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Modelization : consider a N—particle system
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° ZtN” = number of events triggered by particule i/ before time t

@ = the particles excite or inhibite each others

Xavier ERNY Diffusive limits for particle systems 3/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :

e Network of N neurons (neuron = particle)

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
e Network of N neurons (neuron = particle)

e Each neurons emits spikes (spike = event triggered)

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)

@ Spike rate (=intensity) depends on the potential of the neuron

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)
@ Spike rate (=intensity) depends on the potential of the neuron
o

Each spike modifies the potential of the neurons

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)
@ Spike rate (=intensity) depends on the potential of the neuron
o

Each spike modifies the potential of the neurons

Theoretical model :

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)
@ Spike rate (=intensity) depends on the potential of the neuron
o

Each spike modifies the potential of the neurons

Theoretical model :

o ZN7 counts the number of spikes of neuron i

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)
@ Spike rate (=intensity) depends on the potential of the neuron
o

Each spike modifies the potential of the neurons

Theoretical model :
o ZN7 counts the number of spikes of neuron i
o ZN has an intensity of the form AN = £i(x]")

Xavier ERNY Diffusive limits for particle systems 4/36



Introduction
Interacting particle systems and neuroscience models
Meanfield particle systems

Neuroscience

Neural network :
@ Network of N neurons (neuron = particle)
e Each neurons emits spikes (spike = event triggered)
@ Spike rate (=intensity) depends on the potential of the neuron
o

Each spike modifies the potential of the neurons

Theoretical model :
o ZN7 counts the number of spikes of neuron i
o ZN has an intensity of the form AN/ = fi(XtIV_’i)
o XN:i is the potential of neuron i : XN/ is a cadlag process
that jumps when neuron i receives a spike
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For each N € N*, we consider (ZN:1, ..., ZNV:N)

N
dXN = i (XtN”) dt+ Y dzM
j=1
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Convergence speed

Convergence of X"
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Model of interacting neurons Propagation of chaos

Dynamic of a neural network

System of N neurons :

N,i_ N,i ) J
dX| aX; dt+\rz R+XRul{sz(Xﬁj)}d7r (t,z,u)
J#l

— xNi 1 odm(t
t /RMR {z<r")} m(t.2,u)

Dynamic of XN/
o XN = XM e=o(t=5) if the system does not jump in |s, t]
o XN = XtN;i + ﬁ if a neuron j # i emits a spike at t

° XtN’i = 0 if neuron i emits a spike at t
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Limit system : heuristic (1)

dXxVi = — ax dt—i—— / dri(t,z,u
t Z ]R+><]R z<f XNJ)} ( )
J#l

N,i
— X" / 1 zgf(X"’_’)}dW (t, z,u)
+ X

Gl |
dX! = — aXldt + dM,

—)?i_/ 1 o wdmi(t,z,u
= Joyen G} 20

z<f( )}d7r (s, 2, u)

t]XR+ XR
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0,t]xR4 xR
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Model of interacting neurons Propagation of chaos

Limit system : heuristic (2)

~dml(s,z,u
t \/> Z /0 [0,t] xR+ xR ZSf(XSAEJ)} ( )

M is an mtegral wrt a BM W

N
_ t1q .
(Mye =1lim (MN), =lim o® [ <> F(X[)ds
N N 0 N <
J=1
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Model
Model of interacting neurons Propagation of chaos

Limit system : heuristic (2)

~dml(s,z,u
t \/> Z /0 t]><]R+><]R ZSf(XSAEJ)} ( )
M is an mtegral wrt a BM W

N

t
_ 1 ,
0 T N
(M), = I|,\r;n (M™) = Ill(ln o /0 NZ}“XS Jds
J:
Then M should satisfy
_ t 1 t
M, = a/ lim =" F(X)dWs = o lim N (f)dW;
o \ N N 0
with gV = % jN,I 0xi
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11 is the limit of empirical measures of (X');>1 exchangeable
by Proposition (7.20) of [Aldous (1983)] w is the directing measure
of (X");>1 (conditionally on p, X' i.i.d.~ p)
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Model
Model of interacting neurons Propagation of chaos

