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A point process Z is :
@ a random countable set of R, : Z ={T; :i € N}

@ a random point measureon Ry : Z =} . 0T,

A process A is the stochastic intensity of Z if :

V0 < a < b,E[Z([a, b])|Fs] = E [/b)\tdt

7|
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Ex ility
neural network

Poisson measure

E measurable space
7 Poisson measure on E : random point measure that satisfies

e VA, m(A) is Poisson variable,
e VA, ..., A, disjoint, (m(A1),...,7(Ap)) independent.

Intensity of 7 : u(A) = E [r(A)]

1 characterizes the law of 7
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Introduction Point process
Exchan lity

Model neural network

Thinning

7w Poisson measure on R x R with intensity dt.dz

A predictable and positive process

Z(A) = / Lz<aepdn(t, 2)
AXR+

Then : A is the stochastic intensity of Z
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Modeling of neural network

Exchangeable system

Definition
A system of r.v. (Xj)jcs is exchangeable if :
for all finite permutation o, ﬁ((X;),‘el) = E((Xa(i))iel)

Basic example : i.i.d. = exchangeable

Theorem (de Finetti's theorem)

Let (Xi)ies infinite and exchangeable. Then there exists a random
measure 1 such that, conditionally on p the system (X;);c/ is
i.i.d. u—distributed

@ [ IS unique a.s.

@ 1 is the directing measure of (X);¢/
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Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of R )

Spike rate depends on the potential of the neuron
Each spike modifies the potential of the neurons
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ZN:i = set of spike times of neuron i
° .
= point process with intensity f(XtAi")
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Xavier ERNY Conditonal propagation of chaos 7/32



Introduction Point process
Exchangeability
Modeling of neural network

Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of R )

Spike rate depends on the potential of the neuron
Each spike modifies the potential of the neurons

Network of N neurons :

ZN7 = set of spike times of neuron i
]

= point process with intensity f(XtAi’i)
o XN = potential of neuron i
Here, XN solves an SDE directed by (ZN’j)lggN
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Introduction Point process
Exchangeability
Modeling of neural network

Mean field limit

N—particle system :

o ZNI / / {z<f(x"” }d7r (s, z)
o dxV' = b(XtN")dt—i—Z/ uji(t)l{zgf(xt,\ij)}dﬂj(t, 2)

7 iid Poisson measures with intensity dt - dz
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t o]
Ny ‘ i
° 7, —/0 /0 1{z§f(xs"ﬁ’)}d7r (s,2)
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Mean field limit

N—particle system :

t o]
Ny ‘ i
° 7, —/0 /0 1{z§f(xs"ﬁ’)}d7r (s,2)
. . N oo s .
o X" = b(X")dt + Z/o ””(f)l{z<f(x"’*f)}d7rj(t’ ?)
j=1 B

7 iid Poisson measures with intensity dt - dz

Study the limit N — co = rescale the sum :
o linear scaling N=1 (LLN) :
[Delattre et al. (2016)] (Hawkes process, t/(t) = 1),
[Chevallier et al. (2017)] (¢//(t) = w(j,i))
o diffusive scaling N=%/2 (CLT) :
[E. et al. (2019)] random and centered v/i(s)
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Linear scaling
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J#'
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Linear scaling

dXtN,i _ _aXN'dt—i— L Z/ {z<f(XNJ)}dﬂ— (t,2)
J#'

—/0 Xﬁil{zgf(xﬁf)}dﬂi(t’z)

7/ iid Poisson measures with intensity dt - dz

Intepretation :
@ drift : —ax models an exponantial loss of the potential

@ small jump of order N1 : the effect of spike of one neuron to
the potential of the others

@ reset jump : the effet of spike of one neurone to its potential
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Introduction Point process
Exchangeability
Modeling of neural network

Linear scaling

dxMV = _axMigr 4 1 L Z/ {z<f(XNJ)}dﬂ— (t,z)
J#'

o0
/0 Xt— 1{z§f(XtN7")}d7T (t,Z)
7/ iid Poisson measures with intensity dt - dz
Intepretation :

@ drift : —ax models an exponantial loss of the potential

@ small jump of order N1 : the effect of spike of one neuron to
the potential of the others

