $0 < \inf f \le f(x) \le ||f||_{\infty} < \infty$
- $x \mapsto xf(x)$ and $x \mapsto f(x)$ is Lipschitz

$$f(x) = \varepsilon + \frac{\theta}{1 + e^{-\lambda(x - x_0)}}$$

- for all $x \in \mathbb{R}$, $0 < \inf f \le f(x) \le ||f||_{\infty} < \infty$
- $x \mapsto xf(x)$ and $x \mapsto f(x)$ is Lipschitz

ex:

$$f(x) = \varepsilon + \frac{\theta}{1 + e^{-\lambda(x - x_0)}}$$

- for all $x \in \mathbb{R}$, $0 < \inf f \le f(x) \le ||f||_{\infty} < \infty$
- $x \mapsto xf(x)$ and $x \mapsto f(x)$ is Lipschitz

ex:

$$f(x) = \varepsilon + \frac{\theta}{1 + e^{-\lambda(x - x_0)}}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{\mathbb{R}_{+}\times\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$-\int_{\mathbb{R}_{+}\times\mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$
$$d\bar{X}_{t}^{i} = -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\bar{\mu}_{t}(f)} dW_{t} - \int_{\mathbb{R}_{+}} \bar{X}_{t-}^{i} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\bar{\pi}^{i}(t,z)$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- \int_{\mathbb{R}_{+} \times \mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ d\bar{X}_{t}^{i} &= -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\bar{\mu}_{t}(f)} dW_{t} - \int_{\mathbb{R}_{+}} \bar{X}_{t-}^{i} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\bar{\pi}^{i}(t,z) \end{split}$$

Result [E., Löcherbach, Loukianova (2021)]

Given $N \in \mathbb{N}^*$, $(\pi^j)_{1 \le j \le N}$, there exists a BM W^N such that

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\left|X_s^{N,1}-\bar{X}_s^{N,1}\right|\right]\leq C_t\frac{(\ln N)^{1/5}}{N^{1/10}}$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- \int_{\mathbb{R}_{+} \times \mathbb{R}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,\frac{u}{u}) \\ d\bar{X}_{t}^{i} &= -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\bar{\mu}_{t}(f)} dW_{t} - \int_{\mathbb{R}_{+}} \bar{X}_{t-}^{i} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\bar{\pi}^{i}(t,z) \end{split}$$

Result [E., Löcherbach, Loukianova (2021)]

Given $N \in \mathbb{N}^*$, $(\pi^j)_{1 \le j \le N}$, there exists a BM W^N such that

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\left|X_s^{N,1}-\bar{X}_s^{N,1}\right|\right]\leq C_t\frac{(\ln N)^{1/5}}{N^{1/10}}$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- \int_{\mathbb{R}_{+}} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\bar{\pi}^{i}(t,z) \\ d\bar{X}_{t}^{i} &= -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\bar{\mu}_{t}(f)} dW_{t} - \int_{\mathbb{R}_{+}} \bar{X}_{t-}^{i} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\bar{\pi}^{i}(t,z) \end{split}$$

Result [E., Löcherbach, Loukianova (2021)]

Given $N \in \mathbb{N}^*$, $(\pi^j)_{1 \le j \le N}$, there exists a BM W^N such that

$$\mathbb{E}\left[\sup_{0\leq s\leq t}\left|X_s^{N,1}-\bar{X}_s^{N,1}\right|\right]\leq C_t\frac{(\ln N)^{1/5}}{N^{1/10}}$$

Representation of Poisson processes [Kurtz (1978)]

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} dP_t^N - X_{t-}^{N,i} dZ_t^{N,i}$$

with

$$P_t^N := \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

Representation of Poisson processes [Kurtz (1978)]

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} dP_t^N - X_{t-}^{N,i} dZ_t^{N,i}$$

with

$$P_t^N := \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 $P_t^N =$ marked point process with compensator

$$A_t^N := \sum_{i=1}^N \int_0^t f(X_s^{N,j}) ds.$$

Representation of Poisson processes [Kurtz (1978)]

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} dP_t^N - X_{t-}^{N,i} dZ_t^{N,i}$$

with

$$P_t^N := \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 $P_t^N = \text{marked point process with compensator}$

$$A_t^N := \sum_{i=1}^N \int_0^t f(X_s^{N,j}) ds.$$

Proposition 16.6.III [Daley & Vere-Jones (2008)]:

$$P_t^N = \mathbf{Z}_{A_t^N},$$

where $\mathbf{Z}=$ marked point process with rate 1

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + dR_t^N$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + dR_t^N$$

$$|R_t^N| \le N^{-1/2} |\mathbf{Z}_{A_t^N} - \sigma B_{A_t^N}|$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + dR_t^N$$

$$|R_t^N| \leq N^{-1/2} |\mathbf{Z}_{A_t^N} - \sigma B_{A_t^N}| \leq N^{-1/2} E \ln \left(A_t^N \vee 2 \right)$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + dR_t^N$$

$$|R^N_t| \leq N^{-1/2} |\mathbf{Z}_{A^N_t} - \sigma B_{A^N_t}| \leq N^{-1/2} E \ln \left(A^N_t \vee 2\right) \\ \leq N^{-1/2} E \ln \left(Nt||f||_{\infty}\right)$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + \frac{dR_t^N}{dt} dB_{A_t^N} dt + \frac{1}{\sqrt{N}} dB_{A_t^N} dB_{A_t^N}$$

$$|R^N_t| \leq N^{-1/2} |\mathbf{Z}_{A^N_t} - \sigma B_{A^N_t}| \leq N^{-1/2} E \ln \left(A^N_t \vee 2\right) \\ \leq N^{-1/2} E \ln \left(Nt||f||_{\infty}\right)$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i}$$

