Conditional propagation of chaos for mean field systems of interacting neurons

Xavier Erny ¹

Joint work with: Eva Löcherbach ² and Dasha Loukianova ¹

¹Université d'Evry (LaMME) ²Université Paris 1 Panthéon-Sorbonne (SAMM)

SAMM, 5 février 2021

- Introduction
 - Point process
 - Exchangeability
 - Modeling of neural network
- 2 Model
 - Definitions of the systems
 - Well-posedness of the limit system
- Propagation of chaos
 - Martingale problem
 - Convergence of $(\mu^N)_N$

Point process : definitions

A point process Z is :

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

Point process : definitions

A point process Z is :

- a random countable set of \mathbb{R}_+ : $Z = \{T_i : i \in \mathbb{N}\}$
- ullet a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{\mathcal{T}_i}$

A process λ is the stochastic intensity of Z if :

$$\forall 0 \leq a < b, \mathbb{E}\left[Z([a,b])|\mathcal{F}_a\right] = \mathbb{E}\left[\left.\int_a^b \lambda_t dt\right|\mathcal{F}_a\right]$$

 ${\it E}$ measurable space

 ${\it E}$ measurable space

 π Poisson measure on \emph{E} : random point measure that satisfies

E measurable space

- π Poisson measure on \emph{E} : random point measure that satisfies
 - $\forall A, \pi(A)$ is Poisson variable,

E measurable space

- π Poisson measure on E : random point measure that satisfies
 - $\forall A, \pi(A)$ is Poisson variable,
 - $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

E measurable space

- π Poisson measure on E : random point measure that satisfies
 - $\forall A, \pi(A)$ is Poisson variable,
 - $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

Intensity of π : $\mu(A) = \mathbb{E}[\pi(A)]$

E measurable space

 π Poisson measure on E : random point measure that satisfies

- $\forall A, \pi(A)$ is Poisson variable,
- $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

Intensity of
$$\pi$$
 : $\mu(A) = \mathbb{E}[\pi(A)]$

 μ characterizes the law of π

 π Poisson measure on $\mathbb{R}_+ imes \mathbb{R}_+$ with intensity dt.dz

 π Poisson measure on $\mathbb{R}_+ imes \mathbb{R}_+$ with intensity dt.dz

 $\boldsymbol{\lambda}$ predictable and positive process

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity dt.dz

 λ predictable and positive process

$$Z(A) = \int_{A \times \mathbb{R}_+} 1_{\{z \le \lambda(t)\}} d\pi(t, z)$$

 π Poisson measure on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity dt.dz

 λ predictable and positive process

$$Z(A) = \int_{A \times \mathbb{R}_+} 1_{\{z \le \lambda(t)\}} d\pi(t, z)$$

Then : λ is the stochastic intensity of Z

Definition

A system of r.v. $(X_i)_{i \in I}$ is exchangeable if : for all finite permutation σ , $\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})$

Definition

A system of r.v. $(X_i)_{i \in I}$ is exchangeable if : for all finite permutation σ , $\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})$

Basic example : i.i.d. \Rightarrow exchangeable

Definition

A system of r.v. $(X_i)_{i \in I}$ is exchangeable if : for all finite permutation σ , $\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})$

Basic example : i.i.d. \Rightarrow exchangeable

Theorem (de Finetti's theorem)

Let $(X_i)_{i\in I}$ infinite and exchangeable. Then there exists a random measure μ such that, conditionally on μ the system $(X_i)_{i\in I}$ is i.i.d. μ -distributed

Definition

A system of r.v. $(X_i)_{i \in I}$ is exchangeable if : for all finite permutation σ , $\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})$

Basic example : i.i.d. \Rightarrow exchangeable

Theorem (de Finetti's theorem)

Let $(X_i)_{i\in I}$ infinite and exchangeable. Then there exists a random measure μ such that, conditionally on μ the system $(X_i)_{i\in I}$ is i.i.d. μ -distributed

- \bullet μ is unique a.s.
- μ is the directing measure of $(X_i)_{i \in I}$

 ${\sf Neural\ activity} \quad = \quad {\sf Set\ of\ spike\ times}$

```
Neural activity = Set of spike times
```

 $= \quad \text{Point process (i.e. random set of } \mathbb{R}_+)$

```
Neural activity = Set of spike times
```

= Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron

```
Neural activity = Set of spike times
```

= Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

```
Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)
```

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

```
Network of N neurons :
```

```
Z^{N,i} =  set of spike times of neuron i
```

= point process with intensity
$$f(X_{t-}^{N,i})$$

• $X^{N,i}$ = potential of neuron i

```
Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)
```

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

```
Network of N neurons:
```

- $Z^{N,i} =$ set of spike times of neuron i
- = point process with intensity $f(X_{t-}^{N,i})$
- $X^{N,i}$ = potential of neuron i

Here, $X^{N,i}$ solves an SDE directed by $(Z^{N,j})_{1 \le j \le N}$

N-particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty 1_{\left\{z \le f(X_{s-}^{N,i})\right\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^N \int_0^\infty u^{ji}(t) 1_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

N-particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty 1_{\left\{z \le f(X_{s-}^{N,i})\right\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^{N} \int_0^{\infty} u^{ji}(t) 1_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

N—particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty 1_{\left\{z \le f(X_{s-}^{N,i})\right\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{i=1}^N \int_0^\infty u^{ji}(t) 1_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

• linear scaling N^{-1} (LLN): [Delattre et al. (2016)] (Hawkes process, $u^{ji}(t) = 1$), [Chevallier et al. (2017)] ($u^{ji}(t) = w(j, i)$)

N—particle system :

