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Introduction .
Point processes

Thinning

Point process : definitions

Point process (or counting process) Z :
e a random countable set of Ry : Z = {T; : i € N}

e a random point measureon Ry, : Z =} . 0T,
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e a random point measureon Ry, : Z =} . 0T,

A process A is the stochastic intensity of Z if :

V0 < a < b,E[Z([a, b])|Fa] = E UbAtdt

7]

Marked point process Z = {(T;, U;) : i € N} (U; iid)
Notation abuse U; =: U(T;)
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Introduction

Point processes

Thinning

Thinning

7w Poisson measure on R x R, with intensity dt.dz
A predictable and positive process

ZA:/ 1, dn(t, z
(A) e, ENO) (t,z)

Then : X is the stochastic intensity of Z
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Neural networks model
Model Definitions of the systems
Limit system

Modeling in neuroscience

Neural activity = Set of spike times
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Model Definitions of the systems
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Modeling in neuroscience

Neural activity = Set of spike times
= Point process

Spike rate depends on the potential of the neuron
Each spike modifies the potential of the neurons
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= point process with intensity f(XtI\I_’i)
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Neural networks model
Model Definitions of the systems
Limit system

Modeling in neuroscience

Neural activity = Set of spike times
= Point process

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of N neurons :

. ZN" = number of spikes of neuron i emitted in [0, £]
= point process with intensity f(XtN_")
e XN = potential of neuron i

Here, XN/ solves an SDE directed by (ZNJ)13<N
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Neural networks model
Model Definitions of the systems
Limit system

Mean field limit

N—particle system :

. ZNI / / z<f(XN')}d7r (s, z)
o axNi = b(Xt'\I’i)dt—i—Z/ M(t)n{zg(xm}dwf(t,z)

7 iid Poisson measures with intensity dt - dz
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N—particle system :

t (e%e]
N,i _ . i
.7 _/0 /O Ui 47(5.2)
. . N m s .
o XM = (XM )dt + Y /0 FOL i 97(2.2)
j=1 T
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Study the limit N — co = rescale the sum :
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Mean field limit

N—particle system :
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. . N m s .
o XM = (XM )dt + Y /0 FOL i 97(2.2)
j=1 T

7 iid Poisson measures with intensity dt - dz

Study the limit N — co = rescale the sum :
e linear scaling N~1 (LLN) :
[Delattre et al. (2016)] (Hawkes process, t/(t) = 1),
[Chevallier et al. (2019)] (¢//(t) = w(j,i))
e diffusive scaling N=%/2 (CLT) :
[E. et al. (2022)] random and centered v/i(s)
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Neural networks model
Definitions of the systems
Limit system

Diffusive scaling

N oo
N,i N,i § : j
dXt = —OéXt ' dt‘f'iw /0 /RU]I{Z<);(Xt/\/,j)}d7TJ(t7Z7 U)
=170
JF

- N,i i
'/0 /]RX]I{ZQ((X!V")}C/W (t,z,u)

7/ iid Poisson measures with intensity dt - dz - dv(u)
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1

JF
/ /X ot X,\,,)}dﬂ"(t,z, u)

7/ iid Poisson measures W|th intensity dt - dz - dv(u)
v probability measure on R centered with 02 = fR uv?dv(u

Dynamic of XN/ :
° XtN’i = XNe=alt=9) if the system does not jump in [s, t]
. XtN’i = th\i’i + ﬁ if a neuron j # i emits a spike at t

. XtN’i = 0 if neuron i emits a spike at t
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Neural networks model
Model Definitions of the systems
Limit system

N—neurons network dynamics

dXM = —axMNide+

N
1 Z - N Ni 7N,i
ﬁ : UJ(t)dZt J*Xt_' dZt '

j=1
JF
T T
0.5 B
0
—0.5
| |
0 2 4 6 8 10
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (1)

XN = ax M L /
dX; dt + Z ]R{+><]R z<f(X ,J)}dw (t,z,u)
J?é’

N,i
— X /R+XR {z<f X"”)} t z,u)

Xavier ERNY Conditional propagation of chaos 9/33



Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (1)

XN = ax M L /
dX; dt + Z R+XR z<f(X ,J)}dﬁ (t,z,u)
Hé'

N,i
— X /R+XR {z<f X"”)} t z,u)

Xavier ERNY Conditional propagation of chaos 9/33



Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (1)