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlòs et al. (1976)]) : there exists BM B such that

$$\sup_{t\geq 0}\frac{|\mathbf{Z}_t-\sigma B_t|}{\ln(t\vee 2)}\leq E,$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} d\bar{\pi}^i(t,z) + \frac{\ln N}{\sqrt{N}}$$

$$|R^N_t| \leq N^{-1/2} |\mathbf{Z}_{A^N_t} - \sigma B_{A^N_t}| \leq N^{-1/2} E \ln \left(A^N_t \vee 2\right) \\ \leq N^{-1/2} E \ln \left(Nt||f||_{\infty}\right)$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i} + \frac{\ln N}{\sqrt{N}}$$

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i} + \frac{\ln N}{\sqrt{N}}$$

Proposition V.(3.8) [Revuz & Yor (1999)] :

$$B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$$

where W^N is a BM

$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \sigma \frac{1}{\sqrt{N}} dB_{A_t^N} - X_{t-}^{N,i} dZ_t^{N,i} + \frac{\ln N}{\sqrt{N}}$$

Proposition V.(3.8) [Revuz & Yor (1999)] :

$$B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$$

where W^N is a BM

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j})} dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}$$

Proposition V.(3.8) [Revuz & Yor (1999)] :

$$B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$$

where W^N is a BM

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j}) dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]} dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j}) dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]} dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i}$$

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{j=1}^{N}f(\bar{X}_{t}^{N,j})-\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]\right|\right]\leq C_{t}\frac{1}{\sqrt{N}}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j}) dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]} dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i}$$

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{j=1}^{N}f(\bar{X}_{t}^{N,j})-\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]\right|\right]\leq C_{t}\frac{1}{\sqrt{N}}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j})} dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{t}^{N,j}) dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i} + \frac{1}{\sqrt{N}}}$$

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{j=1}^{N}f(\bar{X}_{t}^{N,j})-\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]\right|\right]\leq C_{t}\frac{1}{\sqrt{N}}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{t}^{N,j})} dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{t}^{N,j}) dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i} + \frac{1}{\sqrt{N}}}$$

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{j=1}^{N}f(\bar{X}_{t}^{N,j})-\mathbb{E}\left[f(\bar{X}_{t}^{N,i})|\sigma(W^{N})\right]\right|\right]\leq C_{t}\frac{1}{\sqrt{N}}$$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{i=1}^{N} f(X_{t}^{N,j})} dW_{t}^{N} - X_{t-}^{N,i} dZ_{t}^{N,i} + \frac{\ln N}{\sqrt{N}}$$

$$d\bar{X}_{t}^{N,i} = -\alpha \bar{X}_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{t}^{N,j}) dW_{t}^{N} - \bar{X}_{t-}^{N,i} d\bar{Z}_{t}^{N,i} + \frac{1}{\sqrt{N}}}$$

conditional LLN:

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{j=1}^N f(\bar{X}_t^{N,j}) - \mathbb{E}\left[f(\bar{X}_t^{N,i})|\sigma(W^N)\right]\right|\right] \leq C_t \frac{1}{\sqrt{N}}$$

Grönwall's lemma:

$$\mathbb{E}\left[\sup_{s < t} \left| X_s^{N,i} - \bar{X}_s^{N,i} \right| \right] \le C_t \frac{\ln N}{\sqrt{N}}$$

• $dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$

- $dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$
- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- Define W^N by : $B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$

- $dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$
- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- Define W^N by : $B_{A^N_t} = \int_0^t \sqrt{\sum_{j=1}^N f(X^{N,j}_s)} dW^N_s$

Problem 1 : W^N depends on B depends on \mathbf{Z} depends on $(\bar{\pi}^j)_{j\geq 1}$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- Define W^N by : $B_{A^N_t} = \int_0^t \sqrt{\sum_{j=1}^N f(X^{N,j}_s)} dW^N_s$

Problem 1 : W^N depends on B depends on \mathbf{Z} depends on $(\bar{\pi}^j)_{j\geq 1}$ Solution :

- decoupling jump times and jump heights
- (jump heights, jump times) \rightarrow (B, time-change)

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- Define W^N by : $B_{A^N_t} = \int_0^t \sqrt{\sum_{j=1}^N f(X^{N,j}_s)} dW^N_s$

Problem 1: W^N depends on B depends on \mathbf{Z} depends on $(\bar{\pi}^j)_{j\geq 1}$ Solution :