@ reset jump : the effet of spike of one neurone to its potential

[De Masi et al. (2015)] and [Fournier & Locherbach (2016)]
Generalization to McKean-Vlasov frame [Andreis et al. (2018)]
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Definitions of the systems
Well-posedness of the limit system

Diffusive scaling

N o0
N,i N,i 1 Z j
dXt = —O[Xt dt—'_\/Nj_l/o /RU]-{ZSf(XtN’j)}dT{J(t’ZHJ)
J#i

o N,i ;
_/(; /RXt l{zgf(XtN_’l)}dﬂ- (t,Z, U)

7/ iid Poisson measures with intensity dt - dz - dv(u)
v probability measure on R centered with [; [u]3dv(u) < oo
o? = [ v*dv(u)
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Definitions of the systems
Well-posedness of the limit system

Diffusive scaling

dX" = —ax{"dt+ \FZ/ / U1{z<f XN }dwj(t’z’ u)
;él

J
> N,i ;
_/(; /RXt l{zgf(XtN_’l)}dﬂ- (t,Z, U)

7/ iid Poisson measures with intensity dt - dz - dv(u)
v probability measure on R centered with [; [u]3dv(u) < oo

= [ u?dv(u)

Dynamic of XN/ :
° XtN’i = XN ig=alt=9) if the system does not jump in [s, t]

o XN = Xth + ﬁ if a neuron j # i emits a spike at t

o X' =0 if neuron i emits a spike at t
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (1)

XM = o x N 1 / 1
dX; dt + Z R+XRU z<f J)}dw (t,z,u)
Hé’

_ xNi 1 ydri(t
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Limit system : heuristic (1)

XN — o X L /
dX; dt + Z R+XR z<f N,)}dTr (t,z,u)
J#l

_ xNi 1 ydri(t

~dml(s,z,u
M \Fz/o t]><]R+><R Z<f(XsN¥J)} ( )
dX! = — aX!idt + dM,

—)_(i_/ 1 o wdr(t,z,u
Y {z=fX)} ( )
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (2)

N
MN - v / ul j d7rj s,z,Uu
t \WZ [0,t] xR+ xR {zgf(XSN_u)} ( )
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Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (2)

dri(s, z, u)

t \F Z /0 [0,t] xR+ xR {zgf(XSN—J)}

M is an mtegral wrt a BM W

N
_ t1 .
(M) = lim (MY), =lim o® [ =) " f(X})ds
N N 0 N 4
Jj=1
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Definitions of the systems

Model D .
Well-posedness of the limit system

Limit system : heuristic (2)

w3 ),

M is an mtegral wrt a BM W

S dd
t]><]R+><R zgf(XSN_’J)} (s, z,u)

(M) = lim (MNY, = lim 02/0 %Z f(XNJ)ds

Then M should satisfy

_ t
Mt:U/
0

with " N “10%)

== \

EI:V: xde_a/\/i
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Model

Limit system : heuristic (3)

Me = o [ /us(f)dWs where j1 = IiArlnﬂN

Xavier ERNY Conditonal propagation of chaos 13/32



Definitions of the systems
Well-posedness of the limit system

Model

Limit system : heuristic (3)

Me = o [ /us(f)dWs where j1 = IiArlnﬂN

dX! = — aXldt + o/ pu:(F)dW,;

—)?i/ 1 o wdri(t,z,u
IR, xR {z<f(X0)} ( )

Xavier ERNY Conditonal propagation of chaos 13/32



Definitions of the systems

Model D .
Well-posedness of the limit system
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dX! = — aXldt + o/ pu:(F)dW,;
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1 is the limit of empirical measures of ()_(i),>1 exchangeable
by Proposition (7.20) of [Aldous (1983)] i is the directing measure
of (X')i>1 (conditionally on g, X' i.i.d.~ 1)

Xavier ERNY Conditonal propagation of chaos 13/32



Model Definitions of the systems
Well-posedness of the limit system

Limit system : heuristic (3)
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (1)

dX; = — aX/dt + o\/E [f(X})|W]dW;

—)?i/ 1 o wdri(t,z,u
A LR ( )

Problems :
@ conditional expectation in the Brownian term
(McKean-Vlasov frame)
@ unbounded jumps (non-Lipschitz compensator x — —xf(x))
@ jump term and Brownian term