•
$$Z_t^{N,i} = \int_0^t \int_0^\infty 1_{\left\{z \le f(X_{s-}^{N,i})\right\}} d\pi^i(s,z)$$

•
$$dX_t^{N,i} = b(X_t^{N,i})dt + \sum_{j=1}^N \int_0^\infty u^{jj}(t) 1_{\left\{z \le f(X_{t-}^{N,j})\right\}} d\pi^j(t,z)$$

 π^{j} iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \Longrightarrow$ rescale the sum :

- linear scaling N^{-1} (LLN): [Delattre et al. (2016)] (Hawkes process, $u^{ji}(t) = 1$), [Chevallier et al. (2017)] ($u^{ji}(t) = w(j, i)$)
- diffusive scaling $N^{-1/2}$ (CLT) : [E. et al. (2019)] random and centered $u^{ji}(s)$

Linear scaling

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{0}^{\infty} 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z)$$
$$- \int_{0}^{\infty} X_{t-}^{N,i} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Linear scaling

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{0}^{\infty} 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z)$$
$$- \int_{0}^{\infty} X_{t-}^{N,i} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Intepretation:

- drift : $-\alpha x$ models an exponantial loss of the potential
- small jump of order N^{-1} : the effect of spike of one neuron to the potential of the others
- reset jump : the effet of spike of one neurone to its potential

Linear scaling

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{N} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{0}^{\infty} 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z)$$
$$- \int_{0}^{\infty} X_{t-}^{N,i} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z)$$

 π^j iid Poisson measures with intensity $dt \cdot dz$

Intepretation:

- drift : $-\alpha x$ models an exponantial loss of the potential
- small jump of order N^{-1} : the effect of spike of one neuron to the potential of the others
- reset jump : the effet of spike of one neurone to its potential

[De Masi et al. (2015)] and [Fournier & Löcherbach (2016)] Generalization to McKean-Vlasov frame [Andreis et al. (2018)]

Diffusive scaling

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\int_{\mathbb R} |u|^3 d\nu(u) < \infty$ $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

Diffusive scaling

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$- \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

 π^j iid Poisson measures with intensity $dt \cdot dz \cdot d\nu(u)$ ν probability measure on $\mathbb R$ centered with $\int_{\mathbb R} |u|^3 d\nu(u) < \infty$ $\sigma^2 = \int_{\mathbb R} u^2 d\nu(u)$

Dynamic of $X^{N,i}$:

- $X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}$ if the system does not jump in [s,t]
- $X_t^{N,i} = X_{t-}^{N,i} + \frac{U}{\sqrt{N}}$ if a neuron $j \neq i$ emits a spike at t
- $X_t^{N,i} = 0$ if neuron i emits a spike at t

Limit system : heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{\mathbb{R}_{+}\times\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$-X_{t-}^{N,i} \int_{\mathbb{R}_{+}\times\mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

Limit system : heuristic (1)

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j\neq i}}^{N} \int_{\mathbb{R}_{+}\times\mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u)$$
$$-X_{t-}^{N,i} \int_{\mathbb{R}_{+}\times\mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

Limit system : heuristic (1)

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ M_{t}^{N} &:= \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{s-}^{N,j})\right\}} d\pi^{j}(s,z,u) \end{split}$$

$$\begin{split} dX^{N,i}_t &= -\alpha X^{N,i}_t dt + \frac{1}{\sqrt{N}} \sum_{\substack{j=1\\j \neq i}}^N \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X^{N,j}_{t-})\right\}} d\pi^j(t,z,u) \\ &- X^{N,i}_{t-} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X^{N,i}_{t-})\right\}} d\pi^i(t,z,u) \\ M^N_t &:= \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X^{N,j}_{s-})\right\}} d\pi^i(s,z,u) \\ &d\bar{X}^i_t = -\alpha \bar{X}^i_t dt + d\bar{M}_t \\ &- \bar{X}^i_{t-} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}^i_{t-})\right\}} d\pi^i(t,z,u) \end{split}$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 \overline{M} is an integral wrt a BM W

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 \bar{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

$$M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^N \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \le f(X_{s-}^{N,j})\right\}} d\pi^j(s,z,u)$$

 \overline{M} is an integral wrt a BM W

$$\langle \bar{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^N f(X_s^{N,j}) ds$$

Then \bar{M} should satisfy

$$\bar{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^N f(\bar{X}_s^j)} dW_s = \sigma \int_0^t \sqrt{\lim_N \bar{\mu}_s^N(f)} dW_s$$

with
$$ar{\mu}^N := rac{1}{N} \sum_{j=1}^N \delta_{ar{X}^j}$$

$$ar{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s$$
 where $\mu = {\lim_N} ar{\mu}^N$

$$egin{aligned} ar{M}_t &= \sigma \int_0^t \sqrt{\mu_s(f)} dW_s ext{ where } \mu = \lim_N ar{\mu}^N \ dar{X}_t^i &= -lpha ar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \ &- ar{X}_{t-}^i \int_{\mathbb{R}_+ imes \mathbb{R}} \mathbf{1}_{\left\{z \leq f(ar{X}_{t-}^i)
ight\}} d\pi^i(t,z,u) \end{aligned}$$

$$egin{aligned} ar{M}_t &= \sigma \int_0^t \sqrt{\mu_s(f)} dW_s ext{ where } \mu = \lim_N ar{\mu}^N \ dar{X}_t^i &= -lpha ar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \ &- ar{X}_{t-}^i \int_{\mathbb{R}_+ imes \mathbb{R}} \mathbf{1}_{\left\{z \leq f(ar{X}_{t-}^i)
ight\}} d\pi^i(t,z,u) \end{aligned}$$