- decoupling jump times and jump heights
- (jump heights, jump times) \rightarrow (B, time-change)

$$\longrightarrow \left\{ \begin{array}{l} (\mathbf{Z}'_n)_n \text{ random walk (jump heights)} \\ (\mathbf{N}_t)_t \text{ counting process with compensator } A_t^N \end{array} \right.$$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- Define W^N by : $B_{A^N_t} = \int_0^t \sqrt{\sum_{j=1}^N f(X^{N,j}_s)} dW^N_s$

Problem 1: W^N depends on B depends on \mathbf{Z} depends on $(\bar{\pi}^j)_{j\geq 1}$ Solution :

- decoupling jump times and jump heights
- (jump heights, jump times) \rightarrow (B, time-change)

$$\longrightarrow \left\{ \begin{array}{l} (\mathbf{Z}'_n)_n \text{ random walk (jump heights)} \\ (\mathbf{N}_t)_t \text{ counting process with compensator } A_t^N \end{array} \right.$$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{A_t^N} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define B by KMT coupling : $|\mathbf{Z}_t \sigma B_t| \leq E \ln(t \vee 2)$
- ullet Define W^N by : $B_{A^N_t} = \int_0^t \sqrt{\sum_{j=1}^N f(X^{N,j}_s)} dW^N_s$

Problem 1: W^N depends on B depends on \mathbf{Z} depends on $(\bar{\pi}^j)_{j\geq 1}$ Solution :

- decoupling jump times and jump heights
- (jump heights, jump times) \rightarrow (B, time-change)

$$\longrightarrow \left\{ \begin{array}{l} (\mathbf{Z}'_n)_n \text{ random walk (jump heights)} \\ (\mathbf{N}_t)_t \text{ counting process with compensator } A_t^N \end{array} \right.$$

Replace $\mathbf{Z}_{A_t^N}$ by $\mathbf{Z}_{\mathbf{N}_t}'$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}'_{\mathbf{N}_t} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}_{\mathbf{N}_t}' - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

• Define B by KMT coupling : $|\mathbf{Z}'_n - \sigma B_n| \leq E \ln(n \vee 2)$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}'_{\mathbf{N}_t} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define *B* by KMT coupling : $|\mathbf{Z}'_n \sigma B_n| \leq E \ln(n \vee 2)$
- Change of time

$$|B_{\mathbf{N}_t} - B_{A_t^N}| \le \dots$$

- $dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}'_{\mathbf{N}_t} \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$
- Define *B* by KMT coupling : $|\mathbf{Z}'_n \sigma B_n| \leq E \ln(n \vee 2)$
- Change of time

$$|B_{\mathbf{N}_t} - B_{A_t^N}| \le \dots$$

• Define W^N by : $B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}'_{\mathbf{N}_t} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define *B* by KMT coupling : $|\mathbf{Z}'_n \sigma B_n| \leq E \ln(n \vee 2)$
- Change of time

$$|B_{\mathbf{N}_t} - B_{A_t^N}| \le \dots$$

• Define W^N by : $B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$

Problems:

• BMs are not Lipschitz

•
$$dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} d\mathbf{Z}'_{\mathbf{N}_t} - \int_{\mathbb{R}_+} X_{t-}^{N,i} \mathbb{1}_{\left\{z \le f(X_{t-}^{N,i})\right\}} d\bar{\pi}^i(t,z)$$

- Define *B* by KMT coupling : $|\mathbf{Z}'_n \sigma B_n| \leq E \ln(n \vee 2)$
- Change of time

$$|B_{\mathbf{N}_t} - B_{A_t^N}| \le \dots$$

• Define W^N by : $B_{A_t^N} = \int_0^t \sqrt{\sum_{j=1}^N f(X_s^{N,j})} dW_s^N$

Problems:

- BMs are not Lipschitz
- N still depend on jump heights through its rate

Let
$$N \in \mathbb{N}^*, \delta = \delta(N) > 0$$
,
 $X_t^{N,1} = X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z)$

$$+ \frac{1}{\sqrt{N}} \sum_{i=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

Let
$$N \in \mathbb{N}^*$$
, $\delta = \delta(N) > 0$,

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u)$$

$$\sum_{j=1}^{N} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} u\mathbb{1}_{\left\{z\leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u)$$

Let
$$N \in \mathbb{N}^*$$
, $\delta = \delta(N) > 0$,

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \end{split}$$

$$\begin{split} & \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \\ & = \sum_{k=0}^{t/\delta - 1} \sum_{i=1}^{N} \int_{[k\delta,(k+1)\delta[\times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{k\delta}^{N,j})\right\}} d\pi^{j}(s,z,u) + R_{t}^{1} \end{split}$$

Let
$$N \in \mathbb{N}^*, \delta = \delta(N) > 0$$
,

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,i})\right\}} d\pi^{j}(s,z,u) \end{split}$$

$$\begin{split} &\sum_{j=1}^{N} \int_{[0,t]\times\mathbb{R}_{+}\times\mathbb{R}} u\mathbb{1}_{\left\{z\leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \\ &= \sum_{k=0}^{t/\delta-1} \sum_{j=1}^{N} \int_{[k\delta,(k+1)\delta[\times\mathbb{R}_{+}\times\mathbb{R}]} u\mathbb{1}_{\left\{z\leq f(X_{k\delta}^{N,j})\right\}} d\pi^{j}(s,z,u) + R_{t}^{1} \\ &= \sum_{t/\delta-1} \mathbf{Z}_{\mathbb{N}_{s}^{k}}^{k} + R_{t}^{1} \end{split}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + R_{t}^{1}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + R_{t}^{1}$$