XN = XN - /
dX; dt + Z R+XR z<f(XNJ)}d7r (t,z,u)
Hé'

N,i
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (1)

XM = o x 1 /
dX; dt + Z R+XR z<f(XNJ)}d7r (t,z,u)
Hé'

- X0 dr'(t

; J
t \/72/0 t]XR+><]R z<f(XsN,’1)}d7T (57 Z, U)
dXi = - aX{dt+ dM,

—)_(i_/ 1 o ndr'(t,z,u
" Jr. xR {=z=f(X)} ( )
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (2)

N
MN .— L / ul dmi(s,z,u
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Limit system : heuristic (2)

N
MN .— L / ul dmi(s,z,u

M is an integral wrt a BM W
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (2)

~dml(s,z,u
t \FZ/O t]xR+><R ZSf(XSNj)} ( )
M is an |ntegral wrt a BM W

1 N

() = tim (MY}, = lim 02/0 557 F(x)ds

j=1
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (2)

~dml(s,z,u
t \FZ/O t]xR+><R ZSf(XSNj)} ( )
M is an |ntegral wrt a BM W

N

t
= . . 1 .
(M) = I|Arln (M), = I|,(In 02/0 Njg_l F(XN4)ds
Then M should satisfy
_ t 1 N .
M; = U/(; IiAr;n NJE 1 f(Xé)dWs
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (3)
Mt:afot\/“,’\}‘ NZ LX) dWs
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Model Definitions of the systems
Limit system

Limit system : heuristic (3)
M=o [y \/Ii,\r;n LN F(X)dws

N
dX| = —aXidt + o lim Z F(XE)dW, — X! _dZ]

_/:

N
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (3)
M=o [y \/Ii,\r;n LN F(X)dws

. = 1 o vi Fi
dX{ = —aX{dt +o,|lim Zf(Xé)th_Xt—dZt
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (3)
M=o [y \/Ii,\r;n LN F(X)dws

N
Z F(X)dW, — X! dZ!

_/:

dX{ = —aX/dt —
t aX.dt + o | N

Conditionally on W, the X' are i.i.d.
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Neural networks model
Model Definitions of the systems
Limit system

Limit system : heuristic (3)
M=o [y \/Ii,\r;n LN F(X)dws

im > (%) =E [f(XDIo(W)
j=1
dX{ = —aXidt + o\ [E [f(X])|o(W)]dW, — K{_dZ]
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Neural networks model
Model Definitions of the systems
Limit system

Assumptions

o forall x e R, 0 < inff < f(x) <|[f]loc < 00
e x — xf(x) and x — f(x) is Lipschitz
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Neural networks model
Model Definitions of the systems
Limit system

Assumptions

o forall x e R, 0 < inff < f(x) <|[f]loc < 00
e x — xf(x) and x — f(x) is Lipschitz

ex : 0

f(x)=e+ p s Yy e )

X0
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Convergence of (XV'7);<i<n

N, i
dxM' = — axl dt+—§ /RXR Z<f(Xt,\£j)}d7rJ(t,Z,u)
+
J?é’

N,i i
_ /R+XRXt ]l{zgf(xt’\’_”')}dﬂ (t,z,u)

d)_q = — Oz)_q.dt%-a\/Mth —/ Xgi]l{z<f()’<i )}d%i(t,z)
Ry S A
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Convergence of (XV'7);<i<n

N, i
dxM' = — axl dt+—§ /RXR Z<f(Xt,\£j)}d7rJ(t,z,u)
+
J?é’

N,i i
_ /R+XRXt ]l{zgf(xt’\’_”')}dﬂ (t,z,u)

AR = — aXidt + o/f(F)dW, — / KA pz 1072 2)
Ry ="

Result [E., Locherbach, Loukianova (2021)]

Given N € N*, (7/)1<j<n, there exists a BM WV such that

(In N)Y/5

N1 N1
E[sup ‘xs X! ” < G

0<s<t
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Representation of Poisson processes [Kurtz (1978)]

1

mdPtN —xM'dzl

dxM' = —axNdr +
with

N
PN = / ul . d7TJ s,z,u
t ,Z—; P C ) ( )
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Representation of Poisson processes [Kurtz (1978)]

1

mdPtN —xM'dzl

with
N
PN = / ul . d7T'I s,z,u
t ,Z—; P C ) ( )

PtN = marked point process with compensator

N t _
AN ;:Z/O f(XNY)ds.
j=1

Proposition 16.6.111 [Daley & Vere-Jones (2008)] :
Pl =Z,,

where Z = marked point process with rate 1
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