 μ is the limit of empirical measures of $(\bar{X}^i)_{i\geq 1}$ exchangeable by Proposition (7.20) of [Aldous (1983)] μ is the directing measure of $(\bar{X}^i)_{i\geq 1}$ (conditionally on μ , \bar{X}^i i.i.d. $\sim \mu$)

$$egin{aligned} ar{M}_t &= \sigma \int_0^t \sqrt{\mu_s(f)} dW_s ext{ where } \mu = \lim_N ar{\mu}^N \ dar{X}_t^i &= -lpha ar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \ &- ar{X}_{t-}^i \int_{\mathbb{R}_+ imes \mathbb{R}} \mathbf{1}_{\left\{z \leq f(ar{X}_{t-}^i)
ight\}} d\pi^i(t,z,u) \end{aligned}$$

 μ is the limit of empirical measures of $(\bar{X}^i)_{i\geq 1}$ exchangeable by Proposition (7.20) of [Aldous (1983)] μ is the directing measure of $(\bar{X}^i)_{i>1}$ (conditionally on μ , \bar{X}^i i.i.d. $\sim \mu$)

Conditionally on W, the \bar{X}^i ($i \geq 1$) are i.i.d. by Lemma (2.12) of [Aldous (1983)] $\mu = \mathcal{L}(\bar{X}^1|W) = \mathcal{L}(\bar{X}^i|W)$

$$egin{aligned} ar{M}_t &= \sigma \int_0^t \sqrt{\mu_s(f)} dW_s ext{ where } \mu = \lim_N ar{\mu}^N \ dar{X}_t^i &= -lpha ar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \ &- ar{X}_{t-}^i \int_{\mathbb{R}_+ imes \mathbb{R}} \mathbf{1}_{\left\{z \leq f(ar{X}_{t-}^i)
ight\}} d\pi^i(t,z,u) \end{aligned}$$

 μ is the limit of empirical measures of $(\bar{X}^i)_{i\geq 1}$ exchangeable by Proposition (7.20) of [Aldous (1983)] μ is the directing measure of $(\bar{X}^i)_{i\geq 1}$ (conditionally on μ , \bar{X}^i i.i.d. $\sim \mu$)

Conditionally on W, the \bar{X}^i $(i \geq 1)$ are i.i.d. by Lemma (2.12) of [Aldous (1983)] $\mu = \mathcal{L}(\bar{X}^1|W) = \mathcal{L}(\bar{X}^i|W)$

$$ar{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s$$
 where $\mu = \lim_N ar{\mu}^N$

$$\begin{split} d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_t^i)|W\right]} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t, z, u) \end{split}$$

 μ is the limit of empirical measures of $(\bar{X}^i)_{i\geq 1}$ exchangeable by Proposition (7.20) of [Aldous (1983)] μ is the directing measure of $(\bar{X}^i)_{i\geq 1}$ (conditionally on μ , \bar{X}^i i.i.d. $\sim \mu$)

Conditionally on W, the \bar{X}^i $(i \geq 1)$ are i.i.d. by Lemma (2.12) of [Aldous (1983)] $\mu = \mathcal{L}(\bar{X}^1|W) = \mathcal{L}(\bar{X}^i|W)$

$$\begin{split} d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_t^i)|W\right]} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

Problems:

- conditional expectation in the Brownian term (McKean-Vlasov frame)
- unbounded jumps (non-Lipschitz compensator $x \mapsto -xf(x)$)
- jump term and Brownian term

$$\begin{split} d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_t^i)|W\right]} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\left\{z \le f(\bar{X}_{t-}^i)\right\}} d\pi^i(t, z, u) \end{split}$$

Problems:

- conditional expectation in the Brownian term (McKean-Vlasov frame)
- unbounded jumps (non-Lipschitz compensator $x \mapsto -xf(x)$)
- jump term and Brownian term

Solution : consider $a:\mathbb{R}\to\mathbb{R}_+$ increasing, bounded, lower-bounded, C^2 such that

$$|a''(x) - a''(y)| + |a'(x) - a'(y)|$$

 $+|xa'(x) - ya'(y)| + |f(x) - f(y)| \le C|a(x) - a(y)|$

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ &+ \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ &+ \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ & + \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ & + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

To prove trajectorial uniqueness :

- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|]$ (problem with Brownian term)
- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|^2]$ (problem with jump term)

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ & + \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ & + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

To prove trajectorial uniqueness:

- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|]$ (problem with Brownian term)
- $ullet \ u(t) = \mathbb{E}[|a(\hat{X}^i_s) a(\check{X}^i_s)|^2]$ (problem with jump term)

Idea of [Graham (1992)] :
$$u(t) = \mathbb{E}\left[\sup_{0 \le s \le t} |a(\hat{X}_s^i) - a(\check{X}_s^i)|\right]$$

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ & + \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ & + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

To prove trajectorial uniqueness:

- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|]$ (problem with Brownian term)
- $ullet \ u(t) = \mathbb{E}[|a(\hat{X}^i_s) a(\check{X}^i_s)|^2] \ ext{(problem with jump term)}$

Idea of [Graham (1992)] :
$$u(t) = \mathbb{E}\left[\sup_{0 \le s \le t} |a(\hat{X}_s^i) - a(\check{X}_s^i)|\right]$$

 $\forall t > 0, u(t) < C(t + \sqrt{t})u(t)$

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ & + \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ & + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

To prove trajectorial uniqueness :

- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|]$ (problem with Brownian term)
- $ullet \ u(t) = \mathbb{E}[|a(\hat{X}^i_s) a(\check{X}^i_s)|^2] \ ext{(problem with jump term)}$