Well-posedness of the limit equation (1)

dX; = — aX{dt + o\/E [f(X{)|W]dW;
—)_(i_/ 1 o wdr(t,z,u
R {z=FX0)} ( )

Problems :
@ conditional expectation in the Brownian term
(McKean-Vlasov frame)
@ unbounded jumps (non-Lipschitz compensator x — xf(x))
@ jump term and Brownian term
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Model of interacting neurons Propagation of chaos

Well-posedness of the limit equation (1)

dX; = — aX{dt + o\/E [f(X{)|W]dW;
—)_(i_/ 1 o wdr(t,z,u
R {z=FX0)} ( )

Problems :
@ conditional expectation in the Brownian term
(McKean-Vlasov frame)
@ unbounded jumps (non-Lipschitz compensator x — xf(x))
@ jump term and Brownian term

Solution : consider a: R — R increasing, bounded,
lower-bounded, C2 such that

2" (x) = a"(y)| + [a'(x) = '(y)
+xa@'(x) = ya'(y)| + [£(x) = F(y)] < Cla(x) — a(y)]
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Model
Model of interacting neurons Propagation of chaos

Well-posedness of the limit equation (2)

a(X}) =a(X}) —a/ Xia ds+a/0 a'(X)\/E[f(X)|W]dWs
+"2/0 2 (ROE[F(X) W]ds

+/[0 t]xR+><R[a(O) —a(X; )]1{2<f(X’ }0'77 (5,2, u)
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Model
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. .
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Well-posedness of the limit equation (2)

a(X}) =a(X}) —a/ Xia ds+a/0 a' (X E[f(XH|W]dWs
+"2/0 2 (ROE[F(X) W]ds

+ / [a(0) — a()?si,)]l{zgf()—(;_)}dﬂ"(s, z,u)
[0,t] xRy xR
To prove trajectorial uniqueness :
o u(t) =E[|a(X!) — a(X!)|] (problem with Brownian term)
o u(t) =E[|a(X!) — a(X))|?] (problem with jump term)
Idea of [Graham (1992)] : u(t) = E | sup |a(X!) — a(X])|

0<s<t
Vit > 0,u(t) < C(t+ Vt)u(t) = 3ty > 0, u(ty) =0
Iteratively Vn € N, u(ntg) = 0, whence Vt > 0, u(t) =0
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Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(**%) (e > 0)
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Discussion about the function f

Any f € CL(R,Ry) satisfying f/(x) < C(1 + |x|)~(**%) (e > 0)
f(x) = ¢ + darctan(« + (x) satisfy the hypothesis

/_/

"Neuron i active / inactive” =~ " XN X / XN < X"

Xavier ERNY Diffusive limits for particle systems 14 /36
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Another version of the limit system

The strong limit system :

dX; = — aX{dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
Y e CE () ( )
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Another version of the limit system

The strong limit system :

dX; = — aX{dt + o\/E [f(X{)|W]dW;

—)_(i_/ 1 o wdr(t,z,u
Y e CE () ( )

The weak limit system :
dYi=—aY/dt + o/ (F)dW,

— \_/i/ 1 oo wdrl(t,z,u
" Jroxr {z<f(V)} ( )

where i = L£(Y}|ut) is the directing measure of (Y)i>1
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Equivalence between the two systems

An auxiliary system :

XN = — XM

_ RN i
” /R+><R {z<r(&")} m'(t, z, u)
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Equivalence between the two systems

An auxiliary system :

d)?tN’i =— oz)N(tN’idt +o

_ RN i
” /R+><R {z<r(&")} m'(t, z, u)

Let un(t) = E [Supsgt la(V1) - a()N(sN’l)@

un(t) < C(t + vt)un(t) + CN~/2
ps(F) = N2 32 F(VD)

j=1
For 0 <t < T (small enough)

un(t) < CN~Y2 — 0
N— oo
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Convergence of (XM'7);<i<n
: . 1 .