KMT coupling

1

VN

dX"" = —axMdt + —dzZw — Xz}
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First attempt of coupling
Propagation of chaos Formal proof

KMT coupling

1
VN
Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlos et al. (1976)]) :
there exists BM B such that

|Zt — O'Bt|

1£e —0bt|
50 In(tv2) =

dX"" = —axMdt + —dzZw — Xz}

with E r.r.v. with some exponential moments
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KMT coupling

i i 1 N,i N,
dxX\ = —axMdt + ——dz w — XN dz)
,/N t

Corollary 7.5.5 [Ethier & Kurtz (2008)] ([Komlos et al. (1976)]) :

there exists BM B such that

|Zt70'Bt|
—  _— <E
50 In(tv2) =

with E r.r.v. with some exponential moments
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P In N
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Time-changed Brownian motion

L
VN

In N

dxVi = —axMNidt + o TN

By — X{"'dz +
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Time-changed Brownian motion

1 . .
ﬁdBAtN —xNiazN

In N

dxVi = —axMNidt + o
VN

Proposition V.(3.8) [Revuz & Yor (1999)] :

t
0

where WN is a BM
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dxNi = _axNigt + o
t t \/N

N
1 .
N Z f(XtN«J)thN XN IdZN/ + =
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y 2 ()W — XM dz M =
j=1

dxVi = _axNidt + o
t t \/N

d)_QN’i = —a)_QN’idt—i-U\/E {f()_(fNJ)W(WN)} thN_)_(thdeN’i

conditional LLN :

N
B |5 S0 ) - B [ wm) || < oL

Jj=1

3

Xavier ERNY Conditional propagation of chaos 17 /33



Conditional propa
First attempt of coupling
Propagation of chaos Formal proof

"Naive coupling”

: ni N
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"Naive coupling”

In N

N
. . 1 . . .
dX" = —axMdt + o | = F(XM)dwN — XMz + TN
j=1

=

N
N N 1 N niang 1
dXN = —aXNdt + o FXNYawWN — XNiazN
=1 N

=|

J

conditional LLN :

1N on, N 1
E Ngf(xt”)—xa[f(xt” Yo (w")] <G
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"Naive coupling”

In NV

N
. . 1 . . .
dX" = —axMdt + o | = F(XM)dwN — XMz + TN
j=1

=

N
N N 1 N |
dXN = —aXNdt + o FXNYaWN — XNigzNi
=1 N

=|

conditional LLN :

Gronwall’s lemma :

E [sup

s<t

S oSN In N
XSN,I _ XSN,I’:| < Cth
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Problems with the naive coupling (1)
o dX" = —aXMdt+ JodZy — [ X1 {z<f( )}dw( z)

e Define B by KMT coupling : |Z; — 0B < Eln(t V 2)

o Define WN by : By = [5 /S, F(X2)dw N

Problem 1 : W" depends on B depends on Z depends on (7/);>1
Solution :

e decoupling jump times and jump heights
e (jump heights,jump times) — (B, time-change)
N (Z))), random walk (jump heigths)
(N;): counting process with compensator AN

Replace ZA{V by Z,
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Problems with the naive coupling (2)

XtN’I_—aXN’dt-i- ~dZy,— Jp. XA&i]l{z<f(x””)}d7_ri(t’z)
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e Define B by KMT coupling : |Z), — 0B,| < Eln(nV 2)

e Change of time
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

Problems with the naive coupling (2)

VN
e Define B by KMT coupling : |Z), — 0B,| < Eln(nV 2)
e Change of time

o X = —aXMdtt JRdZy — fo, XU, oy

}dT_['i(t, Z)

’BNt - BA{,V’ S e

o Define WN by : By = [5 /S, (X)W

Problems :
e BMs are not Lipschitz
e N still depend on jump heights through its rate
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Pseudo-Euler scheme (1)
Let N € N*,6 = 6(N) > 0,

t
xN1 —x N1 _ xNlgs — N1y -
t 0 o 0 s S 0.e]xR. s— {zgf(xsl\tl)} 7T (S7 z)
1 Y |
+ — / ul adm (s, z,u)
VN Jz; [0,t] xRy xR {Zﬁf(Xs"’J)}
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Pseudo-Euler scheme (1)
Let N € N*,6 = 6(N) > 0,

t
XN’l :XNJ _ XN’ld N XN’l]l d—l
' O T o T T Joger, o e} T (5:2)