Idea of [Graham (1992)] :
$$u(t) = \mathbb{E}\left[\sup_{0 \le s \le t} |a(\hat{X}_s^i) - a(\check{X}_s^i)|\right]$$

 $\forall t \ge 0, u(t) \le C(t + \sqrt{t})u(t) \Longrightarrow \exists t_0 > 0, u(t_0) = 0$

$$\begin{split} a(\bar{X}_{t}^{i}) = & a(\bar{X}_{0}^{i}) - \alpha \int_{0}^{t} \bar{X}_{s}^{i} a'(\bar{X}_{s}^{i}) ds + \sigma \int_{0}^{t} a'(\bar{X}_{s}^{i}) \sqrt{\mathbb{E}[f(\bar{X}_{s}^{i})|W]} dW_{s} \\ & + \frac{\sigma^{2}}{2} \int_{0}^{t} a''(\bar{X}_{s}^{i}) \mathbb{E}[f(\bar{X}_{s}^{i})|W] ds \\ & + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^{i})] 1_{\{z \le f(\bar{X}_{s-}^{i})\}} d\pi^{i}(s,z,u) \end{split}$$

To prove trajectorial uniqueness:

- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|]$ (problem with Brownian term)
- $u(t) = \mathbb{E}[|a(\hat{X}_s^i) a(\check{X}_s^i)|^2]$ (problem with jump term)

Idea of [Graham (1992)] :
$$u(t) = \mathbb{E}\left[\sup_{0 \le s \le t} |a(\hat{X}_s^i) - a(\check{X}_s^i)|\right]$$

$$\forall t \geq 0, u(t) \leq C(t + \sqrt{t})u(t) \Longrightarrow \exists t_0 > 0, u(t_0) = 0$$

Iteratively $\forall n \in \mathbb{N}, u(nt_0) = 0$, whence $\forall t > 0, u(t) = 0$

Any
$$f \in C^1_b(\mathbb{R},\mathbb{R}_+)$$
 satisfying $f'(x) \leq C(1+|x|)^{-(1+\varepsilon)}$ $(\varepsilon > 0)$

Any
$$f \in C_b^1(\mathbb{R}, \mathbb{R}_+)$$
 satisfying $f'(x) \leq C(1+|x|)^{-(1+\varepsilon)}$ $(\varepsilon > 0)$ $f(x) = c + d \arctan(\alpha + \beta x)$ satisfy the hypothesis

Any
$$f \in C_b^1(\mathbb{R}, \mathbb{R}_+)$$
 satisfying $f'(x) \leq C(1+|x|)^{-(1+\varepsilon)}$ $(\varepsilon > 0)$ $f(x) = c + d \arctan(\alpha + \beta x)$ satisfy the hypothesis

Any
$$f \in C_b^1(\mathbb{R}, \mathbb{R}_+)$$
 satisfying $f'(x) \leq C(1+|x|)^{-(1+\varepsilon)}$ $(\varepsilon > 0)$ $f(x) = c + d \arctan(\alpha + \beta x)$ satisfy the hypothesis

"Neuron i active / inactive" \approx " $X^{N,i} > x_0 / X^{N,i} < x_0$ "

Simulations of $X^{N,1}$

Another version of the limit system

The strong limit system:

$$\begin{split} d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_t^i)|W\right]} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

Another version of the limit system

The strong limit system:

$$\begin{split} d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mathbb{E}\left[f(\bar{X}_t^i)|W\right]} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

The weak limit system :

$$\begin{split} d\bar{Y}_t^i &= -\alpha \bar{Y}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \\ &- \bar{Y}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{Y}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

where $\mu_t = \mathcal{L}(ar{Y}^1_t | \mu_t)$ is the directing measure of $(ar{Y}^i_t)_{i \geq 1}$

An auxiliary system :

$$d\tilde{X}_{t}^{N,i} = -\alpha \tilde{X}_{t}^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\tilde{X}_{t}^{N,j}) dW_{t}}$$
$$-\tilde{X}_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} 1_{\left\{z \leq f(\tilde{X}_{t-}^{N,j})\right\}} d\pi^{i}(t,z,u)$$

An auxiliary system :

$$\begin{split} d\tilde{X}_t^{N,i} &= -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^N f(\tilde{X}_t^{N,j}) dW_t} \\ &- \tilde{X}_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\tilde{X}_{t-}^{N,j})\right\}} d\pi^i(t,z,u) \end{split}$$
 Let $u_N(t) = \mathbb{E}\left[\sup_{s \leq t} |a(\bar{Y}_s^1) - a(\tilde{X}_s^{N,1})|\right]$

An auxiliary system :

$$\begin{split} d\tilde{X}_t^{N,i} &= -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^N f(\tilde{X}_t^{N,j}) dW_t} \\ &- \tilde{X}_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\tilde{X}_{t-}^{N,j})\right\}} d\pi^i(t,z,u) \end{split}$$
 Let $u_N(t) = \mathbb{E} \left[\sup_{s \leq t} |a(\bar{Y}_s^1) - a(\tilde{X}_s^{N,1})| \right] \\ u_N(t) \leq C(t + \sqrt{t}) u_N(t) + \underbrace{CN^{-1/2}}_{\mu_s(f) - N^{-1} \sum_{j=1}^N f(\bar{Y}_s^j)} \end{split}$

An auxiliary system :

$$\begin{split} d\tilde{X}_t^{N,i} &= -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^N f(\tilde{X}_t^{N,j}) dW_t} \\ &- \tilde{X}_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbf{1}_{\left\{z \leq f(\tilde{X}_{t-}^{N,j})\right\}} d\pi^i(t,z,u) \end{split}$$
 Let $u_N(t) = \mathbb{E} \left[\sup_{s \leq t} |a(\bar{Y}_s^1) - a(\tilde{X}_s^{N,1})| \right] \\ u_N(t) \leq C(t + \sqrt{t}) u_N(t) + \underbrace{CN^{-1/2}}_{\mu_s(f) - N^{-1} \sum_{j=1}^N f(\bar{Y}_s^j)} \end{split}$ For $0 < t < T$ (small enough)