• $\mathbf{Z}_n^k = \sum_{l=1}^n U_l^k$ random walk (3rd variable of $\pi^j_{|[k\delta,(k+1)\delta[imes\mathbb{R}_+ imes\mathbb{R}]}$)

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + R_{t}^{1}$$

- $\mathbf{Z}_n^k = \sum_{l=1}^n U_l^k$ random walk (3rd variable of $\pi^j_{|[k\delta,(k+1)\delta[imes\mathbb{R}_+ imes\mathbb{R}]}$)
- $\mathbf{N}_s^k = \sum_{j=1}^N \bar{\pi}^j([k\delta, k\delta + s] \times [0, f(X_{k\delta}^{N,j})])$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + R_{t}^{1}$$

- $\mathbf{Z}_n^k = \sum_{l=1}^n U_l^k$ random walk (3rd variable of $\pi^j_{|[k\delta,(k+1)\delta[imes\mathbb{R}_+ imes\mathbb{R}]}$)
- $\mathbf{N}_s^k = \sum_{j=1}^N \bar{\pi}^j([k\delta, k\delta + s] \times [0, f(X_{k\delta}^{N,j})])$

Remark: \mathbf{Z}^k independent of $\bar{\pi}^j$ and $X_{k\delta}^{N,j}$ (so of \mathbf{N}^k)

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + R_{t}^{1}$$

- $\mathbf{Z}_n^k = \sum_{l=1}^n U_l^k$ random walk (3rd variable of $\pi^j_{|[k\delta,(k+1)\delta[imes\mathbb{R}_+ imes\mathbb{R}]}$)
- $\mathbf{N}_s^k = \sum_{j=1}^N \bar{\pi}^j([k\delta, k\delta + s] \times [0, f(X_{k\delta}^{N,j})])$

Remark: \mathbf{Z}^k independent of $\bar{\pi}^j$ and $X_{k\delta}^{N,j}$ (so of \mathbf{N}^k)

•

$$|R_t^1| \leq \frac{1}{\sqrt{N}} \left| \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \left(\mathbb{1}_{\left\{ z \leq f(X_{\tau(s-)}^{N,j}) \right\}} - \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} \right) d\pi^j(s,z,u) \right|$$

with
$$\tau(s) = k\delta$$
 for $s \in [k\delta, (k+1)\delta[$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

$$\begin{aligned} \left| X_{t}^{N,1} - X_{\tau(t)}^{N,1} \right| &\leq \alpha \int_{\tau(t)}^{t} \left| X_{s}^{N,1} \right| ds + \int_{[\tau(t),t] \times \mathbb{R}_{+}} \left| X_{s-}^{N,1} \right| \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,1}) \right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \left| \sum_{j=1}^{N} \int_{[\tau(t),t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} d\pi^{j}(s,z,u) \right| \end{aligned}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

$$\begin{aligned} \left| X_{t}^{N,1} - X_{\tau(t)}^{N,1} \right| &\leq \alpha \int_{\tau(t)}^{t} \left| X_{s}^{N,1} \right| ds + \int_{[\tau(t),t] \times \mathbb{R}_{+}} \left| X_{s-}^{N,1} \right| \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,1}) \right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \left| \sum_{i=1}^{N} \int_{[\tau(t),t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} d\pi^{j}(s,z,u) \right| \end{aligned}$$

$$\mathbb{E}\left[\left|X_t^{N,1} - X_{\tau(t)}^{N,1}\right|\right] \leq C_T(t - \tau(t)) + \frac{C_T\sqrt{t - \tau(t)}}{\sqrt{t - \tau(t)}}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

$$\begin{aligned} \left| X_{t}^{N,1} - X_{\tau(t)}^{N,1} \right| &\leq \alpha \int_{\tau(t)}^{t} \left| X_{s}^{N,1} \right| ds + \int_{[\tau(t),t] \times \mathbb{R}_{+}} \left| X_{s-}^{N,1} \right| \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,1}) \right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \left| \sum_{j=1}^{N} \int_{[\tau(t),t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} d\pi^{j}(s,z,u) \right| \end{aligned}$$

$$\mathbb{E}\left[\left|X_{t}^{N,1}-X_{\tau(t)}^{N,1}\right|\right] \leq C_{T}(t-\tau(t)) + C_{T}\sqrt{t-\tau(t)} \leq C_{T}\sqrt{\delta}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

$$|R_t^1| \leq \frac{1}{\sqrt{N}} \left| \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \left(\mathbb{1}_{\left\{ z \leq f(X_{\tau(s-)}^{N,j}) \right\}} - \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} \right) d\pi^j(s,z,u) \right|$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