dXN’I:—OéXN’Idt‘i‘i / ul j dﬂJ t,Z,U

P s S [ e

JF#i
- xN 1 dri(t
dX; = — aX{dt + o\ /E [f(X{)|W]dW;

—)_(i_/ 1 o ndr'(t,z,u
" R, xR {z<fX0)} ( )

(XN1)1<i<n converges to (X');>1 in D(Ry, R)Y
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Convergence of (XM'7);<i<n
: . 1 .

dXN’I:—OéXN’Idt‘i‘i / ul j dﬂJ t,Z,U

P s S [ e

J#i
- xM 1 A dmi(t
dX; = — aX{dt + o\ /E [f(X{)|W]dW;

—)_(i_/ 1 o ndr'(t,z,u
Y P ) ( )

*

(XN 1<i<n converges to (X')j>1 in D(Ry,R)N

NSC (Proposition (7.20) of [Aldous (1983)]) :
pN =N | Gxn, converges to yu = L(XW) in P(D(R,R))
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Outline of the proof

Step 1. (V) is tight on P(D(R4,R))
Equivalent condition : (XV'1)y is tight on D(R,,R)
Proof : Aldous’ criterion

Step 2. Identifying the limit distribution of (uN)y
Proof : any limit of " is solution of a martingale problem

Xavier ERNY Diffusive limits for particle systems 19/36
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Martingale problem

Given Q € P(P(D(R+,R))) =P(P(D)) (Q@ = L(u))
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P(A x B) := /P(D) 1a(m)ym @ m(B)dQ(m)
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Martingale problem

Given Q € P(P(D(R+,R))) =P(P(D)) (Q@ = L(u))

Canonical space Q := P(D) x D? with w = (i, (Y?, Y?)) :
Meaning : (Y, Y?) mixture of iid directed by y

P(A x B) := / 1a(m)m ® m(B)dQ(m)
P(D)
Q is solution of (M) if for all g € CZ(R?),
g(YH Y2) — gy, Ys) fo Lg(us, Y, Y2)ds is a martmgale

Lg(m,x', x?) = — ax'O1g(x) — ax?Dag(x) Z 07;8(x)
ij=1

+f(x")(g(0,x%) - g(x)) + f(X2)(g(X17 0) —&(x))
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Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L(u) where p is the
directing measure of some exchangeable system (Y');>1
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Let Q be a solution of (M). Write Q = L(u) where p is the
directing measure of some exchangeable system (Y');>1

L(p, Y, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)

Vi€ {1,2),dV{ = — aYidt + o/ u(F)dW,

- Y /R+ 1{z§f(\7{7)}d77 (t,2)
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Uniqueness for the martingale problem

Let Q be a solution of (M). Write Q = L(u) where p is the
directing measure of some exchangeable system (Y');>1

L(p, Y, Y?) = P (from the martingale problem)

Representation theorems imply (admitted)

Vie N* dYi =—aYidt+ o/ p(f)dW;
- Y. /]R+ 1{z§f(\7{7)}d77 (t,2)
Then the law of = £(Y1|W) is uniquely determined

Xavier ERNY Diffusive limits for particle systems
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Convergence of p" to the solution of (M)

Let 41 be the limit of (a subsequence of) pN
L(p) is solution of (M) if

E[F(u)] =0
for any F of the form

Flm) = [ m@ m(d)o ()0 [9(00) = 6(32)
- [ ot
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Convergence of p" to the solution of (M)

Let 41 be the limit of (a subsequence of) pN
L(p) is solution of (M) if

E[F(u)] =0

for any F of the form

Flm)i= [ mis m(d)os(rn)oetu(a) 6000 - 6022)

t t
+a/ v381¢(%)dr+a/ Y202y )dr
t

_ / FOM)(@(0,77) = 6(3r))dr = / F(2) (L. 0) — Bl
_/ m, Z all i ,}/r dr}

i,ih=1
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The expression of F(uN)