N
Z/[O t]xRy xR U]l{z<f(X”f)}d7T (5,2, u)

N
ul dri(s,z,u
; /[o xRy xR {ZSf(XsAﬁ’)} ( )
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Pseudo-Euler scheme (1)
Let N € N*,6 = 6(N) > 0,

t
XN’l :XNJ _ XN’ld N XN’l]l d—l
‘ R A R ol (5:2)

u]l{z<f(x,\,])}d7r S,z,u)

\/7 /[O t]xR4 xR

N
S zZ,Uu
Z /O t] ><R+><R <f(XNJ)} )

t/6—1 N

-3/

ul
k=0 j—1 kd,(k+1)6[xR xR {

1
2<F(XY )}dﬂ' s,z,u)+ R;
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First attempt of coupling
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Pseudo-Euler scheme (1)
Let N € N*,6 = 6(N) > 0,

xN1 —x N1 _ a/t XNlds — /
t
0 0 ° [0,t] xR+

N

N —
Xsﬁl]l{zgf(xs’&l)} d7'(s.2)

1

+ — ul r dmi(s,z,u
\/szl [0,t] xRy xR {ZSf(XSN*J)} ( )

N
ul S d s.z,u
_['ZZ]./[O:t]XRJFxR {ZSf(XS’\ﬁJ)} ( )

t/6—1 N

-y Uy 9 (5. 2,0) + Ry

k=0 j—1 7 [ko,(k+1)0[xRs xR
t/6—1
k 1
- Z Z Nk T R:
k=0
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Pseudo-Euler scheme (2)

t
xN1 _ N1 _ XN,l _ xN:1q dal
‘ oY e T RG] is2)
t/5 1

Z Zy + R
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Pseudo-Euler scheme (2)

t
X=X - XN’ld - xN:1q drt
| O ) © o [0,t] xR+ s {zgf(xs/\il)} 7 (s, 2)
f/5 1
TN Z sz + Rl

o Z¥ = Y07, Uf random walk (3rd variable of w115tz p)
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Pseudo-Euler scheme (2)

t
XNt —xN1 a/ XN-1ds —/ xN1y d7l(s, z
t 0 0 S [O’t]XR+ s {zgf(xsl\tl)} ( )
1 t/6—1
+—= > Zf+RE
\/N k=0 ’
o Z¥ = Y07, Uf random walk (3rd variable of w115tz p)

o Nk =1 #([kd, ko + s] x [0, F(X[5)])
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Pseudo-Euler scheme (2)

t
X=Xt —a | xMtds - xMh d7!
' A oxr, S {Edh) (s2)
1 t/6—1
+—= > Zp+ R
\/N k=0 ’

e Z =27, Uf random walk (3rd variable of 7/

o Nk =1 #([kd, ko + s] x [0, F(X[5)])

Remark : Z¥ independent of 7/ and X5’ (so of NK)

[kd,(k+1)6[ xR+ XR)

Xavier ERNY Conditional propagation of chaos 21/33



Conditional propagation of chaos
First attempt of coupling
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Pseudo-Euler scheme (2)

t
XN’l :XN,l B / XN’l _/ XN’l]l -1
' ol T X O.exR; {zgf(xﬁl)}dﬂ (5:2)
1 t/6—1
+—= > Zf+RE
\/N k=0 ’
o Z¥ = Y07, Uf random walk (3rd variable of w115tz p)

o Nk =1 #([kd, ko + s] x [0, F(X[5)])

Remark : Z¥ independent of 7/ and X5’ (so of NK)

1 N

R < — / u<]1 ; -1 ; >d7rjs,z,u
B2 78 122 Soen s (Moot ) = Hszroan ) 4720

with 7(s) = ké for s € [kd, (k + 1)d]
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Error due to Euler scheme (1)

Lemmas

(1) Forall t < T,

E [|XtN’1 - XT"(’;})@ < Crol/2

(2) Forall t < T,

E[|R}|] < Cro*/*

Sketch of proof of (1) :
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Error due to Euler scheme (1)

Lemmas

(1) Forall t < T,

E[|XtN1 XNl

1/2
ol < crot

(2) Forall t < T,

E[|R}|] < Cro*/*

Sketch of proof of (1) :

t
<a/ ’ )ds—i—/
(t) [7(t),t] xR

Z/ (1), xRy xR {zgf(xsl\/ij)}dﬂj(s, z,u)

xMt - xN

N,1 _1
0 Xs- ‘ ]l{zs:f(xs”_*l)}d7T (s,2)
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Error due to Euler scheme (1)