Xavier ERNY Conditonal propagation of chaos 14 /32



Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (1)

dX; = — aX/dt + o\/E [f(X})|W]dW;

—)?i/ 1 o wdri(t,z,u
A LR ( )

Problems :
@ conditional expectation in the Brownian term
(McKean-Vlasov frame)
@ unbounded jumps (non-Lipschitz compensator x — —xf(x))
@ jump term and Brownian term
Solution : consider a : R — R increasing, bounded,
lower-bounded, C? such that

|a"(x) = a"(y)[ + |a'(x) = & (y)]
+lxa'(x) = ya ()] + [f(x) = f(y)] < Cla(x) — a(y)]
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Well-posedness of the limit equation (2)
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o SRR R RN
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Definitions of the systems

Model Well-posedness of the limit system

Well-posedness of the limit equation (2)

a(X/) =a XO —a/ X'/ ds+0/o /(-si) E[f (X)) W]dW,s
+/ "(XDE[F(X!)|W]ds
o SRR R RN

To prove trajectorial uniqueness :
o u(t) =E[|a(X!) — a(X!)|] (problem with Brownian term)
o u(t) = E[|a(X!) — a(X))|?] (problem with jump term)

Idea of [Graham (1992)] : u(t) = E | sup |a(X!) — a(X})|

S
0<s<t
Ve >0,u(t) < C(t+Vt)u(t) = Tty > 0,u(tg) =0
Iteratively Vn € N, u(ntg) = 0, whence Vt > 0, u(t) =0
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Definitions of the systems

Model Well-posedness of the limit system

Discussion about the function f

Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(1*9) (e > 0)
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Definitions of the systems

Model Well-posedness of the limit system

Discussion about the function f

Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(1*9) (e > 0)
f(x) = ¢+ darctan(« + (x) satisfy the hypothesis

/_/

"Neuron i active / inactive” = XN S X / XN < "

X0
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Definitions of the systems
Well-posedness of the limit system

Simulations of XN:!

4
N =10 N = 1000
3 40
2
20
1
0
0
- \—
0 2 4 6 8 10 0 2 4 6 8 10
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Definitions of the systems

Model Well-posedness of the limit system

Another version of the limit system

The strong limit system :

dX; = — aX{dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
‘ R4 xR {e<f(X} ( )
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Definitions of the systems

Model Well-posedness of the limit system

Another version of the limit system
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dYi =—a¥Y/dt + o\/p:(F)dW;
- \_/i/ L, criyi dn'(t,z, u)
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Definitions of the systems
Well-posedness of the limit system

Model

Equivalence between the two systems

An auxiliary system :

d)~(tN’i =— oz)N(tN’idt +o

o N,i | i
X /R+xR 1{Z§f()”<tlvj)}d7r (t,z,u)
Let UN(t) = ]E [Supsgt ’a(?sl) _ a()’“(SN71)|j|
un(t) < C(t +VE)un(t) + CN~Y2

ps(f) — N1 F(VH)

j=

For 0 <t < T (small enough)

un(t) < CN7Y2 — 0
N— oo
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Propagation of chaos

Convergence of (XV'7);<i<n

. . 1 )
dxM = —axMidt + —— / ul nam'(t,z, u
Mt 5 [y tes

_XN,I' 1 i d i t
t /R+XR {z<r")} m(t.2,u)

dXi = — aXjdt + o\/p:(F)dW;

—)_<i_/ 1 o dm t,z,u
e Herxop T (620

Goal : (XN’i)lgigN converges to ()_(i);zl in DY
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Propagation of chaos

Convergence of (XV'7);<i<n

— xNi 1 Ay dTi(t
ML o9 62)

dXi = — aXjdt + o\/p:(F)dW;

—)_<i_/ 1 o dm t,z,u
‘ Ry xR {e<fxi} ( )

Goal : (XN’i)lgigN converges to ()_(i);zl in DY

Equivalent condition (Proposition (7.20) of [Aldous (1983)]) :
N = Zszl Sxn.j converges to = L(X|W) in P(D)
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Propagation of chaos

Outline of the proof

Step 1. (1) is tight on P(D)
Equivalent condition : (XV'1)y is tight on D
Proof : Aldous’ criterion

Step 2. Identifying the limit distribution of (uN)y
Proof : any limit of " is solution of a martingale problem
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Martingale problemp‘

. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Martingale problem : Principle

SDE :
dX; = b(Xt)dt—i-J(Xt)th—f—/ q)(Xt_, U)l{zgf(Xt,)}d']T(ta z, u)
]R+><E
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Martingale problem
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Canonical space Q := P(D) x D? with w = (i, (Y?, Y?)) :
Meaning : (Y1, Y?) mixture of iid directed by p

P(A x B) := /73(D) 1a(m)m @ m(B)dQ(m)
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Propagation of chaos onvergence of (1)

Martingale problem

Given Q € P(P(D)) (Q = L(n))
Canonical space Q := P(D) x D? with w = (i, (Y?, Y?)) :
Meaning : (Y1, Y?) mixture of iid directed by p
P(A x B) := / 1a(m)m ® m(B)dQ(m)
P(D)
Q is solution of (M) if for all g € C2(R?),
g(YE Y2) — (Y3, YE) — [y Lg(us, Y2, Y2)ds is a martingale

Lg(m,x', x?) = — ax'01g(x) — ax?dag(x) Z 0 Ug(x
ij=1

+1(x)(g(0,x%) — g(x)) + f(X2)(g(X1, 0) —&(x))
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Martingale problemp‘

. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1
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Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)
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Martingale problemﬂ\

. Convergence of (1" )y
Propagation of chaos onvergence of (1)

Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L() where 1 is the
directing measure of some exchangeable system (Y')i>1

L(i, Y1, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)

Vie N* dYi=—aY/dt + \/p:(f)dW;
i /R+ L erri 07 (1:2)

Then the law of 1 = £(Y1|W) is uniquely determined
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Martingale problem

N
Propagation of chaos Comaines o (g

Convergence of p" to the solution of (M)

Let u be the limit of (a subsequence of) uM
L(p) is solution of (M) if

E[F(u)] =0

for any F of the form

Flm) = [ m e m(d)oa(ra)- () [9000) — 6(32)
_/St L¢(mr77r)dr]
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E[F(u)] =0

for any F of the form
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D2
+a [ Atonsndr +a [ s2onotdr
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

The expression of F(uN)

Fu") =
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t t
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S S
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Martingale problem
Convergence of (;LN)N

Propagation of chaos

The expression of F(uN)

& Z¢1 (XM XA cn (XU, XA [ XM = 60, X0)
ij=1

t . . . t . . .
+a/ X,’V”algb(XrN”,X,’VJ)dr+a/ XN 0p( XN, XN )dr
t . . . .
= [ FO(0. X)X X
s

-/ A B(XM,0) — G(X X)) dr

/ :ur Z all i XN’i’XrN’j)dr}

i1,h=1
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W S 61O X29) XL XL (SO XM = (X, X0
ij=1

t t
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S
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[ RO, 0) — O X ar

2 t 1 N . .
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Martingale problem

N
Propagation of chaos GormaaeR off ()

The expression of ¢(XN:/| XNY)

By Ito's formula,
¢(XN,I' XNJ)_¢(XN,i XNJ) _

t - . -
E—a / XNio1p(XNT XN dr — / XN 0,0(X N XN )dr

S

// FXNN (00, XN 4 ——) — (XN XN du(u)dr
\/* ; ro 7%

Ny (XN 0y o (XN XNVl dr
+//f(Xr OO+ 0) = oM X)) d(u)d

/ / Z FXNR)( d(xNI_'_ﬁ XNJ+W) d(XNT XN )dv(u)dr
R k=1
k#i,j
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Vanishing of E [F(u")]

The reset jump term

u

VoL

‘qb(o,XrNJ) — (0, XN +
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The small jump term
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Martingale problem

N
Propagation of chaos Gemeagames &ff (2 )y

Convergence of (uN)y

. . 1 )
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- X 1 i d (¢
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o (uM)y is tight on P(D)
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dx\ = —axMdt + — / ul mdm(t,z,u)
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dXi = — aX]dt + o\/p:(F)dW;

)?i_/ 1 o wdri(t,z,u
= Jyn Hzsrxy AT (02 0)

o (uM)y is tight on P(D)

@ let 1 be the limit of a converging subsequence
@ L(u) is the unique solution of (M)

o ;1= L(XW) is the only limit of (u")y
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Thank you for your attention !

Questions ?
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