 $u_N(t) \leq CN^{-1/2} \xrightarrow[N \to \infty]{} 0$

Convergence of $(X^{N,i})_{1 \le i \le N}$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_{+} \times \mathbb{R}} u 1_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^{j}(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} 1_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ d\bar{X}_{t}^{i} &= -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\mu_{t}(f)} dW_{t} \\ &- \bar{X}_{t-}^{i} \int_{\mathbb{R}_{+} \times \mathbb{R}} 1_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\pi^{i}(t,z,u) \end{split}$$

 $\mathsf{Goal}: (X^{N,i})_{1 \leq i \leq N} \mathsf{ converges to } (\bar{X}^i)_{i \geq 1} \mathsf{ in } D^{\mathbb{N}^*}$

Convergence of $(X^{N,i})_{1 \le i \le N}$

$$dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{j}(t,z,u)$$

$$-X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u)$$

$$d\bar{X}_{t}^{i} = -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\mu_{t}(f)} dW_{t}$$

$$-\bar{X}_{t-}^{i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\pi^{i}(t,z,u)$$

Goal : $(X^{N,i})_{1 \leq i \leq N}$ converges to $(\bar{X}^i)_{i \geq 1}$ in $D^{\mathbb{N}^*}$

Equivalent condition (Proposition (7.20) of [Aldous (1983)]) : $\mu^N := \sum_{j=1}^N \delta_{X^{N,j}}$ converges to $\mu := \mathcal{L}(\bar{X}^1|W)$ in $\mathcal{P}(D)$

Outline of the proof

Step 1. $(\mu^N)_N$ is tight on $\mathcal{P}(D)$

Equivalent condition : $(X^{N,1})_N$ is tight on D

Proof: Aldous' criterion

Step 2. Identifying the limit distribution of $(\mu^N)_N$ Proof : any limit of μ^N is solution of a martingale problem

Martingale problem : Principle

SDE:
$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_{t-}, u) 1_{\{z \le f(X_{t-})\}} d\pi(t, z, u)$$

Martingale problem : Principle

SDE:
$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_{t-}, u) 1_{\{z \le f(X_{t-})\}} d\pi(t, z, u)$$

Martingale problem : for g smooth

$$g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s)ds$$
 is a local martingale,

$$Lg(x) = b(x)g'(x) + \frac{1}{2}\sigma(x)^2g''(x) + f(x)\int_{E} (g(x + \Phi(x, u)) - g(x)) d\nu(u)$$

Martingale problem : Principle

SDE:
$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_{t-}, u) 1_{\{z \le f(X_{t-})\}} d\pi(t, z, u)$$

Martingale problem : for g smooth

$$g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s)ds$$
 is a local martingale,

$$Lg(x) = b(x)g'(x) + \frac{1}{2}\sigma(x)^2g''(x) + f(x)\int_{E} (g(x + \Phi(x, u)) - g(x)) d\nu(u)$$

 $\mathsf{SDE} \Rightarrow \mathsf{martingale}$ problem : Ito's formula

$$g(X_{t}) - g(X_{0}) - \int_{0}^{t} Lg(X_{s})ds = \int_{0}^{t} \sigma(X_{s})g'(X_{s})dW_{s}$$

$$+ \int_{0}^{t} \int_{0}^{\infty} \int_{E} (g(X_{s-} + \Phi(X_{s-}, u)) - g(X_{s-})) 1_{\{z \le f(X_{s-})\}} d\tilde{\pi}(s, z, u)$$

Martingale problem : Principle

SDE:
$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times F} \Phi(X_{t-}, u) 1_{\{z \le f(X_{t-})\}} d\pi(t, z, u)$$

Martingale problem : for g smooth

$$g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s)ds$$
 is a local martingale,

$$Lg(x) = b(x)g'(x) + \frac{1}{2}\sigma(x)^2g''(x) + f(x)\int_{E} (g(x + \Phi(x, u)) - g(x)) d\nu(u)$$

 $SDE \Rightarrow martingale problem : Ito's formula$

$$g(X_t) - g(X_0) - \int_0^t Lg(X_s)ds = \int_0^t \sigma(X_s)g'(X_s)dW_s$$

+
$$\int_0^t \int_0^\infty \int_{\mathcal{E}} (g(X_{s-} + \Phi(X_{s-}, u)) - g(X_{s-})) 1_{\{z \le f(X_{s-})\}} d\tilde{\pi}(s, z, u)$$

Martingale problem \Rightarrow SDE : representation theorems

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\mu))$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\mu))$

Canonical space
$$\Omega := \mathcal{P}(D) \times D^2$$
 with $\omega = (\mu, (Y^1, Y^2))$:

Meaning : (Y^1, Y^2) mixture of iid directed by μ

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\mu))$

Canonical space
$$\Omega := \mathcal{P}(D) \times D^2$$
 with $\omega = (\mu, (Y^1, Y^2))$:

Meaning : (Y^1, Y^2) mixture of iid directed by μ

$$P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m) m \otimes m(B) dQ(m)$$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\mu))$

Canonical space $\Omega := \mathcal{P}(D) \times D^2$ with $\omega = (\mu, (Y^1, Y^2))$:

Meaning : (Y^1, Y^2) mixture of iid directed by μ

$$P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m) m \otimes m(B) dQ(m)$$