F(u") =

/D2 pN @ N (dy)d1(vs)-d(vs,) [¢>(%) — ¢(7s)
+a [loenar+a [ oG

- [ fene0.2) - e

[ 026020~ o)ar

52
_ / Z 8,1 L (e )dr

i,h=1
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The expression of F(uN)

) Sk

,V2 Zm XA X ). (X, X0 [, X[ = (X, X1
ij=1

t t
Oé/ X,N"('?l(X,N",X,N’J)dr—i-a/ XrNdraZ(XrN’I,XrN’J)dr

S

S
FXN ) (9(0, XY — g(XN, X N))dr
f(

)6
XM (X, 0) — (X, X19))dr

)

= / Z 02 o (XM, XM ) dr|

i,h=1
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S1 ! SK
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The expression of F(uN)

S1 ! SK

- Zasl (X X)X XU |66 XM = (X0, X0V
ij=1

t t
a/ x,"’"al(x,’V",x,’V’f)erra/ XN (XM, XY dr

S S

t . . . :
a / f(XI’IV7’)(()(O XerJ) - (f‘b(XrN’I’XFN’J))dr
s

/t FOXN) (X, 0) — o(X M X)) dr

/ /sz X’Vk 2N Z ()1112 XN/ XNJ)dV( )dr]

kl 11I21

Xavier ERNY Diffusive limits for particle systems 23 /36



Model
Model of interacting neurons Propagation of chaos

The expression of ¢p(XN:/| XNY)

By Ito's formula,
Eo(X(", X{) = g(X[, XM) =
t i i . t i i i
E — /X’V'a (XN XNy — /Xr“’d,ag(x,"’",x,"’d)dr
FXNNY (0, XN+ XN XN dy(u)dr
[ o )= ()
+ FOXNIY (XM 4 0) — (XN XN ))du(u)dr
[ [ oo+ o)~ o ()

FOMRY SO+ X+ ) = o(X X)) du(u)dr
L Lx ) T e X Ean)

k=1
k#i,j
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Vanishing of E [F(u")]

The reset jump term

u

\/N)

‘qb(o,xr”’f) — (0, XN +
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Vanishing of E [F(u")]

The reset jump term

u

‘qb(o,xr”’f) — (0, XN +

The small jump term

u

VN

u

N VN

p(XNT + —, XM+ —=) — p(XNM, X

2 2
u i ;
B ﬂ Z 8f21,i2¢(XrN7 aXrNd)
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Vanishing of E [F(u")]

The reset jump term

‘qb(o,xr”’f) — ¢(0, XN +
The small jump term

N(o(XMT 4+ — XM ) — (XM XN

VNN

2
u i i j
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Vanishing of E [F(u")]

The reset jump term

‘qb(o,xr”’f) — ¢(0, XN +
The small jump term

O+ 2 XM ) = G XP)

2
u i i j
- \/NZ 11¢(XN XN’J 2N Z 8!1 12 XN7 ’XI!VJ)
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Vanishing of E [F(u")]

The reset jump term

‘qb(o,xr”’f) — ¢(0, XN +
The small jump term

O+ 2 XM ) = G XP)

2
u i i j
- \/N Z /1¢(XN XN’J N Z 8,1 i XN’ ,XrN*j)

=1 i1,ip=1

N
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NN lu
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Convergence of (1) y

axM = — axl dt—i—Z/ dmi(t, z, u)

]R+><]R
—Xt.,\ﬁl/ 1 <f N,i dﬂ'i(t,z7 U)
Ry xR {Z— (Xf—)}
dXi = — aXjdt + o\/p:(F)dW;
—)_(i_/ 1 o wdri(t,z,u
= ey a7 (0 20)

z<f XNJ)}
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Convergence of (1) y

axM = — axl dt—i—Z/ dmi(t, z, u)