Sketch of proof of (2): by BDG inequality

$$\begin{aligned} |R_t^1| &\leq \frac{1}{\sqrt{N}} \left| \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \left(\mathbb{1}_{\left\{ z \leq f(X_{\tau(s-)}^{N,j}) \right\}} - \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} \right) d\pi^j(s,z,u) \right| \\ & \mathbb{E}\left[|R_t^1| \right] \leq \sigma \left(\int_0^t \mathbb{E}\left[|f(X_s^{N,1}) - f(X_{\tau(s)}^{N,1})| \right] ds \right)^{1/2} \end{aligned}$$

Lemmas

(1) For all $t \leq T$,

$$\mathbb{E}\left[|X_t^{N,1} - X_{\tau(t)}^{N,1}|\right] \le C_T \delta^{1/2}$$

(2) For all $t \leq T$,

$$\mathbb{E}\left[|R_t^1|\right] \leq C_T \delta^{1/4}$$

Sketch of proof of (2): by BDG inequality

$$\begin{aligned} |R_t^1| &\leq \frac{1}{\sqrt{N}} \left| \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \left(\mathbb{1}_{\left\{ z \leq f(X_{\tau(s-)}^{N,j}) \right\}} - \mathbb{1}_{\left\{ z \leq f(X_{s-}^{N,j}) \right\}} \right) d\pi^j(s,z,u) \right| \\ &\mathbb{E}\left[|R_t^1| \right] \leq \sigma \left(\int_0^t \mathbb{E}\left[|f(X_s^{N,1}) - f(X_{\tau(s)}^{N,1})| \right] ds \right)^{1/2} \leq C_T \delta^{1/4} \end{aligned}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 か900

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^k}^k + \delta^{1/4} \end{split}$$

$$\begin{aligned} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} \end{aligned}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} \end{split}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\begin{aligned} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2} \end{aligned}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)E^k\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)\right] \mathbb{E}\left[E^k\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)\right] \mathbb{E}\left[E^k\right]$$
$$\leq C \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \ln(\mathbb{E}\left[\mathbf{N}_{\delta}^k\right] + 2)$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) + \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)\right] \mathbb{E}\left[E^k\right]$$

$$\leq C \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \ln(\mathbb{E}\left[\mathbf{N}_{\delta}^k\right] + 2) \leq C_t \frac{\ln(N\delta||f||_{\infty})}{\delta\sqrt{N}}$$

KMT approximation

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + R_{t}^{2}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

Remark: E^k and B^k independent of $X_{k\delta}^{N,j}, \bar{\pi}^j, \mathbf{N}^k$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)\right] \mathbb{E}\left[E^k\right]$$

$$\leq C \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \ln(\mathbb{E}\left[\mathbf{N}_{\delta}^k\right] + 2) \leq C_t \frac{\ln(N\delta||f||_{\infty})}{\delta\sqrt{N}}$$

KMT approximation

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sigma B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

KMT approximation : let B^k BM such that

$$|\mathbf{Z}_n^k - \sigma B_n^k| \le E^k \ln(n \vee 2)$$

Remark: E^k and B^k independent of $X_{k\delta}^{N,j}, \bar{\pi}^j, \mathbf{N}^k$

$$\mathbb{E}\left[|R_t^2|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\ln(\mathbf{N}_{\delta}^k + 2)\right] \mathbb{E}\left[E^k\right]$$

$$\leq C \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \ln(\mathbb{E}\left[\mathbf{N}_{\delta}^k\right] + 2) \leq C_t \frac{\ln(N\delta||f||_{\infty})}{\delta\sqrt{N}}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_{\delta}^{N,k} := \sqrt{\frac{\delta}{\mathbf{N}_{\delta}^{k}}} B_{\mathbf{N}_{\delta}^{k}}^{k} \end{split}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} B_{\mathbf{N}_{\delta}^{k}}^{k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ & W_{\delta}^{N,k} := \sqrt{\frac{\delta}{\mathbf{N}_{\delta}^{k}}} B_{\mathbf{N}_{\delta}^{k}}^{k} \end{split}$$

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} W_\delta^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_\delta^{N,k} := & \sqrt{\frac{\delta}{\mathbf{N}_\delta^k}} B_{\mathbf{N}_\delta^k}^k \end{split}$$

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} W_\delta^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_\delta^{N,k} := \sqrt{\frac{\delta}{\mathbf{N}_\delta^k}} B_{\mathbf{N}_\delta^k}^k \end{split}$$

Lemma

 $W^{N,k}_\delta \sim \mathcal{N}(0,\delta)$ independent of \mathbf{N}^k_δ

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} W_\delta^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_\delta^{N,k} := \sqrt{\frac{\delta}{\mathbf{N}_\delta^k}} B_{\mathbf{N}_\delta^k}^k \end{split}$$

Lemma

 $\mathcal{W}^{ extit{N},k}_{\delta} \sim \mathcal{N}(0,\delta)$ independent of \mathbf{N}^k_{δ}

Proof : conditionally on $\mathbf{N}_{\delta}^k,\ B_{\mathbf{N}_{\delta}^k}^k \sim \mathcal{N}(\mathbf{0},\mathbf{N}_{\delta}^k)$

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} W_\delta^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_\delta^{N,k} := & \sqrt{\frac{\delta}{\mathbf{N}_\delta^k}} B_{\mathbf{N}_\delta^k}^k \end{split}$$