Lemmas

(1) Forall t < T,

E[|XtN1 XNl

1/2
ol < crot

(2) Forall t < T,

E[|R}|] < Cro*/*

Sketch of proof of (1) :
ot

/ X’Vl‘ ds+/

Jr(t) [7(t),t] xR+

. Z/ 1 dri (s, z, u)
— u m™\Ss,z,U
VN = Jir(e).0xm xR {e<rod™)}

EHXtNl X’%%HSCT(th(t))—l—CT t— ()

’XN1_X/\51

s

)XN 1‘ {z<Fx"h} 47 (s, 2)
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Error due to Euler scheme (1)

Lemmas

(1) Forall t < T,

E[|XtN1 XNl

1/2
ol < crot

(2) Forall t < T,

E[|R}|] < Cro*/*

Sketch of proof of (1) :
ot

/ X’Vl‘ ds+/

Jr(t) [7(t),t] xR+

. Z/ 1 dri (s, z, u)
— u m™\Ss,z,U
VN = Jir(e).0xm xR {e<rod™)}

E th“” x’Yl)H < Cr(t — 7(t)) + Cr/t — 7(t) < CrVe

’XN1_X/\51

s

)XN 1‘ {z<Fx"h} 47 (s, 2)
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Error due to Euler scheme (2)

Lemmas

(1) Forall t < T,

E [|xt"”1 - XT"Z’})@ < Crol/2

(2) Forall t < T,

E[|RY] < Crot/*

Sketch of proof of (2) :
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Error due to Euler scheme (2)

Lemmas

(1) Forall t < T,

E[|XtN1 XN

) < crot

(2) Forall t < T,
E[|RY] < CroV/*

Sketch of proof of (2) :

N

: ; — , J
|Ry| < \F Z/[Ofo+xRu <]l{z§f(xx’sj))} ]l{zgf(xs"”f)}> dm'(s, z, u)
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Error due to Euler scheme (2)

Lemmas

(1) Forall t < T,

E[|XtN1 XN

) < crot

(2) Forall t < T,

E[|RY] < Crot/*

Sketch of proof of (2) : by BDG inequality

N

1 —
|Ry| < \F Z/[Ofo+xRu <]l{zgf(XT,\z;j))} ]l{zgf(xs"”)}> dri(s, z, u)

BURd SU(/ot 1) = (x| ds>1/2
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Error due to Euler scheme (2)

Lemmas

(1) Forall t < T,

E[|XtN1 XN

) < crot

(2) Forall t < T,

E[|RY] < Crot/*

Sketch of proof of (2) : by BDG inequality

1 .
IRl < \F Z/O t]xRy xR < {ZSf(XrAI(;j—))} B ]l{ZSf(XsN’j)}> dr'(s, 2, u)

E[|R|] <o (/O [|f(X’V1) — f( T(s))ﬂ ds) 2 < Crat/s
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KMT approximation

t
XMt =X — / XMlds — / d7l(s, z)
0 [0,t] xR

1 t/0—1
+ = zk, +o/*
Ui 2 B

XSSy
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KMT approximation

t
XN1 _ NI _ a/ XN1ds _/ xN1q dal(s,z
t 0 0 s (0.4 xR s {Zﬁf(Xs'\fl)} ( )

t/0—1
+— Z Zy + 04"

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)
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KMT approximation

t
XMt =x" -« / XNlds — / d7l(s, z)

0 [0,t] xR+
t/0—1

1
+ = AR

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)

XSSy
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KMT approximation

t

XML _x / XNids — / drl(s, 2)
0 [0,t] xR

t/0—1

> 0By + /R
k=0

XSSy

1
+ R
VN

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)
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KMT approximation

t
XN1 _ NI _ a/ XN1ds _/ xN1q dal(s,z
t 0 0 s (0.4 xR s {Zﬁf(Xs'\fl)} ( )

1 t/0—1
+—— Y oBX + 6V +R?