]R+><]R
—Xt.,\ﬁl/ 1 <f N,i dﬂ'i(t,z7 U)
Ry xR {Z— (Xf—)}
dXi = — aXjdt + o\/p:(F)dW;
—)_(i_/ 1 o wdri(t,z,u
= ey a7 (0 20)

z<f XNJ)}

o (uM)y is tight on P(D)
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Model
Model of interacting neurons Propagation of chaos

Convergence of (1) y
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Model
Model of interacting neurons Propagation of chaos

Convergence of (1) y

axM = — axl dt—i—Z/ dmi(t, z, u)

]R+><]R
—Xt.,\ﬁl/ 1 <f N,i dﬂ'i(t,z7 U)
Ry xR {Z— (Xf—)}
dXi = — aXjdt + o\/p:(F)dW;
—)_(i_/ 1 o wdmi(t, z,u
= Ji g ez ) OB 20)

z<f XNJ)}

(uN)y is tight on P(D)

let p be the limit of a converging subsequence
L() is the unique solution of (M)

p = L(XY W) is the only limit of (u")n
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Model
Limit system
McKean-Vlasov model

McKean-Vlasov model

dXNI = b(XNlaut )dt+0( Nlalut )dﬂt

1 N, k i P
’VZ/&MN* VXX ﬂ{zéf(xﬁ_’k,u?_)}mr (t:2,0)

with gV = 5 Z, 1 Sxn.i, and 7 has intensity dt - dz - v(du)

(v = V?N*)
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Model
Limit system
McKean-Vlasov model

McKean-Vlasov model

dX = b(X u)dt + o (XM, ul)d L

N
1 Nk \Ni Nk
" mzk 1/R+XRN* M L

k
t_)}d7r (t,z,u)

with N = L SN 5y, and 7% has intensity dt - dz - v(du)
®N*)

(v=1]
Dynamic of XN/ :
@ while there is no jump, the dynamic is given by the drift and
Brownian terms

o if there is a jump at time t, created by particle k, each
particle i creates a r.v. U’ (the U’ are i.i.d.),

; ; 1 i i
XN = X Xl U D)
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Model
Limit system
McKean-Vlasov model

Heuristics for the limit system

X" = b(X" ) dt + o (X, ) d B

N
1 Nk WNi Nk L
+mkz‘:/&xw* W(X.2" X2 e, u”u )1{2Sf(XtN;k,u£",)}d7r (t,z,u)
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N
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Model
Limit system
McKean-Vlasov model

Heuristics for the limit system

dXM = b(XN NYdt + o (XN ) d B

1 Nk i B
VN t
N Z/RJrX]RN* W(X t_ ’Mt ’ 7U )1{Z§f(XtN!k7#?lf)}d7r ( s Z,y U)
1 N
Ni _ = Nk WNi Nk i .
Jt - \/Nkz_;/ Xs— 7X 7:usfvu ,u )1{z§f(xsl\£k7“é\/7)}d7r (S,Z, U)

1

JN,i JNJ _ =
< ? > N
N
S

»MZ

/J &

W(XNK XN N (XN XNT N gk ) FXNR uNYu(du)ds
S S S
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Heuristics for the limit system

X" = b(X" ) dt + o (X, ) d B
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1 Nk WNi Nk L
+\/N;/R+><]RN* V(X2 X2 e, u”u )1{2Sf(XtN,’k,u{V,)}d7r (t,z,u)

N
i 1 Nk Ni N ki K
gNi = /W(X_’ X e U u')1 , dr”(s, z, u)
‘ sz_:l o0 {zsroxdin}

t
i [ ]
0 JRJRN*
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Model
Limit system
McKean-Vlasov model

Heuristics for the limit system

dXN = b(XM uydt + o (XM, ) d B
1 N
Nk i K
+ \/N;/RJrX]RN* W(X t— aut ) 7U )1{2Sf(xtl\£k7#?/7)}d7r (t,Z7 LI)

N
i N,k N,i i
JtN’ = § /W(Xs— 7Xs— nuéva Uk’ u )1{z§f(xsl\ﬁk”ué\/7)}d7rk(svzv U)

t
v [
0 JRJRN"