Lemma

 $\mathcal{W}^{ extit{N},k}_{\delta} \sim \mathcal{N}(0,\delta)$ independent of \mathbf{N}^k_{δ}

Proof : conditionally on $\mathbf{N}_{\delta}^k,\ B_{\mathbf{N}_s^k}^k \sim \mathcal{N}(0,\mathbf{N}_{\delta}^k)$

$$\Rightarrow \mathbb{E}\left[g(W^{N,k}_{\delta})|\mathbf{N}^k_{\delta}\right] = \mathbb{E}\left[g(\sqrt{\frac{\delta}{\mathbf{N}^k_{\delta}}}B^k_{\mathbf{N}^k_{\delta}})|\mathbf{N}^k_{\delta}\right]$$

$$\begin{split} X_t^{N,1} = & X_0^{N,1} - \alpha \int_0^t X_s^{N,1} ds - \int_{[0,t] \times \mathbb{R}_+} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^1(s,z) \\ &+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} W_\delta^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ W_\delta^{N,k} := & \sqrt{\frac{\delta}{\mathbf{N}_\delta^k}} B_{\mathbf{N}_\delta^k}^k \end{split}$$

Lemma

 $\mathcal{W}^{N,k}_{\delta} \sim \mathcal{N}(0,\delta)$ independent of \mathbf{N}^k_{δ}

Proof : conditionally on $\mathbf{N}_{\delta}^k,\ B_{\mathbf{N}_s^k}^k \sim \mathcal{N}(0,\mathbf{N}_{\delta}^k)$

$$\Rightarrow \mathbb{E}\left[g(W_{\delta}^{N,k})|\mathbf{N}_{\delta}^{k}\right] = \mathbb{E}\left[g(\sqrt{\frac{\delta}{\mathbf{N}_{\delta}^{k}}}B_{\mathbf{N}_{\delta}^{k}}^{k})|\mathbf{N}_{\delta}^{k}\right] = \mathbb{E}\left[g(\mathcal{N}(0,\delta))\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{\mathbf{N}_{\delta}^{k}}{\delta}} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{N_{\delta}^{k}}{\delta}} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\left|\sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} - \sqrt{\sum_{j=1}^N f(X_{k\delta}^{N,j})}\right| \cdot \left|W_\delta^{N,k}\right|\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta-1} \mathbb{E}\left[\left|\sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} - \sqrt{\sum_{j=1}^N f(X_{k\delta}^{N,j})}\right|\right] \cdot \mathbb{E}\left[\left|W_\delta^{N,k}\right|\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\left|\sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} - \sqrt{\sum_{j=1}^N f(X_{k\delta}^{N,j})}\right|\right] \cdot \mathbb{E}\left[\left|\mathbf{W}_\delta^{N,k}\right|\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\left|\sqrt{\frac{\mathbf{N}_\delta^k}{\delta}} - \sqrt{\sum_{j=1}^N f(X_{k\delta}^{N,j})}\right|\right] \cdot \sqrt{\delta}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\left|\sqrt{\mathbf{N}_{\delta}^k} - \sqrt{\delta \sum_{j=1}^N f(X_{k\delta}^{N,j})}\right|\right]$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \sigma \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \sqrt{\sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} + R_{t}^{3}$$

$$\mathbb{E}\left[|R_t^3|\right] \leq \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[\left|\sqrt{\mathbf{N}_{\delta}^k} - \sqrt{\delta \sum_{j=1}^N f(X_{k\delta}^{N,j})}\right|\right] \\ \leq C_T \frac{1}{\delta \sqrt{N}}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G^{c}}\right]$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G^{c}}\right]$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[(E_{\delta}^{k})^{2}\right]^{1/2}\mathbb{P}\left(G^{c}\right)^{1/2}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[\left(E_{\delta}^{k}\right)^{2}\right]^{1/2}\mathbb{P}\left(G^{c}\right)^{1/2}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right)$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[\left(E_{\delta}^{k}\right)^{2}\right]^{1/2}\mathbb{P}\left(G^{c}\right)^{1/2}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[\left(E_{\delta}^{k}\right)^{2}\right]^{1/2}\mathbb{P}\left(G^{c}\right)^{1/2}$$

$$\begin{split} E^k_{\delta} &:= \left| \sqrt{\mathbf{N}^k_{\delta}} - \sqrt{\delta \sum_{j=1}^N f(X^{N,j}_{k\delta})} \right| \\ G &:= \left\{ \mathbf{N}^k_{\delta} \geq N\delta(\inf f)/2 \right\} \\ \mathbb{P}(G^c) \leq \mathbb{P}\left(\mathbf{N}^k_{\delta} - \delta \sum_{j=1}^N f(X^{N,j}_{k\delta}) < -N\delta(\inf f)/2 \right) \\ \leq \mathbb{P}\left(|\tilde{\mathbf{N}}^k_{\delta}| > N\delta(\inf f)/2 \right) \leq e^{-CN\delta} \end{split}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + \mathbb{E}\left[\left(E_{\delta}^{k}\right)^{2}\right]^{1/2}\mathbb{P}\left(G^{c}\right)^{1/2}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k}\right] = \mathbb{E}\left[E_{\delta}^{k}\mathbb{1}_{G}\right] + C\sqrt{N\delta}e^{-CN\delta}$$

