1. Introduction

• Sparse coding.
• Structured sparsity (e.g., disjoint groups, trees): increased performance in several applications.
• Our goal: develop a dictionary learning method, which
 – enables general overlapping group structures,
 – is online, fast, memory efficient, adaptive,
 – applies non-convex sparsity inducing regularization:
 – fewer measurements,
 – weaker conditions on the dictionary,
 – robust (w.r.t. noise, compressibility).

2. Problem

Task:
• Group structure inducing on the hidden representation \(x \) through regularization:

\[
\begin{align*}
\ell(x) & = \frac{1}{2}\|Ax - b\|_2^2, \\
\ell(x) & = \frac{1}{2}\|Dx - x^0\|_2^2, \\
\ell(x) & = \frac{1}{2}\|Dx - x^0\|_2^2
\end{align*}
\]

• Loss for a fixed observation:

\[
\ell(x_i, D_{ij}) = \frac{1}{2}\|D_{ij}x - x_i\|_2^2, \quad i < j.
\]

• Goal: minimize the average loss of the dictionary:

\[
\sum_{i,j} \|D_{ij}x - x_i\|_2^2 / \sum_{i,j} |D_{ij}|
\]

• Possible dictionary representation constraints:

\(D = \Omega(x) \), where \(\Omega(x) \) is the set of all possible group structures on \(x \).

3. Special cases

1. \(x = [x_1, \ldots, x_N] \): fully observed OSDL task.
2. \(x = [x_1, \ldots, x_n] \): non-convex sparsity inducing regularization:

3. \(x = [x_1, \ldots, x_N] \): online, fast, memory efficient, adaptive.

4. \(x = [x_1, \ldots, x_N] \): general overlapping group structures.

5. \(x = [x_1, \ldots, x_N] \): non-negative D and \(\alpha \).

6. \(x = [x_1, \ldots, x_N] \): constrained D, non-negative \(\alpha \).

4. Optimization

Online optimization of dictionary \(D \) through alternations:

1. \((x_i, D_{ij}, D_{ji}) \) \(\rightarrow \alpha \) \(x = \arg\min \ell(x_i, D_{ij}) \).

2. \((x_i, D_{ij}, D_{ji}) \) \(\rightarrow \alpha \) \(D_{ij} = \arg\min \ell(x_i, D_{ij}) \).

Solution ideas:
• Iterated weighted least squares using the variational property of \(\ell \).
• Block-coordinate descent optimization: update column \(D_{ij} \) while keeping the others fixed.
• Utilization of the cost \(\ell \) can be efficiently updated online (matrix recursions).

5. Numerical experiments

5.1 Inpainting of natural images

We focused on the following questions:
• Structured (towards) vs. unstructured dictionary for inpainting.
• Efficiency in case of missing observations.
• Inpainting of full images using dictionaries learned on partially observed patches.

First experiment (complete observation):
• Increasing neighbor size: \(1 \times 1 \) \(\rightarrow \) \(3 \times 3 \).
• MSE grows slowly.
• \(D = \frac{1}{2} \) in Fig. 3.(d)-(f).

Second experiment (neighbor size: \(3 \times 3 \), missing pixels: \(p_s \leq 0.9 \))
• Up to about \(p_s = 0.8 \), MSE grows slowly.

Third experiment (neighbor size: \(3 \times 3 \), missing pixels: \(p_s = 0.9 \))
• Task: inpainting of an unseen image.

5.2 Online structured non-negative matrix factorization on faces

• Online, \(D \)-NMF: special case of OSDL.
• Illustration: color FERET large-scale (149 \times 129) facial dataset.
• \(D \) complete, 8-level binary tree (\(K = 2^8 \)).

Result: sliding average, Fig. 4(a), \(F_2 = 0.7 \), PSNR = 29 dB.

Figure 3: Group-structured D-\(A \) (a)-(d): complete, increasing neighbor size. (d)-(f): increasing incompleteness.

Figure 4: (a)-(d): full image inpainting. Illustration: top: observed, bottom: estimated. (b): structured NMF-dictionary, training samples at the upper left corner.

Online Group-Structured Dictionary Learning

Zoltán Szabó \(^* \)
Barnabás Póczos \(^* \)
András Lőrincz \(^* \)

\(^* \) Faculty of Informatics, Eötvös Loránd University, Pázmány Péter tér 1/C, Budapest, H-1117, Hungary
\(^* \) School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA

email: sszoli@cs.elte.hu, andras.lorincz@elte.hu; web: http://nlp.inf.elte.hu

The project is supported by the Department for Energy grant number (KCK-2015-12-1388).

The financial support of the European Union is acknowledged through the European Social Fund. Project Brand: TÁMOP-4.2.2.C-11/1/KONV-2012-0022.