W0, X, Y, YW, X, Y, b, ) e i Yol () s
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Model
Limit system
McKean-Vlasov model

Particular case

W(X7 .y7 m’ u’ V) = \U(u7 V)
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Limit system
McKean-Vlasov model

Particular case

W(X7 .y7 m’ u’ V) = \U(u7 V)

N,iNJ:t b u YW, ) F(x, Mo (du) N (dx)ds
M= [ e el (e

—g// O, Ml (dx)ds i i =

with ¢2 = [W(u!, u?)?v(du)
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Model
Limit system
McKean-Vlasov model

Particular case

W(X7 .y7 m’ u’ V) = \U(u7 V)

. t
0 JR

t

W(ut, u W (ut, ) (x, ) (du)p (dx)ds

N

f(X Hs )Hs (dX)dS ifi=j

T

2
S

0

t

:/@2

%\%\

A F(x, 1 g (dx)ds  if i #

with ¢2 = [W(u!, u?)?v(du) and k2 = [W(u?, )W (!, u3)v(du)
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Model
Limit system
McKean-Vlasov model

Particular case

N,iNJ:t b u YW, ) F(x, Mo (du) N (dx)ds
(N Ny, /O/R/R W, u YW (b, o) (x, Yo (du)l¥ (dx)d

N*
f(X Hs )Hs (dX)dS ifi=j

:/@2

Fx, nl )l (dx)ds  if i # j

with ¢2 = [W(u!, u?)?v(du) and k2 = [W(u?, )W (!, u3)v(du)

J’—/@/ \// (x, ps) s (dx) dWs++/ 62 /4;2/ \// (x, pus) s (dx) W/,

with W, W' i.i.d. Brownian motions and u = £(X'|W)
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Model
Limit system
McKean-Vlasov model

General case

(N, g, ///R

W0, XNl ut u YW (e, XN Nt ) F(x Y (du)pl (dx) ds
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Model
Limit system
McKean-Vlasov model

General case

(N, g, ///R

W0, XMl ut, YW e XNl at, ) (x, v (du)pd (dx)ds

Problem : the blue term is not a product, but an integral of a
product
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(N, g, ///R

W0, XN N ut u YW (s, XN Nt ) F(x Y)Y (du) pl (dx) ds

Problem : the blue term is not a product, but an integral of a
product

Solution : let M(dt, dz) = M;(dz) be a martingale measure on

d
Ry x E with intensity dt - m;(dz),

(M.(A),M.(B)): = /0 /ElA(z) -1g(z)ms(dz)ds
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Limit system
McKean-Vlasov model

General case

(N, g, ///R

W0, XN N ut u YW (s, XN Nt ) F(x Y)Y (du) pl (dx) ds

Problem : the blue term is not a product, but an integral of a
product

Solution : let M(dt, dz) = M;(dz) be a martingale measure on

d
Ry x E with intensity dt - m;(dz),
(M.(A),M.(B)): = /0 /ElA(z) -1g(z)ms(dz)ds

Here : E =RY" x R and m(du, dx) = v(du) - us(dx)
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Model
Limit system
McKean-Vlasov model

Limit system (1)

dX] =b(X], jie)dt + o (X, 1) dB]
/ X )_q.a,utvv)\/ f(Xa:ut)dM(taxa V)
+//ﬁ;(x,)_(ti,Mt)\/f(x,ut)d/\/l"(t,x)

with

U(x,y, m,v) :/ W(x,y, m, v, ut)v(du)
RN*

nw%mf=/wm%mwhﬂ%wm—/®w%mmwww)
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Model
Limit system
McKean-Vlasov model

Limit system (1)

dX; =b(Xi, pe)de + o(Xi, 1) d B
/ X )_q.a,ultvv)\/ f(Xhut)dM(taxa V)
+/H(X,)_q,Mt)\/f(X,ut)dMi(t,X)

with

U(x,y, m,v) :/ W(x,y, m, v, ut)v(du)
RN*

k(. y, m)2 = / W(x,y, m, ub, i)2u(du) — / B(x, y, m, u')2v(du)