$$\begin{split} E^k_{\delta} &:= \left| \sqrt{\mathbf{N}^k_{\delta}} - \sqrt{\delta \sum_{j=1}^N f(X^{N,j}_{k\delta})} \right| \\ G &:= \left\{ \mathbf{N}^k_{\delta} \geq N\delta(\inf f)/2 \right\} \\ \mathbb{P}(G^c) \leq \mathbb{P}\left(\mathbf{N}^k_{\delta} - \delta \sum_{j=1}^N f(X^{N,j}_{k\delta}) < -N\delta(\inf f)/2 \right) \\ \leq \mathbb{P}\left(|\tilde{\mathbf{N}}^k_{\delta}| > N\delta(\inf f)/2 \right) \leq \mathrm{e}^{-CN\delta} \\ \mathbb{E}\left[E^k_{\delta} \mathbb{1}_G \right] \\ \mathbb{E}\left[E^k_{\delta} \right] &= \mathbb{E}\left[E^k_{\delta} \mathbb{1}_G \right] + C\sqrt{N\delta} \mathrm{e}^{-CN\delta} \end{split}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right]$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = \mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] + C\sqrt{N\delta}e^{-CN\delta}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = \mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] + C\sqrt{N\delta} e^{-CN\delta}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] + C\sqrt{N\delta} e^{-CN\delta}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(|\tilde{\mathbf{N}}_{\delta}^{k}| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = C + C\sqrt{N\delta} e^{-CN\delta}$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = C + C\sqrt{N\delta} e^{-CN\delta} \le C$$

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = C + C\sqrt{N\delta} e^{-CN\delta} \le C$$

$$\mathbb{E}\left[|R_{t}^{3}| \right] \le \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[E_{\delta}^{k} \right]$$

Control of R_t^3

$$E_{\delta}^{k} := \left| \sqrt{\mathbf{N}_{\delta}^{k}} - \sqrt{\delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \right|$$

$$G := \left\{ \mathbf{N}_{\delta}^{k} \ge N\delta(\inf f)/2 \right\}$$

$$\mathbb{P}(G^{c}) \le \mathbb{P}\left(\mathbf{N}_{\delta}^{k} - \delta \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) < -N\delta(\inf f)/2 \right)$$

$$\le \mathbb{P}\left(\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| > N\delta(\inf f)/2 \right) \le e^{-CN\delta}$$

$$\mathbb{E}\left[E_{\delta}^{k} \mathbb{1}_{G} \right] \le C(N\delta)^{-1/2} \mathbb{E}\left[\left| \tilde{\mathbf{N}}_{\delta}^{k} \right| \right] \le C(N\delta)^{-1/2} N^{1/2} \delta^{1/2} = C$$

$$\mathbb{E}\left[E_{\delta}^{k} \right] = C + C\sqrt{N\delta} e^{-CN\delta} \le C$$

$$\mathbb{E}\left[|R_{t}^{3}| \right] \le \frac{1}{\sqrt{N}} \sum_{k=0}^{t/\delta - 1} \mathbb{E}\left[E_{\delta}^{k} \right] \le C \frac{1}{\delta\sqrt{N}}$$

Construction of BM W^N

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \sigma \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \end{split}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^N - W_{k\delta}^N$$

Construction of BM W^N

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^{N} - W_{k\delta}^{N}$$

Construction of W^N :

ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_\delta = \mathcal{W}^{N,k}_\delta$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \sigma \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} W_{\delta}^{N,k} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^{N} - W_{k\delta}^{N}$$

- ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_{\delta} = W^{N,k}_{\delta}$
- for $k\delta \leq s < (k+1)\delta$,

$$W_s^N := \sum_{l=0}^{k-1} W_\delta^{N,l} + \mathbf{W}_{s-k\delta}^{N,k}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \sigma \sum_{k=0}^{t/\delta - 1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j}) W_{\delta}^{N,k}} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^{N} - W_{k\delta}^{N}$$

- ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_{\delta} = W^{N,k}_{\delta}$
- for $k\delta \leq s < (k+1)\delta$,

$$W_s^N := \sum_{l=0}^{k-1} W_\delta^{N,l} + \mathbf{W}_{s-k\delta}^{N,k}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{\tau(s)}^{N,j}) dW_{s}^{N}} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^N - W_{k\delta}^N$$

- ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_{\delta} = W^{N,k}_{\delta}$
- for $k\delta \leq s < (k+1)\delta$,

$$W_s^{\mathcal{N}} := \sum_{l=0}^{k-1} W_\delta^{\mathcal{N},l} + \mathbf{W}_{s-k\delta}^{\mathcal{N},k}$$

Construction of BM W^N

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{\tau(s)}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^{N} - W_{k\delta}^{N}$$

- ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_{\delta} = W^{N,k}_{\delta}$
- for $k\delta \leq s < (k+1)\delta$,

$$W_s^N := \sum_{l=0}^{k-1} W_\delta^{N,l} + \mathbf{W}_{s-k\delta}^{N,k}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$
$$+ \sigma \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j}) dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}}$$