Q is solution of (\mathcal{M}) if for all $g \in C_b^2(\mathbb{R}^2)$, $g(Y_t^1, Y_t^2) - g(Y_0^1, Y_0^2) - \int_0^t Lg(\mu_s, Y_s^1, Y_s^2) ds \text{ is a martingale}$

Given
$$Q \in \mathcal{P}(\mathcal{P}(D))$$
 $(Q = \mathcal{L}(\mu))$

Canonical space
$$\Omega := \mathcal{P}(D) \times D^2$$
 with $\omega = (\mu, (Y^1, Y^2))$:

Meaning : (Y^1, Y^2) mixture of iid directed by μ

$$P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m) m \otimes m(B) dQ(m)$$

$$Q$$
 is solution of (\mathcal{M}) if for all $g \in C^2_b(\mathbb{R}^2)$,

$$g(Y_t^1,Y_t^2)-g(Y_0^1,Y_0^2)-\int_0^t Lg(\mu_s,Y_s^1,Y_s^2)ds$$
 is a martingale

$$Lg(m,x^1,x^2) = -\alpha x^1 \partial_1 g(x) - \alpha x^2 \partial_2 g(x) + \frac{\sigma^2}{2} m(f) \sum_{i,j=1}^2 \partial_{i,j}^2 g(x)$$

$$+ f(x^1)(g(0,x^2) - g(x)) + f(x^2)(g(x^1,0) - g(x))$$

Let Q be a solution of (\mathcal{M}) . Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i\geq 1}$

Let Q be a solution of (\mathcal{M}) . Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i\geq 1}$

$$\mathcal{L}(\mu,ar{Y}^1,ar{Y}^2)=P$$
 (from the martingale problem)

Let Q be a solution of (\mathcal{M}) . Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i\geq 1}$

$$\mathcal{L}(\mu, ar{Y}^1, ar{Y}^2) = P$$
 (from the martingale problem)

Representation theorems imply (admitted)

$$\begin{split} \forall i \in \{1,2\}, d\bar{Y}_t^i &= -\alpha \bar{Y}_t^i dt + \sqrt{\mu_t(f)} dW_t \\ &- \bar{Y}_{t-}^i \int_{\mathbb{R}_+} \mathbb{1}_{\left\{z \leq f(\bar{Y}_{t-}^i)\right\}} d\pi^i(t,z) \end{split}$$

Let Q be a solution of (\mathcal{M}) . Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i\geq 1}$

$$\mathcal{L}(\mu, ar{Y}^1, ar{Y}^2) = P$$
 (from the martingale problem)

Representation theorems imply (admitted)

$$\begin{aligned} \forall i \in \mathbb{N}^*, d\bar{Y}_t^i &= -\alpha \bar{Y}_t^i dt + \sqrt{\mu_t(f)} dW_t \\ &- \bar{Y}_{t-}^i \int_{\mathbb{R}_+} 1_{\left\{z \leq f(\bar{Y}_{t-}^i)\right\}} d\pi^i(t, z) \end{aligned}$$

Let Q be a solution of (\mathcal{M}) . Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i\geq 1}$

$$\mathcal{L}(\mu, ar{Y}^1, ar{Y}^2) = P$$
 (from the martingale problem)

Representation theorems imply (admitted)

$$egin{aligned} orall i \in \mathbb{N}^*, dar{Y}_t^i = & -lphaar{Y}_t^i dt + \sqrt{\mu_t(f)}dW_t \ & -ar{Y}_{t-}^i \int_{\mathbb{R}_+} 1_{\left\{z \leq f(ar{Y}_{t-}^i)
ight\}}d\pi^i(t,z) \end{aligned}$$

Then the law of $\mu = \mathcal{L}(\bar{Y}^1|W)$ is uniquely determined

Convergence of μ^N to the solution of (\mathcal{M})

Let μ be the limit of (a subsequence of) μ^N $\mathcal{L}(\mu)$ is solution of (\mathcal{M}) if

$$\mathbb{E}\left[F(\mu)\right]=0$$

for any F of the form

$$F(m) := \int_{D^2} m \otimes m(d\gamma)\phi_1(\gamma_{s_1})...\phi_k(\gamma_{s_k}) \Big[\phi(\gamma_t) - \phi(\gamma_s) - \int_s^t L\phi(m_r, \gamma_r)dr\Big]$$

Convergence of μ^N to the solution of (\mathcal{M})

Let μ be the limit of (a subsequence of) μ^N $\mathcal{L}(\mu)$ is solution of (\mathcal{M}) if

$$\mathbb{E}\left[F(\mu)\right]=0$$

for any F of the form

$$F(m) := \int_{D^2} m \otimes m(d\gamma)\phi_1(\gamma_{s_1})...\phi_k(\gamma_{s_k}) \Big[\phi(\gamma_t) - \phi(\gamma_s) - \int_s^t L\phi(m_r, \gamma_r)dr\Big]$$

Convergence of μ^N to the solution of (\mathcal{M})