Interpretation of I

[ Bcyim,utuldn) = Wy, m it 20y, m i ()
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Model
Limit system
McKean-Vlasov model

Limit system (2)

dX} =b(X], j1e)dt + o (X, 1) dB]

—i—/\UxX’,ut, V)V F(x, pe)dM(t, x, v)
b [ o X ) /O )b 2.
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Limit system
McKean-Vlasov model

Limit system (2)

dX} =b(X], j1e)dt + o (X, 1) dB]

—i—/\UxX’,ut, V)V F(x, pe)dM(t, x, v)
b [ o X ) /O )b 2.

M and M’ are orthogonal (not independent) :

wiA) - [ t [ enaws. p

t 1
= -1 u s u
Me(A x B) = /O /0 /R LA(FH(p)) 15 (u)dW (s, p, u)
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. t 1 .
M) = [ [ 1aF o) aw(s.p)
t 1
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e W' W independent WN with intensities dtdp and dtdpvy(du)
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Model
Limit system
McKean-Vlasov model

Limit system (2)

dXi =b(Xi, e}t + o(Xi, 1) A
—i—/\UxX’,ut, V)V F(x, pe)dM(t, x, v)
b [ o X ) /O )b 2.

M and M’ are orthogonal (not independent) :
. t 1 .
M) = [ [ 1aF o) aw(s.p)
t 1
Me(A x B)_/ / /lA(Fsl(p))IB(u)dW(s,p, v)
o Jo Jr
with :

e W' W independent WN with intensities dtdp and dtdpvy(du)
° F 1 = generalized inverse distribution function of s

@ ls = E()_(5’|W)
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Model
Limit system
McKean-Vlasov model

Main technical difficulty

Lg(y,m,x,v) = b(y", m)d,g(y) + b(y*, m)d,.g(y)

1
+ 500yt m*0he(y) + 50(v? m)*05e(y)

1
f(x, m)r(x, y!, m)26}2,1g(y) + Ef(x, m)k(x, y2, m)28§2g(y)
2

f(X’ m) Z (I}(Xayi) m, V){I‘J(X,yj, m, V)aifng(y)
ij=1

+

+

NI NI=EN =
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+ 500yt m*0he(y) + 50(v? m)*05e(y)
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NI NI=EN =

+

Consider

A= | u@u(dw[ o) - / [ [ Lot aroxs v (@rm(an)
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Limit system
McKean-Vlasov model

Main technical difficulty
Lg(y,m,x,v) = b(y", m)d,g(y) + b(y*, m)d,.g(y)

1
2
1
2
1
2

1
+ 500yt m*0he(y) + 50(v? m)*05e(y)

1
f(x, m)r(x, y!, m)20}2,1g(y) + Ef(x, m)k(x, y2, m)28§2g(y)
2

f(Xa m) Z (I}(Xayi) m, V){I‘J(X,yj, m, V)aifng(y)
ij=1

+

+
Consider

A= | u®u(d7){ o) — / [ [ 666 ot deion(av)

uN 5 11 in P(D) (Prohorov topology) = E [F(uN)] — E [F(u)]
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Limit system
McKean-Vlasov model

Main technical difficulty
Lg(y,m,x,v) = b(y", m)d,g(y) + b(y*, m)d,.g(y)

1
+ 500yt m*0he(y) + 50(v? m)*05e(y)

1
f(x, m)r(x, y!, m)20}2,1g(y) + Ef(x, m)k(x, y2, m)28§2g(y)
2

f(Xa m) Z (I}(Xayi) m, V){I‘J(X,yj, m, V)aifng(y)
ij=1

+

NI NI=EN =

+
Consider

A= | u@u(dw[ o) - / [ [ Lot aroxs v (@rm(an)

uN 5 11 in P(D) (Prohorov topology) = E [F(uN)] — E [F(u)]
Problem : regularity of Lo w.r.t. u, is given for Wasserstein topology
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Thank you for your attention !

Questions ?
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