VN k=0 ’
KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)

Remark : EX and B* independent of X,g’j,ﬁj, Nk
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KMT approximation

t
XN _xN1 _ a/ XN:1ds —/ xN1 d=t
' 0 o [0,t] xR ° { <2 )} (5:2)

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)
Remark : EX and B* independent of X,g’j,ﬁj, Nk
Lt

E [|R?] <7m Z E [|n NX -+ 2)EX
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Conditional propagation of chaos
First attempt of coupling
Propagation of chaos Formal proof

KMT approximation

t
XMt =xght - a/ xM1ds —/ xXt d7t

‘ 0 o [0,t] xR+ ° { <AXE )} (5:2)
1 t/0—1
3 0Bl + M R?
VN k=0
KMT approximation : let BX BM such that

1ZX — oBX| < E¥In(n Vv 2)

Remark : EX and B¥ independent of X,g’j,ﬁj, Nk

E [|R2] J < /Z [|n N5+2)]E[Ek]

k=0

—+
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Propagation of chaos Formal proof

KMT approximation

t
XN _xN1 _ a/ XN:1ds —/ xN1 d=t
' 0 o [0,t] xR ° { <2 )} (5:2)

t/0—1
1
+——= Y 0Bk, 4 6Y44R?
Ui 2 B

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)
Remark : EX and B* independent of X,g’j,ﬁj, Nk
t/6—1
E[|R2] < T Z_% E [|n(N§+2)] E [Ek]
t/0—1

c\% kz_% In(E [N§] +2)
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KMT approximation

t
XN1 _ NI _ a/ XN1ds _/ xN1q dal(s,z
t 0 0 s (0.4 xR s {Zﬁf(Xs'\fl)} ( )

1 t/0—1
+——= Y 0Bk, 4 6Y44R?
Vi 2 7B O

KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)
Remark : EX and B* independent of X,g’j,ﬁj, Nk

t/6-1

E[|R2] < T Z_: E [|n(N§+2)]E [Ek]

1 ) In(NG]|£]]oc)
T kz_% In(E [N§] +2) < o
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KMT approximation

t
SN Nt / XNy _/ xN1q g7l

‘ L A AR G Cr) (5:2)
1 t/0—1

+——= Y oBR + 6V 4R]
VN k=0 ’
KMT approximation : let BX BM such that
1ZX — oBX| < E¥In(n Vv 2)

Remark : EX and B* independent of X,g’j,ﬁj, Nk

t/6-1

E [|R2] g\% E [|n(N§+2)] E [Ek]
k=0
1 In(N6||f]]oc)
<C— S In(E [NX| +2) < ¢, 1)
N kz_% { ‘5} VN
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Summary of the coupling

Step Locale martingale Error
1 t/6—1
Euler approximation Z ZKM s/
NZ
t/6—1
KMT approximation 1 Bf\‘lk In(IV9)
N = ™ VN
o) )| 5
Riemann sum — Z FX5) W(,I\<I+1)6 - wh)| —
2 5N
N
Stochastic integral ! Z FXNyawN §/4
N 4 il g
J:

Xavier ERNY Conditional propagation of chaos 30/33



Bibliography (1)

e E., Locherbach, Loukianova (2021). Strong error bounds for the
convergence to its mean field limit for systems of interacting
neurons in a diffusive scaling. HAL, ArXiv.

e Delattre, Fournier, Hoffman (2016). Hawkes processes on large
networks. Annals of Applied Probability.

e Chevallier, Duarte, Locherbach, Ost (2019). Mean field limits for
nonlinear spatially extended Hawkes processes with exponential
memory kernels. Stochastic Processes and their Applications.

e E., Locherbach, Loukianova (2022). Mean field limits for
interacting Hawkes processes in a diffusive regime. Bernoulli.

e Komlos, Major, Tusnady (1976). An approximation of partial sums
of independent RV's, and the sample DF. Il. Zeitschrift fur
Wabhrscheinlichkeitstheorie und Verwandte Gebiete.

e Kurtz (1978). Strong approximation theorems for density
dependent Markov chains. Stochastic processes and their
applications.

Xavier ERNY Conditional propagation of chaos 31/33



Bibliography (2)

e Daley, Vere-Jones (2008). An Introduction to the Theorey of Point
Processes : Volume Il : General Theory and Structure. Springer.

e Ethier, Kurtz (2008). Markov Processes. Characterization and
Convergence. Wiley Series In Probability And Statistics.

e Revuz, Yor (1999). Continuous Martingales and Brownian Motion.
Springer-Verlag Berlin.

Xavier ERNY Conditional propagation of chaos 32/33



Thank you for your attention !

Questions ?
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