Let μ be the limit of (a subsequence of) μ^N $\mathcal{L}(\mu)$ is solution of (\mathcal{M}) if

$$\mathbb{E}\left[F(\mu)\right]=0$$

for any F of the form

$$F(m) := \int_{D^2} m \otimes m(d\gamma)\phi_1(\gamma_{s_1})...\phi_k(\gamma_{s_k}) \Big[\phi(\gamma_t) - \phi(\gamma_s) + \alpha \int_s^t \gamma_r^1 \partial_1 \phi(\gamma_r) dr + \alpha \int_s^t \gamma_r^2 \partial_2 \phi(\gamma_r) dr - \int_s^t f(\gamma_r^1)(\phi(0, \gamma_r^2) - \phi(\gamma_r)) dr - \int_s^t f(\gamma_r^2)(\phi(\gamma_r^1, 0) - \phi(\gamma_r)) dr - \frac{\sigma^2}{2} \int_s^t m_r(f) \sum_{i_1, i_2 = 1}^2 \partial_{i_1, i_2}^2 \phi(\gamma_r) dr \Big]$$

$$F(\mu^{N}) := \int_{D^{2}} \mu^{N} \otimes \mu^{N}(d\gamma)\phi_{1}(\gamma_{s_{1}})...\phi_{k}(\gamma_{s_{k}}) \Big[\phi(\gamma_{t}) - \phi(\gamma_{s}) + \alpha \int_{s}^{t} \gamma_{r}^{1} \partial_{1}\phi(\gamma_{r})dr + \alpha \int_{s}^{t} \gamma_{r}^{2} \partial_{2}\phi(\gamma_{r})dr - \int_{s}^{t} f(\gamma_{r}^{1})(\phi(0, \gamma_{r}^{2}) - \phi(\gamma_{r}))dr \int_{s}^{t} f(\gamma_{r}^{2})(\phi(\gamma_{r}^{1}, 0) - \phi(\gamma_{r}))dr - \frac{\sigma^{2}}{2} \int_{s}^{t} \mu_{r}^{N}(f) \sum_{i_{1}, i_{2}=1}^{2} \partial_{i_{1}, i_{2}}^{2}\phi(\gamma_{r})dr \Big]$$

$$F(\mu^{N}) := \int_{D^{2}} \mu^{N} \otimes \mu^{N}(d\gamma)\phi_{1}(\gamma_{s_{1}})...\phi_{k}(\gamma_{s_{k}}) \Big[\phi(\gamma_{t}) - \phi(\gamma_{s}) + \alpha \int_{s}^{t} \gamma_{r}^{1} \partial_{1}\phi(\gamma_{r})dr + \alpha \int_{s}^{t} \gamma_{r}^{2} \partial_{2}\phi(\gamma_{r})dr - \int_{s}^{t} f(\gamma_{r}^{1})(\phi(0, \gamma_{r}^{2}) - \phi(\gamma_{r}))dr \int_{s}^{t} f(\gamma_{r}^{2})(\phi(\gamma_{r}^{1}, 0) - \phi(\gamma_{r}))dr - \frac{\sigma^{2}}{2} \int_{s}^{t} \mu_{r}^{N}(f) \sum_{i_{1}, i_{2}=1}^{2} \partial_{i_{1}, i_{2}}^{2}\phi(\gamma_{r})dr \Big]$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \frac{\sigma^{2}}{2} \int_{s}^{t} \mu_{r}^{N}(f) \sum_{i: i=1}^{2} \partial_{i_{1},i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \Big] \end{split}$$

$$F(\mu^{N}) := \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) + \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr - \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,i}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr - \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr - \frac{\sigma^{2}}{2} \int_{s}^{t} \mu_{r}^{N}(f) \sum_{i,j=1}^{2} \partial_{i_{1},i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \Big]$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \frac{\sigma^{2}}{2} \int_{s}^{t} \frac{1}{N} \sum_{k=1}^{N} f(X_{r}^{N,k}) \sum_{i_{1}, i_{2}=1}^{2} \partial_{i_{1}, i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \Big] \end{split}$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \frac{\sigma^{2}}{2} \int_{s}^{t} \frac{1}{N} \sum_{k=1}^{N} f(X_{r}^{N,k}) \sum_{i_{1},i_{2}=1}^{2} \partial_{i_{1},i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \Big] \end{split}$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} \int_{\mathbb{R}} \frac{u^{2}}{2} \frac{1}{N} \sum_{k=1}^{N} f(X_{r}^{N,k}) \sum_{i_{1},i_{2}=1}^{2} \partial_{i_{1},i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) d\nu(u) dr \Big] \end{split}$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} \int_{\mathbb{R}} \frac{u^{2}}{2} \frac{1}{N} \sum_{k=1}^{N} f(X_{r}^{N,k}) \sum_{i_{1},i_{2}=1}^{2} \partial_{i_{1},i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) d\nu(u) dr \Big] \end{split}$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} \int_{\mathbb{R}} \sum_{k=1}^{N} f(X_{r}^{N,k}) \frac{u^{2}}{2N} \sum_{i_{1}, i_{2}=1}^{2} \partial_{i_{1}, i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) d\nu(u) dr \Big] \end{split}$$

$$\begin{split} F(\mu^{N}) &:= \\ \frac{1}{N^{2}} \sum_{i,j=1}^{N} \phi_{1}(X_{s_{1}}^{N,i}, X_{s_{1}}^{N,j}) ... \phi_{k}(X_{s_{k}}^{N,i}, X_{s_{k}}^{N,j}) \Big[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \\ &+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) dr \\ &- \int_{s}^{t} f(X_{r}^{N,i}) (\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) dr \\ &- \int_{s}^{t} \int_{\mathbb{R}} \sum_{k=1}^{N} f(X_{r}^{N,k}) \frac{u^{2}}{2N} \sum_{i_{1}, i_{2}=1}^{2} \partial_{i_{1}, i_{2}}^{2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) d\nu(u) dr \Big] \end{split}$$