Let W^N BM such that

$$W_{\delta}^{N,k} =: W_{(k+1)\delta}^{N} - W_{k\delta}^{N}$$

- ullet let $\mathbf{W}^{N,k}$ BM such that $\mathbf{W}^{N,k}_{\delta} = W^{N,k}_{\delta}$
- for $k\delta \leq s < (k+1)\delta$,

$$W_s^N := \sum_{l=0}^{k-1} W_\delta^{N,l} + \mathbf{W}_{s-k\delta}^{N,k}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{i=1}^{N} f(X_{s}^{N,i})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ \bar{X}_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\mathbb{E}\left[f(\bar{X}_{s}^{N,1}) | \sigma(W^{N})\right]} dW_{s}^{N} \end{split}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ \bar{X}_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\mathbb{E}\left[f(\bar{X}_{s}^{N,1}) | \sigma(W^{N})\right]} dW_{s}^{N} \end{split}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ \bar{X}_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{N,j})} dW_{s}^{N} + \frac{1}{\sqrt{N}} \end{split}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ \bar{X}_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{N,j})} dW_{s}^{N} + \frac{1}{\sqrt{N}} \end{split}$$

$$X_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$+ \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}}$$

$$\bar{X}_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{0}^{\infty} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)$$

$$\bar{X}_{t}^{N,1} = X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z)
+ \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{N,j})} dW_{s}^{N} + \frac{1}{\sqrt{N}}$$

Grönwall's lemma:

$$\mathbb{E}\left[\sup_{s\leq t}\left|X_{s}^{N,1}-\bar{X}_{s}^{N,1}\right|\right]\leq C_{T}\left(\delta^{1/4}+\frac{\ln(N\delta)}{\delta\sqrt{N}}\right)$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ & + \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{s}^{N,j})} dW_{s}^{N} + \delta^{1/4} + \frac{\ln(N\delta)}{\delta \sqrt{N}} \\ \bar{X}_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0}^{t} \bar{X}_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} \bar{X}_{s-}^{N,1} \mathbb{1}_{\left\{z \leq f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \end{split}$$

$$\begin{split} X_{t}^{N,1} = & X_{0}^{N,1} - \alpha \int_{0} X_{s}^{N,1} ds - \int_{[0,t] \times \mathbb{R}_{+}} X_{s-}^{N,1} \mathbb{1}_{\left\{z \le f(\bar{X}_{s-}^{N,1})\right\}} d\bar{\pi}^{1}(s,z) \\ &+ \int_{0}^{t} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\bar{X}_{s}^{N,j})} dW_{s}^{N} + \frac{1}{\sqrt{N}} \end{split}$$

Grönwall's lemma:

$$\mathbb{E}\left[\sup_{s\leq t}\left|X_{s}^{N,1}-\bar{X}_{s}^{N,1}\right|\right]\leq C_{T}\left(\delta^{1/4}+\frac{\ln(N\delta)}{\delta\sqrt{N}}\right)\leq C_{T}\frac{(\ln N)^{1/5}}{N^{1/10}}$$

Summary of the coupling

Step	Locale martingale	Error
Euler approximation	$rac{1}{\sqrt{N}}\sum_{k=0}^{t/\delta-1}\mathbf{Z}_{\mathbf{N}_{\delta}^{k}}^{k}$	$\delta^{1/4}$
KMT approximation	$rac{1}{\sqrt{N}}\sum_{k=0}^{t/\delta-1}B_{\mathbf{N}_{\delta}^{k}}^{k}$	$\frac{\ln(N\delta)}{\delta\sqrt{N}}$
Riemann sum	$\sum_{k=0}^{t/\delta-1} \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(X_{k\delta}^{N,j})} \left(W_{(k+1)\delta}^{N} - W_{k\delta}^{N} \right)$	$\frac{1}{\delta\sqrt{N}}$
Stochastic integral	$\int_0^t \sqrt{\frac{1}{N} \sum_{j=1}^N f(X_s^{N,j})} dW_s^N$	$\delta^{1/4}$

Bibliography (1)

- E., Löcherbach, Loukianova (2021). Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling. HAL, ArXiv.
- Delattre, Fournier, Hoffman (2016). Hawkes processes on large networks. Annals of Applied Probability.
- Chevallier, Duarte, Löcherbach, Ost (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications.
- E., Löcherbach, Loukianova (2022). Mean field limits for interacting Hawkes processes in a diffusive regime. Bernoulli.
- Komlòs, Major, Tusnàdy (1976). An approximation of partial sums of independent RV's, and the sample DF. II. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.
- Kurtz (1978). Strong approximation theorems for density dependent Markov chains. Stochastic processes and their applications.

Bibliography (2)

- Daley, Vere-Jones (2008). An Introduction to the Theorey of Point Processes: Volume II: General Theory and Structure. Springer.
- Ethier, Kurtz (2008). Markov Processes. Characterization and Convergence. Wiley Series In Probability And Statistics.
- Revuz, Yor (1999). Continuous Martingales and Brownian Motion.
 Springer-Verlag Berlin.

Thank you for your attention!

Questions?

