Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages

Wittawat Jitkrittum\(^1\), Arthur Gretton\(^1\), Nicolas Heess, S. M. Ali Eslami, Balajikrishnan, Dino Sejdinovic\(^2\), and Zoltán Szabó\(^1\)

Gatsby Computational Neuroscience Unit, University College London\(^1\) University of Oxford\(^2\)

Introduction

EP is a widely used message passing based inference algorithm.

Problem: Expensive to compute outgoing from incoming messages.

Goal: Speed up computation by a cheap regression function (message operator):

\[\text{incoming messages } \rightarrow \text{outgoing message.} \]

Merits:
- Efficient online update of the operator during inference.
- Uncertainty monitored to invoke new training examples when needed.
- Automatic random feature representation of incoming messages.

Expectation Propagation (EP)

Under an approximation that each factor fully factorizes, an outgoing EP message \(m_{v_i} \) takes the form

\[
 m_{v_i}(v_i) = \text{proj} \left[\sum_{v_j \sim v_i} m_{v_j}(v_j) \right] = \frac{q_{v_i}(v_i)}{m_{v_i}(v_i)}
\]

Message Operator: Bayesian Linear Regression

Input: \(X = [x_1, \cdots, x_N] \) training incoming messages represented as random feature vectors.

Output: \(Y = [E_{x_1} u(v_1), \cdots, E_{x_N} u(v_N)] \in \mathbb{R}^k \times N \): sufficient statistics of outgoing messages.

Inexpensive online update.

Bayesian regression gives prediction and predictive variance.

If predictive variance < threshold, query importance sampling oracle.

Two-Staged Random Features

In: \(F(k) \): Fourier transform of \(k \), \(D_{\text{in}} \): inner features, \(D_{\text{out}} \): outer features, \(\kappa_{\text{gauss}} \): Gaussian kernel on \(\mathbb{R}^D \)

Out: Random features \(\psi(r) \in \mathbb{R}^D \)

1. Sample \(\xi_i \sim U[0, 2\pi] \)
2. \(\psi(r) = \sqrt{\frac{\pi}{\kappa_{\text{gauss}}}} \cos(r \; \xi_i) \in \mathbb{R}^D \)
3. \(\phi(v) = F(\kappa_{\text{gauss}}(\gamma)) = \sum_{r \in \Omega} \psi(r) \phi(v) \)
4. \(\hat{\phi}(v) = \frac{1}{D_{\text{out}}} \sum_{r \in \Omega} \phi(v) \)

Experiment 1: Uncertainty Estimates

- Approximate the logistic factor: \(f(z|x) = \frac{1}{1 + \exp(-z)} \).
- Incoming messages: \(m_{v_i} = N(z_i; \mu_i, \sigma_i^2) \)
- Training set = messages collected from 20 EP runs on toy data.

Experiment 2: Classification Errors

Fix true \(w \). Sequentially present 30 problems. Generate \(\{x_i, y_i\}_{i=1}^{30} \) for each.

Sampling + KJIT = proposed KJIT with an importance sampling oracle.

Experiment 3: Compound Gamma Factor

Infer posterior of the precision \(r \) of \(x \sim N(x; 0, r) \) from observations \(\{x_i, y_i\}_{i=1}^{30} \):

\[
 r_2 \sim \text{Gamma}(r_2; s_1, s_2) \quad \text{and} \quad T \sim \text{Gamma}(T; s_1, s_2) \\
 (s_1, r_2) = (1, 1).
\]

Inferred shape =
- \(\text{as good as hand-crafted factor; much faster.} \)
- \(\text{as good as hand-crafted factor; much faster.} \)

Experiment 4: Real Data

- Binary logistic regression. Sequentially present 4 real datasets to the operator.
- Diverse distributions of incoming messages.

KJIT operator can adapt to the change of input message distributions.