The expression of $\phi(X^{N,i}, X^{N,j})$

By Ito's formula,

$$\begin{split} \mathbb{E}\phi(X_{t}^{N,i},X_{t}^{N,j}) - \phi(X_{s}^{N,i},X_{s}^{N,j}) &= \\ \mathbb{E} - \alpha \int_{s}^{t} X_{r}^{N,i} \partial_{1}\phi(X_{r}^{N,i},X_{r}^{N,j}) dr - \alpha \int_{s}^{t} X_{r}^{N,j} \partial_{2}\phi(X_{r}^{N,i},X_{r}^{N,j}) dr \\ &+ \int_{s}^{t} \int_{\mathbb{R}} f(X_{r}^{N,i}) (\phi(0,X_{r}^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_{r}^{N,i},X_{r}^{N,j})) d\nu(u) dr \\ &+ \int_{s}^{t} \int_{\mathbb{R}} f(X_{r}^{N,j}) (\phi(X_{r}^{N,i} + \frac{u}{\sqrt{N}},0) - \phi(X_{r}^{N,i},X_{r}^{N,j})) d\nu(u) dr \\ &+ \int_{s}^{t} \int_{\mathbb{R}} \sum_{k=1}^{N} f(X_{r}^{N,k}) (\phi(X_{r}^{N,i} + \frac{u}{\sqrt{N}},X_{r}^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_{r}^{N,i},X_{r}^{N,j})) d\nu(u) dr \end{split}$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|\leq C\frac{|u|}{\sqrt{N}}$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|\leq C\frac{|u|}{\sqrt{N}}$$

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1, i_2 = 1}^{2} \partial_{i_1, i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|\leq C\frac{|u|}{\sqrt{N}}$$

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u}{\sqrt{N}} \sum_{i_1 = 1}^{2} \partial_{i_1} \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1, i_2 = 1}^{2} \partial_{i_1, i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|\leq C\frac{|u|}{\sqrt{N}}$$

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u}{\sqrt{N}} \sum_{i_1, i_2 = 1}^{2} \partial_{i_1} \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1, i_2 = 1}^{2} \partial_{i_1, i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$\leq CN \frac{|u|^3}{N\sqrt{N}} = CN^{-1/2} |u|^3$$

The reset jump term

$$\left|\phi(0,X_r^{N,j})-\phi(0,X_r^{N,j}+\frac{u}{\sqrt{N}})\right|\leq C\frac{|u|}{\sqrt{N}}$$

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$- \frac{u}{\sqrt{N}} \sum_{i_1=1}^2 \partial_{i_1} \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1, i_2=1}^2 \partial_{i_1, i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$\leq CN \frac{|u|^3}{N\sqrt{N}} = CN^{-1/2} |u|^3$$

$$CN^{-1/2} \geq \mathbb{E} \left[F(\mu^N) \right] \xrightarrow[N \to \infty]{} \mathbb{E} \left[F(\mu) \right] = 0$$

$$\begin{split} dX_t^{N,i} &= -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^j(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^i(t,z,u) \\ d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

$$\begin{split} dX_{t}^{N,i} &= -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_{+} \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{j}(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^{i}(t,z,u) \\ d\bar{X}_{t}^{i} &= -\alpha \bar{X}_{t}^{i} dt + \sigma \sqrt{\mu_{t}(f)} dW_{t} \\ &- \bar{X}_{t-}^{i} \int_{\mathbb{R}_{+} \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^{i})\right\}} d\pi^{i}(t,z,u) \end{split}$$

• $(\mu^N)_N$ is tight on $\mathcal{P}(D)$

$$\begin{split} dX_t^{N,i} &= -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^j(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^i(t,z,u) \\ d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

- $(\mu^N)_N$ is tight on $\mathcal{P}(D)$
- ullet let μ be the limit of a converging subsequence

$$\begin{split} dX_t^{N,i} &= -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^j(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^i(t,z,u) \\ d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

- $(\mu^N)_N$ is tight on $\mathcal{P}(D)$
- ullet let μ be the limit of a converging subsequence
- $\mathcal{L}(\mu)$ is the unique solution of (\mathcal{M})

$$\begin{split} dX_t^{N,i} &= -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,j})\right\}} d\pi^j(t,z,u) \\ &- X_{t-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(X_{t-}^{N,i})\right\}} d\pi^i(t,z,u) \\ d\bar{X}_t^i &= -\alpha \bar{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \\ &- \bar{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbb{1}_{\left\{z \leq f(\bar{X}_{t-}^i)\right\}} d\pi^i(t,z,u) \end{split}$$

- $(\mu^N)_N$ is tight on $\mathcal{P}(D)$
- ullet let μ be the limit of a converging subsequence
- $\mathcal{L}(\mu)$ is the unique solution of (\mathcal{M})
- $\mu = \mathcal{L}(\bar{X}^1|W)$ is the only limit of $(\mu^N)_N$

Bibliography (1)

- Delattre, Fournier, Hoffman (2016). Hawkes processes on large networks. Annals of Applied Probability.
- Chevallier, Duarte, Löcherbach, Ost (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications.
- E., Löcherbach, Loukianova (2019). Mean field limits for interacting Hawkes processes in a diffusive regime. HAL, arXiv.
- De Masi, Galves, Löcherbach, Presutti (2015). Hydrodynamic limit for interacting Hawkes processes. Journal of Statistical Physics.
- Fournier, Löcherbach (2016). On a toy model of interacting neurons. Annales de l'institut Henri Poincarré.
- Andreis, Dai Pra, Fischer (2018). McKean-Vlasov limit for interacting systems with simultaneous jumps. Stochastic analysis and applications.

Bibliography (2)

- E., Löcherbach, Loukianova (2020). Conditional propagation of chaos for mean field systems of interacting neurons. Accepted at EJP.
- Aldous (1983). Exchangeability and related topics. Ecoles d'Eté de Probabilités de Saint-Flour : XIII.
- Graham (1992). McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stochastic Processes and their Applications.

Thank you for your attention!

Questions?

